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Abstract

We prove Heyneman–Radford Theorem in the framework of monoidal categories.
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Introduction

This paper is devoted to the proof of the Heyneman–Radford Theorem for monoidal cate-
gories. The original Heyneman–Radford’s Theorem (see [HR, Proposition 2.4.2] or [Mo, Theo-
rem 5.3.1, p. 65]) is a very useful tool in classical Hopf algebra theory. We also point out that our
proof is pretty different from the classical one and hence might be of some interest even in the
classical case.

Notations

A subobject of an object E in an abelian category M, is an equivalence class of monomor-
phisms into E. By abuse of language, given a monomorphism iX = iEX :X ↪→ E, we will say
that (X, iX) is a subobject of E and we will write (X, iX) = (Y, iY ) to mean that iX and iY are

✩ This paper was written while A. Ardizzoni was a member of GNSAGA with partial financial support from MIUR.
E-mail address: alessandro.ardizzoni@unife.it.
URL: http://www.unife.it/utenti/alessandro.ardizzoni.
0021-8693/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2006.06.006

https://core.ac.uk/display/82179299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


64 A. Ardizzoni / Journal of Algebra 308 (2007) 63–72
equivalent monomorphisms. The same convention applies to cokernels. If (X, iX) is a subobject
of E then we will write (E/X,pX) = Coker(iX), where pX = pE

X :E → E/X.

Let (X1, i
Y1
X1

) be a subobject of Y1 and let (X2, i
Y2
X2

) be a subobject of Y2. Let x :X1 → X2

and y :Y1 → Y2 be morphisms such that y ◦ i
Y1
X1

= i
Y2
X2

◦ x. Then there exists a unique morphism,

which we denote by y/x = y
x

:Y1/X1 → Y2/X2, such that y
x

◦ p
Y1
X1

= p
Y2
X2

◦ y:

X1

x

i
Y1
X1

Y1

y

p
Y1
X1 Y1

X1

y
x

X2

i
Y2
X2

Y2

p
Y2
X2 Y2

X2
.

1. Wedge products in monoidal categories

1.1. Let us recall that a monoidal category is a category M that is endowed with a functor
⊗ :M × M → M, an object 1 ∈ M and functorial isomorphisms: aX,Y,Z : (X ⊗ Y) ⊗ Z →
X ⊗ (Y ⊗ Z), lX : 1 ⊗ X → X and rX :X ⊗ 1 → X. The functorial morphism a is called the
associativity constraint and satisfies the Pentagon Axiom, that is the following diagram

((U ⊗ V ) ⊗ W) ⊗ X
αU,V,W ⊗X

αU⊗V,W,X

(U ⊗ (V ⊗ W)) ⊗ X

αU,V ⊗W,X

(U ⊗ V ) ⊗ (W ⊗ X)

αU,V,W⊗X

U ⊗ ((V ⊗ W) ⊗ X)

U⊗αV,W,X

U ⊗ (V ⊗ (W ⊗ X))

is commutative for every U , V , W , X in M. The morphisms l and r are called the unit constraints
and they are assumed to satisfy the Triangle Axiom, i.e. the following diagram

(V ⊗ 1) ⊗ W

rV ⊗W

aV,1,W

V ⊗ (1 ⊗ W)

V ⊗lW

V ⊗ W

is commutative for every V , W in M. The object 1 is called the unit of M. For details on
monoidal categories we refer to [Ka, Chapter XI] and [Maj]. A monoidal category is called strict
if the associativity constraint and unit constraints are the corresponding identity morphisms.
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As it is noticed in [Maj, p. 420], the Pentagon Axiom solves the consistency problem that
appears because there are two ways to go from ((U ⊗ V ) ⊗ W) ⊗ X to U ⊗ (V ⊗ (W ⊗ X)).
The coherence theorem, due to S. Mac Lane, solves the similar problem for the tensor product
of an arbitrary number of objects in M. Accordingly with this theorem, we can always omit all
brackets and simply write X1 ⊗ · · · ⊗ Xn for any object obtained from X1, . . . ,Xn by using ⊗
and brackets. Also as a consequence of the coherence theorem, the morphisms a, l, r take care
of themselves, so they can be omitted in any computation involving morphisms in M.

The notions of algebra, module over an algebra, coalgebra and comodule over a coalgebra can
be introduced in the general setting of monoidal categories. For more details, see [AMS2].

We quote the following definition from [AMS1, 2.4]. We remark that, in this context, we
prefer to use the word “coabelian” instead of “abelian.”

Definition 1.2. A monoidal category (M,⊗,1) will be called a coabelian monoidal category if:

(1) M is an abelian category;
(2) both the functors X ⊗ (−) :M → M and (−) ⊗ X :M → M are additive and left exact for

every object X ∈ M.

Let E be a coalgebra in a coabelian monoidal category M.
Let us recall (see [Mo, p. 60]) the definition of wedge of two subobjects X,Y of E in M:

(
X ∧E Y, iEX∧EY

) := Ker
[
(pX ⊗ pY ) ◦ ΔE

]
,

where pX :E → E/X and pY :E → E/Y are the canonical quotient maps. In particular we have
the following exact sequence:

0 X ∧E Y
iEX∧EY

E
(pX⊗pY )◦ΔE

E/X ⊗ E/Y.

Consider the following commutative diagrams in M

X1

x

i
E1
X1

E1

e

X2
i
E2
X2

E2,

Y1

y

i
E1
Y1

E1

e

Y2
i
E2
Y2

E2,

where e is a coalgebra homomorphism. Now we have

(
p

E2
X2

⊗ p
E2
Y2

) ◦ ΔE2 ◦ e ◦ i
E1
X1∧E1 Y1

= (
p

E2
X2

⊗ p
E2
Y2

) ◦ (e ⊗ e) ◦ ΔE1 ◦ i
E1
X1∧E1 Y1

=
(

e ⊗ e
)

◦ (
p

E1
X1

⊗ p
E1
Y1

) ◦ ΔE1 ◦ i
E1
X1∧E1 Y1

= 0

x y
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so that, being (X2 ∧E2 Y2, i
E2
X2∧E2 Y2

) the kernel of (p
E2
X2

⊗p
E2
Y2

)◦ΔE2 , there is a unique morphism

x ∧e y :X1 ∧E1 Y1 → X2 ∧E2 Y2

such that the following diagram

X1 ∧E1 Y1

x∧ey

i
E1
X1∧E1

Y1

E1

e

X2 ∧E2 Y2
i
E2
X2∧E2

Y2

E2

commutes.

Lemma 1.3. Consider the following commutative diagrams in M

X1

x

i
E1
X1

E1

e

X2

x′
i
E2
X2

E2

e′

X3
i
E3
X3

E3,

Y1

y

i
E1
Y1

E1

e

Y2

y′
i
E2
Y2

E2

e′

Y3
i
E3
Y3

E3,

where e and e′ are coalgebra homomorphisms. Then we have

(x′ ∧e′ y′) ◦ (x ∧e y) = (x′x ∧e′e y′y). (1)

Proof. Straightforward. �
We now recall some definitions and some (standard) results established in [AMS1].

1.4. Let X be an object in a coabelian monoidal category (M,⊗,1). Set

X⊗0 = 1, X⊗1 = X and X⊗n = X⊗n−1 ⊗ X, for every n > 1,

and for every morphism f :X → Y in M, set

f ⊗0 = Id1, f ⊗1 = f and f ⊗n = f ⊗n−1 ⊗ f, for every n > 1.
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Let (C,ΔC, εC) be a coalgebra in M and for every n ∈ N, define the nth iterated comultiplication
of C,

Δn
C :C → C⊗n+1,

by

Δ0
C = IdC, Δ1

C = ΔC and Δn
C = (

Δ⊗n−1
C ⊗ C

)
ΔC, for every n > 1.

Let δ :D → E be a monomorphism which is a homomorphism of coalgebras in M. Denote by
(L,p) the cokernel of δ in M. Regard D as a E-bicomodule via δ and observe that L is a
E-bicomodule and p is a morphism of bicomodules. Let

(
D∧n

E , δn

) := ker
(
p⊗nΔn−1

E

)
for any n ∈ N \ {0}. Note that (D∧1

E , δ1) = (D, δ) and (D∧2
E , δ2) = D ∧E D.

In order to simplify the notations we set (D∧0
E , δ0) = (0,0).

Now, since M has left exact tensor functors and since p⊗nΔn−1
E is a morphism of E-

bicomodules (as a composition of morphisms of E-bicomodules), we get that D∧n
E is a coalgebra

and δn :D∧n
E → E is a coalgebra homomorphism for any n > 0 and hence for any n ∈ N.

Proposition 1.5. [AMS1, Proposition 1.10] Let δ :D → E be a monomorphism which is a coal-
gebra homomorphism in a coabelian monoidal category M. Then, for any i � j in N, there is a

(unique) morphism ξ
j
i :D∧i

E → D∧j
E such that

δj ξ
j
i = δi . (2)

Moreover ξ
j
i is a coalgebra homomorphism and ((D∧i

E )i∈N, (ξ
j
i )i,j∈N) is a direct system in M

whose direct limit, if it exists, carries a natural coalgebra structure that makes it the direct limit
of ((D∧i

E )i∈N, (ξ
j
i )i,j∈N) as a direct system of coalgebras.

Proposition 1.6. [AMS1, Proposition 2.17] Let δ :D → E be a monomorphism which is a coal-
gebra homomorphism in a coabelian monoidal category M. Then we have

(
D∧m

E ∧E D∧n
E , iE

D
∧m

E ∧ED
∧n

E

) = (
D∧m+n

E , iE

D
∧m+n

E

)
. (3)

Notation 1.7. Let δ :D → E be a morphism of coalgebras in a cocomplete coabelian monoidal
category M with left exact tensor functors. By Proposition 1.5 ((D∧i

E )i∈N, (ξ
j
i )i,j∈N) is a direct

system in M whose direct limit carries a natural coalgebra structure that makes it the direct
limit of ((D∧i

E )i∈N, (ξ
j
i )i,j∈N) as a direct system of coalgebras.

From now on we will use the following notation

Dn := D∧En, for every n ∈ N,(
D̃E, (ξi)i∈N

) := lim
(
D∧i

E
)

,
−→ i∈N
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where ξi :D∧i
E → D̃E denotes the structural morphism of the direct limit. We note that, since D̃E

is a direct limit of coalgebras, the canonical (coalgebra) homomorphisms (δi :D∧i
E → E)i∈N,

which are compatible by (2), factorize to a unique coalgebra homomorphism

δ̃ : D̃E → E

such that δ̃ξi = δi , for any i ∈ N.

2. The Heyneman–Radford Theorem for monoidal categories

Definition 2.1. Let E be a coalgebra and let δ :X → E be a monomorphism in a coabelian
monoidal category M. Define the morphism

αE
X :E → E

X
⊗ E

X

by setting

αE
X = (

pE
X ⊗ pE

X

) ◦ ΔE.

Observe that (X ∧E X, iEX∧EX) = Ker(αE
X).

Lemma 2.2. Let δ :D → E and let f :E → C be coalgebra homomorphisms in a coabelian
monoidal category M. Assume that both δ and f ◦ δ are monomorphism. Then the following
diagram

E

αE
D

f

C

αC
D

E
D

⊗ E
D

f
D

⊗ f
D C

D
⊗ C

D

is commutative.

Proof. Note that the notations E/D and C/D make sense as both δ and f ◦ δ are monomor-
phisms. We have

(
f

D
⊗ f

D

)
◦ αE

D =
(

f

D
⊗ f

D

)
◦ (

pE
D ⊗ pE

D

) ◦ ΔE

= (
pC

D ⊗ pC
D

) ◦ (f ⊗ f ) ◦ ΔE

= (
pC

D ⊗ pC
D

) ◦ ΔC ◦ f = αC
D ◦ f. �
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Lemma 2.3. Let D and E be coalgebras in a coabelian monoidal category M. Let δ :D → E

be a monomorphism which is a coalgebra homomorphism in M. Then, for every n ∈ N, there
exists a unique morphism τn :Dn+1 → Dn/D ⊗ Dn/D such that the following diagram

Dn+1

τn

αDn+1
D

Dn

D
⊗ Dn

D
ξ
n+1
n
D

⊗ ξ
n+1
n
D

Dn+1

D
⊗ Dn+1

D

is commutative.

Proof. Consider the following exact sequence

0 Dn

D

ξ
n+1
n
D

Dn+1

D

Dn+1

ξn
1

Dn+1

Dn . (4)

By applying the functor Dn+1/D ⊗ (−) we get

0 Dn+1

D
⊗ Dn

D

Dn+1
D

⊗ ξ
n+1
n
D

Dn+1

D
⊗ Dn+1

D

Dn+1
D

⊗ Dn+1

ξn
1

Dn+1

D
⊗ Dn+1

Dn .

We have (
δn+1

D
⊗ δn+1

Dn

)
◦

(
Dn+1

D
⊗ Dn+1

ξn
1

)
◦ αDn+1

D

=
(

δn+1

D
⊗ δn+1

Dn

)
◦

(
Dn+1

D
⊗ Dn+1

ξn
1

)
◦ (

pDn+1

D ⊗ pDn+1

D

) ◦ ΔDn+1

=
(

δn+1

D
⊗ δn+1

Dn

)
◦ (

pDn+1

D ⊗ pDn+1

Dn

) ◦ ΔDn+1

= (
pE

D ⊗ pE
Dn

) ◦ (δn+1 ⊗ δn+1) ◦ ΔDn+1

= (
pE

D ⊗ pE
Dn

) ◦ ΔE ◦ δn+1 = 0.

In fact, by Proposition 1.6, Dn+1 = D ∧E Dn. Since δn+1
D

⊗ δn+1
Dn is a monomorphism, we obtain

(
Dn+1

D
⊗ Dn+1

ξn
1

)
◦ αDn+1

D = 0 (5)

so that, as the above sequence is exact, by the universal property of kernels, there exists a unique
morphism

βn :Dn+1 → Dn+1

⊗ Dn
D D
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such that

(
Dn+1

D
⊗ ξn+1

n

D

)
◦ βn = αDn+1

D . (6)

By applying the functor (−) ⊗ Dn/D to (4), we get

0 Dn

D
⊗ Dn

D

ξ
n+1
n
D

⊗ Dn

D
Dn+1

D
⊗ Dn

D

Dn+1

ξn
1

⊗ Dn

D

Dn+1

Dn ⊗ Dn

D
.

We have

(
Dn+1

Dn
⊗ ξn+1

n

D

)
◦

(
Dn+1

ξn
1

⊗ Dn

D

)
◦ βn

=
(

Dn+1

ξn
1

⊗ Dn+1

D

)
◦

(
Dn+1

D
⊗ ξn+1

n

D

)
◦ βn

(6)=
(

Dn+1

ξn
1

⊗ Dn+1

D

)
◦ αDn+1

D = 0,

where the last equality can be proved similarly to (5). Since Dn+1

Dn ⊗ ξn+1
n

D
is a monomorphism we

get

(
Dn+1

ξn
1

⊗ Dn

D

)
◦ βn = 0

so that, as the previous sequence is exact, by the universal property of kernels there exists a
unique morphism

τn :Dn+1 → Dn

D
⊗ Dn

D

such that

(
ξn+1
n

D
⊗ Dn

D

)
◦ τn = βn.

Finally we have

(
ξn+1
n

D
⊗ ξn+1

n

D

)
◦ τn =

(
Dn+1

D
⊗ ξn+1

n

D

)
◦

(
ξn+1
n

D
⊗ Dn

D

)
◦ τn

=
(

Dn+1

D
⊗ ξn+1

n

D

)
◦ βn = αDn+1

D . �
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Theorem 2.4. Let D and E be coalgebras in a cocomplete coabelian monoidal category M
satisfying AB5. Let δ :D → E be a monomorphism which is a coalgebra homomorphism in M
and keep the notations introduced in Notation 1.7.

Let f :E → C be a coalgebra homomorphism and assume that

f ◦ δ2 :D ∧E D → C

is a monomorphism. Then the coalgebra homomorphism

f ◦ δ̃ : D̃E → C

is a monomorphism.

Proof. Since M satisfies AB5, it is enough to prove that f ◦ δ̃ ◦ ξn = f ◦ δn is a monomorphism
for every n ∈ N.

For n = 0, we have f ◦ δ0 = f ◦ 0 = 0 which is a monomorphism as D0 = 0.
For n = 1, we have f ◦ δ1 = f ◦ δ2 ◦ ξ2

1 which is a monomorphism.
Let n � 2 and let us assume that f ◦ δn is a monomorphism. Let us prove that f ◦ δn+1 is a

monomorphism. Let λ :X → Dn+1 be a morphism such that

f ◦ δn+1 ◦ λ = 0

and consider the following diagram

D ∧Dn+1 D

iD
n+1

D∧
Dn+1 D

D∧δn+1D

D ∧E D

δ2

X

λ

λ
Dn+1

τn

αDn+1
D

δn+1
E

f

αE
D

C

αC
D

Dn

D
⊗ Dn

D
ξ
n+1
n
D

⊗ ξ
n+1
n
D

Dn+1

D
⊗ Dn+1

D δn+1
D

⊗ δn+1
D

E
D

⊗ E
D f

D
⊗ f

D

C
D

⊗ C
D

,

where the bottom squares are commutative in view of Lemma 2.2 and the bottom triangle com-
mutes in view of Lemma 2.3. We have(

f δn

D
⊗ f δn

D

)
◦ τn ◦ λ

=
(

f δn+1ξ
n+1
n ⊗ f δn+1ξ

n+1
n

)
◦ τn ◦ λ
D D
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=
(

f

D
⊗ f

D

)
◦

(
δn+1

D
⊗ δn+1

D

)
◦

(
ξn+1
n

D
⊗ ξn+1

n

D

)
◦ τn ◦ λ

= αC
D ◦ f ◦ δn+1 ◦ λ = 0.

Since f ◦ δn is a monomorphism, we get that also f δn/D ⊗ f δn/D is a monomorphism so that
we obtain

τn ◦ λ = 0

and we have

αDn+1

D ◦ λ =
(

ξn+1
n

D
⊗ ξn+1

n

D

)
◦ τn ◦ λ = 0.

Thus, since (D ∧Dn+1 D, iD
n+1

D∧
Dn+1 D) = ker(αDn+1

D ), by the universal property of the kernel, there

exists a unique morphism, λ̄ :X → D ∧Dn+1 D such that

λ = iD
n+1

D∧
Dn+1 D ◦ λ̄.

Now we have

f ◦ δ2 ◦ (D ∧δn+1 D) ◦ λ̄ = f ◦ δn+1 ◦ λ = 0.

Since f ◦ δ2 and D ∧δn+1 D are monomorphisms, we get that λ̄ = 0 and hence λ = 0. �
Corollary 2.5. (Heyneman–Radford [HR, Proposition 2.4.2] or [Mo, Theorem 5.3.1, p. 65].) Let
K be a field. Let E and C be K-coalgebras and let f :E → C be a coalgebra homomorphism
such that f |D∧ED is injective, where D is the coradical of E. Then f is injective.

Proof. Since D is the coradical of E is well known that (E, IdE) = (D̃E, δ̃) (see, e.g., [Sw,
Corollary 9.0.4, p. 185]). The conclusion follows by Theorem 2.4 applied in the case when M
is the category of vector spaces over K . Observe that in this case “monomorphism” is equivalent
to “injective.” �
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