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Abstract

Fractional factorial designs are popular and widely used for industrial experiments. Generalized minimum
aberration is an important criterion recently proposed for both regular and non-regular designs. This paper
provides a formal optimization treatment on optimal designs with generalized minimum aberration. New
lower bounds and optimality results are developed for resolution-III designs. Based on these results, an
effective computer search algorithm is provided for sub-design selection, and new optimal designs are
reported.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Fractional factorial designs (FFDs) are popular choices of designs of experiments in industry.
Extensive research has been done on factorial designs in recent decades, with main focus on opti-
mality theory and design construction. The two most successful optimality criteria are maximum
resolution by Box and Hunter [2] and minimum aberration by Fries and Hunter [7]. However,
these criteria are defined for regular designs only; they cannot be used to assess a factorial design
in general. Recently, generalized minimum aberration (GMA) was proposed for both regular and
non-regular designs, with the two-level case by Tang and Deng [14], and multi-level case by Ma
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and Fang [10] and Xu and Wu [17]. More background on FFD and GMA will be presented in the
next section.

This paper is to study the optimal conditions for GMA designs, which is a non-trivial prob-
lem due to the sequential optimization nature of the criterion. Unlike conventional combinatorial
approaches, we provide a formal treatment for resolution-III designs from the optimization per-
spective. It will be shown that our new optimality results can be viewed as a natural extension of
the weak-equidistance optimality for resolution-II designs by Zhang et al. [18]. Here we restrict
ourselves to the symmetrical designs, i.e. those in which all the factors take the same number of
levels, while the methodology is readily generalized to mixed-level designs in a straightforward
manner.

There exist several approaches to the construction of GMA designs. Among others, Lin [8]
proposed to use half fractions of Hadamard matrices for constructing two-level supersaturated
designs (SSDs), and Fang et al. [5] proposed the RBIBD method for constructing multi-level
SSDs. However, these construction methods are restricted to GMA designs of resolution II. For
designs of resolution III or higher, it is most natural to consider the subset design approach based
on existing classes of orthogonal arrays. Butler [3] obtained some GMA designs by projecting
specific saturated orthogonal arrays. In this paper, we propose a general sub-design selection
algorithm, which utilizes the newly developed lower bounds and optimality conditions.

The paper is organized as follows. Some background material is presented in Section 2. In
Section 3, new lower bounds and optimality results are developed for orthogonal FFDs of res-
olution III, by Lagrange analysis for the nonlinear programming problem and a strengthening
technique to take into account the integer-valued condition. These results are applied in Section
4 for sub-design selection, where we provide an effective computer search algorithm and report
some new optimal designs with GMA. In the final section, we discuss some possible routes for
future works.

Throughout the paper, we use the symbol �x� for representing the largest integer not exceeding
x, �x� for the smallest integer not less than x and 〈x〉 = x − �x� for the fractional part of x. The
Kronecker delta function is defined as �(x, y) = 1 if x = y and 0 otherwise. For non-negative
integers j and k, S(j, k) denotes the Stirling number of the second kind, i.e. the number of ways
of partitioning a set of j elements into k non-empty sets. Furthermore, we extend the definition of
binomial coefficient function

(
x
j

)
to cover any non-negative argument x ∈ R+ : (x

j

) = 1 if j = 0,(
x
j

) = 0 if x < j and
(
x
j

) = x(x−1)···(x−j+1)
j ! otherwise.

2. Background

A factorial design of n runs and s factors for which each factor takes q levels is denoted by
D(n, qs). The full factorial design with n = qs runs comprises all possible level combinations.
An FFD with n>qs runs takes only some fraction of the runs required for the full factorial; see
Wu and Hamada [15] for details. A particular FFD is often chosen to satisfy some constraint or
optimize some condition or set of conditions. Two common conditions of interest are balance
and orthogonality. Balance means that for each factor each level appears in the same number of
runs. Orthogonality means that for each pair of factors, all the q2 possible level-combinations
appear equally often. Two designs are said to be isomorphic if one can be obtained from the
other by re-ordering runs, permuting factors or switching levels of one or more factors. For given
parameters (n, s, q), we use D(n, qs), U(n, qs) and L(n, qs) to denote the sets of non-isomorphic
designs that have no constraint, balanced constraint and orthogonality constraint, respectively. A
design in the set of U(n, qs) is also called a U-type design in the uniform design literature; see
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Fig. 1. Nested classes of fractional factorial designs.

the recent monograph by Fang et al. [6]. Note that these sets of designs are nested by D(n, qs) ⊃
U(n, qs) ⊃ L(n, qs).

The column-wise study of fractional factorials is tightly connected with the notion of orthogonal
arrays. An FFD D(n, qs) can be viewed as an orthogonal array of strength t, often denoted
by OA(n, s, q, t), if for each t-tuple of factors each level combination appears equally often.
Similarly, let us use OA(n, s, q, t) to denote the set of non-isomorphic orthogonal arrays, where
OA(n, s, q, 1) ≡ U(n, qs) and OA(n, s, q, 2) ≡ L(n, qs). For given (n, s, q), an illustration of
the nested structure is given in Fig. 1. Rao [13] presented the following well-known conditions
for the existence of OA(n, s, q, t):

n�
{∑u

i=0

(
s
i

)
(q − 1)i if t = 2u∑u

i=0

(
s
i

)
(q − 1)i + (

s−1
u

)
(q − 1)u+1 if t = 2u + 1.

(1)

These general lower bounds of n for given (s, q, t) are called Rao’s bounds. They have been
improved for many specific parameter settings, see e.g. Bose and Bush [1] and Mukerjee and Wu
[12].

The row-wise study of factorial designs is tightly connected with the notion of error-correcting
codes in MacWilliams and Sloane [11]. It leads to the definition of the generalized minimum
aberration (GMA) criterion. Let �j

ik be the coincidence indicator between the ith and kth runs
at the jth factor. For any 1� i, k�n, the (i, k)-coincidence of the design is defined as �ik =∑s

j=1 �j
ik . For an OA(n, s, q, t), Bose and Bush [1] derived the following necessary conditions

on the coincidences:

n∑
k=1

(
�ik

j

)
= n

qj

(
s

j

)
for 1� i�n, 1�j � t. (2)

On the other hand, Zhang et al. [18] proved that for any D(n, qs),

n∑
i=1

(
n∑

k=1

(
�ik

j

)
− n

qj

(
s

j

))
=
∑
u

∑
v

(
N(u)

v − n

qj

)2

for 1�j �s, (3)

where
∑

u denotes the summation over all j-element subset of {1, . . . , s}, ∑v denotes the sum-

mation over qj j-tuple level-combinations, and N
(u)
v is the frequency of level-combination v

appearing in a u-factor sub-design. It is implied that D is an OA(n, s, q, t) if the right-hand side
of (3) vanishes for all j � t . Thus, it is clear that the Bose–Bush identities (2) are also sufficient
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conditions for D(n, qs) to have orthogonal strength t. Besides, for a design D(n, qs) that is
saturated in the sense that n = 1 + s(q − 1), [12] derived that

�ik = s − n/q for any 1� i < k�n, (4)

a useful property in many ways, with a typical example in the study of complementary designs.
Maximum resolution and minimum aberration are well-known criteria for regular designs.

They are extended to non-regular designs via row-wise coincidences and MacWilliams identities
in coding theory, as noted by Ma and Fang [10] and Xu and Wu [17]. For any FFD D(n, qs),
define

Aj(D) = 1

n2

n∑
i=1

n∑
k=1

j∑
w=0

(−1)w(q − 1)j−w

(
s − �ik

w

)(
�ik

j − w

)
(5)

for 1�j �s. The vector w(D) = (A1(D), . . . , As(D)) is called the generalized word-length
pattern (GWP), and the index of the first non-zero element corresponds to the resolution. For
two designs, D1 is said to have less generalized aberration than D2 if the first non-zero element
of w(D1) − w(D2) is negative. A design D∗ is said to have GMA if no other design has less
generalized aberration than it.

3. Lower bounds and optimality results

For given parameters (n, s, q), the GMA criterion tends to sequentially minimize the GWP
from low to high orders, such that the selected designs not only have the maximum resolution
(say r), but also have the smallest Ar -value. Furthermore, if there are multiple resolution-r designs
with the same smallest Ar , the GMA criterion will sequentially reduce the set of candidates by
minimizing Ar+1(D), Ar+2(D), . . . , until the resulting candidates all have the same optimal
GWP. The lower bounds of Aj(D) for j = 1, 2, 3, . . . are of crucial importance in the search of
GMA designs.

Delsarte [4] derived that Aj(D)�0 for 1�j �s, where the equality holds for all j � t if and
only if D(n, qs) is an orthogonal array of strength t. Consider the set of candidate designs

D ∈ St ≡ OA(n, s, q, t) \ OA(n, s, q, t + 1),

for which A1(D) = · · · = At(D) = 0 while At+1(D) > 0. Schematically in Fig. 1, St for
t = 1, 2, . . . represent the resolution-(t + 1) rings from outer to inner areas. For D ∈ St , there is
lack of a tight lower bound for At+1(D).

This section presents lower bounds and optimality results for St with t = 1 and 2. We begin with
a brief review of the weak-equidistant optimality for S1, as obtained by [18] through majorization
inequality. Then, we develop a general treatment for S2 from a formal optimization perspective.
It will be shown that the optimality results for S2 can be viewed as a natural extension of those
for S1.

3.1. Balanced designs of resolution II

Zhang et al. [18] provides the optimality results for U-type designs D ∈ S1(n, qs), namely, the
weak-equidistance lower bounds:

A2(D)� q2

2n
((n − 1)�(� + 2� − 1) + s(s − 1)(1 − n/q2)), (6)
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where � = ��0� and � = 〈�0〉, based on the average of pairwise coincidences

�0 = 1(
n
2

) ∑
1� i<k �n

�ik = s(n − q)

q(n − 1)
, (7)

as a consequence of (2) when j = 1. Recall that a design is called equidistant if any two distinct
runs of the design have the same coincidence �0, where �0 must be a positive integer. The
lower bounds (6) are achieved if there exist weak-equidistant designs, i.e. designs whose pairwise
coincidences satisfy

�ik =
{

� with proportion (1 − �),
� + 1 with proportion � for 1� i < k�n.

(8)

For � = 0, this reduces to the equidistant case. Such weak-equidistant designs have been shown
to have GMA in S1(n, qs). More details can be referred to [9,16,18] in the context of optimal
SSDs.

3.2. Orthogonal designs of resolution III

For orthogonal FFDs in S2(n, qs) that have resolution III, the necessary conditions (2) imply
both the mean type of constraint (7) and the following variance type of constraint on the pairwise
coincidences:

1(
n
2

) ∑
1� i<k �n

(
�ik − �0

)2 = ns(q − 1)(n − 1 − s(q − 1))

q2(n − 1)2
≡ �2

0. (9)

Our goal is to minimize A3(D) for resolution-III designs D ∈ S2(n, qs). Since the original
formulas (5) forAj(D) involve Krawtchouk polynomials which are difficult to analyze, we employ
a reformulation through power moments. A similar consideration appears in [16], who, however,
employs an overly complicated formulation and proof. Here we need only a basic property of
Stirling numbers S(j, l) of the second kind defined by

xj =
j∑

l=1

S(j, l)x(x − 1) · · · (x − l + 1) (for any real x),

as well as a recent result by [18]

∑
1� i,k �n

(
�ik

l

)
= n2

ql

l∑
w=1

(
s − w

l − w

)
Aw(D) +

(
s

l

)(
n2

ql
− n

)

for l = 1, . . . , s. Then, it is straightforward to obtain the following:

∑
1� i<k �n

�j
ik = �j +

j∑
l=1

	j l

l∑
w=1

(
s − w

l − w

)
Aw(D) for j = 1, . . . , s, (10)

where 	j l = n2S(j,l)l!
2ql and �j = ∑j

l=1
S(j,l)s!
2(s−l)!

(
n2

ql − n
)

. Since for each j the leading coefficient for

Aj(D) is evaluated as n2j !
2qj > 0, it is clear that sequentially minimizing

∑
i<k �j

ik for j = 1, 2, . . .

is equivalent to the GMA criterion in assessing and selecting designs.
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Now consider the optimization problem

min
D∈S2(n,qs )

∑
i<k

�3
ik(D) (11)

over pairwise coincidences �(D) = {�ik(D), 1� i < k�n}. Besides the mean and variance types
of constraints (7) and (9), we have a boundary constraint for each �ik based on the existence of
OA(n, s, q, 2):

max{0, s − n/q}��ik �s for 1� i < k�n, (12)

where the second inequality is obvious. The first inequality can be verified from (4) if D(n, qs)

can be embedded in a saturated design; otherwise one can refer to [3] for an alternative proof.
In what follows we concentrate on the derivation of the lower bounds for (11) subject to the

conditions (7), (9) and (12), as divided into two steps.

3.2.1. Step 1: Lagrange analysis
We use the classical Lagrange analysis by assuming that each argument �ik is a continuous

variable falling in the interval given by (12). The Lagrangian function takes the form

L(�; 
1, 
2) =
∑
i<k

�3
ik − 
1

∑
i<k

(�ik − �0) − 
2

∑
i<k

(�2
ik − �2

0 − �2
0),

where 
1 and 
2 are undetermined Lagrange multipliers. It is necessary for �̂ to be an optimal
solution that there exist 
̂1 and 
̂2 such that the gradient

∇L(�̂; 
̂1, 
̂2) = 0. (13)

Any root �̂ with zero gradient is said to be stationary, which corresponds to a minimum, maximum
or saddle point.

The equation (13) leads to

�̂ik = 1

3

(
−
̂2 ±

√

̂

2
2 + 3
̂1

)
for 1� i < k�n.

Denote by �̂a and �̂b the two undetermined roots and assume �̂a � �̂b. Let p ∈ (0, 1) be the
proportion of �̂b that appears in �̂. Based on (7) and (9), we get the alternative expressions

�̂a = �0 − �0

√
p

1 − p
, �̂b = �0 + �0

√
1 − p

p
.

The objective function (11) is evaluated to be

∑
1� i<k �n

�̂
3
ik =

(
n

2

)(
�3

0 + 3�0�
2
0 + 1 − 2p√

p(1 − p)
�3

0

)
, p ∈ (0, 1). (14)
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Now using the boundary condition that max{0, s − n/q}��ik �s, we get the feasible range of p:

�2
0

(s − �0)
2 + �2

0

≡ pmin �p�pmax ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2
0

�2
0 + �2

0

if n�qs,(
�0 − s + n

q

)2

�2
0 +

(
�0 − s + n

q

)2
otherwise.

(15)

Substituting pmax into (14) leads to the lower bound for
∑

i<k �3
ik , since (14) is strictly decreasing

in p (So, one can also obtain the upper bound by substituting pmin). Denote this lower bound by
LB1.

3.2.2. Step 2: strengthening
This step is to strengthen the lower bound obtained above by taking into account the constraint

that both �̂a and �̂b must be integer-valued.
In Step 1 analysis, when p = pmax,

�̂a = max{0, s − n/q}, �̂b = �0 + �2
0/(�0 − �̂a). (16)

It is straightforward that∑
i<k

�3
ik =

∑
i<k

(�ik − �̂a)(�ik − �̂b)
2 + LB1 �LB1,

where the equality holds if �ik takes either �̂a or �̂b for 1� i < k�n.
When �̂b is not integer-valued, we have that

(�ik − �̂a)(�ik − ��̂b�)(�ik − ��̂b�)�0

for any integer-valued �ik � �̂a . Thus, we can strengthen the lower bound by taking the values of
�ik to be either �̂a , ��̂b� or ��̂b�. By (7) and (9), we have the optimal distribution of the pairwise
coincidences

�ik =

⎧⎪⎪⎨
⎪⎪⎩

�̂a with proportion 1 − p1 − p2,

��̂b� with proportion p1,

��̂b� with proportion p2 for 1� i < k�n,

(17)

where �̂a, �̂b are as in (16), and the proportions are given by

p1 = (�0 − �̂a − �)/(��̂b� − �̂a), p2 = �/(��̂b� − �̂a)

and � = �2
0 + �2

0 + ��̂b��̂a − �0(��̂b� + �̂a). For a non-empty L(n, qs) of orthogonal FFDs, it
can be verified that there uniquely exists such an optimal distribution of pairwise coincidences.
Obviously, the optimality conditions (17) for S2(n, qs) can be viewed as a natural extension of
(8) for S1(n, qs).
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Based on (17), the refined lower bound for (11) is given by∑
i<k

�3
ik �LB2 (18)

=
(

n

2

)[
(��̂b� + ��̂b�)(�2

0 + �2
0 − �0�̂a) − ��̂b���̂b�(�0 − �̂a) + �̂a(�

2
0 + �2

0)
]
.

LB2 reduces to LB1 if �̂b is an integer. Back to the generalized word-length pattern, by (5), the
lower bound of A3(D) is given by

A3(D) � n − 1

n

[
(1 − p1 − p2)K3(s − �̂a; s, q) + p1K3(s − ��̂b�; s, q)

+p2K3(s − ��̂b�; s, q)

]
+ (q − 1)j

n

(
s

j

)
, (19)

where K3(x; s, q) denotes the Krawtchouk polynomial

K3(x; s, q) =
3∑

w=0

(−1)w(q − 1)3−w

(
x

w

)(
s − x

3 − w

)
.

Finally, we claim that the optimal pairwise distance distribution (17) leads to not only the smallest∑
i<k �3

ik and A3(D), but also the generalized minimum aberration. This is true since (17) is the

unique minimizer of
∑

i<k �3
ik , and under (17) all the higher-order power moments

∑
i<k �j

ik for
j > 3 are uniquely determined, too.

4. Orthogonal sub-design selection

In the algorithmic approach to construct optimal SSDs, there exist construction methods based
on randomly generated balanced designs, e.g. the columnwise–pairwise algorithm and its stochas-
tic versions. However, we can hardly construct orthogonal FFDs from scratch, since every can-
didate needs to be an orthogonal array, while the construction of orthogonal arrays itself is a
non-trivial problem. Instead, the sub-design selection approach is most popular for constructing
orthogonal FFDs.

Given a specified criterion, a common way of design construction is to select sub-designs from
a superset design that contains a larger number of factors. For example, Hadamard matrices are
often employed as superset designs for two-level sub-design selection. However, it is left open,
especially for the GMA criterion, how close the best selected designs are to the global optimality
across the whole class of non-isomorphic designs. We will resolve this issue by utilizing the lower
bounds developed in the previous section. Our concentration is on the generation of GMA designs
of resolution III or higher.

Suppose there exists a superset design D0 ∈ S2(n, qs0) with s0>s. Our objective is to select
the sub-designs D(n, qs) from a sequence of

(
s0
s

)
possible s-factor projections under the GMA

criterion. According to the optimal condition (17), it is sufficient to claim that a candidate sub-
design has GMA if one of the following rules is satisfied.

Stopping rules for orthogonal sub-design selection:

(1) The pairwise distances �ik for i < k are all the same. This corresponds to the saturated design
that is equidistant.
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(2) The pairwise distances �ik for i < k take two different integers, with the smaller one given by
max{0, s − n/q}. This corresponds to the optimal condition (16) when �̂b is integer-valued.

(3) The pairwise distances �ik for i < k take three different integers, with the smallest given by
max{0, s − n/q} and the rest two are consecutive integers. This corresponds to the strength-
ened optimal condition (17).

Based on these stopping rules, we present a computer search algorithm for orthogonal sub-
design selection. In the algorithm, the power moments

∑
i<k �j

ik for j = 3, . . . , s are evaluated
to serve as the GMA criterion.

Algorithm (Orthogonal Sub-Design Selection). Given a superset design D0(n, qs0) that is or-
thogonal, do the following to find the s-factor sub-design:

(1) Compute the coincidence matrix for each factor (only need to evaluate the upper triangular
part, i.e. �j

ik for 1� i < k�n):

Cj =
(
�j
ik

)
n×n

, j = 1, . . . , s0.

(2) Collect all s-factor combinations among {1, 2, . . . , s0}:

Gl =
{
j

(l)
1 , . . . , j (l)

s

}
, l = 1, . . . ,

(
s0

s

)
.

(3) For each sub-design l = 1, 2, . . . ,
(
s0
s

)
,

(a) compute the coincidence matrix by [�ik]n×n = ∑
j∈Gl

Cj . Note that one can also update
the coincidence matrix from l − 1 to l by adding∑

j∈Gl\Gl−1

Cj −
∑

j∈Gl−1\Gl

Cj

when |Gl\Gl−1| = 1 or 2.
(b) Check �ik’s to see if they satisfy any of the stopping rules. If so, terminate the loop and

output the sub-design with Gl-factors. Otherwise, compute the power moments

Bl =
(∑

i<k
�3

ik, . . . ,
∑

i<k
�s

ik

)
;

update the best record Bl∗ = Bl if the first non-zero element of Bl − Bl∗ is negative.

If any stopping rule is satisfied, the algorithm outputs a GMA design D(n, qs); otherwise, it
reports the best sub-design among

(
s0
s

)
candidates that has the smallest (

∑
i<k �3

ik, . . . ,
∑

i<k �s
ik)

in the sense of sequential comparison.
There are many resources on superset designs on Sloane’s orthogonal arrays website

(http://www.research.att.com/∼njas/oadir/). As an example, we choose oa.27.13.3.2 from Sloane’s
website as the superset design D0(27, 313) for selecting 3-level sub-designs with 27 runs. Com-
putational results are shown in Table 1. The resulting sub-designs have GMA for k = 4, 6, 8.13.
However, for k = 5 and 7, the selected best sub-designs cannot achieve the lower bounds.

This algorithm works fast for small s0, say, no greater than 16. For example, running through
s = 4, . . . , 12 in the oa.27.13.3.2 example costs only about 5 s of CPU time under our MATLAB
7 (The MathWorks, Inc.) environment, on a PC with 1.60 GHz Pentium M processor and 512 MB

http://www.research.att.com/njas/oadir/
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Table 1
Sub-design selection results from superset design oa.27.13.3.2

D(27, 3s ) Factor combination GMA
∑

i<k �3
ik Lower bound

s = 4 {9, 11, 12, 13} Yes 1404 1404
5 {7, 9, 11, 12, 13} NS 2322 2160
6 {6, 7, 8, 9, 12, 13} Yes 3402 3402
7 {6, 7, 8, 9, 11, 12, 13} NS 4968 4914
8 {5, 6, 7, 8, 9, 11, 12, 13} Yes 6696 6696
9 {3, 5, 6, 7, 8, 9, 11, 12, 13} Yes 8748 8748
10 {3, 5, 6, 7, 8, 9, 10, 11, 12, 13} Yes 11 772 11 772
11 {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} Yes 14958 14 958
12 {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} Yes 18 468 18 468

“NS” under “GMA” means “not sure”. The selected design has resolution IV for s = 4 and resolution III for s > 4. The
GMA design at s = 12 is weak-equidistant.

Table 2
CPU time in seconds resulting from the early stopping rule (A) and the exhaustive search (B) for the oa.27.13.3.2 example

s 4 5 6 7 8 9 10 11 12 Total

A 0.0501 1.8426 0.0601 2.6638 0.0601 0.0601 0.0501 0.0501 0.0401 4.8770
B 3.5852 1.9728 3.5651 2.5537 3.7354 1.3119 1.2518 0.4006 0.2203 18.5967

RAM. Compared to the exhaustive search in traditional sub-design selection procedures, the
computational complexity of our algorithm is greatly reduced, since it terminates immediately
upon hitting any stopping rule. To illustrate this gain in computing time, Table 2 lists CPU time
cost for the early stopping rule and the exhaustive search, respectively.

For large s0, the algorithm becomes intractable since the total number of combinations,
(
s0
s

)
,

grows exponentially. Because many of the sub-designs are actually isomorphic and yield the same
coincidence distribution, we can employ a simple trick of randomization to avoid the useless
duplicates and overcome the intractability problem. Let us call D(n, qs) a random sub-design of
D0(n, qs0) if it selects s out of s0 factors at random. Let M be a pre-defined maximal number of
trials. Then, the second step in the algorithm above can be modified to M random sub-designs
instead of using the complete

(
s0
s

)
candidates. Our experience suggests that M = 200 would

succeed in finding the GMA sub-design, whenever there exists a candidate sub-design that satisfies
a stopping rule. Otherwise, a more conservative choice of M is recommended.

By inputting different supersets from Sloane’s orthogonal arrays website (in particular, those
oa.n.s0.q.2 of strength 2), scanning through the sub-designs for s = 3, . . . , s0, a large number
of GMA designs can be found by our orthogonal sub-design selection algorithm. These optimal
designs have resolution III or higher, including both two-level and multi-level cases. It is also
interesting to note that the construction results of [3] can be all reproduced by our algorithm, in-
cluding the GMA designs D(27, 3s) for s = 8, . . . , 12 (cf. Table 1), D(81, 4s) for s = 15, . . . , 20
and D(50, 5s) for s = 3, . . . , 11.

Finally, we report some GMA designs that are new to the FFD literature, as summarized in Table
3. These GMA designs have not appeared elsewhere, to the best of our knowledge. Furthermore,
there is no restriction to choose other superset designs in the search of new GMA designs.
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Table 3
Some new GMA designs to the FFD literature

Superset GMA Design Factor combination

oa.27.13.3.2 D(27, 34) cf. Table 1
D(27, 36)

oa.81.40.3.2 D(81, 336) {2, 8, 16, 37} deleted
D(81, 337) {16, 26, 36} deleted

oa.64.21.4.2 D(64, 45) {9, 16, 17, 18, 19}
D(64, 46) {2, 8, 13, 16, 18, 19}
D(64, 49) {3, 4, 10, 12, 14, 15, 16, 17, 20}
D(64, 412) {1, 3, 4, 5, 6, 7, 8, 9, 11, 17, 18, 20}

5. Conclusion

This paper demonstrates how to apply the classical optimization approach to study the GMA
criterion for FFDs, by employing Lagrange analysis and a strengthening trick to sharpen the
lower bounds. We have shown that the new optimality conditions (17) for orthogonal designs
can be viewed as an extension of weak-equidistance optimality (8) for balanced designs. These
conditions serve as the early stopping rules in our orthogonal sub-design selection algorithm.

Before ending the paper, we discuss several open problems for possible routes of future research.
First, it is interesting to extend the GMA optimality to mixed resolution-III designs D(n, q

s1
1 q

s2
2 ).

One can refer to [9] for this kind of effort in extending the weak-equidistance optimality of
resolution-II designs. Second, optimal conditions for GMA designs with higher resolution (r �4)

can be also analyzed via pairwise coincidences. Similar to the optimization setting (11), one
could focus on the minimization of

∑
i<k �r

ik , subject to the necessary conditions (2) and possible
boundary conditions like (12). However in this case, Lagrange analysis requires analytically
finding the roots of higher-order polynomials. The optimal conditions seem not as obvious as
those for the resolution-II and III designs. Third, the sub-design selection algorithm in Section
4 enumerates a large number of sub-designs,

(
s0
s

)
in total. It becomes not efficient when s0 is

large, in which case we suggested a simple random sampling scheme to reduce the computational
complexity. More advanced algorithms can be developed by incorporating some heuristics. All
these problems are worthy of our future investigation.
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