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a b s t r a c t

Let a be an ideal of a commutative Noetherian ring R andM a finitely generated R-module.
We explore the behavior of the two notions fa(M), the finiteness dimension of M with
respect to a, and, its dual notion qa(M), the Artinianness dimension ofM with respect to a.
When (R,m) is local and r := fa(M) is less than f ma (M), the m-finiteness dimension of M
relative to a, we prove that Hra(M) is not Artinian, and so the filter depth of a on M does
not exceed fa(M). Also, we show that ifM has finite dimension andH ia(M) is Artinian for all
i > t , where t is a given positive integer, thenH ta(M)/aH

t
a(M) is Artinian. This immediately

implies that if q := qa(M) > 0, thenHqa (M) is not finitely generated, and so fa(M) ≤ qa(M).
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, R is a commutative Noetherian ring with identity and all modules are assumed to be unitary.
Let M be a finitely generated R-module and a an ideal of R. The notion fa(M), the finiteness dimension of M relative to a,
is defined to be the least integer i such that H ia(M) is not finitely generated if there exist such i’s and +∞ otherwise. Here
H ia(M) denotes the ith local cohomology module of M with respect to a. As a general reference for local cohomology, we
refer the reader to the text book [6]. Hartshorne [12] has defined the notion qa(R) as the greatest integer i such that H ia(R)
is not Artinian. Dibaei and Yassemi [11] extended this notion to arbitrary R-modules, to the effect that for any R-module N
they defined qa(N) as the greatest integer i such that H ia(N) is not Artinian. Among other things, they showed that ifM and
N are two finitely generated R-modules such thatM is supported in SuppR N , then qa(M) ≤ qa(N).
Our objective in this paper is to investigate the notions fa(M) and qa(M) more closely. Let M and a be as above. By [1,

Theorem 1.2], the R-module HomR(R/a,H fa(M)a (M)) is finitely generated. This easily leads to the conclusion that H fa(M)a (M)
has finitely many associated primes; see [4,18]. In Section 3, we investigate the dual statements for Hqa(M)a (M). We prove
that Hqa(M)a (M)/aHqa(M)a (M) is Artinian. However, we give an example to show that the set of coassociated prime ideals of
Hqa(M)a (M)might be infinite; see Example 3.5. As an immediate application, we deduce that if q := qa(M) > 0, then Hqa (M)
is not finitely generated. In particular, if qa(M) > 0, then it follows that fa(M) ≤ qa(M). This leads one to conjecture that
H fa(M)a (M) is not Artinian. As can be seen easily, this is not true in general (see Example 2.6(i)). But, in this regard, we prove
that if M is a module over a local ring (R,m) such that either r := grade(a,M) < depthM or r := fa(M) < f ma (M), then
Hra(M) is not Artinian. In particular, in both cases we can immediately conclude that fa(M) ≥ f − depth(a,M). (For the
definitions of the notions f ma (M) and f − depth(a,M), see the paragraph preceding Theorem 2.5.)
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To have the most generality, we will present our results for generalized local cohomology modules, the notion of which
was introduced by Herzog [16] in 1974. For two R-modulesM and N , the ith generalized local cohomology ofM and N with
respect to a is defined by H ia(M,N) := lim−→n

ExtiR(M/a
nM,N). Using the notion of generalized local cohomology modules,

we can define the finiteness (resp. Artinianness) dimension of a pair (M,N) of finitely generated R-modules relative to the
ideal a by

fa(M,N) := inf{i : H ia(M,N) is not finitely generated}

(resp.

qa(M,N) := sup{i : H ia(M,N) is not Artinian}),

with the usual convention that the infimum (resp. supremum) of the empty set of integers is interpreted as +∞ (resp.
−∞). We study the behavior of fa(M,N) and qa(M,N) under changing one of the a,M and N , when we fixed the two
others. Correspondingly, in Section 2 we prove the following:

(i) if SuppRM ⊆ SuppR N , then fa(M, L) ≥ fa(N, L) for any finitely generated R-module L, and
(ii) if pdN <∞, then fa(M,N) ≥ fa(M, R)− pdN .

Finally, for any two finitely generated R-modulesM and N , we establish the inequality

qa(M,N) ≤ GpdN M + qa(M⊗R N),

where GpdN M := sup{i : Ext
i
R(M,N) 6= 0}.

2. The finiteness dimension of modules

The purpose of this section is to examine the behavior of the notion fa(M) more closely. Let us start this section by
recording the following theorem.

Theorem 2.1. Let L,M and N be finitely generated R-modules and a an ideal of R. If SuppRM ⊆ SuppR N, then fa(M, L) ≥
fa(N, L). In particular, if SuppR N = SuppRM, then fa(M, L) = fa(N, L).

Proof. It is enough to show that H ia(M, L) is finitely generated for all i < fa(N, L) and all finitely generated R-modules M
such that SuppRM ⊆ SuppR N . To this end, we argue by induction on i. We have H0a (M, L) ∼= HomR(M,Γa(L)), and so the
assertion is clear for i = 0. Now, assume that i > 0 and that the claim has been proved for i− 1. By Gruson’s theorem (see
e.g. [25, Theorem 4.1]), there is a chain

0 = M0 ⊆ M1 ⊆ · · · ⊆ M` = M

of submodules of M such that each of the factors Mj/Mj−1 is a homomorphic image of a direct sum of finitely many copies
of N . In view of the long exact sequences of generalized local cohomology modules that are induced by the short exact
sequences

0 −→ Mj−1 −→ Mj −→ Mj/Mj−1 −→ 0,

j = 1, . . . , `, it suffices to treat only the case ` = 1. So, we have an exact sequence

0 −→ K −→
t⊕
i=1

N −→ M −→ 0,

where t ∈ N and K is a finitely generated R-module. This induces the long exact sequence

· · · −→ H i−1a (K , L) −→ H ia(M, L) −→ H ia

(
t⊕
i=1

N, L

)
−→ · · · .

By the induction hypothesis, H i−1a (K , L) is finitely generated. Also, H ia(⊕
t
i=1 N, L) ∼= ⊕

t
i=1 H

i
a(N, L) is finitely generated,

because i < fa(N, L). Hence H ia(M, L) is finitely generated. �

Corollary 2.2. Let a be an ideal of R and L,M and N finitely generated R-modules.

(i) If 0 −→ L −→ M −→ N −→ 0 is an exact sequence, then for any finitely generated R-module C, we have
fa(M, C) = inf{fa(L, C), fa(N, C)}.

(ii) fa(M) = inf{fa(C,M) : C is a finitely generated R-module}.
(iii) fa(M, L) = inf{fa(R/p, L) : p ∈ SuppRM}.
(iv) If SuppR(

M
Γa(M)

) ⊆ SuppR(
N

Γa(N)
), then fa(M, L) ≥ fa(N, L).
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Proof. (i) is clear.
(ii) Since H ia(R,M) ∼= H

i
a(M), it follows that fa(R,M) = fa(M). Now, the claim is clear by Theorem 2.1.

(iii) Set K := ⊕p∈AssR M R/p. Then K is finitely generated and SuppR K = SuppRM . So, by (i) and Theorem 2.1, we deduce
that

fa(M, L) = fa(K , L)
= inf{fa(R/p, L) : p ∈ AssRM}
= inf{fa(R/p, L) : p ∈ SuppRM}.

(iv) [8, Lemma 2.11] implies that H ia(C, L) ∼= Ext
i
R(C, L) for all a-torsion R-modules C and all i. So, the exact sequence

0 −→ Γa(M) −→ M −→ M
Γa(M)

−→ 0 implies the long exact sequence

· · · −→ Exti−1R (Γa(M), L) −→ H ia

(
M

Γa(M)
, L
)
−→ H ia(M, L) −→ ExtiR(Γa(M), L) −→ · · · .

This yields that fa(M, L) = fa( M
Γa(M)

, L) and similarly we have fa(N, L) = fa( N
Γa(N)

, L). Now, the claim becomes clear by
Theorem 2.1. �

Example 2.3. Let L, M and N be finitely generated R-modules such that SuppRM = SuppR N . In Theorem 2.1, we saw that
fa(M, L) = fa(N, L) for any ideal a of R. One may ask whether the equality fa(L,M) = fa(L,N) holds too. This would not
be the case. To see this, let (R,m) be a local ring with depth R > 1 and N ′ a 1-dimensional Cohen–Macaulay R-module. Set
L = M := R andN := N ′⊕R. Then SuppRM = SuppR N . Now, by [14, Remark 2.5],H1m(N) ∼= H

1
m(N

′) is not finitely generated.
So fm(L,N) = fm(N) = 1, while fm(L,M) = fm(R) > 1.

If we fix the ideal a and the R-module M , then we cannot say so much about fa(M, ·). However, we have the following
result.

Proposition 2.4. Let a be an ideal of R and M,N two finitely generated R-modules such that pdN < ∞. Then fa(M,N) ≥
fa(M, R)− pdN.

Proof. We use induction on n := pdN . If n = 0, then there is nothing to prove. Now, assume that n > 0 and that the
assertion holds for n− 1. We can construct an exact sequence

0 −→ L −→ F −→ N −→ 0

of finitely generated R-modules such that F is free and pd L = n−1. By the induction hypothesis, fa(M, L) ≥ fa(M, R)−n+1.
Let i < fa(M, R)− n. Then, it follows from the exact sequence

H ia(M, F) −→ H ia(M,N) −→ H i+1a (M, L)

that H ia(M,N) is finitely generated. Hence fa(M,N) ≥ fa(M, R)− n, as required. �

Let a ⊆ b be ideals of R. Recall that by Definition 5.3.6 [24] for a not necessary finitely generated R-moduleM , grade(a,M)
is defined by

grade(a,M) := inf{i ∈ N0 : ExtiR(R/a,M) 6= 0}.

Also, recall that f ba (M), the b-finiteness dimensionM relative to a, is defined by

f ba (M) := inf{i ∈ N0 : b 6⊆ rad(AnnR H ia(M))}.

If M is finitely generated, then [6, Proposition 9.1.2] implies that f aa (M) = fa(M). Also, we remind the reader that for a
finitely generated R-module M over a local ring (R,m), the filter depth of a on M is defined as the length of any maximal
M-filter regular sequence in a and denoted by f − depth(a,M); see [19, Defintion 3.3]. By [20, Theorem 3.1], it is known
that f − depth(a,M) = inf{i ∈ N0 : H ia(M) is not Artinian}.

Theorem 2.5. Let a be an ideal of the local ring (R,m) and M an R-module. Then, the following holds:

(i) Assume that r := f aa (M) < f
a
m(M). Then H

r
a(M) is not Artinian. Moreover, if M is finitely generated, then f −depth(a,M) ≤

fa(M).
(ii) Assume that r := grade(a,M) < depthM. Then Hra(M) is not Artinian. Moreover, if M is finitely generated, then
grade(a,M) = f − depth(a,M).
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Proof. (i) We argue by induction on r . Let r = 0. If H0a (M) is Artinian, then

H0a (M) ∼= H
0
m(H

0
a (M)) ∼= H

0
m(M).

Since 0 < f am(M), there is an integer n such that anH0a (M) ∼= anH0m(M) = 0. So 0 < f aa (M) and we have arrived at a
contradiction.
Now, assume that r > 0. Then there exists an integer n ∈ N such that anH0a (M) = 0. Hence the argument [5, Remark

1.3(ii)] yields that f am(M) = f
a
m(M/Γa(M)) and f aa (M) = f

a
a (M/Γa(M)). Thus without loss of generality, we may and do

assume that H0a (M) = 0. Now, we apply Melkersson’s technic [21], so let E be an injective envelope of M and N := E/M .
Then Γa(E) = Γm(E) = 0. From the exact sequence of local cohomology modules induced by

0 −→ M −→ E −→ N −→ 0,

we obtain that H ia(N) ∼= H
i+1
a (M) and H im(N) ∼= H

i+1
m (M) for all i ≥ 0. Hence f am(N) = f

a
m(M) − 1 and f

a
a (N) = f

a
a (M) − 1

and the claim follows by the induction hypothesis.
(ii) The proof is similar to the proof of (i). Note that by [24, Proposition 5.3.15], grade(a,M) = inf{i ∈ N0 : H ia(M) 6=

0}. �

Example 2.6. (i) The assumption f aa (M) < f
a
m(M) is crucial in Theorem 2.5(i). To realize this, let M be a Cohen–Macaulay

R-module of positive dimension and a = m. Then f aa (M) = dimM and H
dimM
a (M) is Artinian.

(ii) Also, the assumption grade(a,M) < depthM cannot be dropped in Theorem 2.5(ii). In fact, if M is a finitely generated
R-module and a = m, then grade(a,M) = depthM and all local cohomology modules H ia(M) are Artinian.

Remark 2.7. (i) LetM be a finitely generated R-module such that htM a > 0; then we have the inequality fa(M) ≤ htM a.
To see this, first note that we may assume that aM 6= M . Let p ∈ SuppR(M/aM) be such that htM a = htM p, and set
t = htM a. Then, because of the natural isomorphisms

H ta(M)p ∼= H
t
(a+AnnR M)Rp(Mp) ∼= H tpRp(Mp)

and [14, Remark 2.5], it follows that H ta(M)p is not a finitely generated Rp-module. Hence the R-module H ta(M) is not
finitely generated, and consequently, fa(M) ≤ htM a.

(ii) From the definition of fa(M), it becomes clear that fa(M) ≥ grade(a,M). There are some cases in which the equality
holds. For example, let M be a Cohen–Macaulay R-module such that htM a > 0; then by (i), fa(M) ≤ htM a =

grade(a,M), and so fa(M) = grade(a,M).
(iii) If (R,m) is a regular local ring with dim R > 1, then for any integer 0 < n < dim R, there exists an n-dimensional

finitely generated R-moduleM such that depthM = 0 and fm(M) = dimM . This holds, because by [6, Ex. 6.2.13], there
is a finitely generated R-module M such that H im(M) 6= 0 if and only if i is either 0 or n. So, depthM = 0 and by [6,
Exercise 6.1.6], fm(M) = n = dimM .

(iv) Let (R,m) be a local ring, a a proper ideal of R and M,N finitely generated R-modules. Set aM := AnnR( MaM ). By [2,
Proposition 5.5], it follows that

inf{i ∈ N0 : H ia(M,N) 6= 0} = inf{i ∈ N0 : H iaM (N) 6= 0}(= grade(aM ,N)).

Also, [7, Theorem 2.2] yields that

inf{i ∈ N0 : H ia(M,N) is not Artinian} = inf{i ∈ N0 : H iaM (N) is not Artinian}

(= f − depth(aM ,N)). Having these facts in mind, one might ask whether fa(M,N) = faM (N). This is not necessarily
true. For instance, letM := R/m, a := m and N be any non-Artinian finitely generated R-module. Then

H ia(M,N) = lim−→
n

ExtiR(M/a
nM,N) ∼= ExtiR(R/m,N)

is finitely generated for all i, and so fa(M,N) = +∞, while faM (N) ≤ dimN <∞.

3. The Artinian dimension of modules

In this section, we focus on the invariant qa(M,N). In [9, Definition 2.1], the authors call an R-moduleN weakly Laskerian
if any quotient of N has finitely many associated prime ideals. In what follows, for a not necessarily finitely generated R-
module N , by dimension of N , we mean the dimension of SuppR N .

Theorem 3.1. Let a be an ideal of R, M a finitely generated R-module of finite projective dimension and N a weakly Laskerian
R-module of finite dimension. Let t > pdM be an integer such that H ja(M,N) is Artinian for all j > t. Then H

t
a(M,N)/aH

t
a(M,N)

is Artinian.
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Proof. Weuse induction onn := dimN . By [8, Theorem2.5], it follows thatH ia(M, L) = 0 for all finitely generatedR-modules
L and all i > pdM + dim L. So, since the functor H ia(M, ·) commutes with direct limits, it turns out that H

i
a(M,N) = 0 for all

i > pdM + dimN . Thus the claim clearly holds for n = 0.
Now, assume that n > 0 and that the claim holds for n − 1. Since t > pdM , in view of the long exact sequence of

generalized local cohomology modules that is induced by the exact sequence

0 −→ Γa(N) −→ N −→ N/Γa(N) −→ 0,

we may assume that N is a-torsion free. Note that since the functor H ia(M, ·) is the ith right derived functor of the functor
HomR(M,Γa(·)) and Γa(N) possesses an injective resolution consisting of a-torsion injective R-modules, it follows that
H ia(M,Γa(N)) ∼= ExtiR(M,Γa(N)) for all i. Take x ∈ a \

⋃
p∈AssR N

p. Then N/xN is weakly Laskerian and dimN/xN ≤ n − 1.
The exact sequence

0 −→ N
x
−→ N −→ N/xN −→ 0

implies the following long exact sequence of generalized local cohomology modules:

· · · −→ H ja(M,N)
x
−→ H ja(M,N) −→ H ja(M,N/xN) −→ · · · .

This yields that H ja(M,N/xN) is Artinian for all j > t . Thus
Hta(M,N/xN)
aHta(M,N/xN)

is Artinian by the induction hypothesis.
Now, consider the exact sequence

H ta(M,N)
x
−→ H ta(M,N)

f
−→ H ta(M,N/xN)

g
−→ H t+1a (M,N),

which induces the following two exact sequences:

0 −→ im f −→ H ta(M,N/xN) −→ im g −→ 0

and

H ta(M,N)
x
−→ H ta(M,N) −→ im f −→ 0.

Therefore, we can obtain the following two exact sequences:

TorR1 (R/a, im g) −→ im f /a im f −→
H ta(M,N/xN)
aH ta(M,N/xN)

−→ im g/a im g −→ 0(∗)

and
H ta(M,N)
aH ta(M,N)

x
−→

H ta(M,N)
aH ta(M,N)

−→ im f /a im f −→ 0.

Since x ∈ a, from the latter exact sequence, we deduce that H
t
a(M,N)

aHta(M,N)
∼= im f /a im f . Now, since TorR1 (R/a, im g) and

Hta(M,N/xN)
aHta(M,N/xN)

are Artinian, the claim follows by (∗). �

The following corollary improves [10, Theorem 4.7].

Corollary 3.2. Let a be an ideal of R and N a weakly Laskerian R-module of finite dimension. Let t be a positive integer. If H ia(N)
is Artinian for all i > t, then H ta(N)/aH

t
a(N) is Artinian.

Corollary 3.3. Let a be an ideal of R, M a finitely generated R-module of finite projective dimension and N a weakly Laskerian
R-module of finite dimension. If q := qa(M,N) > pdM, then Hqa (M,N) is not finitely generated, and so fa(M,N) ≤ qa(M,N).
In particular, if r := qa(N) > 0, then Hra(N) is not finitely generated and so fa(N) ≤ qa(N).

Proof. To the contrary, assume thatHqa (M,N) is finitely generated. Then, there exists an integer n such that a
nHqa (M,N) = 0.

Since an and a have the same radical, it turns out that H i
an(M,N) ∼= H ia(M,N) for all i. Thus, Theorem 3.1 yields that

Hqa (M,N) ∼=
Hq

an (M,N)

anHq
an (M,N)

is Artinian, and so we have arrived at a contradiction. �

In what follows, we use the notion of cohomological dimension. Recall that for an R-module N , the cohomological
dimension of N with respect to a is defined by cd(a,N) := sup{i ∈ N0 : H ia(N) 6= 0}. Also, recall that the arithmetic
rank ara(a) of the ideal a is the least number of elements of R required to generate an ideal which has the same radical as a.
By [6, Corollary 3.3.3 and Theorem 6.1.2], it turns out that cd(a,N) ≤ min{ara(a), dimN}.

Example 3.4. (i) In Corollary 3.2, the positivity assumption on t is really necessary. To see this, let (R,m) be a local ring
and consider the weakly Laskerian R-moduleM :=

⊕
N R/m. We have H

i
m(M) = 0 for all i > 0, but

H0m(M)
mH0m(M)

=
⊕

N R/m
is not Artinian.
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(ii) In Corollary 3.2, if t := cd(a,N), then it can be seen easily that H
t
a(N)

aHta(N)
∼= H ta(N/aN) = 0. But, in general

Hta(N)
aHta(N)

might not
even be finitely generated. To see this, let R := k[[X1, X2, X3, X4]], where k is a field. Let p1 := (X1, X2), p2 := (X3, X4)
and a := p1 ∩ p2. By [12, Example 3], one has that qa(R) = 2 and H2a (R) ∼= H

2
p1
(R)⊕ H2p2(R). Now consider the following

isomorphisms:

H2a (R)
aH2a (R)

∼=
H2p1(R)

aH2p1(R)

⊕ H2p2(R)

aH2p2(R)

∼= H2p1(R/a)
⊕
H2p2(R/a).

By the Hartshorne–Lichtenbaum Vanishing Theorem, H2p1(R/a) 6= 0. Therefore cd(p1, R/a) = 2, and so by [14, Remark

2.5], H2p1(R/a) is not finitely generated. Consequently,
H2a (R)
aH2a (R)

is not finitely generated.

Recall that for an R-module M , CoassRM , the set of coassociated prime ideals of M , is defined to be the set of all prime
ideals p of R such that p = AnnR L for some Artinian quotient L of M . In the case that (R,m) is local, it is known that
CoassRM = AssR(HomR(M, E(R/m))) (see e.g. [26, Theorem 1.7]).

Example 3.5. Let a be an ideal of R and M a finitely generated R-module. Let t be a natural integer. Assume that H ia(M) is
finitely generated for all i < t . Then by [1, Theorem 1.2], HomR(R/a,H ta(M)) is finitely generated. (This can be viewed as a
dual of Corollary 3.2.) SinceH ta(M) is a-torsion, it follows that AssR(H

t
a(M)) = AssR(HomR(R/a,H

t
a(M))), and so AssR(H

t
a(M))

is finite. Now, assume that H ia(M) is Artinian for all i > t . Then, it is rather natural to expect that the set CoassR(H
t
a(M)) is

finite. But, this is not the case. To see this, let (R,m) be an equicharacteristic local ring with dim R > 2. Let p be a prime ideal
of R of height 2 and take x ∈ m − p. Then by [13, Corollary 2.2.2], CoassR(H1(x)(R)) = Spec R \ V((x)). Since ht p = 2, there
are infinitely many prime ideals of Rwhich are contained in p, and so CoassR(H1(x)(R)) is infinite.

We apply the following lemma in the proof of the next theorem.

Lemma 3.6. Let A be an Artinian R-module and S a multiplicatively closed subset of R. Then as an R-module, S−1A is isomorphic
to a submodule of A, and so S−1A is Artinian both as an R-module and as an S−1R-module.

Proof. Since A is Artinian, it is supported in finitely many maximal idealsm1, . . . ,mt of R. It is known that there is a natural
isomorphism A ∼= ⊕ti=1 Γmi(A). We can assume that there is an integer 1 ≤ ` ≤ t such that S does not intersectm1, . . . ,m`,
while S ∩ mi 6= ∅ for the remaining i’s. For any maximal ideal m, one can check that S−1(Γm(A)) = 0 if S ∩ m 6= ∅

and that the natural map Γm(A) −→ S−1(Γm(A)) is an isomorphism otherwise. Hence, we have a natural R-isomorphism
S−1A ∼= ⊕`i=1 Γmi(A). This shows that as an R-module, S

−1A is isomorphic to a submodule of A. In particular, S−1A is an
Artinian R-module, and so it is also Artinian as an S−1R-module. �

Part (iv) of the next result has been proved by Chu and Tang [7, Theorem 2.6] under the extra assumption that R is local.

Theorem 3.7. Let L,M and N be finitely generated R-modules and a ⊆ b ideals of R. Then the following holds:

(i) qb(M,N) ≤ qa(M,N)+ ara(b/a).
(ii) If (R,m) is local and ara(m/a) ≤ 1, then qa(M,N) = sup{i : SuppR(H ia(M,N)) " {m}}.
(iii) If S is a multiplicatively closed subset of R, then qS−1a(S

−1M, S−1N) ≤ qa(M,N).
(iv) If pdM < ∞ and SuppR N ⊆ SuppR L, then qa(M,N) ≤ qa(M, L). In particular, if SuppR N = SuppR L, then

qa(M,N) = qa(M, L).
(v) If pdM <∞, then qa(M,N) = sup{qa(M, R/p) : p ∈ SuppR N}.

Proof. (i) Since the generalized local cohomology functors with respect to ideals with the same radicals are equivalent, we
may assume that there are x1, x2, . . . xn ∈ R such that b = a + (x1, x2, . . . xn). By induction on n, it is enough to show the
claim for the case n = 1. So, let b = a+ (x) for some x ∈ R. By [8, Lemma 3.1], there is the following long exact sequence of
generalized local cohomology modules:

· · · −→ H i−1aRx (Mx,Nx) −→ H ib(M,N) −→ H ia(M,N) −→ · · · .

Let i > qa(M,N) + 1. Then H ia(M,N) and H
i−1
a (M,N) are Artinian. Also, by Lemma 3.6, it turns out that H i−1aRx (Mx,Nx)

∼=

H i−1a (M,N)x is Artinian as an R-module. Thus H ib(M,N) is Artinian, and so qb(M,N) ≤ qa(M,N)+ 1.
(ii) First of all note that H im(M,N) is Artinian for all i. Similar to (i), we may assume that m = a + (x) for some x ∈ R.

Clearly,

t := sup{i : SuppR(H
i
a(M,N)) " {m}} ≤ qa(M,N).

Let j > t be an integer. Then H ja(M,N) is m-torsion, and so

H jaRx(Mx,Nx)
∼= H ja(M,N)x = 0.
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Hence, from the exact sequence

· · · −→ H jm(M,N) −→ H ja(M,N) −→ H jaRx(Mx,Nx) −→ · · · ,

we conclude that H ja(M,N) is Artinian. This implies that qa(M,N) ≤ t .
(iii) This is clear by Lemma 3.6.
(iv) For any finitely generate R-module C , one has H ia(M, C) = 0 for all i > pdM + ara(a); see e.g. [8, Theorem 2.5].

Hence by using decreasing induction on qa(M, L) ≤ i ≤ pdM + ara(a)+ 1, one can prove the claim by slight modification
of the proof of Theorem 2.1.
(v) This can be deduced by an argument similar to that used in the proof of Corollary 2.2(iii). �

Remark 3.8. It is known that if a is an ideal of a regular local ring (R,m), then (under some mild assumptions on R), we
have qa(R) = sup{i ∈ N0 : SuppR(H ia(R)) 6⊆ {m}}. See [17, Corollary 2.4] for the case that the characteristic of R is prime
and [22, Theorem 2.7] for the characteristic 0 case. Part (ii) of the above theoremmight be considered as a generalization of
the Hartshorne–Speiser and Ogus’s results. But, the reader should be aware that the assumption ara(m/a) ≤ 1 is necessary.
To see this, let R = k[[U, V , X, Y ]]/(UX + VY ); k a field, m := (U, V , X, Y )R and a = (U, V )R. Then SuppR(H ia(R)) ⊆ {m} for
all i ≥ 2 and H2a (R) is not Artinian; see [15, Theorem 1.1]. Note that ara(m/a) = 2 and (R,m) is a complete intersection ring
which is not regular.

In what follows, we need the following definition from [8].

Definition 3.9. LetM and N be finitely generated R-modules. We define projective dimension of M relative to N by

pdN M := sup{pdRp Mp : p ∈ SuppRM ∩ SuppR N}.

Also, we define Gorenstein projective dimension of M relative to N by

GpdN M := sup{i ∈ N0 : ExtiR(M,N) 6= 0}.

Lemma 3.10. Let M and N be finitely generated R-modules.

(i) grade(AnnRM,N) ≤ GpdN M.
(ii) If pdN M is finite, then GpdN M = pdN M. In particular, if R is local and pdM is finite, then GpdN M = pdM.
(iii) GpdN M ≤ min{pdM, idN}. In particular, if either pdM or idN is finite, then GpdN M is finite.
(iv) If pdN M is finite, then

⋃
i∈N0
SuppR(Ext

i
R(M,N)) = SuppRM ∩ SuppR N, and so dim(M⊗R N) = sup{dim(Ext

i
R(M,N)) :

i ∈ N0}.
(v) If pdN M is finite, then qa(L,M⊗R N) = max{qa(L, Ext

i
R(M,N)) : i ∈ N0} for all finitely generated R-modules L of finite

projective dimension.
(vi) If R is local and idN < ∞, then GpdN M = depth R − depthM, and if in addition M is maximal Cohen–Macaulay, then

GpdN M = 0.

Proof. We only prove (v). The other parts are proved in [8, Lemma 2.2].
By (iv) and Theorem 3.7(v), we have

qa(L,M⊗R N) = sup{qa(L, R/p) : p ∈ SuppR(M⊗R N)}

= sup{qa(L, R/p) : p ∈
⋃
i∈N0

SuppR(Ext
i
R(M,N))}

= max
i∈N0

(sup{qa(L, R/p) : p ∈ SuppR(Ext
i
R(M,N))})

= max{qa(L, ExtiR(M,N)) : i ∈ N0}. �

Theorem 3.11. Let M and N be finitely generated R-modules. For any ideal a of R, the inequality qa(M,N) ≤ GpdN M +
qa(M⊗R N) holds.

Proof. We may assume that GpdN M < ∞. Let F(·) := Γa(·) and G(·) := HomR(M, ·). It is straightforward to see that
H ia(HomR(M, E)) = 0 for any injective R-module E and all i ≥ 1. So, since (GF)(·) = HomR(M,Γa(·)), by [23, Theorem
11.38], one has the following Grothendieck’s spectral sequence:

H ia(Ext
j
R(M,N))=⇒i

H i+ja (M,N).

Hence, for each n ∈ N0, there exists a chain

(∗) 0 = H−1 ⊆ H0 ⊆ · · · ⊆ Hn := Hna (M,N)
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of submodules of Hna (M,N) such that H
i/H i−1 ∼= E i,n−i∞

for all i = 0, . . . , n. Since ExtjR(M,N) is supported in SuppRM ∩
SuppR N , it follows by [11, Theorem 3.2] thatH ia(Ext

j
R(M,N)) is Artinian for all i > qa(M⊗R N). If n > GpdN M+qa(M⊗R N),

then either i > qa(M⊗R N) or n − i > GpdN M . In each case, it turns out that E
i,n−i
2 is Artinian. Therefore, by splitting the

chain (∗) into short exact sequences, we deduce thatHna (M,N) is Artinian for all n > GpdN M+qa(M⊗R N). Note that E
i,n−i
∞

is a subquotient of E i,n−i2 for all i. �

In what follows, we consider some cases in which the equality holds in Theorem 3.11.

Corollary 3.12. Let a be an ideal of R and M,N two finitely generated R-modules.
(i) If p := GpdN M = grade(AnnRM,N), then H ia(M,N) = H

i−p
a (ExtpR(M,N)) for all i, and consequently qa(M,N) =

qa(Ext
p
R(M,N))+ p. Also, fa(M,N) = fa(Ext

p
R(M,N))+ p.

(ii) If p := pdN M = grade(AnnRM,N), then qa(M,N) = qa(M⊗R N)+ p.
(iii) Let a be an ideal of the local ring (R,m) and M,N two finitely generated R-modules such that M is faithful and maximal

Cohen–Macaulay and idN <∞, then qa(M,N) = qa(N) and fa(M,N) = fa(HomR(M,N)).
Proof. (i) The spectral sequence

H ia(Ext
j
R(M,N))=⇒i

H i+ja (M,N)

collapses at j = p, and so Hna (M,N) ∼= H
n−p
a (ExtpR(M,N)) for all n. Hence

qa(M,N) = sup{n ∈ N0 : Hn−pa (ExtpR(M,N)) is not Artinian}

= sup{j+ p : j ∈ N0 and H ja(Ext
p
R(M,N)) is not Artinian}

= qa(Ext
p
R(M,N))+ p.

A similar argument shows that fa(M,N) = fa(Ext
p
R(M,N))+ p.

(ii) This follows by (i), Lemma 3.10(ii) and Lemma 3.10(v).
(iii) By Lemma 3.10(vi), GpdN M = 0, and so in the light of the proof of (i), it turns out thatHna (M,N) = H

n
a (HomR(M,N))

for all n. Hence fa(M,N) = fa(HomR(M,N)). On the other hand, by [3, Exersice 1.2.27],

AssR(HomR(M,N)) = SuppRM ∩ AssR N = AssR N,

and so SuppR(HomR(M,N)) = SuppR N . By Theorem 3.7(iv), this shows that

qa(M,N) = qa(HomR(M,N)) = qa(N). �
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