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ABSTRACT 

This paper discusses three kinds of generalized Pascal matrix, and generalizes the 
results of R. Brawer and M. Pirovino. 0 Elsevier Science Inc., 1997 

Let r be any nonzero real number. The generalized Pascal matrix of the 
first kind, P,[ x], is defined as (see [l]) 

Pncx; i,j) = xi-j t 0 _I ’ 
i,j = 0 > - * . > n, 

with 

i 0 j = 
0 if j>i. 
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Further we define the (n + 1) x (n + 1) matrices Z,, s,[ x], and D,,[ x] by 

I, = diag(l,l,..., l), 

i 
i 

i-j 
S,(x;i,j) = 

if j<i, 

if j>i, 

D,(x;i,i) = 1 for i = O,...,n, 

Dn( x; i + 1, i) = --x for i = O,...,n - 1, 

D,( x; i,j) = 0 if j>i orj<i-1. 

It is easy to see that 

LEMMA 1. 

s,,[ xl = Q3x1, 

q-q x] = P,[ -xl. 

EXAMPLE. 

Furthermore we need the matrices 

Z 
G/b] = “-;-’ S&I 1 E @“+1)x(“+u k = l,...,n - 1, 

and G,[x] = S,[x]. 
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LEMMA 2. 

S,[x]~,_,[x] = P,[x] jb- k > 1. 

Proof. The (i, j) element of pk- 1[ x1 is 

i-j (i,j = 1,2 ,..., k), 

or 1 (i = 0, j = O), or 0 (i Z 0, j = 0) or (i = 0, j f 0). 
Let S,[x]F,_,[x] = (Ck(x; i, j)). Obviously, C,(x; i, 0) = xi-’ (i = 

0, 1,2, . . . ) n) and Ck(x; i, j> = 0 (i <j>. When i > j, we have 

Thus, S,[xlp,_ ,[xl = p,[xl. 

EXAMPLE. 

10 00 
x 100 = 

i I s2 2x 1 0’ 
x :3 3x” 3x 1 

An immediate consequence of Lemma 2 and the definition of the Gk[ xl’s 
is 

THEOREM 1. The generalized Pascal matrix of first kind, P,,[ xl, can he 
factorized by the summation matrices Gk[ x]: 

f’,,bl = G,blG,-,bl ... G,b]. (1) 
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EXAMPLE. 

10 00 

p3M 0 0 = i l-2 2lx 1 
1 ( 1 

1 1 1 x3 3x2 3x 

0 1 
= 

I f2 1 0 0 1 0 0 0 

X3 ,“2 x 1 

For the inverse of the generalized Pascal matrix of the first kind, P,[ XI, 

we get 

P,-‘[ x] = G,‘[ x]G,‘[ x] a.. G;l[ x] 

= F,[ x]F,[ x] ... F,[ Lx] 

with 

Fk[x] = G;l[X] = ‘“,:-’ ’ I D&d ’ 
k = l,...,n - 1, 

and 

F,[ x] = G,-‘[ x] = D,[ x]. 

Using Lemma 1, we have 

THEOREM 2. 

P,-‘[ x] = P,[ -xl = F,[ x]F,[ x] **a F,[ x]. (2) 

In particular, 

(3) 
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where 

Jn = diag(1, -1,1,.,.,(-l)“) E R(“+l)x(n+l). 

Equation (3) represents the well-known inverse relation 

Xn-k 6 n,k = j+j+kx+( #-k($ 

that is. 

a,,,, = ;k( -l)j+‘( y)(i) (see [31)- 

We define the generalized Pascal matrix of the second kind, Qn[ x 1, as 

Qn( x; i,j) = xi+j ; , 
0 

i,j = 0 >.**> n. 

Similarly, we define the (n + 1) X (n + 1) matrices M,[ x 1, N,[ x 1 by 

M,(x;i,j) = 
i 

xi+j if j<i, 
o 

if j>i, 

1 
N,(x;i,i) = - 

xi+j 
for i = O,...,n, x f 0, 

1 
N,(x;i + l,i> = c_X)i+j 

for i = O,...,n - 1, x # 0, 

N,(x;i,j) = 0 if j>iorj<i-1. 

It is easy to see that 

LEMMA 3. 

M,[r] = N”-1[4, 

55 

Q;l[x] = (In -1 . [ I x 
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EXAMPLE 

ZHANG ZHIZHENC 

Q3m_3[ - ;I 

1 0 0 0 

:2 x2 0 0 

x3 x4 

x3 x4 x9 Ib 1 

1 0 0 0 

: x2 0 0 

2x” x4 0 

x3 3x4 3x” x6 

1 0 
1 1 

X 2 

1 
0 -- 

X3 

1 0 0 

1 0 
1 1 

X 7 

1 2 
yT -- 

X3 

1 3 

0 

0 

1 

x4 

1 
-- 

X5 

0 

0 

1 

7 

3 
_- -- 

XJ 7 X5 

0 

0 

0 

1 

,6 

0 

0 

0 

1 

7 

= 13, 

=z 3' 

By the definition of Fk[ x], we get 

LEMMA 4. 

~!ML ; [ 1 
=QJx] for k&l. 

Proof. Let Mk[x.lFk_,[l/~l = (CL(x; i,j>>; then Ck(x; i,O) = xi (i = 
0 , . . . , k) and C,(x; i,j) = 0 (i <j). When i > j we have 
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Thus, 

57 

EXAMPLE. 

An immediate consequence of Lemma 4 and the definition of the Gk[ x l’s 
is 

THEOREM 3. The generalized Pascal matrix of the 
can be factorized by the summations Gk[ x] and M,[ xl: 

second kind, Q,[x], 

Q,bl = MnblG-, ; Gn-2 [ ‘1 

EXAMPLE. 
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For the inverse of the generalized Pascal matrix of the second kind, 

Q,[rl, we get 

=F, 1 
[ x 

Using Lemma 3, we have 

THEOREM 4. 

In particular 

where Jz = diag(1, - f, -$, - -$ ,..., (--I)“-$) E R(“+l)X(n+l). 

We define the symmetric generalized Pascal matrix R,[ x] as 

R,( x; i,j) = xi+i i j’j , ( i i,j = 0 ,...,n. 

THEOREM 5. One has 

and the Cholesky factorization [4] of R,[ x] is given by 
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Proof. Let Q,[xlP,‘[xl = (C,(x; i, j>). Then 

(Vandermonde identities). Thus, we have 

Similarly 

EXAMPLE. 

L 
1 x x2 x3 

RJX] = “,:: ;:: 4x4 
x72 10x5 

x3 4x4 10x5 20x6 

59 
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Using Lemmas 1 and 3, we have 

THEOREM 6. 

ZHANG ZHIZHENG 

R,‘[ x] = P,‘[ -x]& - 5 [ I 
= Q:[ - j,,,-x]. 

Using Theorems 2 and 5, we get 

THEOREM 7. 

For the previous three kinds of generalized Pascal matrix, we also can get 

THEOREM 8. 

det P,[x] = det P;‘[x] = 1, 

det Qn[ x] = ~“(~+l), 

det QR1[ x] = X-“(“+l), 

det R,[ x] = det R,‘[ x] = xn(“+l). 
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