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Abstract

It has been recently shown that Nambu—Goto action can be re-expressed in terms of Cayley’s hyperdeterminant with the manifest SL(2, R) x
SL(2,R) x SL(2,R) symmetry. In the present Letter, we show that the same feature is shared by Green—Schwarz o-model for N = 2 su-
perstring whose target space—time is D = 2 + 2. When its zweibein field is eliminated from the action, it contains the Nambu—Goto action
which is nothing but the square root of Cayley’s hyperdeterminant of the pull-back in superspace ,/Det(I1;y4) manifestly invariant under
SL(2,R) x SL(2,R) x SL(2,R). The target space-time D = 2 + 2 can accommodate self-dual supersymmetric Yang—Mills theory. Our ac-
tion has also fermionic k-symmetry, satisfying the criterion for its light-cone equivalence to Neveu—Schwarz—Ramond formulation for N = 2

superstring.
© 2007 Elsevier B.V. Open access under CC BY license,

PACS: 11.25.-w; 11.30.Pb; 11.30.Fs; 02.30.1k

Keywords: Cayley’s hyperdeterminant; Green—Schwarz and Nambu—Goto actions; 2 + 2 dimensions; Self-dual supersymmetric Yang—Mills; N = (1, 1)

space—time supersymmetry; N = 2 superstring

1. Introduction

Cayley’s hyperdeterminant [1], initially an object of math-
ematical curiosity, has found its way in many applications to
physics [2]. For instance, it has been used in the discussions of
quantum information theory [3,4], and the entropy of the STU
black hole [5,6] in four-dimensional string theory [7].

More recently, it has been shown [8] that Nambu—Goto (NG)
action [9,10] with the D = 242 target space—time possesses the
manifest global SL(2, R) x SL(2,R) x SL(2,R) = [SL(2, R)]?
symmetry. In particular, the square root of the determinant of an
inner product of pull-backs can be rewritten exactly as a Cay-
ley’s hyperdeterminant [1] realizing the manifest [SL(2, R)]?
symmetry.

It is to be noted that the space—time dimensions D =2 + 2
pointed out in [8] are nothing but the consistent target space—
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time of N = 2! NSR superstring [13—-19]. However, the NSR
formulation [16,17] has a drawback for rewriting it purely in
terms of a determinant, due to the presence of fermionic su-
perpartners on the 2D world-sheet. On the other hand, it is
well known that a GS formulation [12] without explicit world-
sheet supersymmetry is classically equivalent to a NSR formu-
lation [11] on the light-cone, when the former has fermionic
k-symmetry [15,20]. From this viewpoint, a GS o-model for-
mulation in [14] of N = 2 superstring [16—-18] seems more
advantageous, despite the temporary sacrifice of world-sheet
supersymmetry. However, even the GS formulation [14] itself
has an obstruction, because obviously the kinetic term in the

1 The N =2 here implies the number of world-sheet supersymmetries in the
Neveu-Schwarz—Ramond (NSR) formulation [11]. Its corresponding Green—
Schwarz (GS) formulation [12-14] might be also called ‘N =2’ GS super-
string in the present Letter. Needless to say, the number of world-sheet super-
symmetries should not be confused with that of space—time supersymmetries,
such as N =1 for type I superstring, or N = 2 for type IIA or IIB super-
string [15].
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GS action is not of the NG-type equivalent to a Cayley’s hyper-
determinant.

In this Letter, we overcome this obstruction, by eliminat-
ing the zweibein (or 2D metric) via its field equation which is
not algebraic. Despite the non-algebraic field equation, such an
elimination is possible, just as a NG action [9,10] is obtained
from a Polyakov action [21]. Similar formulations are known
to be possible for Type I, heterotic, or Type II superstring the-
ories, but here we need to deal with N = 2 superstring [16]
with the target space—time D =2 + 2 instead of 10D. We show
that the same global [SL(2, R)]® symmetry [8] is inherent also
in N =2 GS action in [14] with N = (1, 1) supersymmetry in
D =2+ 2 as the special case of [13], when the zweibein field
is eliminated from the original action, re-expressed in terms of
NG-type determinant form.

As is widely recognized, the quantum-level equivalence of
NG action [9,10] to Polyakov action [21] has not been well es-
tablished even nowadays [22]. As such, we do not claim the
quantum equivalence of our formulation to the conventional
N =2 NSR superstring [16,17] or even to N = 2 GS string [13]
itself. In this Letter, we point out only the existence of fermi-
onic « -symmetry and the manifest global [SL(2, R)]* symmetry
with Cayley’s hyperdeterminant as classical-level symmetries,
after the elimination of 2D metric from the classical GS action
[14] of N =2 superstring [16,17].

As in N = 2 NSR superstring [16,17], the target D =
(2,2;2,2)? superspace [19] of N =2 GS superstring [14] can
accommodate self-dual supersymmetric Yang—Mills (SDSYM)
multiplet [18,19] with N = (1, 1) space-time supersymmetry
[13,14,19], which is supersymmetric generalization of purely
bosonic YM theory in D = 2 4 2 [23]. The importance of
the latter is due to the conjecture [24] that all the bosonic
integrable or soluble models in dimensions D < 3 are gen-
erated by self-dual Yang—Mills (SDYM) theory [23]. Then
it is natural to ‘supersymmetrize’ this conjecture [24], such
that all the supersymmetric integrable models in D < 3 are
generated by SDSYM in D =2 4 2 [18,19], and thereby
the importance of N = 2 GS o-model in [14] is also re-
emphasized.

In the next two sections, we present our total action of N =2
GS o-model [14] whose target superspace is D = (2,2;2,2)
[19], and show the existence of fermionic x-symmetry [20]
as well as [SL(2,R)]® symmetry, due to the Cayley’s hyper-
determinant for the kinetic terms in the NG form. We next
confirm that our action is derivable from the N =2 GS o-
model [14] which is light-cone equivalent to N = 2 NSR
superstring [16,17], by eliminating a zweibein or a 2D met-
ric.

2 We use in this Letter the symbol D = (2,2; 2, 2) for the target superspace,
meaning 2 4 2 bosonic coordinates, plus 2 chiral and 2 anti-chiral fermionic
coordinates [14,19]. In terms of supersymmetries in the target D = 2+2 space—
time, this superspace corresponds to N = (1, 1) [14,19], which should not be
confused with N = 2 on the world-sheet. In other words, D = (2,2;2,2) is
superspace for N = (1, 1) supersymmetry realized on D = 2 + 2 space—time.
Maximally, we can think of N = (4, 4) supersymmetry for SDSYM [18], but
we focus only on N = (1, 1) supersymemtry in this Letter.

2. Total action with [SL(2, ]R)]3 symmetry

We first give our total action with manifest global [SL(2, R)]?
symmetry, then show its fermionic «-symmetry [20]. Our ac-
tion has classical equivalence to the GS o-model formulation
[14] of N = 2 superstring [16,17] with the right D = (2, 2; 2,2)
target superspace that accommodates self-dual supersymmetric
YM multiplet [14,17-19]. In this section, we first give our total
action of our formulation, leaving its derivation or justifications
for later sections.

Our total action [ = [ d?c L has the fairly simple La-
grangian

L =+,/—det(Il};) + €/ ;A ;8 Bpa (2.1a)
= +/+ Det(Tjna) (1 + 2M1-* 115 B 4)
= LNG + Lwznw, (2.1b)

where respectively the two terms Lng and Lwznw are called
‘NG-term’ and “WZNW-term’. The indices i, j,... =0, 1 are
for the curved coordinates on the 2D world-sheet, while +, —
are for the light-cone coordinates for the local Lorentz frames,
respectively defined by the projectors

; 1 . .
P(l.)(]) = E(5([)(/) 4 6([)(1))7

) 1 . .
Q(l.)(J) = _(5(1.)(1) — e(l.)(]))7

3 2.2)
where (i), (j),...=(0), (1), ... are used for local Lorentz co-
ordinates, and (1((j)) = diag(+, —). Note that §;. 7 =§_~ =
+l,oept=— "=+, 4 =0 =0, ny-=n-4 =1

Whereas IT;4 is the superspace pull-back, I} j 18 a product of
such pull-backs:

4 = (32" En,
T = nap T = g,

(2.3a)
(2.3b)

for the target superspace coordinates ZM. The (Mab) =
diag(+, +, —, —) is the D =2 + 2 space—time metric. We use
the indices a, b, ...=0,1,2,3 (orm,n,...=0,1, 2, 3) for the
bosonic local Lorentz (or curved) coordinates. The E 4 is the
flat background vielbein [25] for D = (2, 2; 2, 2) target super-
space [14,19]. Its explicit form is

a
=" )
—L(0%), 8,4
m
(EAM)=( % 0).
+5(0™0)y St
We use the underlined Greek indices: ¢ = (o, &), 8 = (B, B),
for the pair of fermionic indices, where «, g, .. .=1,2 are for
chiral coordinates, and «, /3 L= i, 2 are for anti-chiral coor-
dinates [19]. The indices wu,v,...=1,2,3,4 are for curved
fermionic coordinates. Similarly to the superspace for the
Minkowski space—time with the signature (+, —, —, —) [25],
a bosonic index is equivalent to a pair of fermionic indices, e.g.,
2 = I1,%%. In (2.4), we use the expressions like (0%46)y =
—(aﬂ)gﬂ@‘3 for the o-matrices in D =2 + 2 [19,26]. Rel-
evantly, the only non-vanishing supertorsion components are

(2.4)
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[14,19]

Typ® = i(of (2.5)

ugp

+i(oc)ap = +i(0c) s -
The antisymmetric tensor superfield Bsp has the superfield
strength

Gapc = ~ViaBsc)y — =Tiap ” Bpic)- (2.6)

2 2

Our anti-symmetrization rule is such as M[ap) = Map —
(—1)AB Mp 4 without the factor 1/2. The flat-background val-
ues of G zpc is [14,19]
i +5(00) g
Gape = +§(Ug)gﬂ = ,2 cob ; 2.7
- - +35(0)ap =+5(00)pa-
In our formulation, the Lagrangian (2.1a) needs the ‘square
root’ of the matrix I7;;, analogous to the zweibein e; () as the
‘square root’ of the 2D metric g;;, defined by

yi® va'y® =1, (2.8a)

(2.8b)

Vit = TLij,
v’ =87, vo'n =8,
Relevantly, we have y = +/—1I" for I' = det(/};) and y =
det(y; ). We define IT.+4 = y.'IT;* for the & local light-
cone coordinates. For our formulation with (2.1), we always
use the y’s to convert the curved indices i, j, ... =0, 1 into lo-
cal Lorentz indices (i), (j), ... = (0), (1).

From (2.8), it is clear that we can always define the ‘square
root’ of I of (2.3b) just as we can always define the zweibein
¢;)) out of a 2D metric gij- In fact, (2.8) determines y; o) up to
2D local Lorentz transformations O(1, 1), because (2.8) is co-
variant under arbitrary O(1, 1). However, (2.8) has much more
significance, because if the curved indices ij of I;; are con-
verted into ‘local’ ones, then it amounts to

k [ k 1
oy = vo' voh Tu = v/ v (™ viem)
k [
= (v ") (v v ) = 86 "™ 0y omy

=060 = T =1a6)()- (2.9)

In terms of light-cone coordinates, this implies formally the Vi-
rasoro conditions [27]
F++ = H+£H+g = 0,

r_=m4n_,=0, (2.10)

because 1, = n__ = 0. The only caveat here is that our y; /)
is not exactly the zweibein ¢; /), but it differs only by certain
factor, as we will see in (4.6).

The result (2.10) is not against the original results in NG
formulation [9,10]. At first glance, since the NG action has no
metric, it seems that Virasoro condition [27] will not follow, un-
less a 2D metric is introduced as in Polyakov formulation [21].
However, it has been explicitly shown that the Virasoro condi-
tions follow as first-order constraints, when canonical quantiza-
tion is performed [10]. Naturally, this quantum-level result is
already reflected at the classical level, i.e., the Virasoro condi-
tion (2.10) follows, when the ij indices on I}; = 1,411, are
converted into ‘local Lorentz indices’ by using the y’s in (2.8).

Most importantly, Det(I1;44) in (2.1b) is a Cayley’s hyper-
determinant [1,8], related to the ordinary determinant in (2.1a)
by

1 .. Ca
Det(Iiag) = —56”ekleaﬂey‘se“ﬂey‘sﬂiad”jﬂﬂ'”kwnzas
— —det(I3)). 2.11a)
Iy =M% = IT% Mg = €P €7 Mgy I 5. (2.11b)

The global [SL(2, R)]* symmetry of our action / is more trans-
parent in terms of Cayley’s hyperdeterminant, because of its
manifest invariance under [SL(2, R)]?. For other parts of our
Lagrangian, consider the infinitesimal transformation for the
first factor group3 of SL(2,R) x SL(2,R) x SL(2, R) with the
infinitesimal real constant traceless 2 by 2 matrix parameter p
as

5p17iA = PijﬂjA,

Spviy =—pva)* (pi' =0). (2.12)
The latter is implied by the definition of I7; = 1,411},
and y;)’ in (2.8). Eventually, we have §,/7;* = 0, while
Lwznw is also invariant, thanks to 6, H(i)A = 0. This concludes
8§, L=0.

The second and third factor groups in SL(2, R) x SL(2, R) x
SL(2,R) act on the fermionic coordinates @ and & in D =
(2,2;2,2), which need an additional care. We first need the
alternative expression of Lwznw by the use of Vainberg con-
struction [28,29]:

Iwznw =i f d’6 e"fkﬁ;adﬁ;“ﬁ,;d ) (2.13)
We need this alternative expression, because superfield strength
Gapc 1s less ambiguous than its potential superfield Bsp
avoiding the subtlety with the indices @ and &. In the Vain-
berg construction [28,29], we are considering the extended 3D
‘world-sheet’ with the coordinates (6') = (o7, y) (i =0, 1,2),
where 62 = y is a new coordinate with the range 0 < y < 1.

Relevantly, é//% is totally antisymmetric constant, and €%/ =
€', All the hatted indices and quantities refer to the new 3D.
Any hatted superfield as a function of 6* should satisfy the con-

ditions [28], e.g.,
ZM (o, y=0)=0. (2.14)

Consider next the isomorphism SL(2, R) ~ Sp(1) [30] for
the last two groups in SL(2,R) x SL(2,R) x SL2,R) =~
SL(2,R) x Sp(1) x Sp(1). These two Sp(1) groups are acting
respectively on the spinorial indices « and . The contraction
matrices €qg and €, 3 are the metrics of these two Sp(1) groups,
used for raising/lowering these spinorial indices. Now the in-
finitesimal transformation parameters of Sp(1) x Sp(1) can be
2 by 2 real constant symmetric matrices gog and ry 4 acting as

Mo, y=1)=2M(0),

A

8q 1T, = —q“ﬂl‘[l:ﬂ,

o

Sqllis = 9a” IT;

iya’

(2.15a)

3 In a sense, this invariance is trivial, because SL(2,R) C GL(2,R), where
the latter is the 2D general covariance group.
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§006 = S 5 =g I

iay’

(2.15b)

where ¢%g = €%V q,, ré‘ﬂ- = edyrylg, etc. Then it is easy to
confirm for Lywyznw that

dy (chadl‘[j"‘H,;“) =0, 8,(1_[[7&&17./?“17’2“) =0, (2.16)
because of g,V = +¢g¥, and roV = +r? . We thus have the
total invariances 6,£ = 0 and §,£ = 0. Since §,L£ = 0 has
been confirmed after (2.12), this concludes the [SL(2, R)]3-
invariance proof of our action (2.1).

It was pointed out in Ref. [8] that ‘hidden’ discrete symme-
try also exists in NG-action under the interchange of the three
indices for [SL(2, R)]3. In our system, however, this hidden
triality seems absent. This can be seen in (2.1b), where the Cay-
ley’s hyperdeterminant or Lng indeed possesses the discrete
symmetry for the three indices iac, while it is lost in Lywznw.
This is because the mixture of IT;,; and IT;* or IT;9 via the
non-zero components of Bgp breaks the exchange symmetry
among iaa, unlike Cayley’s hyperdeterminant.

3. Fermionic invariance of our action

We now discuss our fermionic k-invariance. Our action (2.1)
is invariant under

(8 ZM)En® = +i(op)al gl b= +i( k)%, (3.1a)
6 Z"MEyt =0, (3.1b)
8 Tij = +[ic-*(0a00)a (1 ] T+ 10,50

= +(k-J+ (1T )). (3.1c)

The k_% is the parameter for our fermionic symmetry transfor-
mation, just as in the conventional Green—Schwarz superstring
[12,20]. Since ZM is the only fundamental field in our formu-
lation, (3.1c¢) is the necessary condition of (3.1a) and (3.1b).

We can confirm §, I = 0 easily, once we know the interme-
diate results:

8¢ LnG = /=T (kI J ;) [TD), (3.2a)
8 Lwznw = —€ (eI JH: 1T). (3.2b)
By using the relationships, such as /= T'e ®® = ¢y, 0y, O

with the most crucial equation (2.10), we can easily confirm that
the sum (3.2a) + (3.2b) vanishes:

8 £ =8 (Lng + Lwznw)
= 427/ =T (k_I1_)[1, %[ , =0. 3.3)

Thus the fermionic «-invariance 6, I = 0 works also in our for-
mulation, despite the absence of the 2D metric or zweibein. The
existence of fermionic x-symmetry also guarantees the light-
cone equivalence of our system to the conventional N =2 GS
superstring [14].

4. Derivation of Lagrangian and fermionic symmetry
In this section, we start with the conventional GS o-model

action [14] for N = 2 superstring [16,17], and derive our La-
grangian (2.1) with the fermionic transformation rule (3.1).

This procedure provides an additional justification for our for-
mulation.

The N =2 GS action Igs = fdzo Lgs [14] which is light-
cone equivalent to N = 2 NSR superstring [16,17] has the La-
grangian

1 .. ..
Lags = +§«/—_gg”17i217jg +€V 4% B a
= tell 4y +2eM-*T1, 8By, 4.1)

where g = det(g;;) is for the 2D metric g;;, while e =
det(e; ")) = /=g is for the zweibein ¢; /). The action Igs is
invariant under the fermionic transformation rule [15 ,20]4

5, EL = _H'(Ug)ﬁé)\iénli: —}—i(]]fi)»i)a_, (4.2a)
8, E4=0, (4.2b)
Sre' = —(A__y)ey =—(_I )e ', (4.2¢)
Srer =0, (4.2d)

where A has only the negative component: A% = Q) (j)k(j)g.
Only in this section, the local Lorentz indices are related to
curved ones through the zweibein as in 1) = e,/ 1,4, in-
stead of ;7 in the last section. In the routine confirmation of
8, Lgs =0, we see its parallel structures to §, L = 0.

We next derive our Lagrangians £ng and Lwznw from Lgs
in (4.1). To this end, we first get the 2D metric field equation
from Igg>

. 1 _
gij = +2(M M My) ™ (M%) =227 ' Ty =hyj. - (430)
Q=" MM} =¢"T}j. (4.3b)

As is well known in string o-models, this field equation is not
algebraic for g;;, because the r.h.s. of (4.3) again contains gl
via the factor §2. Nevertheless, we can formally delete the met-
ric from the original Lagrangian, using a procedure similar to
getting NG string [9,10] from Polyakov string [21], or NG ac-
tion out of type II superstring action [12], as

1 . 1 1
V88 Iy = 5 V=82 = 2\ [~ det(hi @2
1
= 5y —de(2271 1)

=7 /—det(I)2 =+v—T =Lng. (4.4

Thus the metric disappears completely from the resulting La-
grangian, leaving only +/—I" which is nothing but £ng in (2.1).
As for Lwznw, since this term is metric-independent, this is ex-
actly the same as the second term of (4.1).

We now derive our fermionic transformation rule (3.1) from
(4.2). For this purpose, we establish the on-shell relation-
ships between ¢; /) and our newly-defined y; /). By taking the
‘square root” of (4.3a), we get the ¢; /)-field equation expressed
in terms of the IT’s, that we call f; /) which coincides with e; /)

4 We use the parameter A instead of x due to a slight difference of A from
our « (cf. Eq. (4.8)).

5 We use the symbol = for a field equation to be distinguished from an alge-
braic one.
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only on-shell:

) = 100 = 1O (), “so
fiwo £i© =hij, Y fay! =Y,
fi(k)f(k)j — 51./, f(i)kfk(j) — 5(1.)(]') (4.5b)

Note that the f’s is proportional to the y’s by a factor of \/§2/2,
as understood by the use of (4.3), (4.5) and (2.8):

L [2 .
ei(/) - fl.(J) — 5%.(/),
2

e(l) —f(t) ?V(i) .

Recall that the factor §2 contains the 2D metric or zweibein
which might be problematic in our formulation, while y; /),
y(,)/ are expressed only in terms of the IT;4’s. Fortunately, we
will see that £2 disappears in the end result.

Our fermionic transformation rule (3.1a) is now obtained
from (4.2a), as

HES =i ()" =if VT Ul jh)®

o
=1y EJ/(Z)] (I i)™
ool (2N (D) — 5. e
=iy NI\ 5o )| =i k0)" =8E%,

4.7)

(4.6)

where XA and « are proportional to each other by

2
K@) = Ek(l’).

Such a re-scaling is always possible, due to the arbitrariness of
the parameter A or «.

As an additional consistency confirmation, we can show the
k-invariance of (2.10), using the convenient lemmas

= (v
(5KV+ ) =0, (8/()/— )Vz =—(k_II-).

Combining these with (3.1c), we can easily confirm that
8¢ '++ =0 and 8, '__ = 0, as desired for consistency of the
‘built-in’ Virasoro condition (2.10).

The complete disappearance of §2 in our transformation rule
(3.1) is desirable, because £2 itself contains the metric that is
not given in a closed algebraic form in terms of IT;4. If there
were §2 involved in our transformation rule (3.1), it would pose
a problem due to the metric g;; in £2. To put it differently, our
action (2.1) its fermionic symmetry (3.1) are expressed only
in terms of the fundamental superfield ZM via IT;* with no
involvement of g;;, e; () or £2, thus indicating the total con-
sistency of our system. This concludes the justification of our
fermionic «-transformation rule (3.1), based on the N =2 GS
o-model [14] light-cone equivalent to N = 2 NSR superstring
[16,17].

(4.8)

1
(KV+) 2—9_15,(.9,
2

4.9)

5. Concluding remarks

In this Letter, we have shown that after the elimination of
the 2D metric at the classical level, the NG-action part Ing
of GS o-model action [14] for N = 2 superstring [16,17] is
entirely expressed as the square root of a Cayley’s hyperdeter-
minant with the manifest [SL(2, R)]? symmetry. In particular,
this is valid in the presence of target superspace background in
D = (2,2;2,2) [19]. From this viewpoint, N =2 GS o-model
[14] seems more suitable for discussing the [SL(2, B3 sym-
metry via a Cayley’s hyperdeterminant. We have seen that the
[SL(2, ]R)]3 symmetry acts on the three indices i, , & carried
by the pull-back I7;44 in Det(I1;4s) in D = (2,2;2,2) super-
space [14,19]. The hidden discrete symmetry pointed out in [8],
however, seems absent in N = 2 string [14,17,19] due to the
WZNW-term Lwznw -

We have also shown that our action (2.1) has the classical
invariance under our fermionic «-symmetry (3.1), despite the
elimination of zweibein or 2D metric. Compared with the orig-
inal Igg [14], our action has even simpler structure, because of
the absence of the 2D metric or zweibein. Due to its fermionic
k-symmetry, we can also regard that our system is classically
equivalent to NSR N = 2 superstring [16,17], or N =2 GS su-
perstring [13]. As an important by-product, we have confirmed
that the Virasoro condition (2.10) are inherent even in the NG
reformulation of N = 2 GS string [14] at the classical level.
This is also consistent with the original result that Virasoro con-
dition is inherent in NG string [9,10].

One of the important aspects is that our action (2.1) and the
fermionic transformation rule (3.1) involve neither the 2D met-
ric g;j, the zweibein e; () nor the factor £2 containing these
fields. This indicates the total consistency of our formulation,
purely in terms of superspace coordinates Z¥ as the fundamen-
tal independent field variables.

In this Letter, we have seen that neither the 2D metric g;; nor
the zweibein ¢; /), but the superspace pull-back IT;qq is playing
a key role for the manifest symmetry [SL(2, R)]? acting on the
three indices iac. In particular, the combination I}; = I1;%411 ;,
plays a role of ‘effective metric’ on the 2D world-sheet. This
suggests that our field variables Z¥ alone are more suitable for
discussing the global [SL(2, R)? symmetry of N = 2 super-
string [14,16,17].

As a matter of fact, in D =2 + 2 unlike D = 3 + 1, the
components « and & are not related to each other by complex
conjugations [18,19,26]. Additional evidence is that the signa-
ture D =2 4 2 seems crucial, because SO(2,2) ~ SL(2, R) x
SL(2,R) [30], while SO(3,1) ~ SL(2,C) for D =3 + 1 is
not suitable for SL(2,R). Thus it is more natural that the
NG reformulation of N =2 GS superstring [14] with the tar-
get superspace D = (2,2;2,2) is more suitable for the global
[SL(2,R)]* symmetry acting on the three independent indices
i,o and &.

It seems to be a common feature in supersymmetric theories
that certain non-manifest symmetry becomes more manifest
only after certain fields are eliminated from an original La-
grangian. For example, in N = 1 local supersymmetry in 4D,
it is well known that the o-model Kéhler structure shows up,
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only after all the auxiliary fields in chiral multiplets are elim-
inated [31]. This viewpoint justifies to use a NG-formulation
with the 2D metric eliminated, instead of the original N =2 GS
formulation [13,14], in order to elucidate the global [SL(2, R
symmetry of the latter, via a Cayley’s hyperdeterminant.

It has been well known that the superspace D = (2, 2; 2,2) is
the natural background for SDYM multiplet [14,17-19]. More-
over, SDSYM theory [14,18,19] is the possible underlying the-
ory for all the (supersymmetric) integrable systems in space—
time dimensions lower than four [24]. All of these features
strongly indicate the significant relationships among Cayley’s
hyperdeterminant [1,8], N = 2 superstring [16,17], or N =2
GS superstring [13,14] with D = (2, 2; 2,2) target superspace
[14,19], its NG reformulation as in this paper, the STU black
holes [5,6], SDSYM theory in D =2 + 2 [14,18,19], and su-
persymmetric integrable or soluble models [14,17,19,24] in di-
mensions D < 3.
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