ON SOME PROPERTIES OF LOCALLY COMPACT GROUPS

ВY

H. REITER

(Communicated by Prof. H. FREUDENTHAL at the meeting of April 24, 1965)

1. Introduction and main result

A locally compact group G is said to have the property (P_1) if to any compact set $K \subset G$ and any $\varepsilon > 0$ there is a function $s \in L^1(G)$ such that $s(x) \ge 0$ $(x \in G)$, $\int s(x)dx = 1$ and $||L_ys - s||_1 < \varepsilon$ for all $y \in K$. Here L_y is the left translation operator $[(L_yf)(x) = f(y^{-1}x)]$ and $||\cdot||_1$ is the norm in $L^1(G)$.

We say that G has the property (M) if there exists a left invariant mean on $C^{\infty}(G)$, the space of complex-valued, bounded, continuous functions on G, that is, a linear functional $\varphi \to M\{\varphi\}$, $\varphi \in C^{\infty}(G)$, such that $M\{\varphi\} \ge 0$ if φ is real and $\varphi \ge 0$, $M\{1\} = 1$ and $M\{L_y\varphi\} = M\{\varphi\}$ for all $y \in G$. The property (M) has been the subject of many investigations ever since the fundamental paper of VON NEUMANN [4], concerned with discrete groups; see the article by DIXMIER [2], also for references.

The property (M) implies the existence of a left invariant mean on $L^{\infty}(G)$, as is readily seen (and well-known). We also remark that, given a left invariant mean on $C^{\infty}(G)$ or $L^{\infty}(G)$, we can easily obtain a right invariant mean on $C^{\infty}(G)$ or $L^{\infty}(G)$, and conversely. We also note that $|M\{\varphi\}| \leq ||\varphi||_{\infty}$ for all φ in $C^{\infty}(G)$ or $L^{\infty}(G)$.

It is a simple exercise in Functional Analysis to show that (P_1) implies (M). The purpose of this Note is to show that, conversely, (M) implies (P_1) .

Thus the properties (M) and (P_1) are equivalent. As has recently been proved, (P_1) is also equivalent to another property which concerns the continuous positive definite functions on G [5d]. Thus we have gained some insight into these properties of locally compact groups.

2. First part of the proof

Proposition. If G has the property (M), then for any $f \in L^1(G)$

(1)
$$\inf \int |\sum c_n f(xy_n) \Delta(y_n)| \, dx = |\int f(x) \, dx|,$$

the infimum being taken for all finite sums such that $c_n > 0$, $\sum c_n = 1$, $y_n \in G$. Here Δ is the Haar modular function of G.

This proposition is a special case of a result of GLICKSBERG ([3], relation 4.7).

Remark. The relation (1) can also be proved directly, on the assumption that G has the property (P_1) . The most general relation of this kind is as follows. Let H be any closed subgroup of G. If H has the property (P_1) , then for every $f \in L^1(G)$

$$\inf \int |\sum c_n f(x\xi_n) \Delta(\xi_n)| \, dx = \int_{G/H} \left\{ \int_H \frac{f(x\xi)}{\varrho(x\xi)} \, d\xi \right\} \, d_\varrho \dot{x},$$

where the infimum is taken for all finite sums such that $c_n > 0$, $\sum c_n = 1$, $\xi_n \in H$. The function ϱ on the right is any strictly positive, continuous solution of the functional equation $\varrho(x\xi)/\varrho(x) = \Delta_H(\xi)/\Delta(\xi)$ $(x \in G, \xi \in H)$, where Δ_H is the Haar modular function of H, and $d_{\varrho}\dot{x}$ is the corresponding quasi-invariant measure on G/H determined by $\int_{G/H} \{ \int_{H} k(x\xi)d\xi \} d_{\varrho}\dot{x} =$ $= \int k(x) \varrho(x) dx, \ k \in \mathscr{K}(G).$

The proof of the Proposition above is based, essentially, on a result of GLICKSBERG [3, § 2.5].

Let B be a real or complex Banach space, with norm $\|\cdot\|$. Suppose in B there acts a family of linear operators A_y , $y \in G$, satisfying the following conditions:

(i) G is a locally compact group possessing the property (M).¹)

(iia) A_y is a 'contraction operator' for every $y \in G$ (i.e. $||A_yf|| \leq ||f||$ for all $f \in B$).

(iib) $A_{y_1}(A_{y_2}f) = A_{y_1y_2}f(y_1, y_2 \in G)$, for $f \in B$.

(iic) The function $y \to \langle A_y f, \varphi \rangle$ is continuous on G, for every $f \in B$ and $\varphi \in B'$, the dual of B^2)

For $f \in B$ let $C_G(f)$ be the set of all finite linear combinations $\sum c_n A_{y_n} f$, with $c_n > 0$, $\sum c_n = 1$ and $y_n \in G$; this is the smallest convex set containing f which is invariant under the operators A_y , $y \in G$. Let J_G be the closed linear subspace of B generated by all vectors of the form $A_y f - f$ ($f \in B$, $y \in G$).

Glicksberg has shown [loc. cit.] that, under the conditions (i) and (iia, b, c) above, the distance of $C_G(f)$ from the origin coincides with the distance of f from J_G . We shall give a simple proof of this in § 4.

From Glicksberg's result we can obtain immediately the Proposition stated above: we take $B = L^1(G)$ and for A_y the family of operators $f \to A_y f$, $y \in G$, defined for $f \in L^1(G)$ by $(A_y f)(x) = f(xy)\Delta(y)$. Then the conditions (i) and (iia, b, c) are satisfied. Moreover, the distance of any $f \in L^1(G)$ from the linear subspace J_G defined above is precisely $|\int f(x)dx|$ which yields (1).

The calculation of this distance can be effected by the method in [5b, § 2], since J_G is clearly invariant under left translations. The only

¹) It is actually enough to assume that G is a topological semi-group, but we do not need this here.

²) $\langle h, \varphi \rangle$ denotes the value of $\varphi \in B'$ for $h \in B$.

continuous functions $\varphi \in L^{\infty}(G)$ orthogonal to J_G are the constants. Cf. also [5a] and the footnote in [5b, p. 260].

3. Second part of the proof

Suppose G has the property (M) and let a compact set $K \subset G$ and $\varepsilon > 0$ be given. Take any $h \in L^1(G)$ such that $h(x) \ge 0$ $(x \in G)$ and $\int h(x)dx = 1$. There is some open neighbourhood U of the neutral element of G such that

(2)
$$||L_yh-h||_1 < \varepsilon$$
 if $y \in U$.

Next there are finitely many points of K, say $(a_m)_{1 \leq m \leq M}$, such that the translates $(a_m \cdot U)_{1 \leq m \leq M}$ together cover K. Now consider the M functions $L_{a_m}h-h$. We shall show: there are finitely many numbers $c_n > 0$, with $\sum c_n = 1$, and elements $y_n \in G$, such that

(3)
$$\|\sum_{n} c_{n}A_{y_{n}}(L_{a_{m}}h-h)\|_{1} < \varepsilon \qquad 1 \leq m \leq M,$$

where A_y is the operator defined by $A_y f(x) = f(xy) \Delta(y)$.

If M=1, this is simply (1), with $f=L_{a_1}h-h$, so that $\int f(x)dx=0$. Now we use induction. Put for simplicity of notation $L_{a_m}h-h=f_m$, $1 \le m \le M$, and suppose $\|\sum_j c_j'A_{y_j'}f_m\| < \varepsilon$ for $1 \le m \le M-1$, with $c_j'>0$, $\sum c_j'=1$, $y_j' \in G$. Put $g = \sum c_j'A_{y_j'}f_M$. Since $\int g(x)dx=0$, there are finitely many numbers $d_k>0$, with $\sum d_k=1$, and elements $z_k \in G$, such that

$$\|\sum d_k A_{z_k} g\|_1 < \varepsilon.$$

Put $d_k \cdot c_j' = c_n$, so $c_n > 0$ and $\sum c_n = 1$; put correspondingly $z_k \cdot y_j' = y_n$. Then $\|\sum_n c_n A_{y_n} f_m \|_1 < \varepsilon$ for $1 \le m \le M$ (observe that $\|\sum_n c_n A_{y_n} f_m \|_1 \le \varepsilon \|\sum_i c_j' A_{y_j'} f_m \|_1$ for $1 \le m \le M - 1$). Now put $s = \sum c_n A_{y_n} h$.

Then $s(x) \ge 0$ $(x \in G)$, $\int s(x) dx = 1$ and, as we can verify,

(4)
$$||L_y s - s||_1 < 2\varepsilon$$
 for all $y \in K$.

Indeed, if we put $A = \sum c_n A_{y_n}$, then A is also a contraction operator $(||Af||_1 \leq ||f||_1 \text{ for } f \in L^1(G))$ and we can write, since the operators A and L commute,

$$L_{a_m}L_yAh - Ah = L_{a_m}A(L_yh - h) + A(L_{a_m}h - h), \qquad 1 \leqslant m \leqslant M, \ y \in U.$$

Hence $||L_{a_m}ys-s||_1 < \varepsilon + \varepsilon$ $(1 \le m \le M, y \in U)$, by (2) and (3), which proves (4), since $(a_m \cdot U)_{1 \le m \le M}$ is a covering of K.

The compact set $K \subset G$ and $\varepsilon > 0$ were arbitrary, so G has the property (P_1) .

4. A proof of Glicksberg's theorem

First we establish the following lemma.

Lemma A.³) Let C be a convex set in a real or complex Banach space B and put $d = \text{dist} \{C, 0\} = \inf ||v||$ $(v \in C)$. If d > 0, then there is a functional φ in B', the dual of B, such that

(5a) $\operatorname{Re} \langle v, \varphi \rangle \ge 1 \text{ for all } v \in C;$

(5b)
$$\|\varphi\|_{B'} = 1/d$$

Here $\langle v, \varphi \rangle$ is the value of φ at the 'point' v, Re denotes the real part, and $\|\varphi\|_{B'}$ is the norm of φ .

Proof. Suppose first *B* is real. Put $B_d^0 = \{b | b \in B, ||b|| < d\}$. Then the set $A = C - B_d^0$ is open, convex and does not contain the vector zero. Hence there exists $\psi \in B'$ such that $\langle a, \psi \rangle > 0$ for all $a \in A$ (cf. [1], p. 70, Remarque). Then $\langle c, \psi \rangle > \langle b, \psi \rangle$ for all $c \in C$, $b \in B_d^0$. Thus for each $c \in C$ we have $\langle c, \psi \rangle \gg \sup_{b \in B_d^0} \langle b, \psi \rangle = d \cdot ||\psi||_{B'}$. Put $\varphi = \psi/(d \cdot ||\psi||_{B'})$: then

 $\langle c, \varphi \rangle \ge 1$ for all $c \in C$, and $\|\varphi\|_{B'} = 1/d$.

If B is complex, we can consider B also as a real Banach space. Thus, by the preceding, there is a real-linear continuous functional φ_r on B such that $\langle c, \varphi_r \rangle \ge 1$ for all $c \in C$ and φ_r has norm 1/d. As is well-known, there is then a (complex) linear continuous functional φ on B such that Re $\varphi = \varphi_r$ and $\|\varphi\|_{B'} = 1/d$ (it is defined by $\langle v, \varphi \rangle = \langle v, \varphi_r \rangle - i \langle iv, \varphi_r \rangle$, for $v \in B$). This completes the proof of the lemma.

Now suppose the family of operators $(A_y)_{y \in G}$ acting on B satisfies the conditions (i) and (iia, b, c) of § 2. Let us call a functional $\dot{\varphi} \in B'$ invariant with respect to the family $(A_y)_{y \in G}$ if, for each $v \in B$, $\langle A_y v, \dot{\varphi} \rangle = \langle v, \dot{\varphi} \rangle$ for all $y \in G$. We prove next:

Lemma B.4) Suppose the conditions (i) and (iia, b, c) of § 2 hold. Let $f \in B$ be such that $\inf \|\sum c_n A_{y_n} f\| = d > 0$, the infimum being taken for all finite sums with $c_n > 0$, $\sum c_n = 1$, $y_n \in G$. Then there is an INVARIANT functional $\dot{\varphi} \in B'$ such that $\langle f, \dot{\varphi} \rangle = 1$ and $\|\dot{\varphi}\|_{B'} = 1/d$.

The proof is based on the property (M) of the group G. Let M be a *right* invariant mean on $C^{\infty}(G)$; we denote its value for $\alpha \in C^{\infty}(G)$ by $M\{\alpha\}$ or $M_x\{\alpha(x)\}$. Let $\varphi \in B'$ be given. Then for every $v \in B$ the function $x \to \langle A_x v, \varphi \rangle$ is continuous on G, by condition (iic) in § 2, and $|\langle A_x v, \varphi \rangle| \leq \leq ||v|| \cdot ||\varphi||_{B'}$ for all $x \in G$, by (iia). Thus $v \to M_x\{\langle A_x v, \varphi \rangle\}$ is a linear functional on B which is bounded: $|M_x\{\langle A_x v, \varphi \rangle\}| \leq ||\varphi||_{B'} \cdot ||v||$. Hence there is a $\varphi \in B'$ such that

(6a)
$$M_x\{\langle A_x v, \varphi \rangle\} = \langle v, \dot{\varphi} \rangle$$
 for all $v \in B$;

$$(6b) \|\dot{\varphi}\|_{B'} \leqslant \|\varphi\|_{B'}.$$

³) Cf. [3], p. 100, relation (2.6) and footnote 6.

⁴⁾ Cf. [3], Lemma 2.1. The proof given there is based on a theorem of M. M. Day.

Moreover, if we replace v by $A_y v$ in (6a), we obtain by condition (iib) in § 2 and the right invariance of M

(6c)
$$\langle A_y v, \dot{\varphi} \rangle = \langle v, \dot{\varphi} \rangle$$
 for all $y \in G$

that is, $\dot{\phi}$ is invariant.

We may express (6a) by saying that ' $\dot{\varphi}$ is the mean value of φ along the orbit $A_x v, x \in G$ '.

By Lemma A there is a $\varphi \in B'$ satisfying (5a, b) with $C = C_G(f)$, as defined in § 2. Applying the preceding to this φ , we obtain a functional $\dot{\varphi} \in B'$ with the properties

(7a)
$$\operatorname{Re}\langle c, \dot{\varphi} \rangle \ge 1 \text{ for all } c \in C_G(f);$$

(7b) $\|\dot{\varphi}\|_{B'} \leq 1/d;$

(7c) $\dot{\phi}$ is invariant.

This follows respectively from (5a) [with $C = C_G(f)$] and (6a), (5b) and (6b), and (6c).

Now, if $c \in C_G(f)$, we have

$$1 \leq \operatorname{Re} \langle c, \dot{\varphi} \rangle \leq |\langle c, \dot{\varphi} \rangle| \leq ||c|| \cdot 1/d$$

But ||c|| can be arbitrarily close to d, while $\langle c, \dot{\varphi} \rangle$ is constant on $C_G(f)$. It follows that $1 = \operatorname{Re} \langle c, \dot{\varphi} \rangle = |\langle c, \dot{\varphi} \rangle|$ and thus even $\langle c, \dot{\varphi} \rangle = 1$ for $c \in C_G(f)$; moreover, we must actually have equality in (7b). Thus Lemma B is proved.

From Lemma B we now obtain Glicksberg's result almost at once. Let (with an obvious notation) dist $\{C_G(f), 0\} = d \ge 0$ and put dist $\{f, J_G\} = = d' \ge 0$. We want to show d = d'. Now clearly dist $\{f, J_G\} = \text{dist} \{f+J_G, 0\}$; also $C_G(f) \subset f+J_G$, since $\sum c_n A_{y_n} f = f + \sum c_n (A_{y_n} f - f)$ (observe $\sum c_n = 1$). Thus $d \ge d'$ and it remains to show d < d', where we may even assume $d \ge 0$. But if $d \ge 0$, there is an *invariant* $\dot{\phi} \in B'$ such that $\langle f, \dot{\phi} \rangle = 1$ and $\|\dot{\phi}\|_{B'} = 1/d$, by Lemma B. Since $\dot{\phi}$ is invariant, it vanishes on J_G , so $\langle f+v, \dot{\phi} \rangle = 1$ for all $v \in J_G$. But $\|f+v\|$ can be arbitrarily close to d' (by proper choice of $v \in J_G$), hence $d' \cdot (1/d) \ge 1$ or d < d'. Thus d = d' and Glicksberg's theorem is proved.

> Mathematical Institute, Utrecht University

REFERENCES

- 1. BOURBAKI, N., Espaces vectoriels topologiques, Chap. I-II, (Paris, Hermann, 1953).
- 2. DIXMIER, J., Les moyennes invariantes dans les semi-groupes et leurs applications, Acta Sci. Math. Szeged 12 A, 213–227 (1950).
- 3. GLICKSBERG, I., On convex hulls of translates, Pacific J. Math. 13, 97-113 (1963).
- 4. NEUMANN, J. VON, Zur allgemeinen Theorie des Maszes, Fund. Math. 13, 73–116 (1929).
- REITER, H., (a) Über L¹-Räume auf Gruppen I, Monatsh. f. Math. 58, 73-76 (1954); (b) Contributions to harmonic analysis, Acta Math. 96, 253-263 (1956); (c) The convex hull of translates of a function in L¹, J. London Math. Soc. 35, 5-16 (1960); (d) Sur la propriété (P₁) et les fonctions de type positif, C.R. Acad. Sci. Paris 258, 5134-5135 (1964).