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SUMMARY

Woolly mammoths and living elephants are charac-
terized by major phenotypic differences that have
allowed them to live in very different environments.
To identify the genetic changes that underlie the suite
of woolly mammoth adaptations to extreme cold, we
sequenced the nuclear genome from three Asian ele-
phants and two woolly mammoths, and we identified
and functionally annotated genetic changes unique
to woolly mammoths. We found that genes with
mammoth-specific amino acid changes are enriched
in functions related to circadian biology, skin and hair
development and physiology, lipid metabolism, adi-
pose development and physiology, and temperature
sensation. Finally, we resurrected and functionally
tested the mammoth and ancestral elephant
TRPV3 gene, which encodes a temperature-sensitive
transient receptor potential (thermoTRP) channel
involved in thermal sensation and hair growth, and
we show that a single mammoth-specific amino
acid substitution in an otherwise highly conserved
region of the TRPV3 channel strongly affects its tem-
perature sensitivity.

INTRODUCTION

Woolly mammoths (Mammuthus primigenius), perhaps the most

charismatic of the extinct Pleistocene megafauna, have long

fascinated humans and have become emblems of the last ice

age. Unlike the extant elephantids, which live in warm tropical

and subtropical habitats, woolly mammoths lived in the extreme

cold of the dry steppe-tundra where average winter tempera-

tures ranged from �30� to �50�C (MacDonald et al., 2012).

Woolly mammoths evolved a suite of adaptations for arctic life,
including morphological traits such as small ears and tails to

minimize heat loss, a thick layer of subcutaneous fat, long thick

fur, and numerous sebaceous glands for insulation (Repin et al.,

2004), as well as a large brown-fat deposit behind the neck that

may have functioned as a heat source and fat reservoir during

winter (Boeskorov et al., 2007; Fisher et al., 2012). They also

likely possessed molecular and physiological adaptations in

circadian systems (Bloch et al., 2013; Lu et al., 2010) and adi-

pose biology (Liu et al., 2014; Nelson et al., 2014), similar to

other arctic-adapted species. Mammoths diverged from Asian

elephants (Elephas sp.) �5 Ma (Rohland et al., 2007) and likely

colonized the steppe-tundra 1–2 Ma (Debruyne et al., 2008),

suggesting that their suite of cold-adapted traits evolved rela-

tively recently (Figure 1).

Identifying the genetic changes that underlie morphological

differences between species is daunting, particularly when re-

constructing how the genotype-phenotype map diverged in

non-model or, especially, extinct organisms. Thus, while

the molecular bases of some phenotypic traits have been

identified, these studies generally are limited to a few well-

characterized genes and pathways with relatively simple and

direct genotype-phenotype relationships (Chan et al., 2010;

Hoekstra et al., 2006; Lang et al., 2012; Smith et al., 2013;

Storz et al., 2009). Previous structural and functional studies,

for example, have shown that amino acid polymorphisms in

the woolly mammoth hemoglobin b/d fusion gene (HBB/HBD)

reduce oxygen affinity (Campbell et al., 2010; Yuan et al.,

2011, 2013), whereas amino acid polymorphisms in both the

woolly mammoth and Neandertal melanocortin 1 receptor

(MC1R) genes were hypomorphic compared to the ancestral

alleles (Lalueza-Fox et al., 2007; Römpler et al., 2006). Most

traits, however, have complex genotype-phenotype relation-

ships with phenotypic divergence arising through the accumu-

lation of numerous variants of small individual effects rather

than one or a few mutations of large effect. Thus, candidate

gene studies are poorly suited for forward genetic-based

approaches to trait mapping, and the genetic changes that
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Figure 1. Woolly Mammoth Phylogeny, Ecology, and Extinction

(A) Phylogenetic relationships among recent elephantids. Branches are drawn

proportional to time. The ancestor of Asian elephants and mammoths is

labeled (AncGajah).

(B) Mammoth ecology and extinction. Irradiance at 60�N (top) in June (orange)

and December (blue), arctic surface temperature (middle), and estimated

mammoth abundances at three localities (bottom) during the last 45 ka are

shown. Data modified from MacDonald et al. (2012).
underlie woolly mammoth adaptations to the arctic are almost

entirely unknown.

Whole-genome sequencing (WGS) is an invaluable tool for

exploring the genetic origins of phenotypic differences between

species, because one can identify fixed and polymorphic vari-

ants across the genome without respect to a-priori-defined

genes and pathways. However, distinguishing functional from

nonfunctional variants in WGS data can be difficult (Cooper

and Shendure, 2011). To determine genetic changes that under-

lie cold-adapted traits in woolly mammoths, we sequenced the

genomes of three Asian elephants and two woolly mammoths

to high coverage, and we functionally annotated fixed, derived

amino acid and loss-of-function (LOF) substitutions in woolly
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mammoths.We found that genes with woolly mammoth-specific

substitutions were enriched in functions related to circadian

biology, skin, hair, and sebaceous gland development and phys-

iology, lipid metabolism, adipose development and physiology,

and temperature sensation. These data provide mechanistic

insights into the causes of morphological evolution, and

define a set of likely causal variants for future study of woolly

mammoth-specific traits.

RESULTS AND DISCUSSION

Genome Sequencing, Assembly, and Annotation
We generated Illumina sequence data for two woolly mammoths

that died �20,000 and �60,000 years ago (Gilbert et al., 2007,

2008; Miller et al., 2008), including individuals from the twomajor

lineages of woolly mammoths, clade I (individual M4) and clade II

(M25), which are estimated to have diverged �1.5 Ma

(Miller et al., 2008), and three extant Asian elephants (Elephas

maximus). We aligned sequencing reads to the genome as-

sembly for the African Savannah elephant (Loxodonta africana),

resulting in non-redundant average sequence coverage

of �20-fold for each mammoth and �30-fold for each Asian

elephant (Figure S1). We identified �33 million putative single-

nucleotide variants (SNVs) among the three elephantid species

(see Experimental Procedures for details), including �1.4 million

nucleotide variants fixed for the derived allele in the two mam-

moths, but for the ancestral allele in the African and Asian ele-

phants. Among the variants were 2,020 fixed, mammoth-derived

amino acid substitutions in 1,642 protein-coding genes and

26 protein-coding genes with premature stop codons (putative

LOF substitutions).

Functional Consequences of Woolly-Mammoth-Specific
Amino Acid Substitutions
Weused several complementary approaches to infer the putative

functional consequences of mammoth-specific amino acid sub-

stitutions, including classifying substitutions based on their

BLOSUM80exchangeabilities (Henikoff andHenikoff, 1992), pre-

dicted functional consequences based on PolyPhen-2 (Adzhubei

et al., 2010, 2013), and the inter-species conservation of sites

at which substitutions occurred, as well as identifying Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways (Kane-

hisa and Goto, 2000) and mouse knockout (KO) phenotypes

(Blake et al., 2014) enriched among protein-coding genes with

fixed, derived amino acid substitutions in the wooly mammoth.

Finally, we manually selected gene-pathway and gene-pheno-

type associations for further study according to the following

two criteria: (1) the richness of literature supporting the role of

each gene in specific pathways and phenotypes; and (2) the

exchangeability, PolyPhen-2 score, and strength of sequence

conservation at sites with mammoth-specific substitutions.

We found that genes with fixed, derived woolly mammoth sub-

stitutions were enriched for 40 KEGG pathways and 859 mouse

KO phenotypes, at a false discovery rate (FDR) % 0.10 (Fig-

ure 2A). Significantly enriched KEGG pathways included circa-

dian rhythm – mammal (enrichment [E] = 6.71, hypergeometric

p = 2.7 3 10�3, FDR q = 0.02), fat digestion and absorption

(E = 4.01, hypergeometric p = 7.9 3 10�3, FDR q = 0.05),



Figure 2. Functional Annotation of Genes with Woolly Mammoth-Specific Amino Acid Substitutions

(A) Manhattan plot of mouse KO phenotypes enriched among genes with fixed, derived mammoth amino acid changes. The –log10(hypergeometric p values) are

shown for each phenotype; phenotypes are grouped by anatomical system effected. The 551 genes with fixed, derived mammoth amino acid changes have

mouse KO data. Horizontal red line, FDR = 0.1.

(B) Word cloud of 40 selected mouse KO phenotypes enriched among the protein-coding genes with fixed, derived mammoth amino acid changes. Phenotype

terms are scaled to the log2 enrichment of that phenotype and color coded by �log10 p value of phenotype enrichment (hypergeometric test).
complement and coagulation cascades (E = 4.28, hypergeomet-

ric p = 5.03 10�4, FDR q = 6.73 10�3), andmetabolic pathways

(E = 8.39, hypergeometric p = 2.2 3 10�7, FDR q = 1.6 3 10�5)

(Table S1). Enriched KO phenotypes included decreased core

body temperature (E = 4.15, hypergeometric p = 8.0 3 10�4,

FDRq=7.23 10�3), abnormal brownadipose tissuemorphology

(E = 2.99, hypergeometric p = 1.4 3 10�4, FDR q = 4.0 3 10�3),

abnormal thermal nociception (E = 2.25, hypergeometric p =

5.4 3 10�3, FDR q = 0.05), abnormal glucose homeostasis

(E = 1.46, hypergeometric p = 2.6 3 10�3, FDR q = 3.2 3 10�2),

and many body mass-/weight-related phenotypes (Figure 2B).

We also inferred the functional significance of fixed, derived

LOF substitutions in woolly mammoth genes. We identified a

single KEGG term enriched among the genes with LOF substitu-

tions, fat digestion and absorption (E = 127.64, hypergeometric

p = 1.0 3 10�4, FDR q = 1.0 3 10�4), and 48 KO terms enriched

among these genes at an FDR % 0.10 (Figure 3A). Enriched KO

terms were almost exclusively related to cholesterol, sterol, tri-

glyceride, and lipid homeostasis and metabolism (Figure 3B),

such as decreased circulating cholesterol level (E = 33.15, hyper-

geometric p = 5.73 10�5, FDR q = 4.33 10�3), decreased sterol
level (E = 30.15, hypergeometric p = 7.6 3 10�5, FDR q = 4.3 3

10�3), and abnormal circulating lipid level (E = 30.15, hypergeo-

metric p = 7.6 3 10�5, FDR q = 4.3 3 10�3).

Substitutions in Genes Associated with the Mammoth
Body Plan
Woolly mammoths evolved a suite of morphological adaptations

to life in the extreme cold, including small ears and tails, a long

thick coat, and, unlike other elephants, numerous large seba-

ceous glands, which are thought to have helped repel water

and improve insulation (Repin et al., 2004). Woolly mammoths

also evolved a characteristic set of skeletal traits, including a

high, domed skull with dorsally expanded parietals; an anterio-

posteriorly compressed skull; and a sloping back. Consistent

with mammoth-specific amino acid changes contributing to

these traits, we found that genes with mammoth-specific substi-

tutions were enriched in KO phenotypes such as abnormal tail

morphology (E = 1.71, hypergeometric p = 2.0 3 10�3, FDR

q = 2.2 3 10�2), abnormal tail bud morphology (E = 5.06, hyper-

geometric p = 3.03 10�3, FDR q = 3.23 10�2), small tail bud (E =

18.00, hypergeometric p = 4.1 3 10�2, FDR q = 1.6 3 10�2),
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Figure 3. Functional Annotation of Genes with Woolly Mammoth-Specific Amino LOF Substitutions

(A) Manhattan plot of mouse KO phenotypes enriched among genes with fixed, derived loss premature stop codons in woolly mammoths. The

–log10(hypergeometric p values) are shown for each phenotype; phenotypes are grouped by anatomical system effected. Vertical red line, FDR = 0.1.

(B) Word cloud of 26 selectedmouse KO phenotypes enriched among the protein-coding genes with fixed, derived premature stop codons in woolly mammoths.

Phenotype terms are scaled to the log2 enrichment of that phenotype and color coded by �log10 p value of phenotype enrichment (hypergeometric test).
abnormal ear morphology (E = 1.60, hypergeometric p = 9.0 3

10�3, FDR q = 6.43 10�2), cup-shaped ears (E = 5.06, hypergeo-

metric p = 3.03 10�2, FDR q = 1.43 10�2), and abnormal seba-

ceous gland morphology (E = 2.33, hypergeometric p = 8.0 3

10�3, FDR q = 6.33 10�2), including substitutions in three genes

leading to enlarged sebaceous glands. We also found numerous

enriched KO phenotypes that affected the skeleton, including

domed cranium (E = 2.26, hypergeometric p = 1.3 3 10�2,

FDR q = 8.3 3 10�2), abnormal parietal bone morphology

(E = 2.66, hypergeometric p = 2.6 3 10�2, FDR q = 1.9 3

10�2), and short snout (E = 2.39, hypergeometric p = 2.0 3

10�3, FDR q = 2.3 3 10�2).

Previous studies have found hypomorphic polymorphisms in

the woolly mammoth MC1R associated with reddish fur color

(Römpler et al., 2006), but these variants may have been rela-

tively rare in mammoth populations (Workman et al., 2011).

Thus, variants in other genes also may have contributed to

coat color variability in mammoths, which varied from blonde

to orange to nearly black (Valente, 1983). We identified 38 genes

with mammoth-specific amino acid changes associated with

abnormal coat/hair morphology in KO mice, including derived

substitutions in eight genes specifically associated with diluted

coat color.We also found that the expression of geneswith fixed,

derived woolly mammoth substitutions were enriched in hair root

sheath (hypergeometric p = 0.006), coat hair follicle (hypergeo-

metric p = 0.013), hair follicle (hypergeometric p = 0.016), skin

(hypergeometric p = 0.018), and hair outer root sheath (hyper-

geometric p = 0.018).
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Substitutions in Genes Associated with Circadian
Biology
Organisms living at high latitudes in the arctic experience long

periods of darkness during the winter and near constant light

in the summer, which prevents polar-adapted species from

utilizing daily light-dark cycles to entrain their circadian

clocks. Svalbard reindeer (Rangifer tarandus platyrhynchus),

for example, have lost functioning circadian clocks and circadian

rhythmicity in PER2 and BMAL1 (ARNTL) expression (Lu et al.,

2010). Moreover, several other arctic species also are known

to have derived circadian systems (Bloch et al., 2013), and we

observed that several enriched KO and KEGG terms were

related to circadian biology, motivating us to explore circadian

genes in greater detail.

Fixed, derived mammoth-specific amino acid substitutions

occurred in eight genes associated with circadian biology,

including those that play central roles in maintaining normal

circadian rhythms and entraining the circadian clock to external

stimuli such as temperature. HRH3 and PER2 KO mice, for

example, have abnormal circadian temperature homeostasis

(Shiromani et al., 2004; Toyota et al., 2002). PER2 directly medi-

ates the early adaptive response to shifted temperature cycles

and coordinates adaptive thermogenesis by synchronizing

UCP1 expression and activation in brown adipose tissue (Chap-

puis et al., 2013; Saini et al., 2012). Similarly, neuronal histamine

receptors regulate circadian energy homeostasis through

UCP1 expression in brown adipose tissue. HRH1 KO mice, for

example, have abnormal circadian rhythms and abnormal



Figure 4. Woolly Mammoth-Specific Amino Acid Substitutions in ThermoTRP Temperature Sensors

(A) Temperature ranges over which TRPM8, TRPA1, TRPM4, TRPV4, and TRPV3 are active. Threshold temperatures for each channel are shown.

(B) Structure of a single TRP subunit (left) and the tetrameric channel (right) viewed from the side. The ankyrin-repeat domain (ARD), transmembrane domains

(S1–S6), membrane-proximal domain (MPD), C-terminal domain (CTD), TRP box, pore loop, and pore turret are labeled. Amino acids within the ARD, MPD, pore

turret, the outer pore region and in the initial part of S6, the TRP box, and the CTD influence temperature sensing in TRPV and TRPA channels.

(C) Diagram of the major structural domains of TRPA1. Gray regions were not included in the TRPA1 structural model. The location of the mammoth-specific

R1031T substitution is shown.

(D) Cartoon representation of the pore domain of the TRPA1 homology model. The location of the R1031T substitution is shown as magenta-colored spheres;

helix coloring follows (C).

(E) Close-up of the region boxed in (D) in the TRPA1 homologymodel of the AncGajah ancestor (left) and woolly mammoth (right). The electrostatic surfaces of the

proteins are shown (blue, positive; red, negative). The superimposed square indicates the location of the charge altering R1031T substitution.
circadian feeding behaviors, including a shift in food consump-

tion from day to night (Inoue et al., 1996). These observations

suggest that the circadian system in woolly mammoths may

have adapted to the extreme seasonal light-dark oscillations of

the high arctic.

Substitutions in Genes Associated with Insulin
Signaling, Lipid Metabolism, and Adipose Biology
The enrichment of genes with derived amino acid (Figure 2) and

LOF substitutions (Figure 3) in woolly mammoths that function in

lipid metabolism, adipose development, and physiology sug-

gests modifications of these processes may have played an

important role in the evolution of woolly mammoths and adapta-

tion to arctic life. We identified 54 genes with fixed, derived

amino acid substitutions and KO phenotypes that affect adipose

tissue, including phenotypes that alter both the location and

abundance of white and brown fat deposits throughout the

body. Among the genes with woolly mammoth-specific substitu-

tions were the leptin receptor (LEPR); DLK1 (also known as

preadipocyte factor 1), an epidermal growth factor repeat-

containing transmembrane protein that regulates adipocyte

differentiation; the growth hormone receptor (GHR); and cortico-

tropin-releasing hormone (CRH). We also identified 39 genes

with KO phenotypes that affect insulin signaling, and found

that genes with mammoth-specific amino acid substitutions

were enriched in several KO phenotypes related to insulin

signaling, including abnormal circulating insulin level (E = 1.82,

hypergeometric p = 1.0 3 10�3, FDR q = 1.5 3 10�2), insulin

resistance (E = 2.23, hypergeometric p = 3.0 3 10�3, FDR q =

3.53 10�2), and impaired glucose tolerance (E = 1.91, hypergeo-

metric p = 4.0 3 10�3, FDR q = 3.7 3 10�2).
Substitutions in Temperature-Sensitive Transient
Receptor Potential Channels
The most intriguing mouse KO phenotype enriched among

genes with woolly mammoth-specific amino acid changes was

abnormal thermal nociception (13 genes). For example, we iden-

tified woolly mammoth-specific amino acid changes in five tem-

perature-sensitive transient receptor potential (thermoTRP)

channels (Figure 4A) that sense noxious cold (TRPM8) (Bautista

et al., 2007; Knowlton et al., 2010; Vriens et al., 2014), innocuous

warmth (TRPV3 and TRPV4) (Chung et al., 2004; Smith et al.,

2002; Vriens et al., 2014; Xu et al., 2002), or noxious cold or

heat depending on species (TRPA1) (Chen et al., 2013; Kara-

shima et al., 2009) or that are heat sensitive but not known to

be involved in temperature sensation (TRPM4) (Bautista et al.,

2007; Knowlton et al., 2010; Vriens et al., 2014). We also identi-

fied a mammoth-specific amino acid change in PIRT, a small

phosphoinositide-binding protein that functions as a regulatory

subunit of TRPM8 and the noxious heat sensor TRPV1 (Kim

et al., 2008; Tang et al., 2013).

To infer the putative consequences of woolly mammoth-

specific amino acid substitutions in thermoTRPs, we generated

structural models of the ancestral Asian elephant/mammoth

(AncGajah; Figure 1A) and ancestral mammoth (AncMammoth;

Figure 1A) TRPA1, which mediates nocifensive (Karashima

et al., 2009; Kwan et al., 2006; Vizin et al., 2015) and vascular

responses to noxious cold (Aubdool et al., 2014) as well as

generally potentiating responses to noxious stimuli (del Camino

et al., 2010), and TRPV4, which mediates autonomic and behav-

ioral responses to cold (Vizin et al., 2015). We found that the

elephantid TRPA1 and TRPV4 proteins were predicted to adopt

the common TRP channel structure, which is composed of a
Cell Reports 12, 217–228, July 14, 2015 ª2015 The Authors 221



Figure 5. A Woolly Mammoth-Specific Amino Acid Substitution at a Temperature-Sensitive Site in TRPV4

(A) Diagram of themajor structural domains of TRPV4. Gray regions were not included in the TRPV4 structural model. The location of themammoth-specific V658I

substitution is shown in magenta.

(B) Cartoon representation of the pore domain of the woolly mammoth TRPV4 homology model. The location of the V658I substitution is shown as a magenta-

colored sphere.

(C) Conservation of the pore helix-pore loop-S6 region between TRPV3 (top) and TRPV4 (bottom). Residues in TRPV3 that have been experimentally shown to

mediate temperature sensing and that have temperature-dependent conformations are shown in red and yellow, respectively. Homologous residues in TRPV4

are shown in dark gray, and site 658 is shown in magenta.

(D) Close-up of the region boxed in (B). I658 is shown as a magenta-colored sphere, homologous residues in mouse TRPV3 that mediate temperature sensitivity

are shown as red spheres, and residues with temperature-dependent conformations in TRPV3 are shown as yellow spheres.

(E) Site 658 also mediates the interaction between TRPV channels and the spider vanillotoxin DkTx (pink). I658 is shown as a magenta sphere in the woolly

mammoth TRPV4 model (blue), and the experimentally determined structure of mouse TRPV1 (gray) complexed with DkTx is superimposed onto the mammoth

structural model.
series of amino terminal ankyrin repeats (ARD), separated by a

membrane proximal domain (MPD) from the six transmembrane

helices (S1–S6) that form the ion-permeable pore in tetrameric

channels (Figure 4B). We found that the TRPA1 R1031T substitu-

tion occurred in an unstructured loop between the TRP-like

domain and the C-terminal coiled-coil domain (Figures 4C and

4D), which is predicted to alter the electrostatic surface by

reducing the local positive charge (Figure 4E). The mammoth-

specific TRPV4 V658I substitution occurred at the first site in

the S6 helix (Figure 5A), which is part of the outer pore region

important for activation of the channel in response to heat (Fig-

ure 5B). Indeed, we found that site 658 is located within a cluster

of sites that mediate heat activation in the related TRPV3 channel

(Grandl et al., 2008), and it is homologous to a site in TRPV3 that

adopts temperature-dependent conformations (Figures 5C and

5D; Kim et al., 2013). Site 658 also mediates the interaction

between TRPV channels and the agonist vanillotoxin DkTx

(Figure 5E; Cao et al., 2013; Liao et al., 2013). These data suggest

themammoth-specificR1031T andV658I substitutionsmayhave

affected the gating dynamics in TRPA1 and TRPV4, respectively.

Thermal Tuning of the Woolly Mammoth Temperature
Sensor TRPV3
To explore the consequences of mammoth-specific amino acid

changes in thermoTRPs in greater detail, we focused on TRPV3,

which functions in a variety of processes including warm temper-

ature sensation (>33�C) through ATP-dependent signaling
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between epidermal keratinocytes, which express TRPV3, and

local sensory neurons, which do not (Chung et al., 2004; Man-

dadi et al., 2009; Peier et al., 2002; Vandewauw et al., 2013);

regulating hair growth through transforming growth factor a

(TGF-a)/epidermal growth factor receptor (EGFR) signaling

(Cheng et al., 2010; Imura et al., 2007; Smith et al., 2002; Xu

et al., 2002); and differentiation of adipocytes (Cheung et al.,

2015). We found that the mammoth-specific substitution in

TRPV3 (N647D) occurred at a well-conserved site (Figure S2)

in the outer pore loop (Figures 6A and 6B) and was fixed for

the derived asparctic acid in seven woolly mammoths we tested

by PCR amplification and Sanger sequencing (Figure S3).

Remarkably, a previous high-throughput mutagenesis screen

found that mutations at site 647 abolished heat sensitivity in

mouse TRPV3 (Grandl et al., 2008), suggesting the N647D sub-

stitution affects thermosensation by mammoth TRPV3.

We inferred the structural consequences of the N647D substi-

tution by generating homology models of the AncGajah and

AncMammoth TRPV3 protein and tetrameric channel (as

described above). We found that the TRPV3 models were struc-

turally very similar to the TRPV1 reference structure on which

they were based (root-mean-square deviation [RMSD] = 1.93–

1.99 Å; Figure S4), particularly in the a helices that form the

pore of the tetrameric channel, suggesting that these are realistic

models. In the TRPV1 structure, hydrogen bonds between

residues in the pore loop are thought to maintain the outer

pore in a non-conductive conformation in the closed state;



Figure 6. Structural and Functional Consequences of the Woolly Mammoth-Specific N647D Substitution in TRPV3

(A) Diagram of the major structural domains of TRPV3. Gray regions were not included in the TRPV3 structural model. The location of the mammoth-specific

N647D substitution is shown as a magenta circle and the selectivity filter as a red loop.

(B) Cartoon representation of the pore domain of the TRPV3 homology model. The N647D substitution is shown in stick representation and colored magenta and

the selectivity filter as a red loop. The region shown in (C) is boxed.

(C) Close-up view of the pore region of the AncGajah (red) and AncMammoth (blue) TRPV3 homology models. N647 in AncGajah and D647 in AncMammoth are

colored magenta and shown in stick representation, and predicted hydrogen bond interactions with neighboring residues are shown as yellow dashed lines.

(D) Superimposed AncGajah (red) and AncMammoth (blue) pore regions in the open conformation. Only diagonally opposed subunits are shown. Site 647 is

shown as spheres and sites G637 and I673 are sticks. (Left) Predicted pores formed by the AncGajah (red) and AncMammoth (blue) TRPV3 channels are shown as

space-filling spheres. (Right) The diameter of the AncMammoth pore relative to the diameter of the AncGajah pore at the narrowest point in the selectivity filter

(site G637) and lower gate (site I673) is shown.

(E) Profile of the predicted pore radius from AncGajah (red) and AncMammoth (blue) TRPV3 channels is shown.

(F) Fluo-4 fluorescence intensity in response to increases in temperature in HEK293 cells transiently transfected with expression constructs for AncGajah (red)

and AncMammoth (blue) TRPV3 relative to non-transfected cells (gray). Curves are shown as background-subtracted relative intensity, mean ± SEM (n = 6).
conformational changes in the pore helix and pore loops disrupt

these local hydrogen bonds to facilitate gating and widening of

the selectivity filter upon channel activation (Cao et al., 2013;

Liao et al., 2013). Our structuralmodel suggests that the carbonyl

oxygen of the ancestral N647 residue forms a hydrogen bond

with the neighboring side chain of Q645, whereas in the

AncMammoth structure these hydrogen bonds are replaced by

a pair of hydrogen bonds between D647 and K610, potentially

impeding full opening of the channel in mammoths (Figure 6C).

Consistent with this prediction, in the model of the AncGajah

open channel, the distance between diagonally opposed G637

residues is 8.5 Å, whereas this distance is only 6.3 Å in the

AncMammoth open channel (Figure 6D), which narrows the

pore diameter at the selectivity filter by�26%and thepore radius

at the selectivity filter by �60% (Figure 6E; Figures S5A–S5H).

To functionally characterize the effects of the mammoth-

specific N647D substitution, we resurrected the AncMammoth
and AncGajah TRPV3 genes and measured their temperature-

dependent gating in transiently transfected HEK293 cells using

Fluo-4 calcium flux assays (Aneiros and Dabrowski, 2009; Reub-

ish et al., 2009). We found that both the AncMammoth and

AncGajah TRPV3 proteins were expressed at similar levels (Fig-

ure S5I) and that the overall gating dynamics of channels were

very similar. Both channels, for example, were activated at

�29�C, had half-maximum activities (T50) at 33�C, and had

maximal activities (Tmax) at 43
�C (Figure 6F). The AncMammoth

TRPV3 channel, however, was �20% less active than the

AncGajah channel at Tmax (Figure 6F), consistent with the predic-

tions from our structural models that the AncGajah channel does

not fully open upon stimulation. Both channels, however, were

robustly activated in response to camphor (Figure S5J). These

data are consistent with previous studies in mice that found

mutations at site 647 affect temperature-dependent gating, but

not channel opening, by chemical agonists (Grandl et al., 2008).
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To test whether this substitution may have been positively

selected in the woolly mammoth lineage, we assembled a data-

set of TRPV3 genes from 64 diverse amniotes and used

maximum likelihood methods to identify lineages (aBSREL)

and codons with evidence of episodic (MEME) and pervasive

(FEL) diversifying selection. While aBSREL identified a class of

sites in mammoth with dN/dS > 1, the results were not significant

(mean dN/dS = 10, p = 0.226). MEME, however, found significant

evidence for episodic diversifying selection at site 647 (dN/dS =

444.47, p = 0.037); although inferences of positive selection at

specific branch-site combinations are inherently imprecise, the

MEME model suggested the N647D substitution was positively

selected in mammoths (PP > 0.97, EBF > 1,000). In contrast,

FEL inferred site 647 to evolve under strong purifying selection

(dN/dS = 0.274, p = 0.044), indicating this site does not experi-

ence pervasive diversifying selection. These data suggest that,

while TRPV3 genes and site 647 generally evolve under purifying

selection, there is strong evidence that the N647D substitution

was positively selected in the stem lineage of woolly mammoths.

Our observation that the mammoth TRPV3 protein is less

active (hypomorphic) across a range of temperatures is par-

ticularly intriguing given its pleiotropic roles in temperature

sensation, hair growth, and adipogenesis. TRPV3 KO mice, for

example, have deficits in responses to innocuous and noxious

heat and prefer colder temperatures than wild-type mice (Marics

et al., 2014; Miyamoto et al., 2011; Moqrich et al., 2005; cf.

Huang et al., 2011). TRPV3 activation also inhibits hair shaft elon-

gation and induces the premature regression of hair follicles

(Borbı́ró et al., 2011; Cheng et al., 2010), whereas TRPV3 KO

mice have curly whiskers and wavy hair (Cheng et al., 2010).

These data suggest that the hypomorphic mammoth TRPV3

may have phenocopied TRPV3-null mice and contributed to

evolution of cold tolerance, long hair, and large adipose stores

in mammoths.
Conclusions
Identifying the genetic changes that underlie morphological

evolution is challenging, particularly in non-model and extinct

organisms. We have identified genetic changes unique to

woolly mammoths, some of which likely contributed to woolly

mammoth-specific traits. Our results suggest that changes in

circadian systems, insulin signaling and adipose development,

skin development, and temperature sensation may have played

important roles in the adaptation of woolly mammoths to life in

the high arctic. Our identification of a hypomorphic woolly

mammoth amino acid substitution in TRPV3 is particularly note-

worthy given its pleiotropic roles in temperature sensation, hair

growth, and adipose biology, suggesting that this substitution

may have contributed to cold tolerance. Finally, the genomic

data we have generated will be a useful resource for future

studies to explore the genetic changes that underlie woolly

mammoth morphology, physiology, and demography.
EXPERIMENTAL PROCEDURES

Genome Sequencing, Assembly, and Annotation

Details of the sequencing protocol are given in the Supplemental Experimental

Procedures. Sequences from the three Indian elephant samples were aligned
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to the reference genome from the African elephant (loxAfr3) using the Burrows

Wheeler Aligner (BWA) (Li and Durbin, 2010) with default parameters (BWA

version 0.5.9-r16). The reads were subsequently realigned around putative

indels using the Genome Analysis Toolkit (GATK) (DePristo et al., 2011) Indel-

Realigner (version 1.5-21-g979a84a), and putative PCR duplicates were

flagged using the MarkDuplicates tool from the Picard suite (version 1.96).

For the two mammoth samples, we trimmed putative adaptor sequences

and merged overlapping paired-end reads using available scripts (Kircher

et al., 2012). We required an overlap of at least 11 nucleotides between the

mates, and only pairs that could be merged were retained for subsequent

analyses. The merged reads were aligned to the genome from the African

elephant (loxAfr3) using BWA with default parameters, and only the mapped

reads that were longer than 20 bp were retained for the subsequent SNP calls.

The reads were realigned using the GATK IndelRealigner and putative PCR

duplicates were flagged using MarkDuplicates, similar to the process

described for the modern genomes. We also limited the incorporation of

damaged sites into the variant-calling pipeline by hard-masking all sites that

would be potentially affected by the characteristic ancient DNA patterns of

cytosine deamination in single-stranded overhangs. This mask was applied

to ten nucleotides on both ends of themerged reads from the ancient samples.

At about 33 million positions in the African elephant reference assembly, we

detected a nucleotide different from the reference in at least one of the five

newly sequenced individuals. We call these positions SNVs; these were iden-

tified using SAMtools (Li et al., 2009) (version 0.1.19), which was applied with

‘‘�C50’’ to adjust the mapping quality of the reads with multiple mismatches.

We did not call differences in regions where the reference base was unknown,

and the calls were limited to regions that were covered at least four times and

at most 250 times by the sequences in these samples.

We selected the SNVs where the two mammoths were identified as homo-

zygous for the variant nucleotide, whereas the three Asian elephants were

homozygous for the Loxodonta africana reference nucleotide. Since the

African elephant is thought to have diverged from the ancestor of Asian ele-

phants and mammoths (Krause et al., 2006), we considered the fixed

mammoth variant as derived (i.e., non-ancestral). We used the gene annota-

tion for Loxodonta africana to identify putative variant amino acids. This

information as well as gene ontology (GO) terms and gene models were

obtained from the Ensembl database (Flicek et al., 2013).

We also wanted to provide each SNVwith quality values that can help deter-

mine the robustness of an analysis to potential erroneous SNV calls. It was not

clear to us how to define a single quality value that treats mammoths on an

equal footing with Asian elephants, because of the lower coverage, shorter

length, and decreased accuracy of the mammoth reads, so we annotated

each SNV with a mammoth quality value and an Asian elephant quality value,

which gave the Phred scaled probability of the alternate allele in the two

mammoth samples and the three Asian elephants, respectively. Slightly under

half of the�33 million SNV calls have a mammoth quality value of at least 100;

but, of the 2,046 putative fixed mammoth-specific non-synonymous differ-

ences (2,020 amino acid variants and 26 premature stop codons), 1,975

have a mammoth quality value of at least 100, which suggests to us that our

conclusions are reasonably robust. In any case, the user can filter the putative

SNVs as desired. Among these variants were five previously characterized

mammoth-specific amino acid changes (Miller et al., 2008); however, the

remaining previously identified changes failed to pass our stringent quality

control or were excluded because of different data analysis pipelines. The

genes in which replicated variants were identified are TMEM48, NT5E,

MARS, LRRC49, and PRMT7. Promoted by our observation that numerous

thermoTRPs had mammoth-specific amino acid changes, we also manually

annotated the mammoth TRPM8 locus by lowering our thresholds for SNP

calling and identified four derived mammoth amino acid changes.

A table of all 2,046 fixed, mammoth-specific protein differences is freely

available on the Galaxy server (Goecks et al., 2010; Bedoya-Reina et al.,

2013; https://usegalaxy.org). The table has the following columns: (1) gene

name; (2) reference amino acid; (3) position in the peptide sequence (base

1); (4) variant amino acid; (5) name of Ensembl transcript; (6) name of scaffold

in the Loxondonta genome assembly; (7) position in the scaffold (base 0); (8)

name of orthologous human chromosome; (9) human position; (10)

BLOSUM80 exchangeability score; (11) PolyPhen-2 category (‘‘benign,’’

https://usegalaxy.org


‘‘possibly damaging,’’ ‘‘probably damaging,’’ or ‘‘unknown’’); (12) PolyPhen-2

score; and (13) mammoth SNV quality value. Tables of the 33 million SNVs,

Loxodonta/Ensembl-annotated genes, 170,274 SNVs in those protein-coding

regions, and a complete command history for constructing the table of

2,046 differences (see above) are available at https://usegalaxy.org/r/woolly-

mammoth.

Functional Inference of Mammoth-Specific Amino Acid

Substitutions

We used Vlad (http://proto.informatics.jax.org/prototypes/vlad/) to mine the

mouse KO phenotype data at Mouse Genome Informatics (http://www.

informatics.jax.org) for the genes with mammoth-specific substitutions. En-

riched GOs and KEGG pathways were identified with WebGestalt (http://

bioinfo.vanderbilt.edu/webgestalt/). The results can be found in Table S2.

TRPA1 and TRPV4 Structure Modeling

To reconstruct the AncMammoth and AncGajah TRPA1 and TRPV4 protein

sequences, we did the following: (1) included TRPA1 or TRPV4 genes from

the genomes of two woolly mammoths, three Asian elephants, African

elephant (loxAfr3), West Indian manatee, hyrax (proCap1), lesser hedgehog

tenrec (TENREC), and nine-banded armadillo (dasNov2); (2) aligned the trans-

lated sequences with MUSCLE (Edgar, 2004); (3) inferred the best-fitting

model of amino acid substitution using the model selection module imple-

mented in Datamonkey (Delport et al., 2010); and (4) used joint (Pupko et al.,

2000), marginal (Yang et al., 1995), and sampled (Nielsen, 2002)maximum like-

lihood methods implemented in the ancestral state reconstruction (ASR) mod-

ule of Datamonkey, incorporating a general discrete model of site-to-site rate

variation with three rate classes and the species phylogeny. We found that the

AncGajah TRPA1 and TRPV4 protein sequences were inferred with support of

1.0 across all sites under the joint, marginal, and sampled likelihood methods.

The AncMammoth and AncGajah TRPV4 protein structures were modeled

using the recently published high-resolution cryo-electron microscopy (EM)

structure of human TRPV1 in the closed and open states (Cao et al., 2013;

Liao et al., 2013; Paulsen et al., 2015). Initial structural models of the

AncMammoth and AncGajah TRPV4 proteins in the open and closed states

were generated using I-TASSER (Roy et al., 2010; Zhang, 2008) and the exper-

imentally determined structure of the TRPV1 channel in the closed (Protein

Data Bank [PDB]: 3J5P) and open (PDB: 3J5Q) states as templates. Initial

AncMammoth and AncGajah structural models were refined with ModRefiner

(Xu and Zhang, 2011), using the TRPV1 channel in the closed (PDB: 3J5P) and

open (PDB: 3J5Q) states as the reference structure. Similarly, we modeled the

AncMammoth and AncGajah TRPA1 protein structures using the high-

resolution cryo-EM structure of human TRPA1 (Cao et al., 2013; Liao et al.,

2013; Paulsen et al., 2015) using I-TASSER and ModRefiner.

TRPV3 Ancestral Sequence Reconstruction and Gene Synthesis

To reconstruct the mammoth ancestral TRPV3 protein sequences, we did the

following: (1) included TRPV3 genes from the genomes of two woolly mam-

moths, three Asian elephants, African elephant (loxAfr3), West Indianmanatee,

hyrax (proCap1), lesser hedgehog tenrec (TENREC), and nine-banded arma-

dillo (dasNov2); (2) aligned the translated sequences with MUSCLE (Edgar,

2004); (3) inferred the JTT model as the best-fitting (AIC = 7,255.71, cAIC =

7,256.05, BIC = 7,380.52) model of amino acid substitution using the model

selection module implemented in Datamonkey (Delport et al., 2010); and (4)

used joint (Pupko et al., 2000), marginal (Yang et al., 1995), and sampled (Niel-

sen, 2002) maximum likelihood methods implemented in the ASR module of

Datamonkey, incorporating a general discrete model of site-to-site rate varia-

tion with three rate classes and the species phylogeny. We found that support

for the reconstructions at site 647 in both ancestral sequences was 1.0 under

joint, marginal, and sampled likelihoods.

The Asian elephant/mammoth (AncGajah) ancestral TRPV3 gene, including

an amino terminal FLAG tag (MDYKDDDDK) with a Kozack sequence incorpo-

rated into the FLAG tag (gccaccATGG) and a four-residue glycine spacer

(GGGG) amino (N)-terminal to the TRPV3 open reading frame, was synthesized

by GeneScript using human codon usage and cloned into the mammalian

expression vector pcDNA3.1(+) (Invitrogen). The ancestral mammoth gene

(AncMammoth) was generated by using site-directed mutagenesis to
introduce the N647D mutation into the AncGajah TRPV3 pcDNA3.1(+) con-

struct. The sequence of both ancestors was verified with Sanger sequencing.

TRPV3 Structure Modeling

The AncMammoth and AncGajah protein structures were modeled using the

recently published high-resolution cryo-EM structure of TRPV1 in the closed

and open states (Cao et al., 2013; Liao et al., 2013). Initial structural models

of the AncMammoth and AncGajah proteins in the open and closed states

were generated using I-TASSER (Roy et al., 2010; Zhang, 2008) and the exper-

imentally determined structure of the TRPV1 channel in the closed (PDB: 3J5P)

and open (PDB: 3J5Q) states as templates. Initial AncMammoth and AncGajah

structural models were refined with ModRefiner (Xu and Zhang, 2011), using

the TRPV1 channel in the closed (PDB: 3J5P) and open (PDB: 3J5Q) states

as the reference structure. The backbone atoms of the refined AncMammoth

and AncGajah structural models in their closed and open conformations then

were aligned to the pore tetramer of the TRPV1 structure. Pore radius was

measured with MOLE 2.0 (http://mole.upol.cz).

TRPV3 Function Assays

Weused the Fluo-4 NWCalcium Assay Kit (Life Technologies) to determine the

temperature response of the AncMammoth and AncGajah TRPV3 proteins.

HEK293 cells (ATCC CRL-1573), were cultured in MEM supplemented with

10% (v/v) fetal bovine serum (FBS) in a 37�C humidity-controlled incubator

with 10% CO2. HEK293 cells growing in 10-cm plates were transiently trans-

fected at 80% confuency with 24 mg expression vector for the AncMammoth

or AncGajah TRPV3 genes or empty pcDNA3.1(+) using Lipofectamine LTX+

(Life Technologies), using the standard protocol.

Then, 48 hr after transfection, cells were harvested by trypsinization, centri-

fuged, resuspended in Hank’s balanced salt solution (HBSS) and HEPES

assay buffer containing 2.5 mM probenecid, and transferred to a 96-well plate

(at 150,000 cells/well in 50 ml assay buffer). Temperature-dependent calcium

influx was assayed using the Fluo-4 NWCalcium Assay Kit (Molecular Probes)

and a high-throughout qPCR-based assay (Aneiros and Dabrowski, 2009;

Reubish et al., 2009). After an initial 30-min loading at 25�C, the temperature

was raised from 15�C to 57�C in 2�C steps, and fluorescence was measured

after 2 min at each temperature using a Bio-Rad CFX-96 real-time PCR

machine. Fluo-4 fluorescence was measured using channel 1 (Sybr/FAM).

Fluo-4 fluorescence of cells transfected with the AncMammoth or AncGajah

TRPV3 genes was normalized by the Fluo-4 fluorescence of empty

pcDNA3.1(+)-transfected controls. All experiments included six biological

replicates and were repeated in four independent experiments.

Data Availability

Tables of the nucleotide and amino acid differences that we identified and a

table of putative gene gains and losses are available at the Galaxy website,

and collected at https://usegalaxy.org/r/woolly-mammoth, along with the

table of putative fixed woolly mammoth-specific amino acids and the set of

Galaxy commands that created it. Those data can be further analyzed by a

suite of Galaxy tools designed specifically for these data types (Bedoya-Reina

et al., 2013).

ACCESSION NUMBERS

The accession number for the Asian elephant and woolly mammoth sequence

data reported in this paper is SRA: PRJNA281811 (Short Read Archive).
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