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The bacterial pangenome as a new tool for analysing pathogenic bacteria
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Abstract
The bacterial pangenome was introduced in 2005 and, in recent years, has been the subject of many studies. Thanks to progress in next-

generation sequencing methods, the pangenome can be divided into two parts, the core (common to the studied strains) and the

accessory genome, offering a large panel of uses. In this review, we have presented the analysis methods, the pangenome composition

and its application as a study of lifestyle. We have also shown that the pangenome may be used as a new tool for redefining the

pathogenic species. We applied this to the Escherichia coli and Shigella species, which have been a subject of controversy regarding their

taxonomic and pathogenic position.
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Accessory genome Not unique but not in the core genome.
Allopatric Here, means living alone in its ecological niche.
Bad bugs Most dangerous pandemic bacteria for humans.
Closed pangenome Finished pangenome in which there is no change when
new genomes are added.
COG Cluster of orthologous groups.
Core genome The pool of genes common to all the studied genomes

of a given species.
CRISPRs Clustered regularly interspaced short palindromic repeats.
Introduction

KEGG Kyoto encyclopaedia of genes and genomes
MLST Multilocus sequence typing, which is used for the typing

of multiple loci in molecular biology. It is based on
individual phylogenetic analysis or concatenation analysis
of multiple housekeeping genes.

Mobilome All mobile genetic elements of a genome.
MST Multispacer sequence typing; based on highly polymorphic

non-coding sequences.
NGS Next-generation sequencing.
Non-virulence genes Genes associated with non-virulence the deletion of

which favours virulence.
Open pangenome A pangenome increasing when a new genome is added

to the pangenome.
ORF Open reading frame.
Pangenome The repertoire of genes for a group of genomes.
Panmetabolism The repertoire of metabolic reactions for a group

of genomes.
Panregulon The groups of genes co-regulated observed by

transcriptomics analysis.
Resistome Set of all encoding resistance genes to other bacteria.
SNP Single nucleotide polymorphism. Variation of only

one base.
Species A homogeneous group of isolates characterized by a

phenotypic and genetic resemblance.
Sympatric Here, means living in a large community in its niche.
TA modules Toxin/antitoxin modules.
The emergence and development of next-generation
sequencing technologies (NGS) made the reconstruction of

genomes much easier and more accessible than previously [1].
Concerning the study of bacteria, possession and study of more
than ten different genomes from the same species is easy, which

provides enough data to perform comparisons [1]. Studies of
pangenomes arose from these new possibilities and reflect the

notion of bacterial species more accurately [2,3]. It is strongly
recommended to include a number of genomes in studies to

better identify the diversity and composition of the global gene
repertoire [1]. The name was quoted in 2005 by Tettelin et al.

[4], where a clear definition of the pangenome is given. The
pangenome (or supragenome) [5,6] has been defined as the
whole gene repertoire of a study group [1,2,7]. In this review,
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TABLE 2. Summary of all the pangenomes studies about

bacterial genus

Genus References Phylum Class
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we study the notion of the bacterial pangenome, which is

rapidly growing today (Box 1).
A pangenome can be defined as open or closed (infinite or

finite [9]), according to the species’ capacity to acquire
BOX 1. Overview of pangenome chronology

Between September 2005 and March 2013, the pangenomes of
41 bacterial species and 12 bacterial genera were published.

Among these species and these genera, Proteobacteria are the
best represented with, respectively, 49% and 42%. Among

these Proteobacteria, the Gamma-Proteobacteria are over-
represented with 75% prevalence. Most of the bacteria stud-

ied were pathogenic, such as Haemophilus influenzae [5] and
Coxiella burnetii [8], and/or bacteria of general interest like
Escherichia coli [16]. There is a wide difference between the

number of reported species or genera. Some species or genera
were heavily studied, such as E. coli [16] and Staphylococcus

aureus [80]. Tables 1 and 2 summarize the publications. There
has been a strong increase in the studies since 2009.

TABLE 1. Summary of all the pangenomes studies about

bacterial species

Species References Phylum Class

Escherichia coli [8,16,65] Proteobacteria Gammaproteobacteria
Streptococcus pneumoniae [8,79] Firmicutes Bacilli
Salmonella enterica [8,36] Proteobacteria Gammaproteobacteria
Staphylococcus aureus [8,80] Firmicutes Bacilli
Helicobacter pylori [8,81] Proteobacteria Epsilonproteobacteria
Vibrio cholerae [82] Proteobacteria Gammaproteobacteria
Mycobacterium tuberculosis [83] Actinobacteria Actinobacteria
Yersinia pestis [8,73] Proteobacteria Gammaproteobacteria
Acinetobacter baumannii [8,84] Proteobacteria Gammaproteobacteria
Chlamydia trachomatis [34] Chlamydiae Chlamydiia
Bacillus cereus [1,8] Firmicutes Bacilli
Streptococcus pyogenes [8,54] Firmicutes Bacilli
Listeria monocytogenes [85,86] Firmicutes Bacilli
Haemophilus influenzae [5] Proteobacteria Gammaproteobacteria
Pseudomonas aeruginosa [87] Proteobacteria Gammaproteobacteria
Enterococcus faecium [88] Firmicutes Bacilli
Clostridium difficile [89] Firmicutes Clostridia
Francisella tularensis [8] Proteobacteria Gammaproteobacteria
Campylobacter jejuni [8,90] Proteobacteria Epsilonproteobacteria
Bacillus anthracis [4] Firmicutes Bacilli
Clostridium botulinum [8] Firmicutes Clostridia
Buchnera aphidicola [8,91] Proteobacteria Gammaproteobacteria
Actinobacillus

pleuropneumoniae
[92] Proteobacteria Gammaproteobacteria

Legionella pneumophila [35] Proteobacteria Gammaproteobacteria
Streptococcus agalactiae [4,93] Firmicutes Bacilli
Streptococcus suis [94] Firmicutes Bacilli
Sinorhizobium meliloti [66] Proteobacteria Alphaproteobacteria
Aggregatibacter

actinomycetemcomitans
[95] Proteobacteria Gammaproteobacteria

Bifidobacterium animalis [96] Actinobacteria Actinobacteria
Prochlorococcus marinus [8] Cyanobacteria Prochlorales
Ralstonia solanacearum [97] Proteobacteria Betaproteobacteria
Rhodopseudomonas

palustris
[8] Proteobacteria Alphaproteobacteria

Coxiella burnetii [8] Proteobacteria Gammaproteobacteria
Erwinia amylovora [98] Proteobacteria Gammaproteobacteria
Corynebacterium

pseudotuberculosis
[99] Actinobacteria Actinobacteria

Lactobacillus casei [100] Firmicutes Bacilli
Salmonella paratyphi [101] Proteobacteria Gammaproteobacteria
Oenococcus oeni [102] Firmicutes Bacilli
Staphylococcus epidermidis [103] Firmicutes Bacilli
Corynebacterium

diphtheriae
[104] Actinobacteria Actinobacteria

Tropheryma whipplei Actinobacteria Actinobacteria

Streptococcus [93] Firmicutes Bacilli
Salmonella [36] Proteobacteria Gammaproteobacteria
Vibrio [82] Proteobacteria Gammaproteobacteria
Pseudomonas [105] Proteobacteria Gammaproteobacteria
Burkholderia [106,107] Proteobacteria Betaproteobacteria
Bifidobacterium [108] Actinobacteria Actinobacteria
Chlamydiae [34] Chlamydiae Chlamydiia
Campylobacter [9] Proteobacteria Epsilonproteobacteria
Listeria [48] Firmicutes Bacilli
Dehalococcoides [109] Chloroflexi Dehalococcoidetes
Mycoplasma [110] Tenericutes Mollicutes
Caldicellulosiruptor [111] Firmicutes Clostridia
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exogenous DNA [2,10], to have the machinery to use it [10]

and to possess a large amount of rRNA [10]. The open or
closed nature of a pangenome is bound to the lifestyle of the

studied bacterial species [2,7,10]. Moreover, the allopatric
species that live isolated in a narrow niche usually have a small
genome and a closed pangenome, because they are specialized

[7,10]. Sympatric species, living in a community, tend to have
large genomes and an open pangenome, a high horizontal rate

of genes transfer and several ribosomal operons [7,10].
These studies pose the question of the nature of bacterial

species definition. In contrast to the world of Eukaryotes,
where this term has been defined relative to fertility [11], the

case of Prokaryotes seems to be much more difficult [12].
Usually, bacterial species are defined on the basis of gene
contents, phenotypic characters, the nature of the ecological

niche and the 16S ribosomal RNA sequences [11,12]. A bac-
terial species has been defined as ‘a group of isolates which are

characterized by a certain degree of phenotypic resemblance,
by a level of 70% DNA-DNA hybridization and by an identity of

at least 97% between 16S rRNA sequences’ [13,14] or, more
recently, 98.7% [3]. This definition can be applied globally to

obligatory pathogens that live in a very narrow ecological niche
[11] (allopatry) [13]; there is no real reason for the different

adaptation and diversification processes to result in rather
coherent groups at the phenotypic and genetic level so they can
be designed as a species. Some authors have defined species

based on genomic coherence [13], isolate proximity [12] and
the ecological niche [11]. We believe that the pangenome

represents a new approach to species definition. Indeed, pan-
genomic studies offer a rather wide panel of possibilities, like

predicting the allopatric or sympatric nature of a bacterium, and
precisely determining the genomic contents of a group. Based

on such results, it is not unrealistic to consider narrowed and
closed pangenomes being defined as a species.

Moreover, as quoted by Dagan and Martin [15], a tree based

on only one gene or on whole ribosomal protein-encoding
genes is too simplistic and not representative of reality. In
lf of European Society of Clinical Microbiology and Infectious Diseases, NMNI, 7, 72–85
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contrast, pangenome study with different tools may help to

define species. Quantum physics is a rift from classic physics
and is known to be unintuitive. In quantum physics, we observe

that there is no progressive state for an electron between two
orbits, because it performs quantitative leaps. It is also shown

that the atom does not act as a classic system, which can ex-
change energy continually.

These physical phenomena fit our definition of the species

description used here. Indeed, when we studied the pangenome
and we calculated the core/pangenome ratio on theoretically

identical species genomes, we did not always obtain a linear
graph as expected, instead we saw a break event. When the

break is clear, we may conclude that we are faced with two
different species.

Here we will present the various methods of analysis, the
bioinformatics and experimental tools and the link between
pangenome, lifestyle and taxonomy.
Tools
Choice of study subjects
Number of species. We selected 27 bacterial species and

compared the core/pangenome ratio depending on the number
of tested genomes (Fig. 1) to find the minimum number of
genomes necessary for a comprehensive analysis. We noted

that in the case of a very closed pangenome (core/pangenome
ratio between 100% and 98%), two genomes may be sufficient,

and for a closed pangenome six strains seemed sufficient. For an
FIG. 1. Study of the core/pangenome ratio function of the number of genome

reaching a plateau.

New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on behalf of
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open pangenome, it is more difficult to determine this number

of necessary strains. If the pangenome is large, precise analysis
can be possible on the basis of ten strains, but in the case of an

infinite open pangenome, it is not possible by definition to close
it (Fig. 2). This questions the reality of a species such as

Escherichia coli, for example.

Which strains?. Once the number of isolates has been defined, it
is necessary to carefully select strains. Several criteria may be
considered. First, if the study involves a pathogen, it can be

relevant to include the clinical aspects, as different strains of the
same species can cause different diseases. This is the case for

E. coli [16], where commensal and pathogen isolates can be
selected. Among the pathogenic strains, five different clinical

groups [16] were selected. Strains also frequently have different
geographical origins, like Coxiella burnetii and Yersinia pestis.

These ‘geotypes’ are usually related to genotypes. A genotype
can be defined by different methods: pulsed field gel electro-

phoresis [17], multilocus sequence typing [18], multispacer
sequence typing [19–21] or single nucleotide polymorphisms
(SNPs) of the core genome [22]. For C. burnetii, every multi-

spacer sequence type is defined by 10 ‘cox’ sequences. Finally, it
is also possible to use the phenotype including antibiotic

resistance or in stress conditions. These four criteria open a
wide range of possibilities and it is interesting to select a large

panel of strains to describe the pangenome diversity.

Interest of new species analysis. The real-time genomic base been
used during epidemics to discover why and how an isolate was

able to cause such an event and, at best, to be able to identify
s added in several bacterial species. A closed pangenome is defined when

European Society of Clinical Microbiology and Infectious Diseases, NMNI, 7, 72–85
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FIG. 2. (a) Shigella flexneri. (b) All Shigella. (c) Escherichia coli and E. coli + Shigella. In black, the trend curves, in blue the core/pangenome ratio, in red the pangenome and in green the core. Number at left

corresponded to percentage and number at right corresponded to number of genes.
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specific genetic markers. There are two recent examples of

public health use of pangenome analysis: the pandemic in Haiti
caused by Vibrio cholerae [23] and the German epidemic caused

by E. coli [24]. Respectively, 23 and 40 genomes were used for
these analyses of comparative genomics. During these studies,

authors determined the gene content and they placed the iso-
lates of interest in a biotype [23] or an existent pathotype [24].
In the case of V. cholerae, all the Haitian clones were clearly

related to Nepal [23]. The E. coli isolate from the German
epidemic was an emerging clone clustering with an enter-

oaggregative E. coli pathotype [24].

Microarrays
Chip technology entered during the pangenomic era, and new
tools for designing probes were created. In 2007, PRODESIGN

[25] was put into circulation. It is a free online tool (http://

www.uhnresearch.ca/labs/tillier/ProDesign/ProDesign.html)
that can be used to select probes in order to detect the

members of gene families in environmental samples. This allows
the detection of several gene families simultaneously and spe-

cifically in one or several genomes. Moreover, the length and
temperature of the probes does not need to be predefined.

This tool was, for example, used in a study in 2011 on Deha-
lococcoides [26], to detect and characterize these bacteria in the
contaminated sites. A second tool was created in 2009: the

PANARRAY [27]. It is a probe selection algorithm that can target
several complete genomes with a minimum number of probes.

Although microarrays are built on the basis of gene family
clusters, PANARRAY uses an approach based and centreed on

probes independently of annotation, gene clustering and multi-
alignments. This tool works as well for the known isolates as

the unknown; it has been tested on 20 isolates of Listeria
monocytogenes and also on C. burnetii [28,29]. Finally, obtaining

data from the microarray approach requires particular and
specific analyses, new genes cannot be found. For this purpose,
PANCGH [30] was developed in particular in 2009 as well as an

associated Web application, PANCGHWEB [31], in 2010. The use
of microarrays is only valid for closed pangenomes.

Bioinformatics tools
Composition and annotation. In the first place, searching for

orthologues is a crucial step because it allows an estimation of
pangenome composition (number of core and secondary
genes). To find them, the most commonly used methods

consist of one or several sorts of BLAST [32] or OrthoMCL
[33]. There are many possibilities available for the annotation

step [9,34–36], although COG (Cluster of Orthologous
Groups) [37], InterPro [38] and KEGG (Kyoto Encyclopaedia

of Genes and Genomes) [39] are the most frequently used.
These tools, in particular COG and KEGG, allow a more
New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on behalf of
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detailed study of the functional distribution within the core and

within the accessory genome. It is possible to look at the dif-
ference of distribution in the COG categories [34,35] and at

the metabolic pathways [34,35].
Study of the metabolic pathways is not sufficient, however. It

is also important and informative to examine protein expres-
sion regulation and transcription factors. Moreover, their
absence or their presence in one or several isolates can help to

explain some isolate characteristics. The online tool P2RP
(Predicted Prokaryotic Regulatory Proteins) [40], which

became available in 2013, was specially developed to offer a
method for simply, quickly and effectively searching for these

kinds of proteins that is accessible to all and not only to bio-
informatics specialists. The tool covers complete genomes as

well as protein sequences and gives detailed and clear outputs.

Alignment and phylogeny. Turning our interest to genome
alignment. We can choose a global alignment with MAUVE [41]

(or use it for comparison [35]), or we can try a multiple
alignment (using CLUSTAL [36]) to perform phylogeny. Most of
the time, for phylogeny, MEGA [42] or MAFFT [43] are rec-

ommended for tree reconstruction. We can use different al-
gorithms: neighbour joining [36] or maximum parsimony. The

search for SNPs in the core genome can be used to estimate
the age of species of interest [44]. However, for this kind of

analysis it is necessary to possess genomes of very close species
to be able to produce a phylogenetic tree and study in detail the

mutational events that led to the separation into two different
species. This kind of work has been carried out on Y. pestis, in
which a comparative analysis was conducted with Yersinia

pseudotuberculosis and Yersinia enterocolitica [45].

Resistome and mobilome. To study the resistome, there are
databases such as the ARDB (Antibiotic Resistance Genes

DataBase) [46], which can be used to look specifically for genes
of resistance present in isolates of interest. This database was

used, for instance, for Mycobacterium tuberculosis [47].
Finally, it is also important to study the mobilome [48]. This

represents the set of all the mobile elements (and hence selfish
genes) contained in the studied genomes. Generally, we look

for the clustered regularly interspaced short palindromic re-
peats (CRISPRs) with CRISPRs finder [49], phages with PHAST
[50] or RAST [51] and insertion sequences with IS finder [52].

Dedicated software. The increase in the number of pangenomic

studies led to the development of automated tools, which are
more or less specialized. The first one, PANOCT [53] (pan-

genome orthologue clustering tool), is a tool completely dedi-
cated to orthologue searches. There is no online version, but

the source code is available at http://panoct.sourceforge.net/.
Acinetobacter baumannii isolates were tested and compared with
European Society of Clinical Microbiology and Infectious Diseases, NMNI, 7, 72–85
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other tools for orthologue detection. For paralogue detection,

PANOCT comes first in terms of accuracy and absence of er-
rors [53]. A second tool, less specialized, the PGAP (pan-

genomes analysis pipeline) [54], offers the user the possibility to
obtain five types of data: clusters of gene functions, species

evolution, pangenome profile, and the genetic variation of
functional genes. This automatic pipeline, tested on Strepto-
coccus pyogenes, is interesting because all the analyses are per-

formed through a single line of command; moreover, it is
possible to adapt the parameters to one species. Finally there is

the PANSEQ tool (pangenome sequence analysis program) [55],
an online tool (http://lfz.corefacility.ca/panseq/) that allows the

user to proceed with three sorts of analyses: search for new
regions, allowing the detection of unique zones; analysis of the

core and the pangenome, giving information about the SNPs in
the core or the distribution of accessory genes; and, finally, a
selector of loci allowing us to find those discriminating between

selected genomes.
Pangenome Composition
A pangenome is usually divided into three parts [1,2,7]: the

core genome, gathering all genes common to all strains of the
study; the secondary, called the accessory genome [1,2], which

contains genes present between two and n–1 strains; and the
unique genes, which are present only in a single strain. Inside

the pangenome, we can study different features such as resis-
tome, the mobilome and the global metabolism.

Toxin/antitoxin systems
Toxin/antitoxin (TA) genes are small genetic elements that are
divided into five groups [56], based on antitoxin nature (small

RNA or small protein) and on the interaction type. The type II
TA module is the most studied. TA-toxins target different

cellular processes depending on their type: ATP synthesis,
translation, replication (type II), cytoskeleton (type IV) and

peptidoglycan synthesis (type II) [56]. TA modules have
different functions, for instance plasmid stabilization and, in the

chromosome, mediation of superintegron stabilization [56].
Superintegrons often encode proteins with an adaptive function
like virulence, resistance and often contain TA modules. They

are also toxic for the host of the bacteria [57]. Comparison of
the ‘bad bugs’ against control species showed that pathogenic

capacity is not due to ‘virulence factors’ (which are periodically,
very often, more numerous in non-pathogenic bacteria [58]),

but due to a virulent gene repertoire caused by a reduced
genome repertoire [59]. ‘Virulence factors’ is a misleading

definition, except for toxins, which may have a direct effect
[59]. In 2011, for the first time [60], TA modules were
New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on beha
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correlated to the pathogenics of some bacteria. Indeed, most of

the bad bugs contained significantly more TA modules than
their controls [60].

Non-virulence genes
Non-virulence genes are part of an emerging concept where
gene expression decreases virulence in the ancestor, and they

are lost in pathogenic strains [61]. Their deletion is associated
with increased virulence. Originally identified in Shigella [62]

(lysine decarboxylase), a non-virulence gene may help explain
pathogen evolution. It has been described later [62] in Salmonella,

Y. pestis and Francisella tularensis. Non-virulence genes can have
different roles and be involved, for instance, in metabolism and

biofilm synthesis [62]. There are 12 well-known non-virulence
genes. A detailed definition of what a non-virulence gene is and
what it is not has been proposed [62]. Globally, suppressors and

non-functional genes in the ancestor are not, whereas deleted,
inactivated or differentially regulated genes may be candidate

non-virulence genes. To identify putative non-virulence genes, a
reference genome is needed. Then, a very detailed genomic

analysis is required on all the sequenced strains [62].

Resistome
Resistome is the term used to indicate all the resistance

mechanisms that can be found in an organism [47,63,64]. In a
recent study [64], the resistome of 412 multi-resistant bacteria

found in four cultivable grounds, four urban soils and two
pristine environments was performed, testing 23 antibiotics,

considering the large amount of resistant pathogenic isolates
[63]. This kind of study was carried out for M. tuberculosis in

2013 [47]. The emergence of multidrug-resistant strains
prompted the study and 53 genes of resistance have been

found, most of these genes (60%) coding for acetyltransferases,
having a common ancestral core.

Core and panmetabolism
By analogy with the definitions of the core and the pangenome,
the panmetabolism includes all the metabolic reactions that are

present in the group of studied organisms, whereas the core
contains only the reactions common to all isolates. A complete

study was performed on the core and the panmetabolism of
E. coli [65], including 29 species. The authors found a pan-
metabolism comprising 1545 reactions, including 885 that

belong to the core. The authors noticed that the proportion of
core genes and the nature of the pangenome (open or closed)

did not reflect panmetabolism distribution. For E. coli, for
example, known to have an ‘infinite’ pangenome, they found a

large number of core reactions but, as expected, a low number
of core genes. They concluded that diversity was lower at gene

level than at metabolic level.
lf of European Society of Clinical Microbiology and Infectious Diseases, NMNI, 7, 72–85
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Panregulon
Another developed analogy to the pangenome was the pan-
regulon [66]. Studies were either centred more on the core

regulon [67] or on the complete panregulon [66]. The pan-
regulon includes all genes controlled by a particular factor of

transcription in the studied genomes [66]. In the first work
[67], eight isolates of Listeria monocytogenes were tested, the
core regulon consisted of 63 genes, with a panregulon of 425

genes. In a second study [66] on Sinorhizobium meliloti they
studied the pangenome and the panregulon at the same time.

Based on three isolates, they described a core genome that
consisted of 5124 genes and a pangenome of 7824 genes. The

panregulon is extremely small compared with the pangenome.

Example of pangenome study: Legionella pneumophila
In 2010, using 454 technologies, five complete genomes of

L. pneumophila [35] were sequenced. It is an intracellular bac-
terium, a human pathogen that lives in sympatry with other

microorganisms within amoebae [68]. Legionella pneumophila
has an open pangenome. Based on the study of orthologues and

helped by BLAST, the core was determined as well as the
accessory genome. This was used to describe a core genome

that would include 1979 genes, representing 66.9% of the total
genome, and a dispensable genome consisting of 978 genes
(33.1% of the genome), for which COG categories were

assigned. The genome annotation revealed an important num-
ber of hypothetical proteins. Most of the genes in the accessory

genome belonged to genomic islands, divided into six cate-
gories: three different islands connected with drug resistance,

one with secretion and transport of heavy metals, three islands
with DNA transfer, two CRISPRs systems, seven phage-related

systems and 13 islands with no identified function. With regard
to these results, authors were able to conclude that the

persistence and virulence of L. pneumophila is coded by the core
genome.
Pangenome for Taxonomy of Pathogenic
Species: the Case of Escherichia and Shigella
Historical taxonomy
For historical reasons related to pathogenicity and particular
morphological and biochemical characters, Shigella species were

classified in a separate genus from E. coli. Whereas E. coli are
usually prototrophic, mobile and ferment many carbohydrates
with gas production, Shigella are auxotrophic and can produce

gas during glucose fermentation. Hence, Shigella spp. have many
‘negative’ characteristics compared with E. coli. They are not

motile, never grow on the synthetic medium Simmons citrate,
lack the activities of phenylalanine deaminase or tryptophan,
New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on behalf of
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urease, or lysine decarboxylase, and do not produce H2S. The

division of Shigella into four species was based on biochemical
and antigenic characterization. These species are divided into

serotypes based on a characteristic factor O. However, the
distinction between Shigella and E. coli, especially the enter-

ohaemorrhagic invasive E. coli EIEC, is somewhat specious. The
O antigens of certain serotypes of Shigella are identical or highly
related to those of E. coli. Like EIEC, Shigella causes the dys-

entery syndrome that consists of fever, diarrhoea with blood,
pus and mucus in faeces. The mechanism of Shigella pathoge-

nicity is identical to that of EIEC. They enter into epithelial cells
to the lamina propria, triggering a major local inflammatory

reaction that can lead to abscess formation and ulceration in
the colon. Shigella should be included in the E. coli group. Their

individualization was maintained only for practical reasons of
medical diagnosis.

Ancient criteria
‘Ancient criteria’ are for example pathovars, phenotypically and
biochemically based criteria used to distinguish between E. coli

and Shigella spp. before genomic criteria. A first genomic cri-
terion was G+C content. Based on GC% comparison between

strains, it can be classified as the same species or not [3].
Variation is lower than 2% within E. coli (50.4–51.2) and
including Shigella (50.4–51.2). Variation is lower than 1% within

Shigella (50.7–51.1).
Shigella spp. are indistinguishable from E. coli by DNA/DNA

hybridization [69]. In the 16S identity matrix comparing all
strains, we noticed that the lowest identity was 98.83%. The

minimal 16S identity within E. coli was 99.41% between E. coli
IHE3034 and E. coli UMNK88, whereas the minimal identity

between E. coli and Shigella was 99.03% between E. coli O26
H11 11368 and Shigella dysenteriae Sd197. The identity between

E. coli and Shigella spp. exceeds the cut-offs used to classify
bacterial isolates at the genus and species levels on the basis of
16S rRNA gene sequence identity values (95 and 97% or 98.7%,

respectively). In general, Shigella and E. coli appear to belong to
the same species and some Shigella were closer to some E. coli

than to some other Shigella.

New pangenomic criteria
To use pangenome for taxonomy, we clustered our genomes
based on COG and KEGG data. In both cases, Shigella was
included inside the E. coli cluster and did not constitute a

separate group. Then, we looked at the phylogenetic tree based
on the concatenation of the core gene SNPs (not shown);

Shigella did not constitute a unique cluster, instead the species
tended to be distributed among the different E. coli clusters.

Then, we calculated the distance between genomes on the basis
of nucleic sequence identity, which revealed that some E. coli
European Society of Clinical Microbiology and Infectious Diseases, NMNI, 7, 72–85
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(26 out of 42 genomes) were closer to Shigella (with more than

90% similarity) than to some other E. coli (with around 80%
similarity). The principal coordinate analysis, based on the

nucleotide similarity between genomes, showed several
different clusters including two clusters containing a mix of

Shigella and E. coli species.

Pangenome and taxonomy
Thanks to USEARCH [70] for protein de-replication, followed

by a tBLASTn with a 10E-3 E-value, we determined the core/
pangenome ratio, the pangenome and the core genome values

after each added strain for E. coli, E. coli + Shigella, Shigella and
Shigella flexneri (Fig. 2). For each curve (core, pangenome and

ratio), we looked for the best R2 (coefficient of determination)
in order to determine the most accurate regression type. We
also calculated the average rift between the core and the pan-

genome curves.
In all cases, the pangenome curve is described as a linear

function whereas those from the core and the ratio are
described by power functions. When it is a single species, like

S. flexneri (Fig. 2a), core, pangenome and ratio curves matched
perfectly with their trend curves corresponding to their func-

tion. First, in Fig. 2(b), the ratio and the pangenome curves
showed that there are different species, because at some points
curves did not follow the trend curve. Then, in Fig. 2(c), the

addition of nine Shigella to the 42 E. coli samples creates a break
in the pangenome and ratio curves. This is in correlation with

the disappearance of 543 functions, 216 from E. coli and 327
TABLE 3. Ratio core/pangenome of several bacterial species accor

Species Genome used Lifestyle

Prochlorococcus marinus 12 Sympatric
Clostridium botulinum 14 Sympatric
Rhodopseudomonas palustris 7 Sympatric
Sinorhizobium meliloti 6 Sympatric
Salmonella enterica 20 Sympatric
Acinetobacter baumannii 11 Sympatric
Legionella pneumophila 11 Sympatric
Escherichia coli 19 Sympatric
Bacillus cereus 12 Sympatric
Campylobacter jejuni 14 Sympatric
Clostridium difficile 18 Sympatric
Helicobacter pylori 10 Sympatric
Haemophilus influenzae 9 Sympatric
Streptococcus pneumoniae 10 Sympatric
Pseudomonas aeruginosa 7 Sympatric
Streptococcus agalactiae 5 Sympatric
Listeria monocytogenes 20 Sympatric
Francisella tularensis 13 Sympatric
Yersinia pestis 12 Allopatric
Coxiella burnetii 7 Allopatric
Tropheryma whipplei 19 Allopatric
Mycobacterium tuberculosis 20 Allopatric
Buchnera aphidicola 8 Allopatric
Bacillus anthracis 9 Allopatric
Rickettsia rickettsii 8 Allopatric
Chlamydia trachomatis 20 Allopatric
Rickettsia prowazekii 8 Allopatric

a% is the ratio core/pangenome.
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from Shigella. Indeed, the standard deviation between the core

curve and the pangenome curve has only a 1% variation be-
tween the two conditions (with or without Shigella).

Finally, with the addition of a second E. coli we can see there
is a great decrease (15%) in the ratio, whereas in a homoge-

neous species, like S. flexneri, this decrease is only 2%.
In conclusion, we focused on the fact that E. coli is not a

homogeneous species, with these variations between trend

curves and ratio (or pangenome curve), compared with
S. flexneri, which is a homogeneous species. There is also a

breakpoint in the ratio and pangenome curves. Mathematically,
this corresponds to the start of a new function. Here, this

points to the start of a new species, which may be explored
further as a new species criterion to define species.
Relations Between Pangenome and Lifestyle
Ratio
Finally, based on the ‘backbone files’ [44] of MAUVE, we
calculated the size of the core and the pangenome of 27 species

(Table 3). After determining the core/pangenome ratio (Table 3),
we noticed that the species with a closed pangenome possessed

a ratio �89% and that they were all allopatric. For instance, the
species raising the smallest ratio (5%) was a sympatric bacterium
that lived in a marine environment. This ratio is based on both

coding region and intergenic regions. We also calculated a ratio
only with the coding part, based on the core genes.
ding to their life style

Intracellular Niche %a

no Marine environment 5
no Soil 11
no Soil, marine environment 46
no Soil 49
facultative Animals 62
no ? 65
facultative Amoeba 69
no Animals 70
no Soil 74
facultative Human, chicken 76
no Human gut 77
facultative Human 78
facultative Human 80
no Human 82
no Water 84
no Human 84
facultative Amoeba? 84
facultative Ticks 87
facultative Rodents 89
yes Animals 90
yes Human 94
yes Human 96
yes Aphid 98
no Animals 99
yes Ticks 99
yes Human 99
yes Human 100
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Pangenome size and lifestyle
The size of a pangenome is strongly related to the balance
existing between gene gain and loss events (Fig. 3). When an

ecosystem becomes different (Fig. 3), some functions can then
become useless and eventually be lost. In contrast, when the

bacteria are in a very diverse environment with many partners,
gain events are common (Fig. 3). The genome size is also
strongly connected to the selfish genes, which are parasitic and

constitute the mobilome (see above). Phages, integrases and
transposases contribute to the increase in genome size and are

the consequence of life in community. Usually, the more
partners there are, the greater the probability of acquiring

parasitic DNA. A sympatric bacterium will then have a wide and
open pangenome and will possess a quite consequent mobilome

as well as more defence mechanisms (CRISPRs) than intracel-
lular and allopatric species, which will have a small and closed
pangenome [44].

Case of ‘bad bugs’
It is known that intracellular bacteria possess fewer genes for

transcription [71] and there is a decrease of genes involved in
metabolism [72]. In 2011, a study of ‘bad bugs’ (targeting the 12

most dangerous bacteria for human beings) [59] was conduct-
ed. Globally, it was noticed that the virulent isolates tend to
have a reduced genome compared with their commensal

counterparts, but above all that there are functional reductions.
Indeed, of the 23 tested COG categories [59], a decrease in

gene number was found in ten, specifically for transcription and
amino acid metabolism. It was noted that the genes lost from

the ‘bad bugs’ mainly encode for the metabolism and transport
functions.
New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on behalf of
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Pangenome and Lifestyle Examples, Yersinia
pestis and Bacillus anthracis
Yersinia pestis [73], the plague’s agent, was studied in 2010. After

sequencing 14 genomes, assembly was carried out using CELERA

assembler [74] and annotation using the MANATEE tool (http://

manatee.sourceforge.net/). After global alignment of genomes
using MUMMER [75], pangenome composition was predicted

using WU-BLASTp and tBLASTn. The core genome consists of
3668 genes and, as for every closed pangenome, the addition of
new isolates changed almost nothing.

Although Y. pestis lived in the soil, it had a closed pangenome
reflecting an allopatric lifestyle. This was the same as

B. anthracis, which lived in a dormant form in the soil and which
multiplied in its host. Hence, the pangenome makes it possible

to determine if a bacteria is just resting and not multiplying in an
environment with many other microorganisms (such as soil or

water) or if it is active. Take B. anthracis for instance, which lives
in the soil in a dormant sporulated form. When it becomes

active and multiplies in its host, it has few chances to exchange
genes. Therefore the B. anthracis pangenome is closed with a
core/pangenome ratio of 99%.
Conclusion: a Quantic Perspective for
Taxonomy of Pathogenic Species
Pangenome studies have become almost essential for bacterial

genome comparisons. After carefully choosing the strains of
interest, we can select an experimental method such as a
FIG. 3. Summary of the difference between

closed and open pangenome.
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microarray [26] or bioinformatics-based method (Fig. 4). Bio-

informatics offers tools serving general [37] and dedicated
[53,54] purposes. Thanks to these analyses, study of pan-

genomes can provide different kinds of data and increase our
knowledge and understanding of a species.

First, the size of a genome is directly correlated to its ca-
pacity to acquire, or not, exogenous DNA, to gain and loss
events and to the presence of selfish genes. The pangenome

size depends on all these parameters. Hence, depending on its
size and on its type (open or closed), we can determine the

species’ lifestyle (allopatry or sympatry), and also have an idea
of the number of genomes we need to have the best view of

real genomic content (Fig. 3).
Pangenome study also allowed us to find the resistome [47],

the non-virulence genes [62] and the mobilome [48] (to
determine selfish genes) of a group of strains(Fig. 4). Sometimes
it is possible to extrapolate the age of clones by studying SNP in

the core genome. Moreover, by analogy with the pangenome
FIG. 4. Strategy of analyses of the

pangenome.
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concept, the panmetabolism can be described, giving a large but

detailed view of all common metabolisms and/or differences in
the strains of interest.

By grouping all these genomic data and the lifestyle infor-
mation, it may be possible to redefine species and classify them

depending on their genomic content. Indeed, groups of strains
with a core/pangenome ratio of 100 or 99%, with a very
reduced mobilome and with an identical gene content may be

considered to be one species. However, in the case of an
infinite pangenome, such as E. coli, or in the case of a very small

ratio (5%) like Prochlorococcus marinus, can we talk about species
yet? Instead of a single species, do we have a complex of spe-

cies? Definitions of species were often reached using old tools.
Moreover, some species are, by nature, non-homogeneous (in

the case of sympatric species). So redefining species [76] may
be an interesting perspective for the future, using a combination
of pangenomic data, phylogeny and phylogenomics (unpublished

data).
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Besides redefining species, the second important key to the

study of the pangenomes is to see what is not visible at first
glance. Take B. anthracis for example, which lives in a niche

appearing sympatric (the soil) [77] but remains dormant in
spore form and has a very closed pangenome. Conversely,

L. pneumophila is intracellular, but it is metabolically active in its
niche (amoeba) [68,78] and has an open pangenome. The
pangenome therefore also provides an alternative method for

analysing lifestyle, which is not simply looking at the apparent
predicted niche.
Future Perspectives
In terms of future perspectives, we can consider applying the
pangenome to the reclassification of other bacterial pathogenic

species or genus, such as Salmonella.
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