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Abstract

Soft sensors are used in chemical plants to estimate process variables that are difficult to measure online. However, the predictive
accuracy of adaptive soft sensor models decreases when sudden process changes occur. An online support vector regression (OSVR)
model with a time variable can adapt to rapid changes among process variables. One problem faced by the proposed model is finding
appropriate hyperparameters for the OSVR model; we discussed three methods to select parameters based on predictive accuracy and
computation time. The proposed method was applied to simulation data and industrial data, and achieved high predictive accuracy when
time-varying changes occurred.
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1. Introduction

Soft sensors are widely used to predict process variables that are difficult to measure online [1]. An inferential model is
constructed between the variables that are easy to measure online and those that are not, and an objective variable, y, can
then be predicted using that model. By using soft sensors, the values of y can be predicted with a high degree of accuracy.

Use of these sensors is, however, accompanied by some practical difficulties. One of the main difficulties is the
degradation of the soft sensor models. The predictive accuracy of the soft sensors tends to decrease gradually for several
reasons, including changes in the state of the chemical plant, catalyzing performance loss, and sensor and process drift.

A solution to this soft sensor model degradation problem is highly desirable. To reduce the degradation, the model can be
reconstructed with the most recent data. The moving window (MW) model [2,3] and the recursive model [4] are categorized
as sequentially updating type models, and the distance-based just-in-time (JIT) model [5], the correlation-based JIT model
[6] and the locally-weighted partial least square model [7] are categorized as JIT type models. For example, a MW model is
constructed with the data that were measured most recently, while a distance-based JIT model is constructed with data with
distances to the prediction data that are smaller than those of other data. The problems of reconstructing a model, such as the
incorporation of abnormal data with training data and the increased maintenance costs, have been studied, and a model
based on the relationship between the change in y over a period of time and the corresponding change in the explanatory
variables, X, over the same time period, was proposed [8-10]. This model is referred to as a time difference (TD) model.
The effects of deterioration with age, such as sensor drift and the gradual changes in the state of the plant, can be handled
using a TD model without reconstruction of the model. Models such as the MW, JIT, and TD models that can predict the y-
values while adapting to the states of the plant are called adaptive models [11].
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There are no adaptive models with high predictive ability in all process states, and the prediction accuracy of each
adaptive model depends on the process state [14]. Kaneko et al. categorized the degradation of the soft sensor model and
discussed the characteristics of adaptive models such as the MW, JIT and TD models, based on the classification results,
and confirmed their results through the analysis of both numerical simulation data and real industrial data [15]. The
predictive abilities of the current MW, JIT and TD models are not entirely sufficient when rapid changes in the slope, i.e.
time-varying changes in a process, occur, and novel techniques are thus required to solve this problem.

The online support vector regression (OSVR) [16] model with time variable was proposed to improve the predictive
ability of soft sensor models under degradation conditions where the process changes, or the slope changes, are rapid and
time-dependent, to handle any nonlinear relationships between X and y, and to cope with abrupt changes in the process
characteristics. A support vector regression (SVR) [17] model is updated efficiently, while considering a variable
representing the time in the X-variables. However, one of the main problems with the proposed model is the difficulty in
finding the appropriate hyperparameters for the OSVR model, and we therefore discuss three methods, i.e. optimization of
the predictive accuracy for validation data (OpV), cross-validation using the SVR method (CrV), and the theoretical
decision (ThD) method, used to decide the parameters in terms of their predictive accuracy and computation time.

To verify the effectiveness of the proposed method, we analyze the simulation data where the relationships between X
and y change from moment to moment. The performance of the proposed models is compared with that of other, more
traditional adaptive models. The proposed method is then applied to industrial polymer process data.

2. Method

2.1. OSVR

The SVR method applies a support vector machine (SVM) to regression analysis and can be used to construct nonlinear
models by applying a kernel trick along with the SVM. The OSVR method is a method of efficiently updating a SVR model
to meet the Karush-Kuhn-Tucker (KKT) conditions that the SVR model must fulfill when training data are added or deleted.

The primal form of the SVR can be shown to be the following optimization problem.
Minimize

2

1

1
2

N

i i
i

C y fw x , (1)

where yi, and xi are training data, f is the SVR model, w is a weight vector,  is a threshold, N is the number of training data,
and C is a penalizing factor that controls the trade-off between the model complexity and the training errors. The second
term of Eq. (1) is the -insensitive loss function and is given as follows:

max 0,i i i iy f y fx x  . (2)

By minimization of Eq. (1), we can construct a regression model with a good balance between its generalization capabilities
and its ability to adapt to the training data. A y-value predicted by inputting data x is represented as follows:

*

1

N

i i i
i

f K , bx x x , (3)

where N is the number of training data, b is a constant and K is a kernel function. The kernel function in our application is a
radial basis function:

2, expi iK x x x x , (4)

where  is a tuning parameter that controls the width of the kernel function. From Eqs. (1) and (2), i and i
* in Eq. (3) can

be obtained by minimizing the equation given as:
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Kij in Eq. (5) is represented as follows:

,ij i jK K x x . (8)

Next, we define i as follows:

*
i i i . (9)

From Eqs. (3), (4) and (8), the predicted y-value of data xi is given as:

1

N

i ij j
j

f K bx , (10)

where i satisfies the following equation:
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The error function h is defined as:
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The KKT conditions can then be summarized as follows:

,i ih Cx , (13)

, 0i ih Cx , (14)

, 0i ih x , (15)

, 0i ih Cx , (16)

,i ih Cx . (17)
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Each training datum must satisfy one of Eqs. (13)-(17). All training data can be divided into the following three sets: error
support vectors (E), which satisfy Eq. (13) or Eq. (17); margin support vectors (S), which satisfy Eq. (14) or Eq. (16); and
the remaining vectors (R), which satisfy Eq. (15).

When new data  in  the  form xc, yc are added, there is no need to update i and b in the SVR model if xc belongs  to  R.
However, if xc belongs  to  E or  S,  the  initial  value  of c, which is i corresponding to xc,  is set as 0, and c, i and b are
gradually changed to meet the KKT conditions. There is the possibility that each training datum moves to another region
because of the changes, but, assuming no such movements, the variations of h(xi), c, i and b, and of h(xi), c, i and

b, can be represented using Eqs. (11) and (12) , respectively, as follows:

1

N

i ic c ij j
j

h K K bx , (18)

1

0
N

c j
j

. (19)

The i-values of the training data belonging to E and R did not change based on Eqs. (13), (15) and (17), and thus, Eq. (18)
can be transformed as:

S
i ic c ij j

j

h K K bx . (20)

The h(xi)-values of the training data belonging to S are settled using Eqs. (14) and (16). Thus, Eqs. (19) and (20) can be
changed to:

S

Sij j ic c
j

K b K i , (21)

S
j c

j

. (22)

Then, c, i and b can be represented by:

cb , (23)

Si i c i , (24)

where
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0 Si i . (26)

Here, M is the number of training data that belong to S. From Eqs. (20), (23) and (24), h(xi) for the training data belonging
to E and R can be transformed into:
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where

1

N

ic ij j
j

K K . (28)

From Eqs. (24) and (27), c for the movement of each training datum is represented by:

1 Sc i i i , (29)

1 Sc ih ix . (30)

The absolute i-values for each training datum to move from their current region to another region, i.e. from E to S,
from S to E or R and from R to S, are calculated using Eqs. (29) and (30). The minimum value of the absolute i-values
calculated with all training data is selected, and the data with the minimum i-value are actually moved to a new region.
The calculations of the absolute i-values and the movement of the data with the minimum of the absolute i-values are
repeated until all the training data satisfy the KKT conditions, i.e., one of Eqs. (13)-(17). When one datum is deleted from
the training data, the same iterative calculation is performed until all the data satisfy the KKT conditions.

2.2. Time variable

By updating a nonlinear regression model, the model will be able to handle new nonlinear relationships between X and y.
However, even the updated model cannot adapt to time-varying process changes. Therefore, a variable representing the
process time is added to the X-variables. By modeling the changes in the process characteristics with this time variable, the
model will be able to predict the subsequent y-values. In addition, even when the changes in the process are nonlinear in
terms of time, an updated nonlinear model with the time variable can be adaptive for these changes.

The time variable is an interval scale and the zero point of the scale can be set arbitrarily.

2.3. Parameter setting for OSVR

For OSVR, the hyperparameters C,  and  must be set first. In this paper, we discuss the three methods mentioned earlier,
i.e. the OpV, CrV and ThD methods, that may be used to determine the parameters in terms of their predictive accuracy and
computational time.

2.3.1 Optimization of predictive accuracy for validation data (OpV)

When the number of training data is N, the window size, which means the number of data used for the model
construction, was set as m, and the hyperparameters are selected to provide the best prediction performance based on the last
(N–m) training data. The predictive ability of an OSVR model for new data can be considered as part of the parameter
setting process, but a lot of time is required because the OSVR model must be updated many times.

2.3.2 Cross validation using the SVR method (CrV)
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SVR parameters optimized by cross validation (CV) on training data were used as the parameters of an OSVR model.
CV is a technique that evaluates the predictive ability of statistical models by using only the training data. In an M-fold CV,
the training data are randomly divided into M groups,  in  which  the  numbers  of  data  are  the  same as  far  as  possible.  One
group is then used as the data to validate the model constructed using the data from the other (M–1) groups. This procedure
is repeated M times so that the data of each of the M groups are used once as the validation data. Finally, estimated rather
than calculated values of y can be obtained. In this paper, M is set as 5, which is a standard value. The predictive ability of
the SVR model can be considered in the parameter setting process, and the hyperparameters can be selected in reasonable
time.

2.3.3 Theoretical decision (ThD)

Cherkassky and Ma proposed the theoretical decision method to decide the hyperparameters C and  of  a  SVR model
[18] and we use this method to set the OSVR hyperparameters. The values of C and  are calculated as follows:

max 3 , 3C y y y y , (31)

ln3 N
N

. (32)

Here, y is the average of y and y is the standard deviation of y.  in Eq. (32) is estimated with the k-nearest-neighbor’s
method as follows:

1 5
2

1 5
1

1
1

N

i i
i

N k y y
N k n

. (33)

Here yi with the marker above it is an estimated y-value. Only the hyperparameter  in the kernel function is optimized with
CV on training data. This theoretical method takes less time to perform than the other methods.

3. Results and discussion

To verify the effectiveness of the proposed method, we analyzed the simulation data along with industrial polymer
process data. The relationships between X and y change from moment to moment for the simulation data. The models to be
compared were as follows:

TDPLS: TD model constructed using the partial least squares (PLS) method [8,19]
TDSVR: Nonlinear TD model constructed using the SVR method [10]
JITPLS: PLS model constructed using data with Euclidian distances to new data that are smaller than those of the other
data
LWPLS: PLS model constructed by weighting data with a similarity matrix [20]
MWPLS: PLS model constructed with the most recently measured data
OSVR: Updated SVR model

Each model, including its time variable, was also used in the case studies. For OSVR, the OpV, CrV and ThD methods were
used to decide on the hyperparameters.

3.1. Simulation data in which the relationship between X and y is time-varying

The number of X-variables was set as two. First, x1 and x2 of the uniform pseudorandom numbers with ranges from 0 to
10 were prepared. Then, y was set as follows:

T
1 2 21 N(0,0.1)by x x , (34)

where b2 is the magnitude of the contribution of x2 to y and N(0, 0.1) represents random numbers from a normal distribution
given a standard deviation of 0.1 and a mean of 0. We set b2 as follows:
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2 3sin 0.01 1b t , (35)

2 3sin 0.02 1b t . (36)

Eqs. (35) and (36) represent the gradual and rapid changes in b2, respectively. t was set as 1, 2, ...,  200 and the number of
data was 200. The first 100 data were used for training and the next 100 data were used as the test data. This data set is the
same as that of the “Change of the Slope” set in reference [15].

The hyperparameter for the LWPLS model was selected with five-fold cross-validation. The window sizes were set as 20
and 50 for the JITPLS, MWPLS and OSVR models. Table 1 shows the prediction results for the test data when only x1 and
x2 were used as X-variables and the time variable was not used. The rpred

2 parameter is the determination coefficient for the
test data and can have negative values for the test data. The higher the rpred

2-value  of  a  model  is,  then  the  greater  that
model’s predictive accuracy becomes. The RMSEP is the root-mean-square error for the test data. Lower RMSEP-values of
models indicate higher prediction accuracy in the models. In both cases of b2 based on Eqs. (35) and (36), the prediction
abilities of the TDPLS, TDSVR, JITPLS, and LWPLS models were low, because the rpred

2-value was low and the RMSEP-
value was high for each model. These models could not adapt to the time-dependent process characteristics. The prediction
results of the MWPLS models were better than those of the other models when the window size was 20, but, nevertheless,
the rpred

2-values were low and the RMSEP-values were high for the MWPLS models. None of these models could accurately
adapt to the time-varying changes in the relationships between X and y.

The prediction results are shown in Table 2 when t was  added  to  the X-variables (x1 and x2) as the time variable. In
TDPLS, TDSVR, JITPLS and LWPLS modeling, some of the prediction results improved in comparison with the results
without the time variable, but these improvements were still not enough. In both cases of b2, the rpred

2-values increased
greatly and the RMSEP-values decreased significantly when using the MWPLS models with a window size of 20 with the
time variable. Furthermore, a significant improvement in the predictive ability of the OSVR models was confirmed by the
addition  of  the  time  variable  when  the  hyperparameters  were  decided  based  on  OpV  or  CrV.  When  the  number  of  the
window size increased, then the predictive accuracy of the OSVR models with hyperparameters that were selected using
CrV  also  increased.  This  is  because  the  window  size  number  became  close  to  that  of  the  training  data  with  which  the
hyperparameters of the SVR model were selected using cross-validation. However, the OSVR models of the
hyperparameters set using ThD did not have a high prediction performance, meaning that the hyperparameters should be
selected by considering the predictive accuracy of the model. By setting the hyperparameters appropriately, the proposed
models could then deal appropriately with the time-varying changes in the relationship between X and y by updating the
SVR models and adding the time variable to the X-variables.

Fig. 1 shows the relationships between the simulated and predicted y values for the test data. From Fig. 1a and 1b, we
can see that the data came close to the diagonal and that the prediction accuracy improved when we added the time variable

Table 1. Prediction results using the simulation data without the time variable.

b2: Eq. (35) b2: Eq. (36)

Model rpred
2 RMSEP rpred

2 RMSEP

TDPLS -6.1 15 0.376 9.0

TDSVR -9.9 19 -0.19 12

JITPLS, 20* -6.0 15 0.009 11

JITPLS, 50* -6.0 15 0.053 11

LWPLS -5.9 15 0.045 11

MWPLS, 20* 0.546 3.8 0.574 7.3

MWPLS, 50* -1.3 8.7 -0.44 13

OSVR, OpV, 20* 0.498 4.1 0.536 7.6

OSVR, OpV, 50* -1.1 8.3 -0.20 12

OSVR, CrV, 20* 0.283 4.8 0.474 8.1

OSVR, CrV, 50* -1.5 9.1 -3.6 13

OSVR, ThD, 20* 0.473 4.2 0.413 8.6

OSVR, ThD, 50* -1.2 8.5 -0.30 13

* The number of the window size.
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to the X-variables. Though relatively many data are far from the diagonal for the OSVR models with hyperparameters that
were decided using ThD (Fig. 1d), by using OpV and CrV for selection of the hyperparameters, the plots show tight clusters
of predicted values along the diagonals, meaning that the prediction accuracy of the models was suitably high. It was
confirmed that the proposed models were able to deal with the sudden and time-varying changes in the processes and that
the appropriate hyperparameters can be decided using CrV, which requires less computational time than OpV.

3.2. Application to Industrial Polymer Processes

We applied the proposed methods to actual industrial data obtained from an industrial polymer process at Mitsui
Chemicals, Inc., which is one of the largest Japanese chemical companies, to verify their prediction abilities. Industrial
polymer processes generally produce many grades of products. Therefore, when the polymer grade changes, it is important
to reduce the quantity of off-grade material produced. Thus, early and accurate judgment of whether the polymer quality is
within the given specification limits or not is made using soft sensors, because it is impossible to perform online
measurement of large numbers of polymer quality variables when using hard sensors. Construction of models with high
prediction performance is difficult in the present circumstances. One reason for this is that there can be a nonlinear
relationship between a polymer quality variable, y, and another process variable, X [21,22]. In addition, impurities can be
mixed in with the raw materials and the relationships between X and y will depend on the amounts of these impurities.

We tried to construct nonlinear models between X and y for various polymer grades. The constructed models can be

Fig. 1. Relationships between y and predicted y of test data when Eq. (36) was used as b2. The window size number is 50 in each case.

Table 2. Prediction results using the simulation data with the time variable.

b2: Eq. (35) b2: Eq. (36)

Model rpred
2 RMSEP rpred

2 RMSEP

TDPLS -6.1 15 0.376 9.0

TDSVR -19.2 26 -20.1 52

JITPLS, 20* 0.407 4.4 0.261 9.6

JITPLS, 50* -0.25 6.4 -0.19 12

LWPLS -0.30 6.5 0.265 9.6

MWPLS, 20* 0.848 2.2 0.848 4.4

MWPLS, 50* 0.147 5.3 0.239 9.8

OSVR, OpV, 20* 0.996 0.35 0.994 0.85

OSVR, OpV, 50* 0.995 0.42 0.993 0.93

OSVR, CrV, 20* 0.988 0.62 0.968 2.0

OSVR, CrV, 50* 0.997 0.29 0.991 1.0

OSVR, ThD, 20* 0.792 2.6 0.735 5.8

OSVR, ThD, 50* 0.723 3.0 0.698 6.2

* The number of the window size.
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applied to data from any kind of polymer grade if the relationship between X and y can be extrapolated to fit those data.
Data measured in the steady state for many grades were collected in this study. The y-variable represents the density, and
the X-variables represent 38 different variables, including the temperature in the reactor and the pressure and concentration
of the monomer, the comonomer, and hydrogen. We used the data that were monitored from January 2005 to April 2007 as
the training data, and data that were monitored from May 2007 to May 2008 as the test data.

The density prediction results are shown in Table 3. In this study, the window size was relatively large and was set as
300 for the JITPLS, MWPLS and OSVR models because of the large numbers of X-variables. The OSVR with OpV was
not  performed  because  it  took  too  much  computation  time,  but  the  OSVR  with  CrV  should  have  almost  the  same
performance as that of OpV, based on the results of section 3.1. In fact, the proposed OSVR model with the time variable
achieved the highest density prediction performance when the hyperparameters were selected with CrV. The results of the
proposed model were superior to those of the OSVR models without the time variable, indicating that the relationship
between the X-variables and the density is time-varying, based on the results of the analysis with the simulation data. The
relationship between the X-variables and the density may be time-varying and may also depend on the amount of impurities
in the raw materials.

Fig. 2 shows the relationships between the measured and predicted density values with the test data. The plots of Fig. 2a,
2b and 2d showed the negative bias of the prediction errors when the actual density values range from 0.94 to 0.95 for the
OSVR  models  without  the  time  variable  and  the  OSVR  models  with  parameters  that  were  set  using  ThD  with  the  time
variable. When we used the OSVR model with parameters that were selected using CrV with the time variable, this bias did
not exist and much tighter clusters of the predicted values along the diagonal could be seen, reflecting the more accurate
prediction of density. It was confirmed that the proposed model can adapt accurately to the nonlinear relationships between
X and y and to the time-varying changes in the relationships, i.e. the changes in the process characteristics.

The hyperparameters and window sizes of the OSVR models were fixed for the predictions in all the case studies.
However, the appropriate parameters must vary, depending on the states in a process. Therefore, further improvements in
prediction accuracy of OSVR modeling will be achieved by selecting the appropriate parameters in response to the process
characteristics.

Fig. 2. Relationships between measured and predicted densities with test data.

Table 3. The density prediction results.

Without the time variable With the time variable

Model rpred
2 RMSEP( 10-3) rpred

2 RMSEP( 10-3)

TDPLS 0.933 3.12 0.933 3.12

TDSVR 0.960 2.43 0.954 2.58

JITPLS, 300* 0.960 2.41 0.960 2.44

LWPLS 0.968 2.15 0.962 2.37

MWPLS, 300* 0.960 2.42 0.959 2.45

OSVR, CrV, 300* 0.956 2.54 0.976 1.88

OSVR, ThD, 300* 0.962 2.36 0.960 2.43

* The number of the window size.



589 Hiromasa Kaneko and Kimito Funatsu  /  Procedia Computer Science   22  ( 2013 )  580 – 589 

4. Conclusion

In this paper, to accurately predict y-values even when the changes in the relationship between X and y are both
nonlinear  and  time-varying,  we  proposed  a  new  adaptive  soft  sensor  model  combining  the  OSVR  method  with  the  time
variable. By adding the time variable to the X-variables and efficiently updating the SVR model, the proposed model can
adapt to abrupt changes in the process characteristics. We also discussed three methods, i.e. OpV, CrV, and ThD, that were
used to decide the parameters in terms of their predictive accuracy and their computation time.

Through the analysis of the simulation data, it was confirmed that the OSVR models with the time variable showed good
prediction performance when the relationship between X and y changed  from  moment  to  moment.  The  OSVR
hyperparameters could also be selected using CrV given a reasonable length of time. Then, the superiority of the proposed
method was confirmed through the analysis of real industrial data. The appropriate selection of parameters for an OSVR
model such as the window size depends on the process states, and ensemble prediction using multiple OSVR models will be
able to improve the prediction accuracy.

The main issue with the proposed method is that the updated model specializes in predictions over a narrow data range
when there is little variation in a process over a long period, because it is intended for sequentially updating models and JIT
models. Appropriate database control is required to solve this issue.

We believe that by applying our proposed method to process control and adapting it to the process characteristics for
highly accurate prediction, we will be able to operate chemical plants effectively and stably.
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