Green-Schwarz, Nambu-Goto actions, and Cayley's hyperdeterminant

Hitoshi Nishino*, Subhash Rajpoot
Department of Physics \& Astronomy, California State University, 250 Bellflower Boulevard, Long Beach, CA 90840, USA

Received 25 May 2007; received in revised form 16 June 2007; accepted 27 June 2007
Available online 30 June 2007
Editor: M. Cvetič

Abstract

It has been recently shown that Nambu-Goto action can be re-expressed in terms of Cayley's hyperdeterminant with the manifest $S L(2, \mathbb{R}) \times$ $S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$ symmetry. In the present Letter, we show that the same feature is shared by Green-Schwarz σ-model for $N=2$ superstring whose target space-time is $D=2+2$. When its zweibein field is eliminated from the action, it contains the Nambu-Goto action which is nothing but the square root of Cayley's hyperdeterminant of the pull-back in superspace $\sqrt{\mathcal{D e t}\left(\Pi_{i \alpha \dot{\alpha}}\right)}$ manifestly invariant under $S L(2, \mathbb{R}) \times S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$. The target space-time $D=2+2$ can accommodate self-dual supersymmetric Yang-Mills theory. Our action has also fermionic κ-symmetry, satisfying the criterion for its light-cone equivalence to Neveu-Schwarz-Ramond formulation for $N=2$ superstring.

© 2007 Elsevier B.V. Open access under CC BY license.
PACS: 11.25.-w; 11.30.Pb; 11.30.Fs; 02.30.Ik
Keywords: Cayley's hyperdeterminant; Green-Schwarz and Nambu-Goto actions; $2+2$ dimensions; Self-dual supersymmetric Yang-Mills; $N=(1,1)$ space-time supersymmetry; $N=2$ superstring

1. Introduction

Cayley's hyperdeterminant [1], initially an object of mathematical curiosity, has found its way in many applications to physics [2]. For instance, it has been used in the discussions of quantum information theory [3,4], and the entropy of the STU black hole [5,6] in four-dimensional string theory [7].

More recently, it has been shown [8] that Nambu-Goto (NG) action $[9,10]$ with the $D=2+2$ target space-time possesses the manifest global $S L(2, \mathbb{R}) \times S L(2, \mathbb{R}) \times S L(2, \mathbb{R}) \equiv[S L(2, \mathbb{R})]^{3}$ symmetry. In particular, the square root of the determinant of an inner product of pull-backs can be rewritten exactly as a Cayley's hyperdeterminant [1] realizing the manifest $[S L(2, \mathbb{R})]^{3}$ symmetry.

It is to be noted that the space-time dimensions $D=2+2$ pointed out in [8] are nothing but the consistent target space-

[^0]time of $N=2^{1}$ NSR superstring [13-19]. However, the NSR formulation $[16,17]$ has a drawback for rewriting it purely in terms of a determinant, due to the presence of fermionic superpartners on the 2D world-sheet. On the other hand, it is well known that a GS formulation [12] without explicit worldsheet supersymmetry is classically equivalent to a NSR formulation [11] on the light-cone, when the former has fermionic κ-symmetry $[15,20]$. From this viewpoint, a GS σ-model formulation in [14] of $N=2$ superstring [16-18] seems more advantageous, despite the temporary sacrifice of world-sheet supersymmetry. However, even the GS formulation [14] itself has an obstruction, because obviously the kinetic term in the

[^1]GS action is not of the NG-type equivalent to a Cayley's hyperdeterminant.

In this Letter, we overcome this obstruction, by eliminating the zweibein (or 2D metric) via its field equation which is not algebraic. Despite the non-algebraic field equation, such an elimination is possible, just as a NG action $[9,10]$ is obtained from a Polyakov action [21]. Similar formulations are known to be possible for Type I, heterotic, or Type II superstring theories, but here we need to deal with $N=2$ superstring [16] with the target space-time $D=2+2$ instead of 10D. We show that the same global $[S L(2, \mathbb{R})]^{3}$ symmetry [8] is inherent also in $N=2$ GS action in [14] with $N=(1,1)$ supersymmetry in $D=2+2$ as the special case of [13], when the zweibein field is eliminated from the original action, re-expressed in terms of NG-type determinant form.

As is widely recognized, the quantum-level equivalence of NG action [9,10] to Polyakov action [21] has not been well established even nowadays [22]. As such, we do not claim the quantum equivalence of our formulation to the conventional $N=2$ NSR superstring [16,17] or even to $N=2$ GS string [13] itself. In this Letter, we point out only the existence of fermionic κ-symmetry and the manifest global $[\operatorname{SL}(2, \mathbb{R})]^{3}$ symmetry with Cayley's hyperdeterminant as classical-level symmetries, after the elimination of 2D metric from the classical GS action [14] of $N=2$ superstring [16,17].

As in $N=2$ NSR superstring $[16,17]$, the target $D=$ (2,2;2,2) ${ }^{2}$ superspace [19] of $N=2$ GS superstring [14] can accommodate self-dual supersymmetric Yang-Mills (SDSYM) multiplet $[18,19]$ with $N=(1,1)$ space-time supersymmetry [13,14,19], which is supersymmetric generalization of purely bosonic YM theory in $D=2+2$ [23]. The importance of the latter is due to the conjecture [24] that all the bosonic integrable or soluble models in dimensions $D \leqslant 3$ are generated by self-dual Yang-Mills (SDYM) theory [23]. Then it is natural to 'supersymmetrize' this conjecture [24], such that all the supersymmetric integrable models in $D \leqslant 3$ are generated by SDSYM in $D=2+2[18,19]$, and thereby the importance of $N=2$ GS σ-model in [14] is also reemphasized.

In the next two sections, we present our total action of $N=2$ GS σ-model [14] whose target superspace is $D=(2,2 ; 2,2)$ [19], and show the existence of fermionic κ-symmetry [20] as well as $[S L(2, \mathbb{R})]^{3}$ symmetry, due to the Cayley's hyperdeterminant for the kinetic terms in the NG form. We next confirm that our action is derivable from the $N=2$ GS σ model [14] which is light-cone equivalent to $N=2 \mathrm{NSR}$ superstring [16,17], by eliminating a zweibein or a 2 D metric.

[^2]
2. Total action with $[S L(2, \mathbb{R})]^{3}$ symmetry

We first give our total action with manifest global $[\operatorname{SL}(2, \mathbb{R})]^{3}$ symmetry, then show its fermionic κ-symmetry [20]. Our action has classical equivalence to the GS σ-model formulation [14] of $N=2$ superstring [16,17] with the right $D=(2,2 ; 2,2)$ target superspace that accommodates self-dual supersymmetric YM multiplet [14,17-19]. In this section, we first give our total action of our formulation, leaving its derivation or justifications for later sections.

Our total action $I \equiv \int d^{2} \sigma \mathcal{L}$ has the fairly simple Lagrangian

$$
\begin{align*}
\mathcal{L} & =+\sqrt{-\operatorname{det}\left(\Gamma_{i j}\right)}+\epsilon^{i j} \Pi_{i}{ }^{A} \Pi_{j}{ }^{B} B_{B A} \tag{2.1a}\\
& =+\sqrt{+\operatorname{Det}\left(\Pi_{i \alpha \dot{\alpha}}\right)}\left(1+2 \Pi_{-}{ }^{A} \Pi_{+}{ }^{B} B_{B A}\right) \\
& \equiv \mathcal{L}_{\mathrm{NG}}+\mathcal{L}_{\mathrm{WZNW}}, \tag{2.1b}
\end{align*}
$$

where respectively the two terms $\mathcal{L}_{\mathrm{NG}}$ and $\mathcal{L}_{\mathrm{WZNW}}$ are called 'NG-term' and 'WZNW-term'. The indices $i, j, \ldots=0,1$ are for the curved coordinates on the 2D world-sheet, while,+are for the light-cone coordinates for the local Lorentz frames, respectively defined by the projectors
$P_{(i)}{ }^{(j)} \equiv \frac{1}{2}\left(\delta_{(i)}^{(j)}+\epsilon_{(i)}^{(j)}\right)$,
$Q_{(i)}^{(j)} \equiv \frac{1}{2}\left(\delta_{(i)}^{(j)}-\epsilon_{(i)}^{(j)}\right)$,
where $(i),(j), \ldots=(0),(1), \ldots$ are used for local Lorentz coordinates, and $\left(\eta_{(i)(j)}\right)=\operatorname{diag}(+,-)$. Note that $\delta_{+}{ }^{+}=\delta_{-}{ }^{-}=$ $+1, \epsilon_{+}^{+}=-\epsilon_{-}^{-}=+1, \eta_{++}=\eta_{--}=0, \eta_{+-}=\eta_{-+}=1$. Whereas $\Pi_{i}{ }^{A}$ is the superspace pull-back, $\Gamma_{i j}$ is a product of such pull-backs:
$\Pi_{i}^{A} \equiv\left(\partial_{i} Z^{M}\right) E_{M}{ }^{A}$,
$\Gamma_{i j} \equiv \eta_{\underline{a} \underline{b}} \Pi_{i} \underline{a} \Pi_{j} \underline{\underline{b}}=\Pi_{i} \underline{a} \Pi_{j \underline{a}}$,
for the target superspace coordinates Z^{M}. The $\left(\eta_{a b}\right)=$ $\operatorname{diag}(+,+,-,-)$ is the $D=2+2$ space-time metric. We use the indices $\underline{a}, \underline{b}, \ldots=0,1,2,3$ (or $\underline{m}, \underline{n}, \ldots=0,1,2,3$) for the bosonic local Lorentz (or curved) coordinates. The $E_{M}{ }^{A}$ is the flat background vielbein [25] for $D=(2,2 ; 2,2)$ target superspace $[14,19]$. Its explicit form is
$\left(E_{M}^{A}\right)=\left(\begin{array}{cc}\delta_{\underline{m} \underline{a}} & 0 \\ -\frac{i}{2}\left(\sigma^{\underline{a}} \theta\right)_{\underline{\mu}} & \delta_{\mu}^{\underline{\alpha}}\end{array}\right)$,
$\left(E_{A}{ }^{M}\right)=\left(\begin{array}{cc}\delta_{\underline{a}} \underline{\underline{m}} & \underline{0} \\ +\frac{i}{2}\left(\sigma^{\underline{m}} \theta\right)_{\underline{\alpha}} & \delta_{\underline{\alpha}} \underline{\underline{\mu}}\end{array}\right)$.
We use the underlined Greek indices: $\underline{\alpha} \equiv(\alpha, \dot{\alpha}), \underline{\beta} \equiv(\beta, \dot{\beta}), \ldots$ for the pair of fermionic indices, where $\alpha, \beta, \ldots=1,2$ are for chiral coordinates, and $\dot{\alpha}, \dot{\beta}, \ldots=\dot{1}, \dot{2}$ are for anti-chiral coordinates [19]. The indices $\mu, \underline{v}, \ldots=1,2,3,4$ are for curved fermionic coordinates. Similarly to the superspace for the Minkowski space-time with the signature $(+,-,-,-)$ [25], a bosonic index is equivalent to a pair of fermionic indices, e.g., $\Pi_{i} \underline{a} \equiv \Pi_{i}^{\alpha \dot{\alpha}}$. In (2.4), we use the expressions like $\left(\sigma^{\underline{a}} \theta\right)_{\underline{\alpha}} \equiv$ $-\left(\sigma^{\underline{a}}\right)_{\alpha \beta} \theta^{\beta}$ for the σ-matrices in $D=2+2$ [19,26]. Relevantly, the only non-vanishing supertorsion components are
[14,19]
$T_{\underline{\alpha} \underline{\beta}}^{\underline{c}}=i\left(\sigma^{\underline{c}}\right)_{\underline{\alpha} \underline{\beta}}=\left\{\begin{array}{l}+i\left(\sigma_{\underline{c}}\right)_{\alpha \dot{\beta}}, \\ +i\left(\sigma_{\underline{c}}\right)_{\dot{\alpha} \beta}=+i\left(\sigma_{\underline{c}}\right)_{\beta \dot{\alpha}} .\end{array}\right.$
The antisymmetric tensor superfield $B_{A B}$ has the superfield strength
$G_{A B C} \equiv \frac{1}{2} \nabla_{[A} B_{B C)}-\frac{1}{2} T_{[A B \mid}{ }^{D} B_{D \mid C)}$.
Our anti-symmetrization rule is such as $M_{[A B)} \equiv M_{A B}-$ $(-1)^{A B} M_{B A}$ without the factor $1 / 2$. The flat-background values of $G_{A B C}$ is $[14,19]$
$G_{\underline{\alpha} \underline{\beta} \underline{c}}=+\frac{i}{2}\left(\sigma_{\underline{c}}\right)_{\underline{\alpha} \underline{\beta}}=\left\{\begin{array}{l}+\frac{i}{2}\left(\sigma_{\underline{c}}\right)_{\alpha \dot{\beta}}, \\ +\frac{i}{2}\left(\sigma_{\underline{c}}\right)_{\dot{\alpha} \beta}=+\frac{i}{2}\left(\sigma_{\underline{c}}\right)_{\beta \dot{\alpha}} .\end{array}\right.$
In our formulation, the Lagrangian (2.1a) needs the 'square root' of the matrix $\Gamma_{i j}$, analogous to the zweibein $e_{i}^{(j)}$ as the 'square root' of the 2 D metric $g_{i j}$, defined by
$\gamma_{i}{ }^{(k)} \gamma_{j(k)}=\Gamma_{i j}, \quad \gamma_{(k)}{ }^{i} \gamma^{(k) j}=\Gamma^{i j}$,
$\gamma_{i}{ }^{(k)} \gamma_{(k)}{ }^{j}=\delta_{i}{ }^{j}, \quad \gamma_{(i)}{ }^{k} \gamma_{k}{ }^{(j)}=\delta_{(i)}{ }^{(j)}$.
Relevantly, we have $\gamma=\sqrt{-\Gamma}$ for $\Gamma \equiv \operatorname{det}\left(\Gamma_{i j}\right)$ and $\gamma \equiv$ $\operatorname{det}\left(\gamma_{i}{ }^{(j)}\right)$. We define $\Pi_{ \pm}{ }^{A} \equiv \gamma_{ \pm}{ }^{i} \Pi_{i}{ }^{A}$ for the \pm local lightcone coordinates. For our formulation with (2.1), we always use the γ 's to convert the curved indices $i, j, \ldots=0,1$ into local Lorentz indices $(i),(j), \ldots=(0),(1)$.

From (2.8), it is clear that we can always define the 'square root' of $\Gamma_{i j}$ of (2.3b) just as we can always define the zweibein $e_{i}^{(j)}$ out of a 2D metric $g_{i j}$. In fact, (2.8) determines $\gamma_{i}^{(j)}$ up to 2D local Lorentz transformations $O(1,1)$, because (2.8) is covariant under arbitrary $O(1,1)$. However, (2.8) has much more significance, because if the curved indices $i j$ of $\Gamma_{i j}$ are converted into 'local' ones, then it amounts to

$$
\begin{align*}
\Gamma_{(i)(j)} & =\gamma_{(i)}{ }^{k} \gamma_{(j)}{ }^{l} \Gamma_{k l}=\gamma_{(i)}{ }^{k} \gamma_{(j)}^{l}\left(\gamma_{k}{ }^{(m)} \gamma_{l(m)}\right) \\
& =\left(\gamma_{(i)}{ }^{k} \gamma_{k}{ }^{(m)}\right)\left(\gamma_{(j)}^{l} \gamma_{l(m)}\right)=\delta_{(i)}{ }^{(m)} \eta_{(j)(m)} \\
& =\eta_{(i)(j)} \Longrightarrow \Gamma_{(i)(j)}=\eta_{(i)(j)} \tag{2.9}
\end{align*}
$$

In terms of light-cone coordinates, this implies formally the Vi rasoro conditions [27]
$\Gamma_{++} \equiv \Pi_{+} \frac{a}{} \Pi_{+\underline{a}}=0, \quad \Gamma_{--} \equiv \Pi_{-} \underline{a} \Pi_{-\underline{a}}=0$,
because $\eta_{++}=\eta_{--}=0$. The only caveat here is that our $\gamma_{i}{ }^{(j)}$ is not exactly the zweibein $e_{i}^{(j)}$, but it differs only by certain factor, as we will see in (4.6).

The result (2.10) is not against the original results in NG formulation $[9,10]$. At first glance, since the NG action has no metric, it seems that Virasoro condition [27] will not follow, unless a 2D metric is introduced as in Polyakov formulation [21]. However, it has been explicitly shown that the Virasoro conditions follow as first-order constraints, when canonical quantization is performed [10]. Naturally, this quantum-level result is already reflected at the classical level, i.e., the Virasoro condition (2.10) follows, when the $i j$ indices on $\Gamma_{i j} \equiv \Pi_{i} \underline{a} \Pi_{j \underline{a}}$ are converted into 'local Lorentz indices' by using the γ 's in (2.8).

Most importantly, $\operatorname{Det}\left(\Pi_{i \alpha \dot{\alpha}}\right)$ in (2.1b) is a Cayley's hyperdeterminant $[1,8]$, related to the ordinary determinant in (2.1a) by

$$
\begin{gather*}
\operatorname{Det}\left(\Pi_{i \alpha \dot{\alpha}}\right)=-\frac{1}{2} \epsilon^{i j} \epsilon^{k l} \epsilon^{\alpha \beta} \epsilon^{\gamma \delta} \epsilon^{\dot{\alpha} \dot{\beta}} \epsilon^{\dot{\gamma} \dot{\delta}} \Pi_{i \alpha \dot{\alpha}} \Pi_{j \beta \dot{\beta}} \Pi_{k \gamma \dot{\gamma}} \Pi_{l \delta \dot{\delta}} \\
=-\operatorname{det}\left(\Gamma_{i j}\right) \tag{2.11a}\\
\Gamma_{i j} \equiv \Pi_{i} \underline{a} \Pi_{j \underline{a}}=\Pi_{i}^{\alpha \dot{\alpha}} \Pi_{j \alpha \dot{\alpha}}=\epsilon^{\alpha \beta} \epsilon^{\dot{\gamma} \dot{\delta}} \Pi_{i \alpha \dot{\gamma}} \Pi_{j \beta \dot{\delta}} \tag{2.11b}
\end{gather*}
$$

The global $[S L(2, \mathbb{R})]^{3}$ symmetry of our action I is more transparent in terms of Cayley's hyperdeterminant, because of its manifest invariance under $[\operatorname{SL}(2, \mathbb{R})]^{3}$. For other parts of our Lagrangian, consider the infinitesimal transformation for the first factor group ${ }^{3}$ of $S L(2, \mathbb{R}) \times S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$ with the infinitesimal real constant traceless 2 by 2 matrix parameter p as
$\delta_{p} \Pi_{i}{ }^{A}=p_{i}{ }^{j} \pi_{j}{ }^{A}$,
$\delta_{p} \gamma_{(i)}{ }^{j}=-p_{k}{ }^{j} \gamma_{(i)}{ }^{k} \quad\left(p_{i}{ }^{i}=0\right)$.
The latter is implied by the definition of $\Gamma_{i j} \equiv \Pi_{i} \underline{a} \Pi_{j \underline{a}}$ and $\gamma_{(i)}{ }^{j}$ in (2.8). Eventually, we have $\delta_{p} \Pi_{(i)}{ }^{A}=0$, while $\mathcal{L}_{\text {WZNW }}$ is also invariant, thanks to $\delta_{p} \Pi_{(i)}^{A}=0$. This concludes $\delta_{p} \mathcal{L}=0$.

The second and third factor groups in $S L(2, \mathbb{R}) \times S L(2, \mathbb{R}) \times$ $S L(2, \mathbb{R})$ act on the fermionic coordinates α and $\dot{\alpha}$ in $D=$ (2,$2 ; 2,2$), which need an additional care. We first need the alternative expression of $\mathcal{L}_{\text {WZNW }}$ by the use of Vainberg construction [28,29]:
$I_{\mathrm{WZNW}}=i \int d^{3} \hat{\sigma} \hat{\epsilon}^{\hat{i} \hat{j} \hat{k}} \hat{\Pi}_{\hat{i} \alpha \dot{\alpha}} \hat{\Pi}_{\hat{j}}^{\alpha} \hat{\Pi}_{\hat{k}}^{\dot{\alpha}}$.
We need this alternative expression, because superfield strength $G_{A B C}$ is less ambiguous than its potential superfield $B_{A B}$ avoiding the subtlety with the indices α and $\dot{\alpha}$. In the Vainberg construction [28,29], we are considering the extended 3D 'world-sheet' with the coordinates $\left(\hat{\sigma}^{\hat{i}}\right) \equiv\left(\sigma^{i}, y\right)(\hat{i}=0,1,2)$, where $\hat{\sigma}^{2} \equiv y$ is a new coordinate with the range $0 \leqslant y \leqslant 1$. Relevantly, $\hat{\epsilon}^{\hat{i} \hat{j} \hat{k}}$ is totally antisymmetric constant, and $\hat{\epsilon}^{2} \hat{i} \hat{j}=$ $\epsilon^{i j}$. All the hatted indices and quantities refer to the new 3D. Any hatted superfield as a function of $\hat{\sigma}^{i}$ should satisfy the conditions [28], e.g.,

$$
\begin{equation*}
\hat{Z}^{M}(\sigma, y=1)=Z^{M}(\sigma), \quad \hat{Z}^{M}(\sigma, y=0)=0 \tag{2.14}
\end{equation*}
$$

Consider next the isomorphism $S L(2, \mathbb{R}) \approx S p(1)$ [30] for the last two groups in $S L(2, \mathbb{R}) \times S L(2, \mathbb{R}) \times S L(2, \mathbb{R}) \approx$ $S L(2, \mathbb{R}) \times S p(1) \times S p(1)$. These two $S p(1)$ groups are acting respectively on the spinorial indices α and $\dot{\alpha}$. The contraction matrices $\epsilon_{\alpha \beta}$ and $\epsilon_{\dot{\alpha} \dot{\beta}}$ are the metrics of these two $S p(1)$ groups, used for raising/lowering these spinorial indices. Now the infinitesimal transformation parameters of $S p(1) \times S p(1)$ can be 2 by 2 real constant symmetric matrices $q_{\alpha \beta}$ and $r_{\dot{\alpha} \dot{\beta}}$ acting as
$\delta_{q} \hat{\Pi}_{\hat{i} \alpha}=-q^{\alpha}{ }_{\beta} \hat{\Pi}_{\hat{i}}{ }^{\beta}, \quad \delta_{q} \hat{\Pi}_{\hat{i} \alpha \dot{\alpha}}=q_{\alpha}{ }^{\gamma} \hat{\Pi}_{\hat{i} \gamma \dot{\alpha}}$,

[^3]$\delta_{r} \hat{\Pi}_{\hat{i}}^{\dot{\alpha}}=-r \dot{\beta}_{\dot{\beta}} \hat{\Pi}_{\hat{i}}{ }^{\dot{\beta}}, \quad \delta_{r} \hat{\Pi}_{\hat{i} \alpha \dot{\alpha}}=r_{\dot{\alpha}} \dot{\gamma} \hat{\Pi}_{\hat{i} \alpha \dot{\gamma}}$,
where $q^{\alpha}{ }_{\beta} \equiv \epsilon^{\alpha \gamma} q_{\gamma \beta}, r^{\dot{\alpha}}{ }_{\dot{\beta}} \equiv \epsilon^{\dot{\alpha} \dot{\gamma}} r_{\dot{\gamma} \dot{\beta}}$, etc. Then it is easy to confirm for $\mathcal{L}_{\text {WZNW }}$ that
$\delta_{q}\left(\hat{\Pi}_{\hat{i} \alpha \dot{\alpha}} \hat{\Pi}_{\hat{j}}^{\alpha} \hat{\Pi}_{\hat{k}}^{\dot{\alpha}}\right)=0, \quad \delta_{r}\left(\hat{\Pi}_{\hat{i} \alpha \dot{\alpha}} \hat{\Pi}_{\hat{j}}^{\alpha} \hat{\Pi}_{\hat{k}}^{\dot{\alpha}}\right)=0$,
because of $q_{\alpha}{ }^{\gamma}=+q^{\gamma}{ }_{\alpha}$ and $r_{\dot{\alpha}}^{\dot{\gamma}}=+r^{\dot{\gamma}}{ }_{\dot{\alpha}}$. We thus have the total invariances $\delta_{q} \mathcal{L}=0$ and $\delta_{r} \mathcal{L}=0$. Since $\delta_{p} \mathcal{L}=0$ has been confirmed after (2.12), this concludes the $[\operatorname{SL}(2, \mathbb{R})]^{3}$ invariance proof of our action (2.1).

It was pointed out in Ref. [8] that 'hidden' discrete symmetry also exists in NG-action under the interchange of the three indices for $[S L(2, \mathbb{R})]^{3}$. In our system, however, this hidden triality seems absent. This can be seen in (2.1b), where the Cayley's hyperdeterminant or $\mathcal{L}_{\mathrm{NG}}$ indeed possesses the discrete symmetry for the three indices $i \alpha \dot{\alpha}$, while it is lost in $\mathcal{L}_{\mathrm{WZNW}}$. This is because the mixture of $\Pi_{i \alpha \dot{\alpha}}$ and $\Pi_{i}{ }^{\alpha}$ or $\Pi_{i}{ }^{\dot{\alpha}}$ via the non-zero components of $B_{A B}$ breaks the exchange symmetry among i $\alpha \dot{\alpha}$, unlike Cayley's hyperdeterminant.

3. Fermionic invariance of our action

We now discuss our fermionic κ-invariance. Our action (2.1) is invariant under

$$
\begin{align*}
& \left(\delta_{\kappa} Z^{M}\right) E_{M^{\underline{\alpha}}}^{\underline{\alpha}}+i\left(\sigma_{\underline{b}}\right)_{\underline{\alpha}}^{\underline{\beta}} \kappa_{-} \underline{\beta} \Pi_{+} \underline{\underline{b}} \equiv+i\left(I / \Pi_{+} \kappa_{-}\right)^{\underline{\alpha}}, \tag{3.1a}\\
& \left(\delta_{\kappa} Z^{M}\right) E_{M} \underline{\underline{a}}=0, \tag{3.1b}\\
& \delta_{\kappa} \Gamma_{i j}=+\left[\kappa_{-} \underline{\underline{\alpha}}\left(\sigma_{\underline{a}} \sigma_{\underline{c}}\right)_{\underline{\alpha}}^{\underline{\beta}} \Pi_{(j \mid \underline{\beta}}\right] \Pi_{+}{ }^{\underline{a}} \Pi_{\mid i)^{\underline{c}}} \\
& \left.\quad \equiv+\left(\bar{\kappa}_{-} \Pi \Pi_{+} \Pi \Pi_{(i} \Pi_{j}\right)\right) \tag{3.1c}
\end{align*}
$$

The $\kappa_{-} \underline{\alpha}$ is the parameter for our fermionic symmetry transformation, just as in the conventional Green-Schwarz superstring $[12,20]$. Since Z^{M} is the only fundamental field in our formulation, (3.1c) is the necessary condition of (3.1a) and (3.1b).

We can confirm $\delta_{K} I=0$ easily, once we know the intermediate results:
$\delta_{\kappa} \mathcal{L}_{\mathrm{NG}}=+\sqrt{-\Gamma}\left(\bar{\kappa}_{-} \Pi I_{+} I / I_{(i)} \Pi^{(i)}\right)$,
$\delta_{\kappa} \mathcal{L}_{\mathrm{WZNW}}=-\epsilon^{i j}\left(\bar{\kappa}_{-} \Pi \Pi_{+} \Pi \Pi_{i} \Pi_{j}\right)$.
By using the relationships, such as $\sqrt{-\Gamma} \epsilon^{(k)(l)}=+\epsilon^{i j} \gamma_{i}{ }^{(k)} \gamma_{j}{ }^{(l)}$, with the most crucial equation (2.10), we can easily confirm that the sum $(3.2 a)+(3.2 b)$ vanishes:

$$
\begin{align*}
\delta_{\kappa} \mathcal{L} & =\delta_{\kappa}\left(\mathcal{L}_{\mathrm{NG}}+\mathcal{L}_{\mathrm{WZNW}}\right) \\
& =+2 \sqrt{-\Gamma}\left(\bar{\kappa}_{-} \Pi_{-}\right) \Pi_{+}{ }^{\underline{a}} \Pi_{+\underline{a}}=0 \tag{3.3}
\end{align*}
$$

Thus the fermionic κ-invariance $\delta_{\kappa} I=0$ works also in our formulation, despite the absence of the 2D metric or zweibein. The existence of fermionic κ-symmetry also guarantees the lightcone equivalence of our system to the conventional $N=2$ GS superstring [14].

4. Derivation of Lagrangian and fermionic symmetry

In this section, we start with the conventional GS σ-model action [14] for $N=2$ superstring [16,17], and derive our Lagrangian (2.1) with the fermionic transformation rule (3.1).

This procedure provides an additional justification for our formulation.

The $N=2$ GS action $I_{\mathrm{GS}} \equiv \int d^{2} \sigma \mathcal{L}_{\mathrm{GS}}$ [14] which is lightcone equivalent to $N=2$ NSR superstring [16,17] has the Lagrangian

$$
\begin{align*}
\mathcal{L}_{\mathrm{GS}} & =+\frac{1}{2} \sqrt{-g} g^{i j} \Pi_{i}{ }^{a} \Pi_{j \underline{a}}+\epsilon^{i j} \Pi_{i}^{A} \Pi_{j}^{B} B_{B A} \\
& =+e \Pi_{+} \frac{a}{\Pi_{-\underline{a}}}+2 e \Pi_{-}{ }^{A} \Pi_{+}{ }^{B} B_{B A} \tag{4.1}
\end{align*}
$$

where $g \equiv \operatorname{det}\left(g_{i j}\right)$ is for the 2 D metric $g_{i j}$, while $e \equiv$ $\operatorname{det}\left(e_{i}^{(j)}\right)=\sqrt{-g}$ is for the zweibein $e_{i}^{(j)}$. The action I_{GS} is invariant under the fermionic transformation rule $[15,20]^{4}$
$\delta_{\lambda} E^{\underline{\alpha}}=+i\left(\sigma_{\underline{a}}\right)^{\underline{\alpha} \underline{\beta}} \lambda^{i}{ }_{\underline{\beta}} \Pi_{i} \underline{a}=+i\left(I \eta_{i} \lambda^{i}\right)^{\underline{\alpha}}$,
$\delta_{\lambda} E^{a}=0$,
$\delta_{\lambda} e_{-}{ }^{i}=-\left(\lambda_{-}{ }^{\alpha} \Pi_{-\underline{\alpha}}\right) e_{+}{ }^{i} \equiv-\left(\bar{\lambda}_{-} \Pi_{-}\right) e_{+}{ }^{i}$,
$\delta_{\lambda} e_{+}{ }^{i}=0$,
where λ has only the negative component: $\lambda_{(i)}{ }^{\underline{\alpha}} \equiv Q_{(i)}^{(j)} \lambda_{(j)}{ }^{\underline{\alpha}}$. Only in this section, the local Lorentz indices are related to curved ones through the zweibein as in $\Pi_{(i)}^{A} \equiv e_{(i)}^{j} \Pi_{j}^{A}$, instead of $\gamma_{i}{ }^{(j)}$ in the last section. In the routine confirmation of $\delta_{\lambda} \mathcal{L}_{\mathrm{GS}}=0$, we see its parallel structures to $\delta_{\kappa} \mathcal{L}=0$.

We next derive our Lagrangians $\mathcal{L}_{\mathrm{NG}}$ and $\mathcal{L}_{\text {WZNW }}$ from $\mathcal{L}_{\mathrm{GS}}$ in (4.1). To this end, we first get the 2 D metric field equation from $I_{G S}{ }^{5}$
$g_{i j} \doteq+2\left(g^{k l} \Pi_{k} \underline{b} \Pi_{l \underline{b}}\right)^{-1}\left(\Pi_{i} \underline{a} \Pi_{j \underline{a}}\right) \equiv 2 \Omega^{-1} \Gamma_{i j} \equiv h_{i j}$,
$\Omega \equiv g^{i j} \Pi_{i} \underline{a} \Pi_{j \underline{a}}=g^{i j} \Gamma_{i j}$.
As is well known in string σ-models, this field equation is not algebraic for $g_{i j}$, because the r.h.s. of (4.3) again contains $g^{i j}$ $v i a$ the factor Ω. Nevertheless, we can formally delete the metric from the original Lagrangian, using a procedure similar to getting NG string [9,10] from Polyakov string [21], or NG action out of type II superstring action [12], as

$$
\begin{align*}
\frac{1}{2} \sqrt{-g} g^{i j} \Gamma_{i j} & =\frac{1}{2} \sqrt{-g} \Omega \doteq \frac{1}{2} \sqrt{-\operatorname{det}\left(h_{i j}\right)} \Omega \\
& =\frac{1}{2} \sqrt{-\operatorname{det}\left(2 \Omega^{-1} \Gamma_{i j}\right)} \Omega \\
& =\Omega^{-1} \sqrt{-\operatorname{det}\left(\Gamma_{i j}\right)} \Omega=\sqrt{-\Gamma}=\mathcal{L}_{\mathrm{NG}} \tag{4.4}
\end{align*}
$$

Thus the metric disappears completely from the resulting Lagrangian, leaving only $\sqrt{-\Gamma}$ which is nothing but $\mathcal{L}_{\mathrm{NG}}$ in (2.1). As for $\mathcal{L}_{\text {WZNW, }}$, since this term is metric-independent, this is exactly the same as the second term of (4.1).

We now derive our fermionic transformation rule (3.1) from (4.2). For this purpose, we establish the on-shell relationships between $e_{i}^{(j)}$ and our newly-defined $\gamma_{i}{ }^{(j)}$. By taking the 'square root' of (4.3a), we get the $e_{i}^{(j)}$-field equation expressed in terms of the Π 's, that we call $f_{i}^{(j)}$ which coincides with $e_{i}^{(j)}$

[^4]only on-shell:
$e_{i}^{(j)} \doteq f_{i}^{(j)}=f_{i}^{(j)}\left(\Pi_{k}{ }^{A}\right)$,
$f_{i(k)} f_{j}^{(k)}=h_{i j}, \quad f^{(k) i} f_{(k)}^{j}=h^{i j}$,
$f_{i}{ }^{(k)} f_{(k)}{ }^{j}=\delta_{i}{ }^{j}, \quad f_{(i)}{ }^{k} f_{k}{ }^{(j)}=\delta_{(i)}{ }^{(j)}$
Note that the f 's is proportional to the γ 's by a factor of $\sqrt{\Omega / 2}$, as understood by the use of (4.3), (4.5) and (2.8):
$e_{i}^{(j)} \doteq f_{i}^{(j)}=\sqrt{\frac{2}{\Omega}} \gamma_{i}^{(j)}$,
$e_{(i)}^{j} \doteq f_{(i)}{ }^{j}=\sqrt{\frac{\Omega}{2}} \gamma_{(i)}{ }^{j}$.
Recall that the factor Ω contains the 2D metric or zweibein which might be problematic in our formulation, while $\gamma_{i}^{(j)}$, $\gamma_{(i)}{ }^{j}$ are expressed only in terms of the Π_{i}^{A} 's. Fortunately, we will see that Ω disappears in the end result.

Our fermionic transformation rule (3.1a) is now obtained from (4.2a), as

$$
\begin{align*}
\delta_{\lambda} E^{\underline{\alpha}} & =i\left(I / I_{i} \lambda^{i}\right)^{\underline{\alpha}} \doteq i f^{(i) j}\left(I I_{j} \lambda_{(i)}\right)^{\underline{\alpha}} \\
& =i \sqrt{\frac{\Omega}{2}} \gamma^{(i) j}\left(I / I_{j} \lambda_{(i)}\right)^{\underline{\alpha}} \\
& =i \gamma^{(i) j}\left[I / I_{j}\left(\sqrt{\frac{\Omega}{2}} \lambda_{(i)}\right)\right]^{\underline{\alpha}}=i\left(I / I^{(i)} \kappa_{(i)}\right)^{\underline{\alpha}}=\delta_{\kappa} E^{\underline{\alpha}} \tag{4.7}
\end{align*}
$$

where λ and κ are proportional to each other by
$\kappa_{(i)} \equiv \sqrt{\frac{\Omega}{2}} \lambda_{(i)}$.
Such a re-scaling is always possible, due to the arbitrariness of the parameter λ or κ.

As an additional consistency confirmation, we can show the κ-invariance of (2.10), using the convenient lemmas
$\left(\delta_{\kappa} \gamma_{+}{ }^{i}\right) \gamma_{i}{ }^{+}=\left(\delta_{\kappa} \gamma_{-}{ }^{i}\right) \gamma_{i}{ }^{-}=\frac{1}{2} \Omega^{-1} \delta_{\kappa} \Omega$,
$\left(\delta_{\kappa} \gamma_{+}{ }^{i}\right) \gamma_{i}{ }^{-}=0, \quad\left(\delta_{\kappa} \gamma_{-}{ }^{i}\right) \gamma_{i}{ }^{+}=-\left(\bar{\kappa}_{-} \Pi_{-}\right)$.
Combining these with (3.1c), we can easily confirm that $\delta_{\kappa} \Gamma_{++}=0$ and $\delta_{\kappa} \Gamma_{--}=0$, as desired for consistency of the 'built-in' Virasoro condition (2.10).

The complete disappearance of Ω in our transformation rule (3.1) is desirable, because Ω itself contains the metric that is not given in a closed algebraic form in terms of $\Pi_{i}{ }^{A}$. If there were Ω involved in our transformation rule (3.1), it would pose a problem due to the metric $g_{i j}$ in Ω. To put it differently, our action (2.1) its fermionic symmetry (3.1) are expressed only in terms of the fundamental superfield Z^{M} via $\Pi_{i}{ }^{A}$ with no involvement of $g_{i j}, e_{i}^{(j)}$ or Ω, thus indicating the total consistency of our system. This concludes the justification of our fermionic κ-transformation rule (3.1), based on the $N=2$ GS σ-model [14] light-cone equivalent to $N=2$ NSR superstring [16,17].

5. Concluding remarks

In this Letter, we have shown that after the elimination of the 2 D metric at the classical level, the NG-action part I_{NG} of GS σ-model action [14] for $N=2$ superstring [16,17] is entirely expressed as the square root of a Cayley's hyperdeterminant with the manifest $[S L(2, \mathbb{R})]^{3}$ symmetry. In particular, this is valid in the presence of target superspace background in $D=(2,2 ; 2,2)$ [19]. From this viewpoint, $N=2$ GS σ-model [14] seems more suitable for discussing the $[\operatorname{SL}(2, \mathbb{R})]^{3}$ symmetry via a Cayley's hyperdeterminant. We have seen that the $[S L(2, \mathbb{R})]^{3}$ symmetry acts on the three indices $i, \alpha, \dot{\alpha}$ carried by the pull-back $\Pi_{i \alpha \dot{\alpha}}$ in $\mathcal{D e t}\left(\Pi_{i \alpha \dot{\alpha}}\right)$ in $D=(2,2 ; 2,2)$ superspace $[14,19]$. The hidden discrete symmetry pointed out in [8], however, seems absent in $N=2$ string [14,17,19] due to the WZNW-term $\mathcal{L}_{\text {WZNW }}$.

We have also shown that our action (2.1) has the classical invariance under our fermionic κ-symmetry (3.1), despite the elimination of zweibein or 2D metric. Compared with the original $I_{\text {GS }}$ [14], our action has even simpler structure, because of the absence of the 2D metric or zweibein. Due to its fermionic κ-symmetry, we can also regard that our system is classically equivalent to NSR $N=2$ superstring [16,17], or $N=2$ GS superstring [13]. As an important by-product, we have confirmed that the Virasoro condition (2.10) are inherent even in the NG reformulation of $N=2$ GS string [14] at the classical level. This is also consistent with the original result that Virasoro condition is inherent in NG string $[9,10]$.

One of the important aspects is that our action (2.1) and the fermionic transformation rule (3.1) involve neither the 2D metric $g_{i j}$, the zweibein $e_{i}^{(j)}$, nor the factor Ω containing these fields. This indicates the total consistency of our formulation, purely in terms of superspace coordinates Z^{M} as the fundamental independent field variables.

In this Letter, we have seen that neither the 2D metric $g_{i j}$ nor the zweibein $e_{i}{ }^{(j)}$, but the superspace pull-back $\Pi_{i \alpha \dot{\alpha}}$ is playing a key role for the manifest symmetry $[S L(2, \mathbb{R})]^{3}$ acting on the three indices $i \alpha \dot{\alpha}$. In particular, the combination $\Gamma_{i j} \equiv \Pi_{i} \underline{a} \Pi_{j \underline{a}}$ plays a role of 'effective metric' on the 2D world-sheet. This suggests that our field variables Z^{M} alone are more suitable for discussing the global $[S L(2, \mathbb{R})]^{3}$ symmetry of $N=2$ superstring [14, 16, 17].

As a matter of fact, in $D=2+2$ unlike $D=3+1$, the components α and $\dot{\alpha}$ are not related to each other by complex conjugations [18,19,26]. Additional evidence is that the signature $D=2+2$ seems crucial, because $S O(2,2) \approx S L(2, \mathbb{R}) \times$ $\operatorname{SL}(2, \mathbb{R})$ [30], while $S O(3,1) \approx \operatorname{SL}(2, \mathbb{C})$ for $D=3+1$ is not suitable for $\operatorname{SL}(2, \mathbb{R})$. Thus it is more natural that the NG reformulation of $N=2$ GS superstring [14] with the target superspace $D=(2,2 ; 2,2)$ is more suitable for the global $[S L(2, \mathbb{R})]^{3}$ symmetry acting on the three independent indices i, α and $\dot{\alpha}$.

It seems to be a common feature in supersymmetric theories that certain non-manifest symmetry becomes more manifest only after certain fields are eliminated from an original Lagrangian. For example, in $N=1$ local supersymmetry in 4D, it is well known that the σ-model Kähler structure shows up,
only after all the auxiliary fields in chiral multiplets are eliminated [31]. This viewpoint justifies to use a NG-formulation with the 2D metric eliminated, instead of the original $N=2 \mathrm{GS}$ formulation $[13,14]$, in order to elucidate the $\operatorname{global}[\operatorname{SL}(2, \mathbb{R})]^{3}$ symmetry of the latter, via a Cayley's hyperdeterminant.

It has been well known that the superspace $D=(2,2 ; 2,2)$ is the natural background for SDYM multiplet [14,17-19]. Moreover, SDSYM theory $[14,18,19]$ is the possible underlying theory for all the (supersymmetric) integrable systems in spacetime dimensions lower than four [24]. All of these features strongly indicate the significant relationships among Cayley's hyperdeterminant [1,8], $N=2$ superstring [16,17], or $N=2$ GS superstring $[13,14]$ with $D=(2,2 ; 2,2)$ target superspace [14,19], its NG reformulation as in this paper, the STU black holes [5,6], SDSYM theory in $D=2+2[14,18,19]$, and supersymmetric integrable or soluble models $[14,17,19,24]$ in dimensions $D \leqslant 3$.

Acknowledgement

We are grateful to W. Siegel and the referee for noticing mistakes in an earlier version of this Letter.

References

[1] A. Cayley, Camb. Math. J. 4 (1845) 193.
[2] M. Duff, hep-th/0601134.
[3] V. Coffman, J. Kundu, W. Wooters, Phys. Rev. A 61 (2000) 52306, quantph/9907047.
[4] A. Miyake, M. Wadati, Multiparticle Entanglement and Hyperdeterminants, ERATO Workshop on Quantum Information Science 2002, Tokyo, Japan, September 2002, quant-ph/0212146.
[5] K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova, W.K. Wong, Phys. Rev. Lett. 54 (1996) 6293, hep-th/9608059.
[6] R. Kallosh, A. Linde, Phys. Rev. D 73 (2006) 104033, hep-th/0602061.
[7] M.J. Duff, J.T. Liu, J. Rahmfeld, Nucl. Phys. B 459 (1996) 125, hep-th/ 9508094.
[8] M. Duff, Phys. Lett. B 641 (2006) 335, hep-th/0602160.
[9] Y. Nambu, Duality and Hydrodynamics, Lectures at the Copenhagen Conference, 1970.
[10] T. Goto, Prog. Theor. Phys. 46 (1971) 1560.
[11] P. Ramond, Phys. Rev. D 3 (1971) 2415; A. Neveu, J.H. Schwarz, Nucl. Phys. B 31 (1971) 86.
[12] M. Green, J.H. Schwarz, Phys. Lett. B 136 (1984) 367.
[13] W. Siegel, Phys. Rev. D 47 (1993) 2512, hep-th/9210008.
[14] H. Nishino, Int. J. Mod. Phys. A 9 (1994) 3077, hep-th/9211042.
[15] M. Green, J.H. Schwarz, E. Witten, Superstring Theory, vols. 1 and 2, Cambridge Univ. Press, 1986.
[16] M. Ademollo, L. Brink, A. D'Adda, R. D'Auria, E. Napolitano, S. Sciuto, E. Del Giudice, P. Di Vecchia, S. Ferrara, F. Gliozzi, R. Musto, R. Pettorino, J.H. Schwarz, Nucl. Phys. B 111 (1976) 77;
L. Brink, J.H. Schwarz, Nucl. Phys. B 121 (1977) 285; A. Sen, Nucl. Phys. B 278 (1986) 289.
[17] H. Ooguri, C. Vafa, Mod. Phys. Lett. A 5 (1990) 1389; H. Ooguri, C. Vafa, Nucl. Phys. B 361 (1991) 469;
H. Ooguri, C. Vafa, Nucl. Phys. B 367 (1991) 83;
H. Nishino, S.J. Gates Jr., Mod. Phys. Lett. A 7 (1992) 2543.
[18] W. Siegel, Phys. Rev. D 46 (1992) R3235, hep-th/9205075; W. Siegel, Phys. Rev. D 47 (1993) 2504, hep-th/9207043; W. Siegel, Phys. Rev. Lett. 69 (1992) 1493, hep-th/9204005; A. Parkes, Phys. Lett. B 286 (1992) 265, hep-th/9203074.
[19] H. Nishino, S.J. Gates Jr., S.V. Ketov, Phys. Lett. B 307 (1993) 331, hepth/9203080;
H. Nishino, S.J. Gates Jr., S.V. Ketov, Phys. Lett. B 307 (1993) 323, hepth/9203081;
H. Nishino, S.J. Gates Jr., S.V. Ketov, Phys. Lett. B 297 (1992) 99, hepth/9203078;
H. Nishino, S.J. Gates Jr., S.V. Ketov, Nucl. Phys. B 393 (1993) 149, hepth/9207042.
[20] L. Brink, J.H. Schwarz, Phys. Lett. B 100 (1981) 310;
W. Siegel, Phys. Lett. B 128 (1983) 397;
W. Siegel, Class. Quantum Grav. 2 (1985) L95.
[21] A.M. Polyakov, Phys. Lett. B 103 (1981) 207; A.M. Polyakov, Phys. Lett. B 103 (1981) 211.
[22] For recent quantizations of NG string, see, e.g. K. Pohlmeyer, J. Mod. Phys. A 19 (2004) 115, hep-th/0206061;
D. Bahns, J. Math. Phys. 45 (2004) 4640, hep-th/0403108;
T. Thiemann, Class. Quantum Grav. 23 (2006) 1923, hep-th/0401172.
[23] A.A. Belavin, A.M. Polyakov, A.S. Schwartz, Y.S. Tyupkin, Phys. Lett. B 59 (1975) 85;
R.S. Ward, Phys. Lett. B 61 (1977) 81;
M.F. Atiyah, R.S. Ward, Commun. Math. Phys. 55 (1977) 117;
E.F. Corrigan, D.B. Fairlie, R.C. Yates, P. Goddard, Commun. Math. Phys. 58 (1978) 223;
E. Witten, Phys. Rev. Lett. 38 (1977) 121.
[24] M.F. Atiyah, unpublished;
R.S. Ward, Philos. Trans. R. London A 315 (1985) 451;
N.J. Hitchin, Proc. London Math. Soc. 55 (1987) 59.
[25] J. Wess, J. Bagger, Superspace and Supergravity, Princeton Univ. Press, 1992.
[26] T. Kugo, P.K. Townsend, Nucl. Phys. B 211 (1983) 157.
[27] M.A. Virasoro, Phys. Rev. D 1 (1970) 2933.
[28] M.M. Vainberg, Variational Methods for the Study of Non-Linear Operators, Holden Day, San Francisco, 1964.
[29] S.J. Gates Jr., H. Nishino, Phys. Lett. B 173 (1986) 46.
[30] R. Gilmore, Lie Groups, Lie Algebras and Some of Their Applications, Wiley-Interscience, 1973.
[31] E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello, P. van Nieuwenhuizen, Phys. Lett. B 79 (1978) 231;
E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello, P. van Nieuwenhuizen, Nucl. Phys. B 147 (1979) 105;
E. Cremmer, S. Ferrara, L. Girardello, A. van Proyen, Nucl. Phys. B 212 (1983) 413.

[^0]: * Corresponding author.

 E-mail addresses: hnishino@csulb.edu (H. Nishino), rajpoot@csulb.edu (S. Rajpoot).

[^1]: ${ }^{1}$ The $N=2$ here implies the number of world-sheet supersymmetries in the Neveu-Schwarz-Ramond (NSR) formulation [11]. Its corresponding GreenSchwarz (GS) formulation [12-14] might be also called ' $N=2$ ' GS superstring in the present Letter. Needless to say, the number of world-sheet supersymmetries should not be confused with that of space-time supersymmetries, such as $N=1$ for type I superstring, or $N=2$ for type IIA or IIB superstring [15].

[^2]: $\overline{2}$ We use in this Letter the symbol $D=(2,2 ; 2,2)$ for the target superspace, meaning $2+2$ bosonic coordinates, plus 2 chiral and 2 anti-chiral fermionic coordinates $[14,19]$. In terms of supersymmetries in the target $D=2+2$ spacetime, this superspace corresponds to $N=(1,1)[14,19]$, which should not be confused with $N=2$ on the world-sheet. In other words, $D=(2,2 ; 2,2)$ is superspace for $N=(1,1)$ supersymmetry realized on $D=2+2$ space-time. Maximally, we can think of $N=(4,4)$ supersymmetry for SDSYM [18], but we focus only on $N=(1,1)$ supersymemtry in this Letter.

[^3]: ${ }^{3}$ In a sense, this invariance is trivial, because $\operatorname{SL}(2, \mathbb{R}) \subset G L(2, \mathbb{R})$, where the latter is the 2 D general covariance group.

[^4]: 4 We use the parameter λ instead of κ due to a slight difference of λ from our κ (cf. Eq. (4.8)).
 5 We use the symbol \doteq for a field equation to be distinguished from an algebraic one.

