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Objectives: The aim of this study was to test the hypothesis that after an acute myo-

cardial infarction, endothelin-1 release with subsequent calcium overload is a mediator

of myocardial reperfusion injury, which can be inhibited, in part, by left ventricular

unloading immediately before reperfusion. We recently have reported that left ven-

tricular unloading before reperfusion reduces infarct size after acute myocardial in-

farction. However, the biologic mechanisms of infarct salvage in unloaded hearts

subjected to ischemia/reperfusion remain undefined.

Methods: Twelve pigs were subjected to 1 hour of left anterior descending coronary

artery occlusion followed by 4 hours of reperfusion. A left ventricular assist device

was initiated 15 minutes before reperfusion and maintained during reperfusion (assist

device group, n 5 6). A control group (n 5 6) was subjected to reperfusion alone. In-

farct size, endothelin-1 plasma levels, intracellular calcium levels, and apoptosis were

analyzed in both groups.

Results: At reperfusion, left ventricular unloading significantly decreased left ventric-

ular end-diastolic and end-systolic pressures. Infarct size, expressed as a percentage of

zone at risk, was also significantly reduced by 54% in the group with the left ventric-

ular assist device compared with controls. Support with a left ventricular assist device

reduced endothelin-1 release from the heart at 15 minutes, 30 minutes, and 1 hour of

reperfusion. Myocardial release of endothelin-1 was significantly correlated with in-

farct size at 15 minutes of reperfusion (r 5 0.79; P 5 .008). Left ventricular unloading

caused a significant reduction of calcium overload and of the percentage of apoptotic

cells in the ischemic region.

Conclusion: Our findings suggest that endothelin-1 release and calcium overload are

important mediators of reperfusion injury and that they can be significantly reduced

by left ventricular unloading before coronary artery reperfusion during myocardial

infarction.

P
rompt institution of reperfusion after coronary artery occlusion limits myocar-

dial infarct size.1-3 However, reperfusion after more than 1 hour of ischemia,

a common clinical scenario, may result in significant ‘‘reperfusion injury,’’

which diminishes the extent of myocardial salvage.1 Pharmacologic treatment alone,

such as the early use of beta-blockers, nitroglycerin, and angiotensin-converting

enzyme inhibitors, has not been effective in the prevention of reperfusion injury.4-6

Increased circulating plasma levels and myocardial tissue content of endothelin-1
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Abbreviations and Acronyms
Ca21 5 calcium

CS 5 coronary sinus

ET-1 5 endothelin-1

INF/LV 5 infarct weight/left ventricular weight ratio

IV 5 intravenous

LAD 5 left anterior descending coronary artery

LV 5 left ventricle/ventricular

LVAD 5 left ventricular assist device

MI 5 myocardial infarction

TUNEL 5 terminal deoxynucleotidyltransferase-mediated

dUTP-biotin nick end labeling

ZR/LV 5 zone at risk/left ventricular weight ratio

(ET-1), a 21-amino acid peptide with a powerful vasocon-

strictor activity, have been detected during ischemia/reperfu-

sion, and a possible role for this peptide in the

pathophysiology of ischemia/reperfusion injury has been

postulated.7,8

Mechanical unloading of the myocardium reduces left

ventricular (LV) pressure work and myocardial oxygen con-

sumption.9-12 We13 have previously shown that LV unload-

ing during myocardial infarction (MI) limits reperfusion

injury as well as infarct size independent of its effects on

myocardial blood flow. We13 have also demonstrated that

LV unloading initiated just before reperfusion produced a dra-

matic reduction in calcium (Ca21) overload and contraction

band necrosis by electron microscopy in the ischemic region

compared with reperfusion alone. Others have shown in iso-

lated myocytes subjected to simulated ischemia that ET-1

promotes Ca21 flux into the cells, which is associated with

cell death.14 We therefore tested the hypothesis that LV un-

loading just before reperfusion reduces ET-1 release on reper-

fusion, and we proposed that the reduced ET-1 levels would

then reduce Ca21 flux into ischemic myocytes, reducing fatal

Ca21 overload and consequently reducing infarct size.

Materials and Methods
Animal Model
We used 12 Yorkshire pigs of either sex weighing 50 6 5 kg. The

study protocol was approved by the Animal Welfare Committee

of the University of Texas at Houston Medical School, and all exper-

iments were performed according to the Committee’s guidelines.

Surgical Procedure
Pigs were sedated with tiletamine HCl and zolazepam HCl (Telazol

IM; Wyeth, Madison, NJ, 2.0 mg/kg, to effect) and intubated. Gen-

eral anesthesia was maintained with isoflurane (0.5–2.5 vol%). An

8F sheath was placed in the right carotid artery and a catheter was ad-

vanced to the ascending aorta for monitoring aortic pressure and for

blood sampling for regional myocardial blood flow and ET-1 sam-

pling. A 6F right multipurpose catheter was placed into the coronary

sinus (CS) under fluoroscopic guidance. The A-Med left ventricular
344 The Journal of Thoracic and Cardiovascular Surgery c Aug
assist device (LVAD) (A-Med Systems, Inc, West Sacramento, Ca-

lif), a miniaturized circulatory assist device, was inserted into the LV

via femoral access as previously described.13 In control animals, the

introducer sheath was inserted in the femoral artery but the pumping

was not initiated. The heart was exposed via a sternotomy. A ligature

was placed around the left anterior descending coronary artery

(LAD) at a position from which the distal third of the artery would

be occluded by tightening the ligature. A Doppler flow probe was

placed around the artery just proximal to the snare for monitoring

coronary blood flow. A catheter was placed in the LV via an apical

stab wound for measurement of LV pressure. Catheters were placed

in the left atrium for measurement of atrial pressure and for radioac-

tive microsphere injection. All animals received acetylsalicylic acid

(325 mg intravenously [IV]) 30 minutes before ischemia, and sodium

heparin 5000 IU IV bolus followed by an IV drip to maintain an ac-

tivated clotting time of greater than 200 seconds until the end of the

experiment. An IV lidocaine drip of 1 mg/min was started and main-

tained throughout the occlusion period for 2 hours into reperfusion or

until the animal’s condition had stabilized. In addition, bretylium

tosylate was infused before the occlusion with an IV drip rate of

5 mg $ kg21 $ h21 maintained throughout the procedure. Hemody-

namic and functional measurements were recorded on a Gould chart

recorder (ThermoSpectra Corp, San Diego, Calif) and analyzed as

previously described.13 After baseline measurements, the LAD

was occluded and the occlusion was maintained for 1 hour followed

by reperfusion for 4 hours. Flow cessation in the LAD was docu-

mented by the Doppler flow signal. At the experiment conclusion,

the animals were heparinized (4000 IU IV), fully anesthetized with

intravenous pentobarbital, and humanely killed with supersaturated

potassium chloride. The heart was quickly excised from the chest

and washed with tap water.

Experimental Protocol
Baseline measurements included hemodynamic values (arterial

blood pressure, left atrial pressure, and LV pressure), coronary

blood flow, and arterial and CS ET-1 sampling. Hemodynamic

values and flow data were continuously recorded. Blood samples

for measuring plasma ET-1 were collected simultaneously from

the CS and the descending thoracic aorta at baseline, 45 minutes

of ischemia, reperfusion, and 15 and 30 minutes and 1, 2, and 4

hours of reperfusion. Tissue biopsy specimens for Ca21 measure-

ments were taken at baseline, 45 minutes of ischemia, and at 10 min-

utes, 30 minutes, and 4 hours of reperfusion. Group 1 (n 5 6) served

as a control group and was not subjected to LV assistance. In group 2

(n 5 6), LV unloading was started 15 minutes before reperfusion at

maximal rotational speed and maintained for the remainder of the

experiment.

Plasma ET-1 Content
ET-1 concentration was determined by the radioimmunoassay tech-

nique with the isoform-specific rabbit antibodies against synthetic

ET-1 (Peninsula Laboratories, Inc, San Carlos, Calif). Blood sam-

ples were collected simultaneously from the CS and the aorta and

processed according to the manufacturer’s instructions.

Assessment of Intracellular Ca21 in Cardiac Tissue
Myocardial tissue biopsy specimens, 13-mm long, were obtained

from the ischemic and control regions with an 18-gauge needle (Bio-

Pince; Amedic AB, Sollentuna, Sweden) for Ca21 measurements.
ust 2008
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Intracellular Ca21 content was determined with the Ca21-sensitive

fluorescent probe, fluo-3 AM (Molecular Probes, Eugene, Ore), us-

ing a fluorescence deconvolution microscope (Applied Precision

Delta Vision, Issaquah, Wash), incorporating an Olympus IX70

microscope (Olympus America, Melville, NY), as previously de-

scribed.15 A combination of probes was used to determine cell types

(myocytes, vascular endothelial cells, and fibroblasts). 4,6-Diamino-

2-phenylindole (DAPI) was used to identify nuclei. Smooth muscle

actin, cardiac muscle actin, and cardiac myosin were probed with

secondary antibody tagged with DIPYrromethene BOron Difluoride

(BODIPY) or Texas Red dye. Smooth muscle actin identified vascu-

lar elements, whereas actin and myosin patterns and absence of inter-

calated disks distinguished myocytes from fibroblasts.15

Infarct Size Determination
Infarct size quantification by triphenyl tetrazolium chloride staining

was measured according to the method of Fishbein and associates.16

After excision of the heart, the aortic root was perfused with Evans

blue dye (1%) while the LAD distal to the occlusion was perfused

with triphenyl tetrazolium chloride at equal pressures. The heart

was then sliced. The blue-stained control region, the red-stained

risk region, and the tan infarct were measured by planimetry and

quantified in all slices as described previously.9

Regional Myocardial Blood Flow
Regional myocardial blood flow was analyzed with the microsphere

technique at baseline, 25 minutes of ischemia, and 5 minutes of re-

perfusion and was expressed as milliliters per gram per minute.17

Flows were measured in the endocardial and epicardial areas as

well as transmurally.

TUNEL Assay
Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick

end labeling (TUNEL)–positive cardiomyocytes were detected in
paraffin-embedded LV sections by the protocol described in the

DeadEnd Colorimetric TUNEL System (Promega Corporation,

Madison, Wis). Positive and negative control sections were in-

cluded. Microscopic evaluations were performed by a BX40 in-

verted microscope (Olympus America).

Statistical Analysis
All results are expressed as mean 6 SEM. For multiple comparison

procedures, including hemodynamic and coronary flow data, infarct

size, ET-1 levels, and Ca21 measurements, analysis of variance and

the Newman–Keuls multiple-range tests were performed (Statistica;

StatSoft, Inc, Tulsa, Okla). Analysis of covariance was performed to

compare infarct sizes, with ET-1 levels or collateral blood flow used

as a covariate.

Results
Hemodynamic Changes
Hemodynamic changes during ischemia and reperfusion are

shown in Table 1. At baseline and during LAD occlusion and

reperfusion, there was no significant difference in heart rate,

mean arterial pressure, or rate–pressure product between con-

trol and unloaded animals. Initiation of the pump resulted in

LV unloading, as indicated by significant decreases in end-

diastolic and systolic pressures.

Myocardial Blood Flow
Myocardial blood flow, expressed as millimeters per gram

per minute, was measured in the area of coronary occlusion

as well as in the contralateral area (Table 2). There was a sig-

nificant decrease in myocardial blood flow with ischemia.

However, there was no significant difference in absolute

transmural blood flow between controls and treated animals
TABLE 1. Hemodynamic parameters in control and unloaded animals

LAD occlusion Reperfusion

Baseline
10 min

pump off
35 min

pump off
45 min

pump on
10 min

pump on
30 min

pump on
1 h

pump on
2 h

pump on
3 h

pump on
4 h

pump on
4 h

pump off

HR (beats/min)
Control 113 6 4 103 6 3 101 6 6 94 6 3 95 6 2 94 6 3 92 6 3 94 6 5 95 6 7 99 6 8 93 6 8
LVAD 100 6 8 89 6 9 94 6 7 95 6 9 87 6 6 85 6 6 81 6 7 90 6 8 98 6 8 102 6 12 86 6 13

MAP (mm Hg)
Control 93 6 8 90 6 8 84 6 7 88 6 9 89 6 10 82 6 9 80 6 8 64 6 7 57 6 5 45 6 5 40 6 4
LVAD 89 6 11 92 6 13 91 6 12 84 6 11 73 6 10 66 6 12 67 6 12 68 6 15 66 6 10 67 6 13 54 6 15

LVSP (mm Hg)
Control 109 6 9 107 6 9 101 6 8 106 6 10 109 6 11 101 6 10 99 6 9 84 6 7 79 6 5 66 6 6 62 6 4
LVAD 102 6 10 105 6 14 105 6 12 71 6 16 42 6 9* 49 6 12* 40 6 12* 55 6 12 55 6 9* 41 6 5* 71 6 16

LVEDP (mm Hg)
Control 7 6 1 8 6 1 9 6 1 10 6 2 9 6 1 9 6 1 9 6 1 7 6 1 8 6 1 7 6 1 6 6 1
LVAD 6 6 0 8 6 1 8 6 1 5 6 2 4 6 1* 3 6 1* 4 6 1* 3 6 1* 5 6 1 3 6 1* 8 6 2

RPP
Control 121 6 8 109 6 9 103 6 9 100 6 10 104 6 12 95 6 11 92 6 9 79 6 9 76 6 8 65 6 8 58 6 8
LVAD 104 6 16 97 6 18 99 6 15 82 6 12 66 6 10* 63 6 13 59 6 14 67 6 14 73 6 8 67 6 6 66 6 16

Values are expressed as means 6 SEM of 6 experiments. HR, Heart rate; LVAD, left ventricular assist device; MAP, mean arterial pressure; LVSP, left ven-
tricular systolic pressure; LVEDP, left ventricular end-diastolic pressure; RPP, heart rate–pressure product. *P , .05 vs control.
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in the ischemic or control regions at baseline, at 25 minutes of

occlusion, and at 5 minutes of reperfusion. Endocardial and

epicardial flows were also similar between the groups (data

not shown).

Infarct Size
No differences were noted in the zone at risk/LV weight ratio

(ZR/LV) (P 5 .12), or infarct weight/total LV weight ratio

(INF/LV) (P 5 .09) between the groups (Figure 1). There

was a significant (54%) reduction of infarct size when ex-

pressed as a percent of zone at risk (INF/ZR) in the supported

group compared with controls (24.10% 6 6.45% vs 51.59% 6

6.64%; P 5 .014). When the transmural collateral blood

flow to the ischemic region was used as a covariate, infarct

TABLE 2. Regional myocardial blood flow (transmural) in
control and unloaded animals

Absolute flows (mL $ g21 $ min21)

LVAD

Control Off On P

Baseline
Control region 0.85 6 0.09 0.87 6 0.09 — .86
Ischemic region 0.62 6 0.06 0.70 6 0.06 — .36

LAD occlusion
Control region 0.70 6 0.10 1.12 6 0.28 — .12
Ischemic region 0.02 6 0.01 0.05 6 0.02 — .16

Reperfusion (5 min)
Control region 0.74 6 0.13 — 0.57 6 0.10 .34
Ischemic region 2.50 6 0.36 — 2.75 6 0.45 .67

Values are means 6 SEM of 6 experiments. LAD, Left anterior descending
coronary artery.

Figure 1. Bar graph showing infarct size (INF), expressed as a per-
cent of zone at risk (ZR), and zone at risk and infarct zone as a per-
centage of the LV weight for the LVAD and control groups. Data are
expressed as mean 6 SEM of 6 independent experiments in each
group.
346 The Journal of Thoracic and Cardiovascular Surgery c Au
size (as a percentage of area at risk) was significantly smaller

in the LVAD group than in the control group (P 5 .025). A

significant reduction in infarct size occurred independent of

collateral blood flow (Figure 2).

Plasma ET-1 Levels
The transcardiac release of ET-1 was significantly lower in

the unloaded animals than in the controls at 15 minutes, 30

minutes, and 1 hour of myocardial reperfusion (Figure 3).

To assess the relationship between myocardial ET-1 release

and infarct size, independent of any other variables, we ana-

lyzed this relationship for the total group of tested animals us-

ing an analysis of covariance. Figure 4 shows the correlation

between myocardial release of ET-1 at 15 minutes of

Figure 2. Relationship between infarct size, expressed as a per-
centage of zone at risk, and collateral blood flow during coronary
occlusion in the transmural ischemic zone. By analysis of covari-
ance, a significant reduction in infarct size occurred with unload-
ing, independent of collateral blood flow (P 5 .025).

Figure 3. Myocardial ET-1 plasma levels (coronary sinus minus
aorta [Cs 2 Ao]) expressed in picograms per 100 mL in the control
and unloaded animals (n 5 6 pigs in each group).
gust 2008
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reperfusion and final infarct size. There was a significantly

positive correlation between myocardial ET-1 release and in-

farct size, regardless of animals’ treatment, indicating that

myocardial ET-1 release was an independent predictor of in-

farct size at 15 minutes of reperfusion (r 5 0.79; P 5 .008)

(Figure. 4).

Ischemic Zone Apoptosis
LV unloading reduced the number of apoptotic cells in ische-

mic zones. Of 400 nuclei counted in the central ischemic re-

gion of the unloaded animals, 15.15% 6 6.4% displayed

TUNEL-positive staining. In contrast, for the same number

of nuclei, 56.69% 6 5.17% displayed TUNEL-positive stain-

ing in the ischemic region of the control animals (P 5 .01)

(Figure 5).

Myocardial Ca21 Content
When we compared ischemic and nonischemic ratios of

fluo-3 fluorescence (Figure 6, top and bottom), there was

no significant change in intracellular Ca21 content during re-

perfusion in the unloaded group. However, in the control

group, a significant rise in the ischemic/nonischemic intra-

cellular Ca21 ratio was seen in the reperfusion period com-

pared with the occlusion period (4.86 6 1.20 vs 1.18 6 0.28;

P 5 .016).

Discussion
We found that the transcardiac release of ET-1 was signifi-

cantly lower in the unloaded animals as opposed to the un-

treated animals during reperfusion This study, for the first

time, demonstrated normalization of plasma ET-1 levels in

the ischemic myocardium by hemodynamic unloading of

the LV.

Figure 4. Correlation between myocardial release of ET-1 at 15
minutes of reperfusion and final infarct size. There was a signifi-
cantly positive correlation between myocardial release of ET-1
and infarct size with an r 5 0.79, and a P 5 .008. CS 2 AO, Coronary
sinus minus aorta.
The Journal of Thor
In the management of acute MI, the primary focus has

been to achieve early reperfusion. This intervention can re-

duce infarct size, but it is successful only when reperfusion

is achieved early after occlusion.18 When reperfusion is de-

layed, infarct size increases and reperfusion injury ensues.

Several groups have shown beneficial effects of mechanical

unloading during acute MI.11,19,20 Complete mechanical un-

loading of the LV with cardiopulmonary bypass, LV venting,

and cardioplegia before reperfusion has led to a 77%

Figure 5. Effect of LV unloading on ischemia/reperfusion–induced
apoptosis in the heart. Apoptotic cardiomyocyte nuclei appear
brown-stained, whereas TUNEL-negative nuclei appear blue
with hematoxylin and eosin. Heavy staining of numerous TU-
NEL-positive cardiomyocytes was observed in the central ische-
mic region of the LV of the sham-operated pig after 1 hour of
LAD ischemia and 4 hours of reperfusion. In contrast, few TU-
NEL-positive cells were detected in the LV ischemic region of
the unloaded animal (arrow) (n 5 3 to 4 counts for 6 hearts in
each group.
acic and Cardiovascular Surgery c Volume 136, Number 2 347
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Figure 6. Effect of LV unloading on myocardial
Ca21 content. Top, Fluorescence deconvolution
images of LV sections (ischemic region) probed
with fluo-3 fluorescence. Bottom, Ischemic/noni-
schemic ratios of fluo-3 fluorescence during oc-
clusion and reperfusion period in control and
unloaded animals. Data are expressed as mean
6 SEM of 12 to 15 slices of 4 hearts in each group.
reduction of infarct size.11 This technique, however, is not

applicable as a primary approach for MI owing to the signif-

icant time delays associated with initiating total cardiopulmo-

nary bypass in patients having an MI. A more practical

approach would be percutaneous unloading of the LV. Al-

though it has been reported that chronic LVAD unloading re-

sults in regression of hypertrophy and improvement of
348 The Journal of Thoracic and Cardiovascular Surgery c Au
myocyte function and LV geometry, the cellular and molec-

ular mechanisms responsible for these beneficial effects, par-

ticularly in acute ischemia, remain undefined. Preliminary

experience in our laboratory in canine ischemia/reperfusion

injury has demonstrated that LV unloading, intravenous ad-

ministration of liposomal prostaglandin E1, intracoronary

heparin distal to the coronary occlusion, and, to a certain
gust 2008
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extent, intracoronary adenosine just before reperfusion pro-

vide significant infarct salvage, improvement in ischemic

collateral blood flow, and reduction in contraction band ne-

crosis paralleling a reduction in the ischemic region end-dia-

stolic wall thickness during early reperfusion.9,13 Some

investigators suggested that the exaggerated flow of Ca21

into the myocytes results in what is called ‘‘contraction

band necrosis,’’21 but the causes of enhanced Ca21 loading

have not been defined.

ET-1 was first described as a vasoactive peptide22 re-

leased from vascular endothelium. ET-1 is released from is-

chemic myocardium during reperfusion and may contribute

to ischemia/reperfusion injury in the intact heart.23 ET-1

has been shown to be involved in the overload-induced re-

lease of Ca21.24 ET-1 can influence myocyte intracellular

Ca21 concentration by several mechanisms: (1) It stimu-

lates Ca21 release from internal stores25; (2) it enhances

L-type Ca21 current through the activation of protein kinase

C26; (3) it activates the Na1–H1 exchanger27; and (4) it

activates the outward INaCa (ie, reverse mode Na1–Ca21

exchanger, in which Ca21 influx is induced).28 Ca21 entry

via reverse mode Na1–Ca21 exchanger is a major cause of

ischemia/reperfusion injury.29 It has been shown that acti-

vation of ET receptors on myocytes may trigger phospho-

lipase C activity, resulting in hydrolysis of inositol

phosphates and the subsequent release of intracellular

Ca21. This leads to an increased susceptibility of myocar-

dium to ischemia and reperfusion injury. ET-1–induced

rise in intracellular Ca21 concentration then causes cell hy-

percontracture and cell death.30 In this study, we found that

LV unloading, just before reperfusion, resulted in a signifi-

cant inhibition in the rise of Ca21 induced by reperfusion.

Similar to our findings, Morawietz and associates31

showed up-regulation of the ET-A receptors in patients

with heart failure that was normalized by LV unloading. It

is likely that ET-1 is synthesized de novo and produced

locally in the ischemic heart.32 Endothelial cells, vascular

smooth muscle cells, and cardiomyocytes all are potential

sources of ET-1 production. A study using in situ hybridiza-

tion and immunohistochemical analyses showed that cardio-

myocytes are the main site of ET-1 synthesis and production

in porcine ischemic hearts.33 An increased myocardial

expression of ET-1 messenger RNA has been observed in

porcine cardiomyocytes subjected to ischemia, suggesting

stimulated cardiac production during MI.33 Galiuto and co-

workers34 showed, in a similar canine model, that LU

135252, an ETA receptor blocker, when given intravenously

at the time of reperfusion, significantly limited the increase in

end-diastolic wall thickness, which was also associated with

a reduction in myocardial necrosis. We have now demon-

strated a significant positive correlation of the transcardiac

ET-1 gradient in the ischemic region with myocardial infarct

size at 15 minutes of reperfusion, indicating that ET-1 is re-

leased across the ischemic heart and promotes LV damage
The Journal of Tho
via ET-1 receptors in these animals. Support with the

LVAD, just before reperfusion, resulted in a significant re-

duction in final infarct size independent of regional myocar-

dial blood flow. Moreover, these findings indicate that the

transcardiac release of ET-1 is a significant predictor of myo-

cardial infarct size independent of regional myocardial blood

flow and the degree of LV unloading. These results are con-

sistent with the findings of Meyns and colleagues,35 who

demonstrated that in a sheep ischemia/reperfusion model

known to be devoid of preformed coronary collaterals, ‘‘par-

tial LV support’’ with a modest decrease in preload resulted in

a significant reduction in infarct size without any measured

increase in myocardial perfusion in the ischemic area. In iso-

lated cultured cardiomyocytes, ET-1 expression is induced by

stretch.36 During acute MI, sarcomere stretching by diastolic

Laplace overloading may lead to an increase in synthesis and

release of ET-1 locally in the myocardium. A significant cor-

relation between diastolic wall stress and ET-1 expression in

the remote area of infarcted rat heart has been documented,37

suggesting that stretching of the myocardium during diastole

contributes significantly to the induction of ET-1 in acute MI.

Also, the mechanical support provided by LVAD unloading

has been shown to induce a significant reduction in LV wall

stress/stretch.38

Another key finding of the present study was that LV

unloading just before reperfusion resulted in a reduction in

apoptotic cells in the ischemic and infarcted areas when com-

pared with untreated animals. Programmed cell death plays

a central role in the context of diverse heart diseases of ische-

mic and nonischemic origin. Recent evidence indicates that

simulated ischemia followed by simulated reperfusion results

in cardiomyocyte death with typical apoptotic features.39 It is

now widely established that after ischemia/reperfusion, both

necrosis and apoptosis may contribute independently to in-

farct size.40 After MI, the occurrence of apoptosis has been

demonstrated in the infarct area and in the border zone of

the infarction, whereas necrotic cells are mainly found in

the central zone of the infarct.41 Myocyte apoptosis appears

to be the prevailing form of cell death after MI. Conflicting

results exist concerning the role of ET-1 in cardiomyocyte ap-

optosis. Oie and associates42 showed that bosentan, a mixed

ETA/ETB receptor antagonist, attenuated cardiomyocyte cell

loss through apoptosis in the viable peri-infarcted area (area

at risk) after MI in rats. On the other hand, ET-1 has been re-

ported to be an antiapoptotic factor in vascular smooth muscle

cells and endothelial cells.43 In addition, administration of

ET-1 before ischemia has been shown to result in a precondi-

tioning-like cardioprotective effect.44 ET-1 appears to pro-

mote apoptosis only under extreme conditions and instead

exerts antiapoptotic influence over a range of physiologic

concentrations.

Evidence now indicates that Ca21 overload may promote

cell death.45 In vitro experiments have shown that addition of

intracellular Ca21 buffering agents or extracellular Ca21
racic and Cardiovascular Surgery c Volume 136, Number 2 349



Cardiopulmonary Support and Physiology Tamareille et al

CSP
chelators significantly inhibit caspase activation, DNA frag-

mentation, and apoptotic cell death.45 In contrast, agents

that directly mobilize Ca21, such as Ca21 ionophores, have

been shown to trigger apoptosis in diverse cell types.45 Cell

death caused by Ca21 overload has been implicated in reper-

fusion injury of myocardium after ischemia.46 Moreover, it

has been demonstrated that addition of Ca21 blockers abro-

gates apoptosis in cardiac myocytes subjected to chemical

hypoxia, further supporting the claim that Ca21 influx plays

a significant role in apoptotic cell death.47 Our finding indi-

cates some potential of LV unloading as an intervention to

the vicious cycle of distention-induced proapoptotic pheno-

type shifts.

Study Limitations
We chose to study the effect of unloading using a porcine

model of myocardial ischemia/reperfusion to avoid a collat-

eral flow artifact. In a species like the dog, naturally occurring

collateral flow can significantly contribute to cell viability in

both the permanently occluded and reperfused heart. How-

ever, the degree of collateral circulation in patients varies

enormously and most often is not predictable. The pig, on

the other hand, has virtually no epicardial collateral connec-

tions and only sparse endocardial connections.48 Inasmuch as

it has no pre-existing coronary collateral vessels, its infarc-

tions have sharply defined borders, and coronary anatomy

varies little between pigs.49

The question that remains to be resolved in this study is

whether ET release accounts for the injury or whether the re-

lease of ET-1 adds to the injury, resulting from the altered he-

modynamics that accompanies ischemia/reperfusion injury.

The use of ET antagonism would help to address this question

and could establish the cause–effect relationship between ET

release and infarction and determine whether reducing ET re-

lease per se is a protective maneuver or whether it requires the

physical unloading of the LVAD. A straightforward approach

would be the use of an ET receptor antagonist, which would

possibly abolish any difference between control and unloaded

animals.

Conclusion
Mechanical unloading of the LV, just before reperfusion, re-

duces infarct size in a porcine ischemia/reperfusion model. A

possible mechanism for this effect is a reduction of myocar-

dial release of ET-1 by LV unloading before reperfusion,

which, in turn, reduces Ca21 overload into ischemic myo-

cytes as well as apoptosis in the ischemic region. Taken to-

gether, our findings suggest that ET-1 release and Ca21

overload are important mediators of reperfusion injury and

that they can be significantly reduced by LV unloading be-

fore coronary artery reperfusion during MI. The potential

for developing new therapeutic strategies aimed at preventing

reperfusion injury in patients subjected to myocardial revas-

cularization in the setting of acute MI is significant.
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