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Abstract

We find that there exists a soliton-like solution “I-ball” in theories of a real scalar field if the scalar potential sa
appropriate conditions. Although the I-ball does not have any topological or globalU(1) charges, its stability is ensured b
the adiabatic invariance for the oscillating field.
 2003 Published by Elsevier Science B.V.
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1. Introduction

Scalar fields play important roles in theories of t
early universe. It is believed that our universe exp
enced quasi-exponential expansion phase (= inflation)
in its very early stage, which solves the flatne
and horizon problems of the standard cosmology
explains the origin of the density fluctuations of t
universe such as observed by COBE [1] and other
periments [2–4]. The inflationary universe scenario
realized by the vacuum energy of some scalar field
flaton). After inflation, the inflaton starts to oscilla
and decays into other particles which reheat the
verse through thermalization processes.

Similar dynamics is found in the Affleck–Din
mechanism for baryogenesis [5] which is a promis
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candidate for explaining the matter–antimatter asy
metry of the universe. The mechanism makes us
a scalar field (AD field) corresponding to a flat dire
tion in the scalar potential of the minimal supersy
metric standard model. During inflation the AD fie
has a large field value and oscillates when the ef
tive mass becomes smaller than the Hubble param
after inflation. When the AD field starts oscillation, t
baryon number is generated through the baryon n
ber violating term in the potential.

Recently, it was found that the oscillating A
field deforms into lumps of the scalar condens
called Q balls [6–9]. The Q ball is a non-topologic
soliton and its stability comes from the global char
(= baryon number) conservation. The existence of
Q ball is crucial because it may significantly chan
the scenario of the Affleck–Dine baryogenesis [1
The fragmentation into scalar lumps may also ta
place for the inflaton field. In fact, Enqvist et al. [1
 BY license.

https://core.ac.uk/display/82179278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/npe
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


100 S. Kasuya et al. / Physics Letters B 559 (2003) 99–106

n

ge
Q

ther
lar
re

e a
eal
the
on-
re
4]
].
the
alar
on
was
2]
e
if
also

rag-
ns
ce
dy-
asi-
ys a

ar
p.

ia-
6].
in-
, the
the
r
p

s.
o-

on
ll.

he
rm.
he
n-

an
the
an
ing
ting
ed
s

pect

tion

h
is is

m,
he
ity

nce
he

a
em

It
t the
ach

in
ral

e in
ic

are

the
not
ral.
ly
of
pointed out that the oscillating inflaton field ca
fragment into Q balls.

Since the Q ball is stable owing to the char
conservation, the scalar field responsible for the
ball must be complex. Then, a question arises whe
or not a real scalar field deforms into lumps simi
to the Q balls. At first glance, no stable lumps a
formed because any conservation quantities lik
global charge do not exist for the system of a r
scalar field. However, the previous studies on
dynamics of scalar fields showed that some solit
like objects are formed. For example, “oscillons” a
formed for phase the double well potentials [1
and the axion field fragments into “axitons” [15
In both cases the numerical simulations showed
existence of some scalar lumps inside which the sc
fields are rapidly oscillating. However, the reas
why such quasi-stable scalar lumps are formed
not clear at all. Moreover, recently, McDonald [1
pointed out that in a hybrid inflation model th
inflaton field can fragment into scalar lumps even
the scalar field has any conserved charges (see
Ref. [13]).

Thus, it has been seen that real scalar fields f
ment into quasi-stable lumps in numerical simulatio
for various situations. In this Letter, therefore, we fa
the important problem concerning the real scalar
namics, that is, what makes the scalar lump qu
stable? Because the conserved baryon number pla
crucial role for stability of the Q ball, we need simil
conservation quantity to stabilize the real scalar lum
In classical mechanics it is well known that the ad
batic invariant exists for oscillating phenomena [1
As will be seen later, we find that the adiabatic
variant can be extended to the field theories. Then
existence of the stable lump can be explained by
adiabatic chargeI (see Section 2 for definition) fo
the oscillating scalar field. We call this scalar lum
“I-ball”, since the adiabatic chargeI plays the same
role as the globalU(1) charges in the case of Q ball
We obtain the condition on the form of the scalar p
tential for the I-ball formation and derive the equati
which determines the field configuration of the I-ba
In particular, it is found that the adibaticity requires t
scalar potential to be dominated by a quadratic te
We also perform numerical simulations to confirm t
existence of the I-balls for two types of simple pote
tials.
2. Adiabatic charge

In this section we derive the conservation of
adiabatic charge, which guarantees the stability of
I-ball as discussed later. First we shortly review
adiabatic invariant in a mechanical system, accord
to Ref. [16]. Let us suppose that a system is execu
a finite motion in one dimension and characteriz
by some parameterλ(t) which specifies the propertie
of the external field. We assume thatλ varies slowly
enough (i.e., “adiabatically”):

(1)

∣∣∣∣ λ̇λ
∣∣∣∣ � T −1,

where an overdot represents a derivative with res
to time, andT is the period of the motion. Ifλ is con-
stant, the system executes a strictly periodic mo
with a constant energyE. For slowly varyingλ, the
energyE varies slowly, while there is a quantity whic
remains constant, called an adiabatic invariant. Th
written as

(2)I1dim ≡ 1

2π

∮
pdq,

where q and p are the coordinate and momentu
and the integral is taken over the variation of t
coordinate during one period. Note that the periodic
plays an essential role in the proof of the existe
for the adiabatic invariant. Before we go on to t
case of the field theory, it will be useful to discuss
multi-dimensional system. Let us consider a syst
with any number of degrees of freedom{qi,pi},
executing a finite motion in all the coordinates.
is assumed the variables are separable so tha
action can be written as the sum of functions e
depending on only one coordinate. As shown
Ref. [16], the motion of the system is in gene
not strictly periodic, butconditionally periodic since
the system passes arbitrarily close to a given stat
the corse of a sufficient time. In fact, it is period
only if the frequencies of all degrees of freedom
commensurable for arbitrary values of{qi}. In this
case, there exists only one adiabatic invariant in
system. On the other hand, if the variables are
separable, there is no adiabatic invariant in gene
However, if the Hamiltonian of the system differs on
by small terms from one which allows separation
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the variables, the properties of the motion are clos
the periodic motion.

Thus, in order to extend the adiabatic invariant
the case of the field theory, we have to impose
following two assumptions. First, the gradient ene
is always sub-dominant everywhere, since the ac
of a scalar field is separable except the gradient te
Second, the scalar potential is quadratic, which wo
ensure the strictly periodic motion if it were not for th
gradient term. In the following arguments, we ado
these two assumptions.

Let us consider the system of a real scalar fieldφ,
whose motion is finite and characterized by a para
terλ(x, t). We suppose thatλ varies adiabatically, an
that its dependence on the positionx is weak enough
as well. In the limit of constantλ, the motion of the
scalar field is homogeneous and periodic with the
riod T . The Lagrangian is given as,

(3)L = 1

2
∂µφ∂

µφ − V (φ,λ),

(4)V (φ,λ)
∣∣
t<0 = 1

2
m2φ2,

where we assumed that the potential is quadratic w
the mass equal tom before the external fieldλ(x, t)
is turned on att = 0. If λ were constant, the energy
momentum conservation law would be given as

(5)∂νT
µν = 0,

(6)T µν ≡ ∂µφ ∂νφ − ηµνL.
We turn attention to its time component,

(7)∂µj
µ = 0,

(8)jµ ≡ T µ0 = T 0µ = φ̇ ∂µφ − ηµ0L,
where an overdot represents∂t , andηµν = diag(+,−,
−,−). With slowly varyingλ for t > 0, the motion
of the scalar field changes adiabatically. Then
energy–momentum currentjµ is no longer conserved

(9)∂µj
µ = (∂µλ)∂j

µ

∂λ
.

If we average Eq. (9) over the periodT , we have

∂µjµ = (∂µλ) 1

T

t+T∫
t

dt
∂jµ

∂λ

(10)= (∂µλ)
(∮

dφ

˙
)−1 ∮

∂jµ

∂λ

dφ

˙ ,
φ φ
where the overline represents the average over
period of the motion:

(11)Z ≡ 1

T

t+T∫
t

dt Z.

In deriving Eq. (10), we used the two assumptions,
of which states thatλ varies adiabatically:

(12)

∣∣∣∣ λ̇λ
∣∣∣∣ � T −1.

Therefore,λ can be regarded as a constant, wh∮
dφ is integrated over the total motion ofφ during

one period at fixedx. The other assumption is thatλ
depends on the position weakly enough:

(13)

∣∣∣∣∇λλ
∣∣∣∣ � T −1,

whereT can be interpreted as a typical spatial sc
of the oscillating system. This condition is necess
because otherwise the gradient term becomes too
to be negligible. Note that the large gradient te
also changes the value ofφ2 significantly during one
period, leading to the violation of the adiabatici
For a small but non-zero∇λ, the motion is not
strictly periodic, and the deviation from the orb
obtained as ifλ were constant can be estimated
be of the order ofδφ ∼ φT∇λ after one period
We neglect such small corrections, and would like
focus attention on the leading terms in the followi
argument. Thus the motion ofφ is approximated to
be both periodic overT and homogeneous in th
volumeV = [x − T/2,x + T/2]. Hence there are fou
conserved quantitiesJµ ≡ ∫

V T
µ0d3x along the path

of the motion, and one can regard∂µφ as a function of
(φ, Jµ,λ).

By differentiating the equation:jν(φ, ∂µφ,λ) =
J ν with λ, we have

∂jν

∂∂µφ

∂∂µφ

∂λ
+ ∂jν

∂λ
= 0

(14)⇐⇒ ∂jµ

∂λ
= −φ̇ ∂∂

µφ

∂λ
.

In deriving Eq. (14), we have used the relation

(15)
∂jν

∂(∂µφ)
� φ̇δνµ,
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where the non-diagonal components are higher o
in λ̇ and∇λ, and hence we neglect them. With the u
of Eq. (14), Eq. (10) can be rewritten as

∂µjµ = −∂µλ
(∮

dφ

φ̇

)−1 ∮
∂(∂µφ)

∂λ
dφ

⇐⇒
∮ (

∂µλ
∂(∂µφ)

∂λ
+ ∂µjµ 1

φ̇

)
dφ = 0

(16)

⇐⇒
∮ (

∂µλ
∂(∂µφ)

∂λ
+ ∂µjν ∂(∂

µφ)

∂jν

)
dφ = 0.

Hence we have

(17)∂µ

(∮
dφ ∂µφ

)
= 0,

where the time component (µ= 0) is the leading term
and has a definite physical meaning. Thus, we are
to define the adiabatic chargeI as

(18)I ≡ 1

2m

∫
d3x φ̇2,

where the factor 1/m in the definition here is intro
duced to makeI dimensionless. ApparentlyI is con-
served,

(19)
dI

dt
= 0.

3. Conditions for existence of I-balls

With the use of the adiabatic charge derived in
previous section, let us consider the condition t
I-balls are formed. We would like to focus attentio
on λ in the first place. It specifies the properties
the external field, hence the energy of the sys
is no longer conserved for varyingλ (see Eq. (9)).
Alternatively, it could be argued that the role ofλ
is played by the self-interaction of the scalar fie
which must be such that the adiabatic conditions, (
and (13) are satisfied. Then the total energy of
system including the interaction would be conserv
although the energy of the free part varies due to
self-coupling. In other words, there are two invarian
the energy and adiabatic charge for the whole sys
including ‘the external field’.
We assume that the scalar potentialV (φ) is given
as

(20)V (φ)= 1

2
m2φ2 + V1(φ),

where the self-interactionV1(φ) is small enough to
respect the adiabatic conditions. That is to say,
adiabatic conditions are assumed to be satisfied by
dynamics of the system. First, we separateφ into the
rapidly oscillating part (̃P ) and slowly varying par
(Φ) as

(21)φ(x, t)=Φ(x, t)P̃ (x, t).
For the general potentials,̃P might strongly depend
on x, which leads to the large gradient energy(∇φ)2
and violates the adiabatic condition (13). However,
can safely adopt the ansatz that̃P is homogeneou
over a sufficiently large scale in which we are int
ested, since the periodicity of the system is guaran
if the adiabatic conditions are satisfied. Thus,

(22)P̃ (x, t)= P(t),
where P(t) oscillates between−1 and 1 with the
period T . We also define O(1) constantscn (n =
1,2,3, . . .) for the later use.

(23)φ2n = cnΦ2n,

(24)φ̇2 = c1m2Φ2,

where we used the fact that the scalar potentia
dominated by the quadratic term.

We take advantage of the method of Lagran
multipliers to look for the minimum of the energyE
at fixedI , and minimize

Eω =E+ ω̃
(
I − 1

2m

∫
d3x φ̇2

)

=
∫
d3x

((
1− ω̃

m

)
1

2
φ̇2 + 1

2
|∇φ|2 + V (φ)

)
+ ω̃I

=
∫
d3x c1

(
1

2
|∇Φ|2 − ωm

2
Φ2 + V (Φ)

)
(25)+ (ω+m)I,

whereω̃ ≡ ω + m, andV (Φ) ≡ V (φ)/c1. Assuming
the bounce solution is spherically symmetric,

Eω =
∫
dr 4πr2 c1

(
1

2

(
dΦ

dr

)2

+ V (Φ)− ωm

2
Φ2

)
(26)+ (ω+m)I.
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In order to minimizeEω with respect toΦ, we have
to seek for the bounce solution, which is equivalen
solving the equation,

(27)
d2Φ

dr2 + 2

r

dΦ

dr
+ dU

dΦ
= 0,

where

(28)U(Φ)≡ ωm

2
Φ2 − V (Φ).

The bounce solution should satisfy the followi
boundary conditions (see Fig. 1):

(29)
dΦ

dr

∣∣∣∣
r=0

= 0,

(30)Φ(∞)= 0.

Hence, the bounce solution (I-ball solution) exists
the following inequalities are satisfied.

(31)min

[
2V (Φ)

Φ2

]
<ωm<m2.

Now we investigate the constraint on the interact
V1. For the field configuration to satisfy the adiaba
condition (13), we require|(dΦ/dr)/Φ| � m. Since
the spatial scale of the I-ball solution is determined
the mass scale ofU(Φ), this requirement is equivalen
to

(32)

∣∣∣∣d2U(Φ)

dΦ2

∣∣∣∣ ∼
∣∣∣∣d2V1(Φ)

dΦ2

∣∣∣∣ �m2,

where we used the inequality (31). If the interact
satisfies this constraint, the periodicity of the syst
is maintained, and the I-ball configuration whi
minimizes the total energy of the system is also gen
sloping enough.

Lastly, we comment on the cases that the sc
potential is not dominated by the quadratic term.

Fig. 1. PotentialU(Φ).
to here we have shown that the adiabatic invariant
be found for a scalar field with the quadratic poten
in the external field, and that the I-ball configurati
minimizes the energy of the whole system includ
the interaction, which plays a role of the external fie
for the fixed adiabatic invariant. Thus it is not evide
from the preceding arguments whether the lumps
formed for other potentials. However, we perform
the numerical calculations, and found that no qu
stable lumps are formed for the several example
such potentials. Hence this fact strongly suggests
the existence of I-balls is peculiar to the case wh
the quadratic term dominates the potential.

4. Numerical simulation

Now that we have shown that the I-balls minimi
the energy for fixedI , it must be then investigate
whether such soliton-like objects are really form
For this purpose we perform numerical calculat
which follow the time evolution of the system. Th
is a quite non-trivial question, since the requirem
that the system should vary adiabatically and its spa
distribution be gently-sloping enough (“adiabatic
condition”) must be satisfied dynamically. As concr
examples we take both the gravity-mediation l
potential andm2φ2 − φ4 potential.

First let us suppose the potential is given as

(33)V (φ)= 1

2
m2φ2

(
1+K log

(
φ2

2M2∗

))
,

whereM∗ is a renormalization point to define th
mass, and theK term is the one-loop correction whic
is assumed to be negative. The I-ball equation Eq.
reads

(34)

d2Φ

dr2 + 2

r

dΦ

dr
+ω2

0Φ −m2ΦK log

(
Φ2

4M2∗

)
= 0,

whereω0 is defined as

(35)ω2
0 ≡ ωm−m2(1+K).

From numerical calculations, it is suggested tha
Gaussian ansatz is a reasonable approximatio
the I-ball solution for this potential. If we insert th
Gaussian ansatz,

(36)Φ(r)=Φ(0)e−r2/R2
I ,
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Fig. 2. Instability band for the gravity-mediation like potential wi
K = −0.1.

into the I-ball equation Eq. (34), we obtain

(37)

(
4r2

R4
I

− 6

R2
I

)
Φ +

(
ω2

0 + 2Km2

R2
I

r2
)
Φ = 0,

where we have setM∗ =Φ(0)/2. Thus we see that th
same form is obtained in the first and second ter
This requires that

(38)RI =
√

2√|K|m,

which roughly corresponds to the inverse of the m
amplified modekmax, and this correspondence
checked numerically (see Fig. 2). Also the maxim
growth rate of the linear perturbation is estimated
be of the order|K|m in the similar way as in the cas
of Q balls [7,11]. Hence the adiabaticity condition
satisfied for the gravity-mediation like potential.

We perform the numerical simulation to confir
whether the I-balls are formed with the radius obtain
above. For the numerical calculation, we take
variables to be dimensionless as follows.

ϕ = φ

m
, τ =mt,

(39)χi =mxi, κi = ki/m,
whereki is a wave number in thexi direction. The
initial conditions are taken as

ϕ(0)= 1.6× 105 + δ1,
(40)ϕ′(0)= −1

3
+ δ2,
Fig. 3. Spatial distribution of the energy densityρ for the grav-
ity-mediation like potential. Inside the I-balls, the scalar fieldφ os-
cillates rapidly.

where the prime denotes the derivative withτ , and
we setK = −0.1. δ’s are fluctuations which origi
nate from the quantum fluctuations, and their am
tudes are taken to be 10−7 times smaller than the ho
mogeneous mode. We have confirmed that the sm
fluctuations just delay the formation of I-balls. Fir
we check that the adiabatic condition is satisfied
to the linear growth of perturbations. Fig. 2 shows
numerical result of the instability band for the initi
conditions stated above. It can be seen that the in
bility band roughly corresponds to the inverse of
radiusRI obtained analytically. We present the res
of numerical simulation in two dimensional lattices
Fig. 3, from which one can see that the energy den
ρ deforms into lumps, identified as I-balls. Also Fig
represents the profile of the scalar fieldΦ inside the
I-ball, and the analytic solution obtained above agr
quite well with the numerical result, which sugge
the Gaussian ansatz is appropriate. Though the
some deviation in the outer region, it is irrelevant sin
the absolute value of the scalar field is much sma
than that at the center of the I-ball.1

Next we take the following potential.

(41)V (φ)= 1

2
m2φ2 − a

4
φ4 + b

6m2φ
6,

1 Some reasons can be adduced: (1) The adiabatic condi
might not be satisfied well around the surface, since the hom
neous mode is relatively small compared to the fluctuations. (2)
tually the I-balls are not isolated.
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Fig. 4. Profile of the scalar field inside the typical I-ball. The analy
solution (dotted line) agrees very well with the actual profile (so
line).

where we have added theφ6 term for the stability of
the vacuum. Herea is positive to satisfy the conditio
(31). Actually, for negativea, no I-balls are produce
in the numerical simulations. As in the previous ca
we take the variables to be dimensionless as Eq. (
The initial conditions are taken as

ϕ(0)= 1.0+ δ1,
(42)ϕ′(0)= 0+ δ2.

We seta = 0.1, b = 0.005, andδ’s amplitudes are
taken to be 10−5 times smaller than the homogeneo
mode. As long as−φ4 term is much smaller than th
mass term, the growth rateα and the instability mode
k are given by [12]

(43)α(k)�
(

3aΦ2

8m2

)1/2

|k|, 0< k2<
3

2
aΦ2.

Since we takeφ = m as an initial condition,α(kmax)

and
√

k2
max are much smaller thanm, so the adiabatic

ity condition is satisfied up to linear perturbation. T
numerical result of the instability band for the initi
conditions stated above is shown in Fig. 5. We can
that the instability band coincides exactly with that o
tained analytically.

We present the result of numerical calculation
two-dimensional lattices in Fig. 6. The energy de
sity ρ deforms into I-balls in this case, too. We ha
performed numerical simulations with differenta, and
found that all of these results generally look alik
When the I-balls are newborn, they are almost sp
Fig. 5. Instability band forφi = m, φ̇i = 0, a = 0.1 andb = 0.005
in the potential Eq. (41).

Fig. 6. Spatial distribution of the energy densityρ for the
m2φ2 − φ4 potential at time corresponding toτ = 450, when the
I-balls are newborn. Inside the I-balls, the scalar fieldφ oscillates
rapidly.

ically symmetric, and the gradient energy is subdo
inant everywhere, suggesting that our formulation
valid. As the system evolves in time, their shap
deviate from the spherically symmetric one, and
come irregular. Finally, they decay into random pha
where the kinetic, potential and gradient energies
all same order. The lifetime of the I-ballsτ becomes
shorter and they are formed earlier asa increases, bu
its typical value isO(103 m−1) for a = 0.1. This is
consistent with the facts pointed out in Refs. [14,1
that the oscillons and axitons have very long but fin
lifetime. Hence, it is certain that the I-balls for th
type of potential decay in the end. The decay mi
be induced by the small deviation from the adiaba
ity of the dynamics, which induces the decoherenc
the oscillating scalar field inside I-balls. But it nee
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further investigations to make clear how the decay p
ceeds.

5. Conclusion

We have studied the system of a real scalar fi
and found the solution of the quasi-stable scalar lu
I-ball. The stability of the I-ball can be explained b
the adiabatic invariant chargeI , which does stem from
the dynamics of the system, not any symmetries.
the I-ball solution to exist, the scalar potential sho
be dominated by the quadratic term (m2φ2) and satisfy
the condition (31) which is almost same as that for
Q ball.

Furthermore, we have performed numerical sim
lations and have found that the quasi-stable I-balls
really produced and their properties are in agreem
with the theoretical predictions. Since scalar fields p
vail in theories of the early universe, the I-balls may
formed and play important roles in various cosmolo
ical processes [17].
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