to be involved in direct Ca2+-binding but may provide intersubunit supporting points to mediate Ca2+-gated RCK gating ring expansion or conformational coupling to channel activation.

785-Pos Board B540

Functional Implications of Alternative Splicing in the Calcium-Activated BK Channel in the Ampulla of Lorenzini of the Skate

Benjamin King1, Ling-Fang Shi1, Peter Kao1, William T. Clusin2, Mount Desert Island Biological Laboratory, Salisbury Cove, ME, USA, 2Stanford Medical Center, Stanford, CA, USA.

Ca-activated K channels were first described in the skate Ampulla of Lorenzini, which has excitable receptor cells. The electroreceptor epithelium generates action potentials (up to 70 mV) which don’t repolarize unless calcium enters across the apical membranes of the receptor cells. We have recently cloned and sequenced the alpha-subunit of the BK channel of the skate in late-stage embryos and then in adult ampullae. Sequencing of embryos was accomplished using transcriptome m-RNA and then genomic DNA. Millions of short reads were assembled by alignment with an isoform of the human BK channel. The human isoform had regions of nucleotides that were excluded to get correct alignment with the skate sequences. The skate embryo alpha-BK gene was used to make PCR primers for amplification of cDNA obtained by reverse transcription of m-RNA from about 100 adult ampullae. Amplified cDNA of appropriate length was then cloned into E.Coli with PC2 vector (Invitrogen). The skate embryos and ampullae have a 1114 (vs. 1118) amino acid polypeptide which begins with MEVP and may be preceded by 33 additional AA’s. The ampulla sequence had 100% coverage of the embryo alpha subunit and was 96.7% homologous at the amino acid level. There are 7 alternative splicing sites in the alpha-subunit. Most non-homology of ampulla BK channels vs. skate embryos was at these sites. Seven separate point mutations were also found. The calcium-activated channel in the ampulla appears to be voltage-insensitive, in contrast to previously sequenced BK channels. The voltage sensor is normal in ampullae, but changes at other sites could produce voltage-insensitivity.

786-Pos Board B541

Structural and Thermodynamic Characterization of the Gating Pathway in a K+ Channel

Murali K. Bollepalli1, Philip W. Fowler2, Markus Rapedius1, Lijun Shang1, Mark S.P. Sansom1, Stephen J. Tucker2, Thomas Baukrowitz2.

1Institute of Physiology, University of Kiel, Germany, 2Department of Biochemistry, University of Oxford, United Kingdom, 3Clarendon Laboratory, Department of Physics, University of Oxford, United Kingdom.

Structures of inwardly-rectifying (Kir) potassium channels are now available in the alpha-subunit. Most non-homology of ampulla BK channels vs. skate embryos is a key regulator of ion channel gating but not of phospholipid scrambling activity, as we were able to suppress channel activity without altering scrambling activity by changing the lipid composition of the membranes.

787-Pos Board B542

HCN C-Terminal Region Speeds Activation Independently of Autoinhibition

Kaylee E.A. Magee, Edgar C. Young.

Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.

The C-terminal Cyclic Nucleotide Binding (CNB) fold of HCN channels preferentially stabilizes the closed state, and this “autoinhibition” is relieved by cAMP binding or by CNB fold truncation [Wainger et al. (2001) Nature 411: 305]. Whereas the autoinhibition model was discovered in expressed-patch conditions, we investigated the ability of the C-terminal region to regulate gating thermodynamics and kinetics with two-electrode voltage clamp on Xenopus oocytes. We examined wildtype channels (HCN2) with endogenous cAMP bound, C-terminal-truncated channels (HCN2 ACNB), and channels with autoinhibition imposed due to a mutation preventing cAMP binding (HCN2 R591E). Hyperpolarized V\textsubscript{1/2} and faster deactivation 1/2 values were observed for HCN2 R591E, verifying its autoinhibition in intact oocytes. Surprisingly, we found conditions where the autoinhibition model is insufficient to explain the hyperpolarization-dependent activation kinetics. First, channels with autoinhibition relieved by cAMP binding exhibited faster activation (HCN2, 81 ± 17 ms at -150 mV) than channels with autoinhibition wholly removed by CNB fold truncation (HCN2 ACNB, 215 ± 110 ms at same voltage). Second, autoinhibited channels opened at a relatively fast rate (HCN2 R591E, 77 ± 16 ms) similar to the autoinhibition-free HCN2. We therefore propose a new “quickening element” in the C-terminal region which works distinctively from and opposite to autoinhibition in determining activation kinetics. The quickening effect of this element in HCN2 and HCN3 were observed for voltages from -110 mV through -160 mV when compared to HCN2 ACNB. At -100 mV, as HCN2 R591E opened slower (385 ± 46 ms) than HCN2 (238 ± 33 ms) as predicted by the autoinhibition model. Therefore in intact oocytes, the autoinhibition and the quickening element mechanisms exert two opposing influences on HCN activation speeds with a balance that changes with voltage.

788-Pos Board B543

Lipid Modulation of a Dual Function TEMEM16 Channel/Scramblase

Mattia Malvezzi, Radmila Janjusevic, Anant Menon, Alessio Accardi.

Weill Cornell Medical College, New York, NY, USA.

The TEMEM16 family of Ca2+ activated ion channels plays key roles in human physiology. Surprisingly, recent evidence suggested that some family members are not (only) ion channels but that some are phospholipid scramblases, proteins that mediate the bi-directional movement of lipids between leaflets of the membrane. For example, TEMEM16F has been reported to be an ion channel and/or a lipid scramblase. Recently, our group identified a novel fungal TEMEM16 homologue, aTMEM16, which is both a Ca2+-gated ion channel and a phospholipid scramblase. We found that membrane composition is a key regulator of ion channel gating but not of phospholipid scrambling activity, as we were able to suppress channel activity without altering scrambling activity by changing the lipid composition of the membranes.

789-Pos Board B544

YidC Alters Conductivity and Ion Selectivity of the Bacterial Translocation Channel SecYEG

Lukas Winter1, Denis Knyazev1, Nicole Ollinger1, Andreas Vogt1,2, Christine Siligain1, Hans Georg Koch1,2, Peter Pohl1.

1Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria, 2Institute of Biochemistry and Molecular Biology, ZBMB, Albert-Ludwigs-University, Freiburg, Germany, 3Speisam Graduate School of Biology and Medicine, SGBM, Albert-Ludwigs-University, Freiburg, Germany.

During protein transport across the membrane the bacterial translocon SecYEG must maintain the barrier to cations and protons in order to preserve the proton motive force. In vivo and in vitro experiments with SecYEG mutants in the bacterial plasma membrane attributed the preservation of the proton motive force to an intrinsic anion-selectivity of the channel. Since potential residues responsible for selective cation exclusion are not easily recognizable in the SecYEG structure we tested the ion selectivity of (i) the purified wild type SecYEG channel, which was opened by ribosome binding2 and (ii) the purified plugless SecYEG mutant 2 after reconstitution into planar bilayers. In both cases, reversal potential measurements under conditions of a transmembrane salt gradient did not reveal physiologically relevant ion selectivity. Upon reconstitution of SecYEG with YidC we found decreased single ion channel conductivity and increased anion selectivity of SecYEG. Combined, both factors acted to decrease the cation leak through SecYEG by an order of magnitude. Additional experiments on YidC reconstituted into planar bilayers suggest that YidC itself forms a pore which is opened by ribosome binding.