Completed GPS Covers All Bent Functions

Philippe Guillot

Thomson-CSF Comsys, 66 Rue du Fossé Blanc, 92231 Gennevilliers CEDEX, France
E-mail: Philippe.Guillot@tcc.thomson-csf.com

Communicated by the Managing Editors

Received April 30, 1998

In a recent paper, the so-called "generalized partial spread" (GPS) class which unifies almost all the known classes of bent functions is introduced. A necessary condition for a bent function to belong to GPS is that it takes the same value as its dual at the zero vector. In this paper, it is shown that the necessary condition above is sufficient. This proves that the completed class by composition with translations covers all the binary bent functions. Moreover, the elements of GPS are characterized in term of solutions of a quadratic Diophantine equation which may lead to count all bent functions. These results are presented in the general framework of partial bent functions which unify bent functions and r-dimensional vector space indicators.

Key Words: Bent functions; Möbius function; generalized partial spread.

1. INTRODUCTION

Let $n = 2r$ be an even integer and V_n be the n-dimensional vector space over $GF(2)$ of all binary words of length n. We are interested in Boolean (i.e., $\{0, 1\}$-valued) functions on V_n. These functions are considered here as real valued functions. So, the set of Boolean functions can be viewed as the 2^n-dimensional real vector space of the real valued functions on V_n denoted by \mathbb{F}_n. This article is devoted to the study of some properties of bent functions. Given that they achieve the property of perfect nonlinearity, bent functions on V_n play an important role in different topics such as coding theory and cryptography (see [8, 13]). They can be equivalently defined as the Boolean functions which reach the maximum Hamming distance to the set of affine functions on V_n and as the Boolean functions f such that the function $x \mapsto (-1)^{f(x)+f(x+a)}$ is balanced for every nonzero vector $a \in V_n$ (see [8]).

There exist several constructions of bent functions due to Maiorana-McFarland, Dillon, Carlet, and Dobbertin (see [4, 8, 9]), but the problem of the complete enumeration of all bent functions remains open.

242
Let us first recall some preliminaries. The all zero vector is simply denoted by 0 and the all one vector by 1. The usual dot product on V_n is defined for all $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n) \in V_n$ by $x \cdot y = x_1 y_1 + \cdots + x_n y_n$ (modulo 2). For any subset E of V_n, the dual of E, denoted by E^\perp, is the vector subspace equal to $\{ x \in V_n | \forall y \in E \cdot x = 0 \}$. The Walsh transform of a function $f \in \mathcal{F}_n$ is the element of \mathcal{F}_n denoted by \hat{f} and defined by

$$\forall y \in V_n, \quad \hat{f}(y) = \sum_{x \in V_n} f(x)(-1)^{x \cdot y}.$$

The Walsh transformation is a linear invertible mapping on \mathcal{F}_n. It satisfies $\hat{f} = 2^n f$. The Parseval’s equality holds:

$$\forall f \in \mathcal{F}_n, \quad \sum_{y \in V_n} \hat{f}(y)^2 = 2^n \sum_{x \in V_n} f(x)^2.$$

For any subset S of V_n, let ϕ_S denote the indicator of S, i.e., the element of \mathcal{F}_n which takes value 1 on S and 0 elsewhere. It is well known that the Walsh transform of the indicator of a d-dimensional vector subspace E of V_n is equal to

$$\hat{\phi}_E = 2^d \phi_E.$$

Conversely, if the Walsh transform of a Boolean function f takes only two values 0 and M, then it is necessarily the indicator of a d-dimensional vector space and then $M = 2^d$.

A Boolean function $f \in \mathcal{F}_n$ is called bent if the Walsh transform of the function $f_x : x \mapsto (-1)^{f(x)}$ has constant magnitude 2^t, i.e., if

$$\forall y \in V_n, \quad \hat{f_x}(y) = \pm 2^t.$$

Thus, if a function f is bent, there exists another Boolean function denoted by \tilde{f} and called the dual function of f defined by $\tilde{f}_x = 2^t (-1)^{\tilde{f}(x)}$ (see [8, 9]).

For any element x of V_n, let $w(x)$ denote the Hamming weight of x defined as the number of nonzero components of x and $\bar{x} = x + 1$, the componentwise complementary of x.

2. GENERALIZED PARTIAL SPREADS

In [4], Carlet shows that, up to a translation, almost all the known bent functions are elements of a new class called the generalized partial spreads class and denoted GPS. We show here that GPS contains almost all the
bent functions and presents a suitable framework for their study. In this section, we recall the definition and the main property of this class which are stated and proved in [4].

Definition 1. A Boolean function f on $V_n, n = 2r \geq 4$, belongs to \mathcal{GPS} if there exists r-dimensional vector spaces E_1, \ldots, E_k and integers m_1, \ldots, m_k such that

$$f = -2^{r-1} \phi_{\{0\}} + \sum_{i=1}^{k} m_i \phi_{E_i}$$

(2)

Such a decomposition of a Boolean function f is called a geometric form of f. An example of explicit construction is given by the \mathcal{PS} class (see [8]), where the E_i’s are pairwise in direct sum. The following proposition states the main properties of \mathcal{GPS}.

Proposition 1 [4]. Let $f = -2^{r-1} \phi_{\{0\}} + \sum_{i=1}^{k} m_i \phi_{E_i}$ be a Boolean function which belongs to \mathcal{GPS}, the following properties hold:

1. f is bent;
2. the complementary function $\bar{f} = 1 - f$ belongs to \mathcal{GPS};
3. for any linear invertible mapping A on V_n, the function $f \circ A$ belongs to \mathcal{GPS};
4. \bar{f} belongs to \mathcal{GPS} and $\bar{f} = -2^{r-1} \phi_{\{0\}} + \sum_{i=1}^{k} m_i \phi_{E_i}$;
5. $f(0) = f(0)$

As noticed in [4], a consequence of the latter property is that \mathcal{GPS} does not cover the whole set of bent functions. Indeed, let f be a bent function and $a \in V_n$ such that $f(a) \neq f(0)$, then the function $f_a: x \mapsto f(x + a)$ is bent and satisfies $f_a(0) = f(a) \neq f(0) = f(0)$. In Section 8, it is shown that property (5) characterizes \mathcal{GPS}.

3. PARTIAL BENT FUNCTIONS

This work will be presented for a more general family of Boolean functions which unifies bent functions and r-dimensional vector spaces. We call them partial bent functions.

Bent functions are those whose support is in fact a difference set (see [8]). Similarly the support of partial bent functions defined below is a partial difference set (see [12]). This notion is related with strongly regular graphs and two weight projective codes (see [2]).
Remark. Partial bent function defined here is a notion totally different from the notion of partially bent functions defined in [6].

Definition 2. A Boolean function on V_n is called partial bent if it has even weight and if its Walsh transform takes exactly two values on $V_n \setminus \{0\}$ which differ of 2^r.

It is not a restriction to consider only even weight function because from $\phi_{\{0\}} = 1$, changing the value at 0 does not change the second condition on the Walsh transform.

If f is partial bent, then by definition, there exist two real numbers m and \tilde{m} and a Boolean function \tilde{f}, called the dual of f, which can be chosen of even weight and such that

$$
\tilde{f} = m + 2^r \tilde{f} - 2^r m \phi_{\{0\}}.
$$

(3)

This relation characterizes partial bent function. Notice that m is the lowest value of \tilde{f} on $V_n \setminus \{0\}$ and thus is an integer. Applying the Walsh transformation to equality (3) yields

$$
\tilde{\tilde{f}} = \tilde{m} + 2^r f - 2^r m \phi_{\{0\}}
$$

which proves that \tilde{f} is also a partial bent function; its dual is f itself and that \tilde{m} is an integer.

Notice that, f and \tilde{f} being of even weight, the integers m and \tilde{m} are even.

Examples.

- Bent functions are partial bent functions with parameter $m = -2^{r-1}$;
- r-dimensional vector space indicators are partial bent functions with parameter $m = 0$.

The following proposition states the stability properties of the family of partial bent functions.

Proposition 2. If f is a partial bent function on V_n then

1. the complementary function $\tilde{f} = 1 - f$ is also a partial bent function and $\tilde{f} = \check{f}$;

2. for all invertible linear mapping A on V_n, the function $f \circ A$ is also a partial bent function and $f \circ A = \tilde{f} \circ (A)^{-1}$.
Proof. From relation (3), we deduce
\[\hat{f} - f = 2^s \phi_{\{0\}} - f = (-2^s - m) + 2^s (1 - \hat{f}) - 2^s (-2^s - \hat{m}) \phi_{\{0\}}. \]
This proves the first part of the proposition. The second part is a direct consequence of the well known property of the Walsh transform:
\[\hat{f} \cdot A = \hat{f} \cdot (\hat{A})^{-1}. \]

Note that the composition of a partial bent function with a translation is not in general a partial bent function.

The parameters \(m \) and \(\hat{m} \) of relation (3) are necessarily related one to the other as shown by the following proposition.

\textbf{Proposition 3.} Let \(f \) be a partial bent function on \(V_n \) and \(\hat{f} \) its dual. If \(f(0) = \hat{f}(0) \) then \(\hat{m} = m \). If \(f(0) \neq \hat{f}(0) \) then \(\hat{m} = -m - 2^s \).

\textbf{Proof.} Suppose that \(f(0) = \hat{f}(0) \). We can assume without a loss of generality that \(f(0) = \hat{f}(0) = 0 \). Otherwise, consider the complementary functions. For all nonzero vector \(u \), we have \(f(u) = m + 2^s \hat{f}(u) \) and \(\hat{f}(u) = m - 2^s \hat{m} \). By squaring these relations and noticing, \(\hat{f} \) being Boolean, that \(\hat{f}(u) = \hat{f}^2(u) \), for all nonzero vector \(u \), we have \(\hat{f}^2(u) = m^2 + (2^s + 2^{s+1}) \hat{f}(u) \) and \(\hat{f}(0) = m^2 - 2^{s+1} m \hat{m} + 2^s \hat{m}^2 \). By summing these relations on \(u \), using Parseval’s equality and noticing that \(\sum_{u \neq 0} \hat{f}(u) = \hat{f}(0) \), we get
\[2^s m^2 + (2^s + 2^{s+1}) \hat{f}(0) - 2^{s+1} m \hat{m} + 2^s \hat{m}^2 = 2^s \hat{f}(0). \]
By using \(\hat{f}(0) = m - 2^s \hat{m} \) and \(\hat{f}(0) = m - 2^s \hat{m} \) in this equality, we yield, after elementary calculations
\[(m - \hat{m})(m + 2^s + 1) = 0. \]
The integers \(m \) and \(\hat{m} \) being even, the second factor cannot be null and thus, \(\hat{m} = m \).

A very similar proof assuming \(f(0) \neq \hat{f}(0) \) leads to the second part of the proposition.

\section{4. EXTENDED GPS}

\textit{GPS} is a subclass of the bent functions. We define here a generalization which is a subclass of the partial bent functions.
DEFINITION 3. A Boolean function on V_n belongs to extended \mathcal{GPF}, denoted \mathcal{EGPS}, if there exist integers m_0, m_1, \ldots, m_k and r-dimensional vector spaces E_1, \ldots, E_k such that f is expressed as

$$f = m_0\phi_{(0)} + \sum_{i=1}^{k} m_i\phi_{E_i}. \quad (4)$$

The difference with \mathcal{GPF} is that we allow the $\phi_{(0)}$-coefficient to be different from -2^{r-1}.

PROPOSITION 4. Let f be a Boolean function expressed as in relation (4). Then the function g defined by

$$g = m_0\phi_{(0)} + \sum_{i=1}^{k} m_i\phi_{E_i};$$

is also a Boolean function.

Proof (Summary). Apply the Walsh transform to relation (4) and use Parseval’s equality to prove that

$$\sum_{x \in V_n} g(x) = \sum_{x \in V_n} g^*(x),$$

the function g being integer valued. This proves that it is a Boolean function.

If $m_0 = 0$ it corresponds to the class of r-dimensional vector spaces indicators and the function g is the indicator of the dual.

If $m_0 = -2^{r-1}$, it corresponds to the \mathcal{GPF} class and g is the dual of f.

Notice that we have

$$\hat{f} = m_0 + 2^r \sum_{i=1}^{k} m_i\phi_{E_i} = m_0 + 2^r(g - m_0\phi_{(0)}),$$

and thus the function f is partial bent and its dual is g. In particular, the function g and the coefficient m_0 do not depend on the choice of the vector spaces E_i which define f.

Applying the previous relations to the zero vector shows that any element of \mathcal{EGPS} and its dual take the same value at the zero vector.

5. MOBIUS DECOMPOSITION OF FUNCTIONS

In the following sections, the Möbius transform tool will be used as in [5, 7], and a brief summary of this follows. The set V_n is a lattice with the
Lucas partial order relation defined for all \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_n) \in V_n \) by
\[
x \geq y \iff \forall i \in \{1, \ldots, n\}, x_i \geq y_i.
\]

Let \(x \lor y \) and \(x \land y \) denote respectively the least upper bound and the greatest lower bound of the two vectors \(x \) and \(y \), and \(x' = x \land y \) denote the vector \(z \) such that for all index \(i \), \(z_i = 1 \) if and only if \(x_i = 1 \) and \(y_i = 0 \).

For any \(a, b \in V_n \), interval \([a, b]\) is defined to be equal to the set \(\{ x \in V_n | a \leq x \leq b \} \). Note that if \(a \not\leq b \) then \([a, b]\) is equal to the empty set. Likewise, half open intervals \([a, b[\) and \([a, b] \) are respectively equal to the sets \(\{ x \in V_n | a < x \leq b \} \) and \(\{ x \in V_n | a \leq x < b \} \).

For each vector \(y \), the interval \([0, y]\) is a vector space of dimension \(w(y) \). Its dual is the interval \([0, y^*]\).

The Lucas partial order relation satisfies the following orthogonality relation (see [14]):

Lemma 1. For any \(a \) and \(b \in V_n \),
\[
\sum_{r \in [a, b]} (-1)^{w(b) - w(r)} = 1 \text{ if } a = b \text{ and } 0 \text{ otherwise.}
\]

This relation leads to the classical Möbius inversion formula. For any element \(f \) of \(\mathcal{F}_n \), the Möbius transform of \(f \) with respect to \(\geq \) is the element of \(\mathcal{F}_n \) denoted by \(f^\geq \) and defined by
\[
\forall y \in V_n, \quad f^\geq(y) = \sum_{x \geq y} (-1)^{w(x) - w(y)} f(x).
\]

The Möbius transformation is a linear invertible mapping on \(\mathcal{F}_n \). The function \(f \) can be recovered from \(f^\geq \) by the Möbius inversion formula,
\[
\forall x \in V_n, \quad f(x) = \sum_{y \geq x} f^\geq(y) \tag{5}
\]

Note that this Möbius transformation is not the one defined in [8] with the usual Lucas order \(\leq \) which leads to the algebraic normal form of Boolean functions. The transformation used here is defined with the dual order \(\geq \). But these two transforms have very similar properties. The reason for using order \(\geq \) is that the relation (5) can be rewritten as
\[
f = \sum_{y \in V_n} f^\geq(y) \psi(0, y),
\]
which is a decomposition of \(f \) into vector subspaces of \(V_n \) indicators. We call it the Möbius decomposition of \(f \). By the inversion formula, this decomposition is unique. In other words, the set \(\{ \psi(0, y) \} \) is a basis of the vector space \(\mathcal{F}_n \).
The following proposition states the relationship between the Möbius decomposition of a partial bent function and that of its dual.

Proposition 5. Let f be a partial bent function on V_n and \bar{f} be its dual.

\[
\forall y \in V_n, \quad y \neq 0, 1, \quad \bar{f} = 2^{r-w(y)}\bar{f}(y) \\
\bar{f}(1) = 2^{-r}(\bar{f}(0) - m) \\
\bar{f}(0) = m + 2^r\bar{f}(1).
\] (6) (7) (8)

Proof. From Proposition 3, f satisfies $f = m\phi_{[0]} + 2^{-r}f - 2^{-r}m$. On the other hand, by applying the Walsh transform to the Möbius decomposition of f, we yield

\[
\hat{f} = \sum_{y \in V_n} 2^{w(y)}\phi_{[0, 0]}(y) \phi_{[0, y]} = \sum_{y \in V_n} 2^{-w(y)}\bar{f}(y) \phi_{[0, y]}.
\]

We deduce the following decomposition of f:

\[
f = (m + 2^r\bar{f}(1)) \phi_{[0]} + \sum_{y \neq 0, 1} 2^{-w(y)}\bar{f}(y) \phi_{[0, y]} + 2^{-r}(\bar{f}(0) - m).
\]

This is the unique Möbius decomposition of f. The result holds by terms identification.

6. SOME PRELIMINARIES

The central result of this article is a decomposition theorem of functions by mean of r-dimensional vector space indicators. The proof will be constructive. In this section, we define the vector spaces we use.

6.1. Spaces $G_{m, y}$

For any m and $y \in V_n$ such that $m \leq y$, let $G_{m, y}$ be the vector space equal to the direct sum of the interval $[0, m]$ and of the line generated by the vector $y - m$. If $y > m$ then $\text{dim}(G_{m, y}) = w(m) + 1$ and if $y = m$ then $G_{m, y} = [0, m]$ and so $\text{dim}(G_{m, y}) = w(m)$.

The following lemma expresses the indicator of $[0, y]$ by mean of indicators of some spaces $G_{m, y}$.

Lemma 2. For any pair of vectors m and $y \in V_n$ such that $m \leq y$,

\[
\phi_{[0, y]} = (2 - 2^{-w(y) - w(m)}) \phi_{[0, 0]} + \sum_{u \in [m, y]} \phi_{G_{m, u}}.
\] (9)
Proof. For any pair \(m, u \) of elements of \(V_n \) such that \(m < u \), the space \(G_{m,u} \) is the disjoint union of \([0,m]\) and of \([u',m,u]\), then \(\phi_{G_{m,u}} = \phi_{[0,m]} + \phi_{[u',m,u]} \). By linearity of Möbius transform, \(\phi_{G_{m,u}} = \phi_{[0,m]} + \phi_{[u',m,u]} = \phi_{[m]} + \phi_{[u',m,u]} \). Let us compute the second term. For all \(x \in V_n \),

\[
\phi_{[u',m,u]}(x) = \sum_{y \geq x} (-1)^{w(y) - w(x)} \phi_{[u',m,u]}(y) = \sum_{y \in [x \vee (m,u)]} (-1)^{w(y) - w(x)}.
\]

From Lemma 1, the latter sum is nonzero only if \(u = x \vee (u',m) \), i.e. if \(x \in [m,u] \). In the latter case, the sum is equal to \((-1)^{w(u) - w(x)}\), thus \(\phi_{[u',m,u]}(x) = (-1)^{w(x)} \phi_{[u',m]}(x) \). Finally, \(\phi_{G_{m,u}}(x) = \phi_{[0,m]}(x) + (-1)^{w(x)} \phi_{[u',m,u]}(x) \). If \(u > m \) we have \(\phi_{G_{m,u}} = \phi_{[0,m]} + \sum_{y \in [m,u]} (-1)^{w(x) - w(y)} \phi_{[0,y]} \) by Möbius inversion formula. If \(u = m \), then \(\phi_{G_{m,u}} = \phi_{[0,m]} \). From the Möbius inversion formula applied for all \(x \in V_n \) to the function \(y \mapsto \phi_{[0,y]}(x) \) on the interval \([m,u]\) (which is isomorphic to the lattice \(V_{w(u) - w(m)} \)), we obtain, for all \(y, m \in V_n \) such that \(m \leq y \):

\[
\phi_{[0,y]} = \phi_{[0,m]} + \sum_{y \in [m,u]} (\phi_{G_{m,u}} - \phi_{[0,m]}).
\]

Relation (9) follows from this equality. \(\square \)

6.2. Spaces \(K_{M,y} \)

Let \(K_{M,y} \) be the vector space equal to the sum of the interval \([0,y]\) and the vector space of even weight vectors which are less than or equal to \(M \setminus y \). These spaces are the duals of those defined in the previous section. Precisely, \(K_{M,y} = (G_{M,y})^\perp \). Thus if \(y < M \) then \(\dim(K_{M,y}) = w(M) - 1 \) and if \(M = y \) then \(\dim(K_{M,y}) = w(M) \). Moreover, if \(w(y) = w(M) \) or \(w(M) - 1 \), then \(K_{M,y} = \{0, y\} \). Notice that if \(w(M) - w(y) = 2 \), then \(K_{M,y} = G_{y,M} \).

The following lemma expresses the indicator of \([0,y]\) by mean of indicators of some spaces \(K_{M,y} \).

Lemma 3. For any pair of vectors \(M \) and \(y \in V_n \) such that \(y \leq M \),

\[
2^{w(M) - 1 - w(y)} \phi_{[0,y]} = (1 - 2^{w(M) - 1 - w(y)}) \phi_{[0,M]} + \sum_{u \in [y,M]} \phi_{K_{M,u}}.
\]

Proof. Let us consider the Walsh transform of each side of equality (9) applied to \(y \) and with \(m = M \).

\[
2^{n - w(y)} \phi_{[0,y]} = (2 - 2^{w(M) - w(y)}) 2^{n - w(M)} \phi_{[0,M]} + \sum_{u \in [M,y]} 2^{n - w(M) + 1} \phi_{K_{M,u}}.
\]

The result is obtained by dividing the two members of this equality by \(2^{n - w(M) + 1} \) and by replacing \(u \) by \(\bar{u} \) in the sum. \(\square \)
6.3. Parameters m_y and M_y

It remains to define which vectors m and M will be used to define the r-dimensional vector spaces G_{m_y} and K_{M_y}.

For each vector y of weight $\geq r$, let $m_y \in V_n$ be the first prefix of y of weight $r-1$, completed on the right by 0's. For instance with $n = 6$, if $y = 101011$ then $m_y = 101000$. As $w(m_y) = r-1$, then $\dim(G_{m_y}) = r$.

For each vector y of weight $\leq r$, let $M_y \in V_n$ be the first suffix of y containing $r-1$ zeroes, completed on the left by 1's. For instance with $n = 6$, if $y = 001010$ then $M_y = 111010$. As $w(M_y) = r+1$, then $\dim(K_{M_y}) = r$.

Let m be the restriction of the mapping $y \mapsto m_y$ to the set of $(r+1)$-weight vectors. Similarly, let M be the restriction of the mapping $y \mapsto M_y$ to the set of $(r-1)$-weight vectors. As the weight of M_y equals $r+1$, the composition $M \circ m$ is well defined and map a $(r+1)$-weight vector to a $(r+1)$-weight vector.

Lemma 4. The composition $M \circ m$ is increasing for lexicographic order and the only fixed point is the vector $1^{r+1}0^{r-1}$.

Proof. Let y be any $(r+1)$-weight vector. The effect of the mapping m is to replace the two last 1's by 0's. The effect of M on $m(y)$ is to replace the two first 0's by 1's. Finally, the composition exchanges the two last 1's of y with the two first 0's of m_y. This transformation always moves ones from right to left. Thus, $M \circ m(y)$ is greater than y for the lexicographic order. Moreover, $M \circ m(y) = y$ if and only if the two last 1's of y are on the positions of the two first 0's of m_y. This happens only if $y = 1^{r+1}0^{r-1}$ which is the only fixed point of $M \circ m$.

6.4. Another Lemma

Lemma 5. Let $\mu = 1^{r+1}0^{r-1}$ be the maximal $(r+1)$-weight vector for lexicographic order. Then

$$
\sum_{y \leq \mu} \phi_{K_{M_{y}}} = 2^r \phi_{[0]} + 2^r \phi_{[0, \mu]}.
$$

Proof. If $y \leq \mu$ then y ends with at least $(r-1)$ zero components, thus $M_y = \mu$. For all $y \leq \mu$, we have $K_{[M_y, y]} = [0, \mu]$. Let $x \in V_n$ be any vector and let us consider three cases to achieve the proof.

1. If $x \preceq \mu$ then x does not belong to any space $K_{M_{y}}$.
2. If $x = 0$ then x belongs to all the $K_{M_{y}}$ for $y \preceq \mu$. There exist 2^r such spaces.
3. If $0 < x \preceq \mu$ and $y \preceq \mu$ then $x \in K_{M_{y}}$ if and only if vector $x \setminus y$ has an even number of nonzero components. There exist 2^r such spaces.
7. REGULAR DECOMPOSITION

We prove in this section a decomposition theorem of the elements of \mathcal{F}_n by means of $\phi_{\{0\}}$ and r-dimensional vector space indicators, called regular decomposition. We also find a sufficient condition on f which guarantees that its regular decomposition has integer coefficients.

Theorem 1. Let $n = 2r$ be an even integer greater than or equal to 4 and f be a real valued function on V_n. There exist $2^n - 1$ vector spaces $F_1, \ldots, F_{2^n - 1}$ of dimension r such that the set $\{\phi_{\{0\}}, \phi_{F_1}, \ldots, \phi_{F_{2^n - 1}}\}$ is a basis of \mathcal{F}_n.

Moreover, if f is integer valued and if for each nonzero $y \in V_n$ of Hamming weight $\leq r$, the value of $\tilde{f}(y)$ is multiple of $2^{w(y) - r}$, and if the quantity $d = \sum_{y \leq r} f(y)(2^{w(y) - r} - 1)$ is a multiple of $2^{r - 1}$, then the coefficients of f in this basis are integers.

Proof. The starting point of the proof is the Möbius decomposition of f: $f = \sum_{y \leq r} f(y) \phi_{\{0, y\}}$. The principle is to substitute, for $w(y) \leq r$, the $\phi_{\{0, y\}}$’s of this decomposition with expressions given by means of the r-dimensional vector spaces indicators previously defined. We proceed in five steps.

Step 1. The first step consists in expressing the $\phi_{\{0, y\}}$’s, for $w(y) \geq r + 1$, by means of the $\phi_{G_{my}, u}$’s using Lemma 2.

$$f = \sum_{w(y) \leq r} \tilde{f}(y) \phi_{\{0, y\}} + \sum_{w(y) \geq r + 1} \tilde{f}(y) \left(2^{w(y) - r - 1} \phi_{\{0, m_y\}} + \sum_{u \in \{m_y, y\}} \phi_{G_{my}, u}\right).$$

For all y such that $w(y) \geq r + 1$ and all $u \in \{m_y, y\}$, we have $m_u = m_y$. This allows us to reverse the order of the summations when expanding the second term of the above expression,

$$f = \sum_{w(y) \leq r} \tilde{f}(y) \phi_{\{0, y\}} + \sum_{w(y) \geq r + 1} \tilde{f}(y)(2^{w(y) - r - 1}) \phi_{\{0, m_y\}}$$

$$+ \sum_{u \in F_y \text{ or } w(y) \geq r + 1} \sum_{u \in \{m_y, y\}} \tilde{f}(y) \phi_{G_{my}, u}.$$
The vector \(m_y \) being of weight \(r - 1 \), we have necessarily \(w(u) \geq r \) in the last term above. Note that if \(w(u) = r \), then \(G_{m_y, u} = [0, u] \). We gather now the terms of this sum corresponding to vector space indicators. These spaces are \([0, y]\) for \(w(y) \leq r \) and \(G_{m_y, y} \) for \(w(y) > r \). Let \(a_y \) be the coefficients of this decomposition,

\[
f = \sum_{w(y) \leq r} a_y \phi_{[0, y]} + \sum_{w(y) > r} a_y \phi_{G_{m_y, y}},
\]

(11)

The result of the calculation of the \(a_y \)'s is

\[
a_y = \begin{cases}
\sum_{u \in [m_y, y]} (2 - 2^{w(u) - r - 1}) f(u) & \text{if } w(y) < r - 1; \\
\sum_{u \in [y + [m_y, u]} f(u) & \text{if } w(y) = r - 1; \\
\sum_{u \in [y + [m_y, u]} f(u) & \text{if } w(y) \geq r.
\end{cases}
\]

(12)

Step 2. The second step consists in replacing the \(G_{m_y, y} \) indicators in relation (11) by mean of \([0, y]\) indicators for \(w(y) = r + 1 \). For any such \(y \), the open interval \([m_y, y]\) contains two elements, say \(y_1 \) and \(y_2 \). From Lemma 2, we have

\[
\phi_{G_{m_y, y}} = 2\phi_{[0, m_y]} - \phi_{[0, y_1]} - \phi_{[0, y_2]} + \phi_{[0, y]}.
\]

Using this result in relation (11) leads to an expression of \(f \) by mean of \([0, y]\) indicators for \(w(y) \leq r + 1 \) and of \(G_{m_y, y} \) indicators for \(w(y) > r + 1 \). Let \(b_y \) be the coefficients of this decomposition.

\[
f = \sum_{w(y) \leq r + 1} b_y \phi_{[0, y]} + \sum_{w(y) > r + 1} b_y \phi_{G_{m_y, y}},
\]

(13)

The computation of the coefficients \(b_y \) yields

\[
b_y = \begin{cases}
a_y & \text{if } w(y) < r - 1 \text{ or } w(y) \geq r + 1; \\
a_y + 2 \sum_{w(u) = r + 1, y \in [m_y, u]} a_u & \text{if } w(y) = r - 1; \\
a_y - \sum_{w(u) = r + 1, y \in [m_y, u]} a_u & \text{if } w(y) = r.
\end{cases}
\]

(14)
Step 3. In the third step, by using Lemma 3, we express, for $0 < w(y) < r$, the $[0, y]$ indicators in relation (13) by mean of $K_{M_y, y}$ indicators. We obtain, M_y being of weight $r + 1$,

$$f = b_0 \phi_{\{0\}} + \sum_{0 < w(y) < r} \frac{b_y}{2^{r - w(y)}} (1 - 2^{r - w(y)} \phi_{\{0, M_y\}} + \sum_{u \in \{y, M_y\}} \phi_{K_{M_y, u}})$$

$$+ \sum_{w(y) = r, r + 1} b_y \phi_{\{0, y\}} + \sum_{w(y) > r + 1} b_y \phi_{G_y, y}.$$

For all y such that $w(y) \leq r - 1$ and all $u \in \{y, M_y\}$, we have $M_u = M_y$. This allows us to reverse the summations when expanding the above relation,

$$f = b_0 \phi_{\{0\}} + \sum_{0 < w(y) < r} \frac{b_y}{2^{r - w(y)}} (1 - 2^{r - w(y)} \phi_{\{0, M_y\}}$$

$$+ \sum_{u \in \{y, M_y\}} \sum_{0 < w(y) < r} \frac{b_y}{2^{r - w(y)}} \phi_{K_{M_y, u}})$$

$$+ \sum_{w(y) = r, r + 1} b_y \phi_{\{0, y\}} + \sum_{w(y) > r + 1} b_y \phi_{G_y, y}.$$

We gather now the terms corresponding to the vector space indicators. We get a decomposition of f by mean of $\phi_{\{0\}}$ and of r or $(r + 1)$-dimensional vector space indicators. Let c_y be the coefficients of this decomposition,

$$f = c_0 \phi_{\{0\}} + \sum_{0 < w(y) < r} c_y \phi_{K_{M_y, y}} + \sum_{w(y) = r, r + 1} c_y \phi_{\{0, y\}} + \sum_{w(y) > r + 1} c_y \phi_{G_y, y}. $$

(15)

The computation of the coefficients c_y yields

$$c_y = \begin{cases}
\frac{b_y}{2^{r - w(y)}} & \text{if } 0 < w(y) \leq r \\
\sum_{u \neq 0} b_y & \text{if } w(y) = r, r + 1 \\
\sum_{u \neq y} (2^{w(u) - r} - 1) b_y & \text{if } y = 0 \text{ or } w(y) > r + 1 \\
\end{cases}$$

(16)

Step 4. We minimize now the number of $(r + 1)$-dimensional vector space indicators in the expression (15). Let y be a $(r + 1)$ weight vector and
let \(y_1 \) and \(y_2 \) be the two elements of the open interval \(]m, y[. \) Their weight equals \(r \) and from Lemma 2, we have
\[
\phi(y) = -2\phi(0, m) + \phi(0, y_1) + \phi(0, y_2) + \phi \alpha_{y_1}, r.
\]

Let now \(z_1 \) and \(z_2 \) be the two elements of the open interval \(]m, M[. \) Their weight equals \(r \) and from Lemma 3, we have
\[
2\phi(0, m) = -\phi(0, M) + \phi(0, z_1) + \phi(0, z_2) + \phi \alpha_{M}, r.
\]

Thus, we can express \(\phi(y) \) by mean of \(\phi(0, M) \) plus a linear combination of \(r \)-dimensional interval indicators:
\[
\phi(y) = \phi(0, M) + \phi(0, y_1) + \phi(0, y_2) - \phi(0, z_1) - \phi(0, z_2) + \phi \alpha_{M}, r - \phi \alpha_{y_1}, r.
\]

(17)

We sweep now the \(y \)'s of weight \(r + 1 \) in the lexicographic order and apply this relation to substitute \(\phi(y) \). From Lemma 5, on each step of this process, the number of \((r+1)\)-dimensional vector space indicators invo- qued decrease by one until \(y \) reach the maximal \((r+1)\)-weight vector for lexicographic order. We denote \(\mu = 1^{r+1}0^{r-1} \) this element. We have now obtained an expression of \(f \) by mean of indicators of \(\{0\} \), of \(K_{m, y} \) for \(0 < w(y) < r \), of \([0, y] \) for \(w(y) = r \), of \(G_{m, y} \) for \(w(y) > r \), \(y \neq \mu \) and of \([0, \mu] \). These spaces are all \(r \)-dimensional except the latter which is \((r+1)\)-dimen- sional. Let \(d_\mu \) denote the coefficients of this decomposition of \(f \),
\[
f = d_0 \phi(0) + \sum_{0 < w(y) < r} d_y \phi_{K_{m, y}} + \sum_{w(y) = r} d_y \phi(0, y) + \sum_{y \neq \mu, w(y) > r} d_y \phi_{G_{m, y}} + d_\mu \phi([0, \mu]).
\]

(18)

Let us now compute the coefficient \(d_\mu \). From relation (17), we have
\[
d_\mu = \sum_{w(y) = r + 1} c_y.
\]

From relation (16), we have
\[
d_\mu = \sum_{0 < w(y) < r + 1} b_y (2^{w(y)} - 1).
\]
Notice that the terms of this sum such that \(w(y) = r \) are null and those for which \(w(y) = r + 1 \) are simply equal to \(b_y \). From relation (14), we deduce

\[
d_{\mu} = 2 \sum_{0 < w(y) < r} a_y (2w(y) - r - 1) + \frac{1}{2} \sum_{w(y) = r + 1} a_y.
\]

Applying the same principle and using relation (12), we finally yield

\[
d_{\mu} = \sum_{y \neq 0} f(y)(2w(y) - r - 1).
\]

Step 5. In the last step of this proof, we use Lemma 5 to substitute the only remaining \((r+1)\)-dimensional vector space indicator in the expression (18). From Lemma 5 and \(K_{\mu, \rho} = [0, \mu] \), we get

\[
\phi_{(0, \rho)} = \frac{2^r}{2^r - 1} \phi_{(0)} + \sum_{y < \mu} \frac{1}{2^r - 1} \phi_{K_{y, \rho}}.
\]

Substituting this expression of \(\phi_{(0, \rho)} \) in relation (18) and gathering terms lead to a decomposition of \(f \) by means of \(\phi_{(0)} \) and of \(r \)-dimensional vector space indicators only,

\[
f = e_0 \phi_{(0)} + \sum_{0 < w(y) < r} e_y \phi_{K_{y, \rho}} + \sum_{w(y) = r} e_y \phi_{(0, \rho)} + \sum_{y \neq 0} e_y \phi_{a_{y, \rho}} + e_\mu \phi_{K_{\mu, \rho}}.
\]

The spaces \(F_i \)'s of the statement of Theorem 1 are the spaces which appear in the above relation. The values of the \(e_y \)'s are given by.

\[
e_y = \begin{cases}
\frac{d_0 - 2^r}{2^r - 1} d_\mu & \text{if } y = 0 \\
\frac{d_y + 1}{2^r - 1} d_\mu & \text{if } 0 < y < \mu \\
d_\mu & \text{if } y = \mu \\
\frac{1}{2^r - 1} d_\mu & \text{if } y = \mu
\end{cases}
\]

This proves the first part of Theorem 1. It leads to explicit formulas or an algorithm for computing the coefficients of this decomposition (see [11]). During this computation, divisions are performed only on Step 3 and Step 5. If \(f \) is integer valued, then \(f \) is also integer valued. If for \(w(y) \leq r \) the value of \(f(y) \) is a multiple of \(2^{r-w(y)} \), then from relations (16),...
the values of the \(c_i \)'s obtained on Step 3 are integers. Moreover, if \(d_i \) is a multiple of \(2^r - 1 \), then from relations (19), the values of the \(e_i \)'s obtained on Step 5 are all integers. This achieves the proof.

8. CHARACTERIZATION OF \(\mathcal{EPF} \)

The regular decomposition theorem provides a very simple characterization of the elements of \(\mathcal{EPF} \).

Theorem 2. Let \(n = 2 \) be an even integer \(\geq 4 \) and \(f \) be a partial bent function on \(V_n \). Then

\[
f \in \mathcal{EPF} \iff f(0) = \tilde{f}(0).
\]

Proof. The fact that \(f \in \mathcal{EPF} \) implies \(f(0) = \tilde{f}(0) \) has already been seen in Section 4. Conversely, let \(f \) be any partial bent function such that \(f(0) = \tilde{f}(0) \). We show that \(f \) satisfies the hypothesis of the second part of theorem 7.1 and the result holds. From relation (6), the Möbius coefficients being integers, for all nonzero vector \(y \) of weight \(\leq r \), the value of \(\tilde{f}(y) \) is multiple of \(2^r - \omega(y) \). Moreover, we have now to prove that \(d = \sum_{y \neq 0} 2^{w(y)} - \omega(y) \tilde{f}(y) = \sum_{y \neq 0} \tilde{f}(y) \) is multiple of \(2^r - 1 \). From relations (6) and (7),

\[
d = \sum_{y \neq 0} \tilde{f}(y) + 2^r f(1) - \sum_{y \neq 0} \tilde{f}(y).
\]

By Möbius inversion formula, \(d = \tilde{f}(0) - \tilde{f}(0) - \tilde{f}(1) + 2^r f(1) - f(0) + \tilde{f}(0) \). From relations (7) and (8) and the hypothesis \(f(0) = \tilde{f}(0) \), we finally have \(d = (2^r - 1) \tilde{f}(1) \). Of course, Theorem 2 is also applicable to bent functions. In this case, it states that for any bent function \(f \) we have \(f \in \mathcal{EPF} \iff f(0) = \tilde{f}(0) \).

Remark. If we perform the proof of theorem 1 until Step 4 only, we get the existence of a set of \(r \)-dimensional vector space indicators, plus one \((r + 1) \)-vector space indicator in which which any bent function is decomposable with integer coefficients. We retrieve the result proved in [7] and in addition, we get an explicit basis and formulas to compute the coefficients.

We are now able to state and prove the main result of this paper.

Corollary 1. Up to a translation, any bent function is equivalent to an element of \(\mathcal{EPF} \).

Proof. Let \(f \) be any bent function. If \(f(0) \neq \tilde{f}(0) \), let \(a \) be any vector such that \(f(0) \neq f(a) \). As seen as above, the function \(f_a : x \mapsto f(x + a) \) satisfies \(f_a(0) = \tilde{f}_a(0) \) and thus belongs to \(\mathcal{EPF} \) according to Theorem 2.
Let us recall that by definition, the elements of $EGPS$ are Boolean functions which can be expressed as a linear combination, with integer coefficients, of $\phi_{(0)}$ and r-dimensional vector space indicators. For a given element of $EGPS$ such an expression is not unique and there may exist several families of suitable vector spaces. But thanks to Theorems 1 and 2, we have shown that there exists a basis B_0 composed of $\phi_{(0)}$ plus r-dimensional vector space indicators such that any element of $EGPS$ can be expressed in this basis with integer coefficients.

This basis is not unique. One can check that any basis B of F_n of the same kind, such that the conversion matrix from B_0 to B is Z-invertible (i.e., its determinant equals ± 1) shares the property that the decomposition of any element of $EGPS$ has integer coefficients.

9. LINEAR ALGEBRA APPROACH

9.1. $EGPS$ as Solutions of a Quadratic Diophantine Equation

Let $\mathcal{F} = \{F_1, ..., F_{2^n-1}\}$ be the set of r dimensional vector spaces defined in Theorem 1. Let f be any real valued function defined on $V_n \setminus \{0\}$ by

$$f = \sum_{i=1}^{2^n-1} e_i \phi_{F_i},$$

(20)

where the e_i’s are integers. If f is Boolean on $V_n \setminus \{0\}$ then we can choose $f(0) \in \{0, 1\}$ such that f is of even weight. In this case $f \in EGPS$ by definition. Conversely, from Theorem 1, any element of $EGPS$ can be obtained in this way. Thus, $EGPS$ can be identified with the set of the $2^n - 1$ dimensional integer vectors $e = (e_i)_{i \in \{1, ..., 2^n-1\}}$ which satisfy $\sum_{i=1}^{2^n-1} e_i \phi_{F_i}$ Boolean on $V_n \setminus \{0\}$. The vector e being with integer components, the function defined by relation (20) is integer valued and thus is Boolean on $V_n \setminus \{0\}$ if and only if it satisfies $\sum_{x \neq 0} f(x) = \sum_{x \neq 0} f^2(x)$. This is equivalent to

$$\sum_{x \neq 0} \sum_{i=1}^{2^n-1} e_i \phi_{F_i}(x) = \sum_{x \neq 0} \sum_{i,j=1}^{2^n-1} e_i e_j \phi_{F_i} \phi_{F_j}$$

$$= (2^n - 1) \sum_{i=1}^{2^n-1} e_i = \sum_{i,j=1}^{2^n-1} e_i e_j (2^{\dim(F_i \cap F_j)} - 1).$$

(21)

This means that the vector $e = (e_i)_{i \in \{1, ..., 2^n-1\}}$ defines an element of $EGPS$ if and only if it is solution of the quadratic Diophantine equation given by relation (21).
The matrix \(Q = (2^{\dim(F_i \cap F_j)} - 1)_{i, j=1, \ldots, 2^{n-1}} \) defines a definite positive quadratic form. Thus, Eq. (21) is the equation of an ellipsoid \(\mathcal{E} \).

The function \(f \) of relation (20) is defined on \(V_n \setminus \{0\} \). It can be defined on \(V_n \) by adding a term \(m \phi \) which is deduced from the \(e_i \)'s by \(m + \sum_{i=1}^{2^n-1} e_i \in \{0, 1\} \) and \(m \) even. Particular families of \(\mathcal{E} \mathcal{G} \mathcal{P} \mathcal{S} \) such as \(\mathcal{G} \mathcal{P} \mathcal{S} \ (m = -2^{r-1}) \) and \(r \)-dimensional vector space indicators \(m = 0 \), correspond to integer vectors which belong to the intersection of \(\mathcal{E} \) and the hyperplane of equation

\[
\sum_{i=1}^{2^n-1} e_i = f(0) - m. \tag{22}
\]

This intersection is a \((2^n - 2)\)-dimensional ellipsoid. In consequence, counting the elements of \(\mathcal{G} \mathcal{P} \mathcal{S} \) is equivalent to counting the integer vectors which belong to the ellipsoid defined by Eqs. (21) and (22) with \(m = -2^{r-1} \).

9.2. The Dual Transform is Linear

A surprising consequence of this approach is the fact that the dual transform \(f \to \tilde{f} \) defined on \(\mathcal{G} \mathcal{P} \mathcal{S} \) is the restriction of a linear mapping on the real vector space \(\mathbb{R}^{2^n-1} \).

Indeed, if \(f = \sum_{i=1}^{2^n-1} e_i \phi \) defines the restriction to \(V_n \setminus \{0\} \) of an element of \(\mathcal{G} \mathcal{P} \mathcal{S} \), its dual \(\tilde{f} \) is defined on \(V_n \setminus \{0\} \) by \(\tilde{f} = \sum_{i=1}^{2^n-1} e_i \phi^* \). For any \(i \in \{1, \ldots, 2^n-1\} \), the dual of \(F_i \), is a \(r \)-dimensionnal vector space. Thus, the indicator of \(F_i \) can be expressed by mean of the \(F_i \)'s with integer coefficients,

\[
\phi_{F_i} = \sum_{j=1}^{2^n-1} d_{ij} \phi_{F_j}.
\]

The restriction of \(\tilde{f} \) to \(V_n \setminus \{0\} \) of \(f \) can be written as

\[
\tilde{f} = \sum_{i=1}^{2^n-1} \sum_{j=1}^{2^n-1} d_{ij} e_i \phi_{F_j}.
\]

Thus, the dual transform \(f \to \tilde{f} \) is the restriction to vectors that define element of \(\mathcal{G} \mathcal{P} \mathcal{S} \) of the linear mapping represented by the matrix

\[
D = (d_{ij})_{i, j=1, \ldots, 2^{n-1}}.
\]

The same kind of proof can be applied to transformations \(f \to f \circ A \) where \(A \) is any invertible linear mapping on \(V_n \). Indeed, the image by \(A \) of a \(r \)-dimensional vector space is also a \(r \)-dimensional vector space.
10. CONCLUSION

We have shown that any bent function either belongs to \mathcal{P} or can be deduced from an element of \mathcal{P} by the composition with a translation. This establishes the important role played by r-dimensional vector spaces in the study of bent functions. In particular, this approach seems to be suitable to prove or disprove the conjecture stated by H. Dobbertin in [9]: Is any bent function normal, i.e., constant on a r-dimensional vector space?

Moreover, the problem of counting the elements of \mathcal{P} and thus the number of bent functions is shown to be equivalent to the geometric problem of counting the number of integer vectors of an ellipsoid. This is also equivalent to count the number of representations of an integer by the sum of a linear form and a quadratic form. This allows us to use a number theoretic approach in order to solve this problem (see [1]). It is also possible to use an algorithmic approach (see [10]) to enumerate all the elements of \mathcal{P}. In this case, the symmetry properties of the problem must be used to lower the search complexity.

REFERENCES