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ABSTRACT 

In au earlier work, the authors have introduced a coordinate-free, module-theoretic 
definition of zeros for the transfer function G(s) of a linear multivariable system 
(A, B, C). The first contribution of this paper is the construction of an explicit 
k[ z]-module isomorphism from that zero module, Z(G), to V*/R*, where V* is the 
supremal (A, @-invariant subspace contained in ker C and R* is the supremal 
(A, Qcontrollable subspace contained in ker C, and where (A, B, C) constitutes a 
minimal realization of G(s). The isomorphism is developed from an exact commuta- 
tive diagram of k-vector spaces. The second contribution is the introduction of a 
zero-signal generator and the establishment of a relation between this generator and 
the classic notion of blocked signal transmissions. 

1. INTRODUCTION 

Even since the beginnings of control theory, and particularly since the rise 

of “state-space” formalism, there has been a constant interplay between the 

“internal description” of a linear control system, written here in the discrete- 
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x(t+l)=Ar(t)+Bu(t), 

and the corresponding “external” or “input-output” description 

G(z) = C(xZ - A) -rB. 

The context here involves a field k of scalars, three finite-dimensional vector 
spaces U (inputs), X (states), Y (outputs), and three k-linear maps B: U + X, 
A : X + X, and C: X + Y. The resulting map G(x) is k( z)-linear, for k(z) the 
field of rational functions with coefficients in k, on the extended’ k( z)-vector 
space U(z) to the extended k(z)-vector space Y( 5). 

The linear system (X, U, Y; A, B, C) is called a minimal realization of 
G(z) if the dimension of X is minimal among spaces yielding A, B, C with 
G(z) = C(d - A)-lB. Minimal realizations are uniquely determined by G(z); 
and, in particular, the k[x]-module structure on X defined for polynomials 

P(Z) in k[xl by 

P(+ = p(A)x 

is uniquely determined up to k[z]-module isomorphism. This module, de- 
noted X(G), will be called the pole module of G(x), because the eigenvalues 
of A, which correspond to the poles of G(z), are the classical poles of the 
system. 

The use of zeros of a single-input, single-output system for design purposes 
is of the earliest origins. An interesting account can be examined in Truxal 
[13], who makes references to Guillemin. More recently, the zeros of a 
multivariable transfer function were defined by Rosenbrock [ll]. Other 
definitions have been given: [3] compares various definitions, and [lo] con- 
tams a survey of the subject. Two approaches which are particularly im- 
portant for the present paper are the Wonham-Morse construction in terms of 
(A, B>invariant subspace theory [14], and the Desoer-Schulman paper [l] on 
“blocked transmissions.” Some of the technical aspects of this work are 
inspired also by [2,4]. 

More recently, a coordinate-free, module-theoretic definition of zeros was 
given in [15], where it was shown that the zero module Z(G) could be 

‘See Section 2 for references and a review of notation. 
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computed in a natural way either from a Smith-Macmillan form, as in 
Rosenbrock’s work, or from matrix factorization. Furthermore, if G(z) is 
either manic or epic, then the zero module is closely related to, and in some 
cases coincides with, the pole module of an inverse system. 

The first contribution of this paper is the construction of an explicit 
k [ z]-module isomorphism 

p: Z(G) +V*/R*, 

where Z(G) is the zero module of G(z) as defined in [ 151 and V*/R* is the 
module implicit in the Wonham-Morse theory [14, p. 1111. This isomorphism 
fits into an elaborate framework, presented in terms of an exact commutative 
diagram; and the main result is Theorem I, in Section 3. 

This result is not surprising, being already contained, in some sense, in 
[13]. Alternative algebraic approaches are available in the literature, particu- 
larly [2,4,5,6,9]. A result equivalent to Theorem I can be obtained by 
combining results in [4,5]; and an alternative approach to part of Theorem I 
appears in [6]. More detailed discussion is provided in Section 3. 

The second contribution relates the zero module to the “blocked transmis- 
sion” intuition of [ 11. Suppose u(z) is an input to the system, which can be 
split up into polynomial and strictly proper parts in the manner 

The polynomial input uPly sets up a state x in X, and the state - x “blocks 
the transmission” of the input upoly. This means that, if uPly is inserted into 
the system during negative time, ending at t = 0, and the “initial state” at 
time t =0 is - x, then no output is emitted. A much more interesting 
question concerns which strictly proper inputs u,r can be blocked by some 
state x in X. Suppose, for a moment, that G(z) : U(z) -+ Y(z) is manic. Then 
the zero module Z(G) can be considered as the state module for a state-out- 
put system (Z(G), fir), where frr : Z(G) ---f U(z) maps “zeros” into strictly 
proper inputs. The pair (Z(G), H, ) is called a “zero-signal generator”; and, if 
a strictly proper input u,r is blocked by a state x, then u(z) = fi,o for w in 
Z(G), and x lies in V*. 

If G(Z) is not manic, then the corresponding results are slightly more 
technical; but one can still say that states in V* correspond to “zero signals”. 
See Theorem II, Section 4 for details. 

We view the contributions of this paper as largely methodological. We 
have defined a very explicit “zero module” and related it to standard and 
useful ideas in control theory. The proofs are for the most part new, although 
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a number of the results are equivalent (and sometimes the proofs are very 
similar) to work in papers mentioned above. We have attempted to bring the 
machinery of commutative algebra to bear on questions of this type, and we 
hope that we have succeeded to some extent. 

2. POLES AND ZEROS OF TRANSFER FUNCTIONS 

This section fixes notation and recalls without proof the basic facts of 
realization theory and the definition of the zero module of a transfer function. 
Treatments of realization theory similar to the one given here can be found in 
[7,8,12,17]. The zero module was defined in [15]. 

Let k be a field, and let U and Y be vector spaces over k of dimensions m 
and p. Let k(z) be the field of rational functions, and write 

U(z)=U6skk(n), Y(z)=Yqk(z). 

A transfer function is a k( z)-linear map 

G(z): U(z)+Y(z). 

The choice of k-bases for U and Y gives k(x)-bases for U(z) and Y(z), and 
a p x m matrix representation for G(z). In this paper G(z) will be taken 
strictly proper: that is, the matrix representation of G(z) contains only strictly 
proper fractions. It should be noted that this notion is basis independent. 

Let k [ x] be the ring of polynomials, and introduce the notation 

so that I&U is a free k[ z]-module of rank m. In fact, it’s true that &? is a “left 
adjoint functor.” Concretely, for any k[ z]-module X and any k-linear map 
B : U + X, there exists a unique k[ .z]-linear map fi : OU -+ X which restricts to 
B on U C LKJ. More specifically, define 

B(u@z’) = Z’BU. 

A “dual” or right-adjoint construction may be given by IY = Y(n)/QY. 
The module PY is a divisible, torsion k[z]-module endowed with a k-linear 
map Q: I?Y - Y. To define this, for y(z) in Y(z), write 

y(n) = y_nZ” + *. . + y_1z + yo + y1z-l + yzzp2 + . . . 
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as a formal Laurent series, and define +i(y(x)) = yi, the coefficient of z-l. 
Since ~pi kills fiY, it induces the required map +: l?Y + Y. Now let C: X + Y 
be any k-linear map out of a k [ z]-module X. There exists a unique k [ z]-linear 
map C: X --) l?Y such that + 0 C= C, given by the action 

The restricted or Kalmun transfer function corresponding to G(z) : U(z) 
--$ Y(z) is the k[z]-module map G#: W+ rY defined by G#= 7~ 0 G(z)0 i, 
where i: WJ -+ U(z) is the inclusion map and 7r: Y(z) + IY is the natural 
projection. 

A realization of G# [or of G(z)] is a commutative diagram of k [ z]-mod- 
ules 

ry 

where X is a finitely generated torsion k [ z]-module, hence finitedimensional 
as a vector space over k. This realization is called reachable if B is epic, 
observable if C is manic, and canonical or minimal if it is both reachable and 
observable. A realization with X of smallest possible dimension is automati- 
cally canonical, and its dimension is called the Macmillan degree of G(z). 
Canonical realizations are unique up to an appropriate isomorphism, and in 
particular the state module X of canonical realization is unique up to 
k[z]-module isomorphism. This uniquely determined module will be called 
the pob module of G(z). Explicitly, X z !W/ker G*, or 

XZ 
S-W 

G-‘(QY)nd 

Associated with the realization diagram above is a triple (A, B, C) of 
k-linear transformations. The map A : X + X, called the dynamics, is given by 
theactionofzonX.ThemapsB:U~XandC:X~YaregivenbyBIUand 
+ 0 C, respectively. 2 = (X, U, Y; A, B, C) is called a linear dynamical system. 
If G(z) is strictly proper, the commutativity of the realization diagram is 
equivalent to the equation G(z) = C(zZ - A) ‘B. 

The zero module of the transfer function G(z) : U(z) + Y(z) was defined 
in [15] by 

Z(G) = G-‘tW+QU 
kerG+W ’ 
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It is a finitely generated torsion k[z]-module whose invariant factors corre- 
spond to the transmission zeros, which have been treated extensively in the 
engineering literature. See [15] for more information on the zero module, and 
for example [l-6, 9-111 for references to the multivariable zero literature. 

3. ZEROS AND (A, B)-INVARIANT SUBSPACES 

Suppose given a linear system Z = (X, U, Y; A, B, C). The subspace W c X 
is called (A, B)-invariant if A(W) c W + B(U), or, equivalently, (A + BF) 
( W) c W for some k-linear map F: X + U (see [14, pp. 87-881). In addition, 
W is (A, B)-controllable if the system ( W, B- ‘(W n B(U)), Y; (A + RF) I 
W, B I B-‘( W n B(U)), C) is controllable. This notion is independent of the 
choice of F [14, pp. 1033105]. 

Consider ker C in X. A supremal (A, B)-invariant subspace V* and a 
supremal (A, B)-controllable subspace R* exist within ker C, and R* c V* 
[14, pp. 90, 1081. The factor space T = V*/R* becomes a k[z]-module as 
follows. Choose any F such that (A + BF)(V*) c V*. Then also (A + 
BF)( R*) c R*, so that an induced version of A + BF acts on T, and in fact 
this action is independent of the choice of F [14, p. 1111. The spectrum of the 
map induced by A + BF on T has been identified with the transmission zeros 
of the transfer function G(z)= C(zl- A)-‘B; see [14, pp. 112-1131 and the 
references cited there. More recently, [4] and [6] have discussed these 
relationships from a polynomial-module point of view. In this section, we 
carry this algebraicization a little further, and establish an explicit k [ z]-mod- 
ule isomorphism between Z(G) and T if G(z) is a strictly proper transfer 
function and Z is its minimal realization. 

Suppose given the strictly proper transfer function G(z) : U(z) + Y(z). 
The pole module of G(z) can be described as 

x= mJ 

G-‘(QY)nM 

The action of z on X gives the dynamics of the map A. The map B : U + X 
is defined by 

B(u) = umodG-‘(OY)nQU. 

It is easy to see that 

kerB = kerG(z)nU. 
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See also the corollary to Theorem I in the next section. The map C: X + IY is 
induced from G*: SZU -+ IY, and C is $I * C:, where $J was defined in Section 
2. Define also two k [ z]-modules 

z,= 
G-‘(QY) 

G-1(!2Y)ni’2U 

and 

z = kerG(4 
’ kerG(z)nQU’ 

The inclusion ker G(z) c G- ‘(QY) induces a manic k [ z]-module map i : Z, 
+ Z,. Furthermore, the identity map on G- ‘( GY) induces an epic map 
e: Z, + Z(G); and it is easy to verify that the sequence 

O-,Z,+Z,+Z(G)+O 

of k [ z]-modules is exact. Consider next the k-linear map 

p’:G-‘(QY)-tiXJ 

defined by the action 

where upoly is the polynomial part of the rational function vector u(z). 
The definitions of X and Z, above can be applied to show that p’ induces 

a k-linear map p,: Z, + X. Let p,: Z, + X be given by p, = p, 0 i. The first 
goal of this section is to establish that the diagram of Figure 1 is a 
commutative exact diagram of k-vector spaces. Notice that Figure 1 shows R* 
and V* for codomains of p, and p,, respectively, in place of X. This is part of 
the assertion to be proved; and we leave the pi notation unchanged. In fact, 
commutativity of the diagram follows almost by definition; and exactness is 
routine except for three crucial points: we need to show that the image of p, 
is exactly V*, that the image of p, is exactly R*, and that p is manic. 

We are indebted to the referees for raising several important questions 
about Figure 1. In particular they ask about module structures on V” and R* 
individually (not just on V*/R*), and about the significance of ker p, and 
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kerp,. We do not have a useful response at present, but hope to return to 
these questions in a future work. For now, we can only emphasize that Figure 
1 is not a priori a module diagram: p, and p, are just k-vector space maps. As 
far as we can tell, R* has no reasonable module structure at all; and V* has 
infinitely many different structures (according to Wonham, but visible here as 
well). Figure 1 does not seem to illuminate this particular question. 

The proof of exactness involves some rather complicated computations in 
the state space X, and some notational conventions will be helpful. According 
to Section 2, we denote by &J(Z) the image in X of a polynomial vector in 
QU. If x = Bu(z) is a state, then 

Ax = &u(z). 

For u in U c !XJ, we write Bu in the manner Bu; and for x equal to Bu( z) in 
X, Cx is the coefficient of z-l in G(z)u(n). Thus, for u(z) in L?U, 

G( z)u( z) = ypo,,, + C 0 Bu( z)b + C 0 &u( z)Y2 + . . . , 

where y,,,, is an element of QY. From this, it is clear that r = Bu(z) lies in 
ker C exactly when G(z)u(x) has no z-l term. 

The first task is to show that pl(Z,)= V*, the supremal (A, B)-invariant 
subspace in ker C; and the first step is to show that pl( Z,) c ker C. Suppose l 
in Z, has representative u(z) in G-‘(QY), and write u(z) = uPly + usP, as in 
our previous discussion, so that 

Gbb,,, = G(z)u(z) - G(z)u,,. 

0 --j kerp, + 2, --) R* + 0 

1 1 Pl 1 inclusion 

0 + kerp, + 

5’. 

+ V* -_j 0 

J J projection 

0 --j Z(G) -5 V*/R* --) 0 

& 1 
0 0 

FIG. 1. 
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Now by assumption G( z)u( z) is a polynomial in QY, and G( z)uSP has no z-l 
term, since G(z) and uSP are both strictly proper. Therefore C 0 I%,,, = 
@r(S) = 0, as required. 

Furthermore, ~~(2,) is (A, B)-invariant, because if 

with 

upoly + ulfl + u2C2 + . . . E G-'(QY), 

then 

Ax = h+,,,ly 

= B( zupo~y + 241) - Bu,. 

Now Bu, lies in B(U); and 

B ( ~‘$oly +4EPdu 

because 

zuwl,, + u,+ u2z-l + - -. E G-'(QY), 

so that Ax lies in p,(Z,)+ B(U). Accordingly, p,(Z,)C V*. 
To prove the opposite inclusion, let I?: X -+ U be any k-linear feedback 

such that V* is (A + BF)-invariant. Then 

(A+BF)&(z)=A~u(z)+BF~u(z) 

= Bzu(z)+BFBu(x) 

=B{zu(z)+FBu(z)) 

= B{(z + FB)u(z)}. 

To complete the argument, we introduce a computational lemma, which is 
useful in itself. 
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COMPUTATIONAL LEMMA. Suppose x = &(z) lies in V*. For i > 1, de- 

fine ui in U by 

ui = FB{(x + FB)‘-‘u(z)}. 

Then 

u(z)+ f uixd E G-'(SW). 
i=l 

Proof of Lernmu. An easy induction shows that 

(z + F@)‘u(z) = ztu(z)+u,xt~’ + u2z t-2 + . . . + ut 

and that B(x + F@u(z) lies in V* c ker C. Actually, more is true. For each t, 

for v(z) in QY and yi, possibly dependent upon t, in Y. This is clear for t = 0. 

Assume done for t = k. and note that 

G(z)((z + F@k+l u(z)) = zG(x)(x + F@‘u(z)+G(z)F& + F@%(x) 

=Z k+‘u(z)+ y2.z-1 + y3zp2 + . . . + G(z)ukcl. 

Here G( z)uk+ 1 is a strictly proper power series, and the coefficient of z-l 
vanishes because 

(z + FB) - k+1u(Z) 

is already known to be in ker C. Thus 

G(z)(z’u(z)+ulxt-‘+ ... +ut)=ztv(z)+y2z-2+ygZ-3+ . . . . 

so that a multiplication in both members by zPt produces 

G(+(z)+u,z-‘+ ... +u,~-~)=u(z)+y~Z-~-~+y~Z-~-~+ ... . 



ZEROS OF A MINIMAL REALIZATION 631 

Inasmuch as this equation holds for t = 1,2,3,. . . , we can pass to the limit for 
the formal power series, which gives 

and this completes the proof of the lemma. n 

The lemma shows immediately that V* c pi(&), because, if x = Bu(z) 
lies in V*, then u(z)+C~=“=,uizPi gives an element { in Z, with p,(l)=x. 
Another proof that p, is epic can be found in [6, Theorem 7.11. 

The analysis of Figure 1 continues with the study of p,: Z, + X; and we 
must show that im p, is R*. Observe that 

Recall also that 

(A+BF)ih(z)=&+Fi+(z), 

where V* is (A + BF>invariant. It is clearly necessary to establish that im p, 

is (A + BF)-invariant. Select x = Bu( z) in im p,. Then there exist ei in U 
such that 

W,(Z)= u(z)+ f oizmi E kerG(z). 
i=l 

By the Lemma, write 

W,(Z) = u(z)+ f uizpi E G-'(GY). 
i=l 

It follows that 

Gbhb) - wzb)) = Y(Z) E fJY> 

and hence that y(z) is equal to zero because the left member is strictly 
proper. With both wi(z) and wi(z) - ws( z) in ker G(z), we have ws( z) 
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there also, and consequently 

= m(z)+ F&L(z)+ uzz-l + . . . 

= (z + i+(z)+ uzz-l + . . . 

as well. Consequently, B( z + Ff?)u( z) lies in im ps as desired. 
To proceed, we use a characterization of R* given in [14, Theorem 5.5, p. 

1091: namely, R* = (A + BFIB( U)n V*), the subspace of X generated by the 
vectors in B(U)n V* and their successive images under A + BF. We claim 
first that B(U)n V* c pz( 2,). Suppose x = Bu lies in B(U)n V*. Then there 
is a strictly proper power series TV,, such that G( z)(u + u,,) = y(z) in QY. 
Again, the left member is strictly proper, while the right member is poly- 
nomial; hence both members are zero; and u + 4, lies in ker G( z). Thus, Bu 
is in ps(Z,). Therefore R* c ps(Z,), since ps(Z,) is (A + BF>invariant. 

It remains to show that ps(Z,) c R*. Suppose x = Bu(z) lies in ps(Z,), 
and u(z) in &?7J has degree r. We will show by induction on r that x lies in R*. 
If r = 0, then we are done because 

p2(Z,)nB(U)cV*nB(U)cR*. 

Assume the induction hypothesis for r = k, and write 

foraiEU.Then 

for some strictly proper osP. A multiplication by z- ’ shows that 

B(o k+iZk+ “. +o,)Eimps, 

and hence E R* by induction. Accordingly, 

(A+BF)~(Uk+,zk+ -+U,)=i++~~)(Uk+,Zk+ -'* +a,) 

=B{uk+$+l+ ... +u,z 

+FB(u,+,zk+ ... +q)} 
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lies in R* C pz(Z,). Consequently, 

= B{ a, - FB( uk+lZk + . . . + a,)} 

is in p,(Z,)n B(U) c R*. As the sum of two elements in R*, then, &J(Z) lies 
in R* as well. 

So far we have shown that the top two rows of Figure 1 are exact. 
Diagram chasing insures the existence of an epic k-linear homomorphism 
p: Z(G) + V*/R* as shown. It remains to show that p is manic, and finally 
that p is a k [ z]-module homomorphism. 

Suppose that 5 in Z, has representative v(z) in G- ‘(QY ), and that 
5 = e(c) lies in the kernel of p. ThenpI lies in R*, so that there exist 
polynomial upoly and strictly proper usP such that &Q,, = p,(l) and 

G(z)(u,,, + usP) = 0. We claim that u(z) lies in ker G + OU, so that it 
represents zero in Z(G). This will show that p is manic. Write u(z) = ply + 
osP. Because BoPly = &.,+ in X, it follows that t++ - upoly is in G- ‘(QY )n 
5KJ. Subtract uPl,, + u,+, from v(z) to conclude that osP - usP lies in G- ‘(QY ); 
hence G( z)( osvsp - usP) = 0 because it is strictly proper. Now write 

The first two terms lie in ker G(z), and the third lies in !JU; so u(z) 
represents zero in Z(G) as required. 

The last gasp in this long section is to examine p: Z(G) + V*/R* more 
closely. It has been proved that p is an isomorphism of vector spaces over k, 
and it remains to show that p respects the k [ z]-module structures on Z(G) 
and V*/R*. But this follows from the lemma. Suppose .$ lies in Z(G) and 
p(t) = Bu(z)mod R* in V*/R* for some polynomial u(z) in QU. Then 5 can 
be represented by u( z)+CT= 1 ui zPi, where ui = FB(( z + FB)‘-‘u( z)}. There- 
fore p(z[) = @zu(x)+ FBu(z)}mod R*. This proves the claim, since multi- 
plication by z + FB corresponds to A + BF, the (Wonham-Morse) action on 
V*/R*. 

We summarize all this work in the first main theorem of the paper. 

THEOREM I. The diagram of Figure 1 is an exact commutative diagram 
of vector spaces over k. Furthermore, p: Z(G) + V*/R* is an isomorphism of 
k [ z]-modules. 
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COROLLARY [14, Exercise 4.4, p. 981. The transfer function G(z) is lej? 
invertible (i.e., ker G(x) = 0) if, and only if, R* = 0 and ker G(.z)n U = 0. 

Proof. Surely ker G(z) = 0 implies Z, = 0, and R* = 0, since p, is epic. 
This also implies ker G( z)fl U = 0. Conversely, suppose that R* = 0 and that 
ker G(z) contains a nonzero vector u(z) = uPly + U,~. Denote the equiva- 
lence class of u(z) in kerG(z)/(kerG(z)nW} by [u(x)]. Then 

because R* = 0. But this implies that G(z)u,,, lies in QY; so then it follows 
that 

O=Gb)b,,, + usp) 

=Gb)u,~, +Gb)u,, 

or 

G(+m,, = -G(+spr 

with left member in !2Y and right member strictly proper. From this, we have 
both members zero. In other words, if R* = 0, the polynomial and strictly 
proper parts of a vector u(z) in ker G(z) lie again in ker G(z). Now suppose 
that 

u 
SP 

=U. lZ -‘+u,z-1+u3z-3+ ... 

is in ker G( .z ). Then so is zusp, which has polynomial part ui in U, so that ui 
lies in ker G( z)f’ U. A similar argument holds for us, us,. . . . Therefore, if R* 
is 0 and ker G( .z)n U is zero, then also ker G( z) = 0. 

4. THE ZERO-SIGNAL GENERATOR 

This section supplies an intuition about zeros somewhat different from the 
one in the previous section, although it will appear in the proofs that the 
crucial mathematics was already_ in place there. Roughly speaking, we show 
here that an input “mode” is a zero for a plant G(z) if the resulting output 
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contains only natural “modes” of the system. Here an “input mode” is 
identified with a strictly proper rational vector in IU. “Natural modes” are 
outputs y(z) in I’Y which lie in the image of C: X -+ IY. This view is also 
very closely related to the idea of blocked transmissions in Desoer and 
Schulman [ 11. 

The module Z, defined in Section 3 can be described by 

z 
1 

~ G-‘(!dY)+W 

stu * 

The inclusion G- ‘(QY )+ f8J c U(z) induces a manic k[ z]-module map 

with IU = U(n)/U[n] as usual. The module Z, together with the map fi is 
called the zero-signal generator for G(z). It should be regarded as a state-out- 
put system with state space Z, and observability map fi. In case ker G(z) = 0, 
so that G(z) is left invertible, then Z, = Z(G) is finite dimensional and the 
zero-signal generator is the output part of an essential inverse system [15]. 
However, G(z) need not be assumed invertible here. 

Let s : IU + U(z) be the k-linear map which takes an equivalence class in 
lU to its unique strictly proper representative, and let fi, = s 0 l?: Z, + U(z). 
Note that A, is k-linear but not k[ z]-linear. Next define a k-linear map 
G,: Z, + IY as G#= 7~ 0 G(z)0 A, in the following diagram: 

u(z) G(z) -Y(z) 

HI 

Zl 
-/ 

n 

6, \ ry 

The image of G, will consist of outputs corresponding to the zerosignal 
generator. We would like to compare those with outputs arising from particu- 
lar states in X under the usual output map C: X + I’Y, if (X, U, Y; A, B, C) is 
a minimal realization of G(z). Recall that V* denotes the supremal (A, B> 
invariant subspace in ker C. The main facts are summarized in the second 
main theorem of this paper. 

THEOREM II. The following are equivalent for an output y in IY: 

(a) y = & for some x in X, and also y = aG(z)u(z) for some strictly 
proper input u(z) in U(z). 
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(b) y=~xforsomexinX,andy=G,oforsomewinZ,. 
(c) y=CxforsomerinV*. 

Proof. We will show (a) -+ (b) -+ (c) + (a). 
Assume that u(z) in U(z) is strictly proper, and rG( z)u( z) = 6~. Choose 

a polynomial U”(Z) such that x = &Q(Z), so that & = G%,(z). This shows 
that nG( z )( - U”(X) + u(x)} = 0, implying that - uO( z) + u(z) lies in 
G- ‘(OY) and represents an element o in Z,. Clearly 7rG( z)u( z) = G,o = y, 
as required. This establishes (a) + (b). 

For (b) -+ (c), let x = Bu,( z) for uo( z) in !XJ. Let u,,+ + vsP represent w 
in Z, with G+.+ = & = y. This shows that G( z){uO(x) - v,,} lies in QY, and 
z+,(z) - osP represents an element { in Z,. But x = Bu,(z) = p,(l), where 
p, : Z, + V* is the crucial map of Theorem I, and so x lies in V*. 

Finally, (c) + (a) follows in much the same way. If x E V*, choose w in Z, 
with pl(w) = x, say w represented by vpoly + us,,. Then x = i?vPly and & = 
G%+,,,, = - aG( z)v,, = 7rG( z)( - v,,). This finishes (c) + (a) and the whole 
proof. n 

According to Theorem II, then, the output from a state can match the 
output from a strictly proper input exactly when the state lies in V*. 
Furthermore, the inputs which can be used in this way are exactly the ones 
obtained from the zeresignal generator. 

We conclude with a brief discussion of the “transmission-blocking” philos- 
ophy. Suppose u(x) = A,(w) is a “zero signal.” Then aG(x)u(z) = & for 
some x in V*. If the system is set to the “initial condition” - x and the input 
u(z) is fed in, then the output is identically zero. In other words, the input 
signal u(z) can be blocked by an appropriate choice of initial condition. The 
converse is equally valid: a strictly proper signal that can be blocked must be 
a zero signal. 

These results were announced in [16]. We would like to thank Brian 
Doolin and George Meyer for their continued encouragement. We are grateful 
to the referees for their remarks and corrections to the first draft of this paper. 
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