Lower bounds on the minus domination and k-subdomination numbers ${ }^{\text {Th }}$

Liying Kang ${ }^{\text {a,* }}$, Hong Qiao $^{\text {b }}$, Erfang Shan ${ }^{\text {a }}$, Dingzhu Du ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, Shanghai University, Shanghai 200436, China
${ }^{\mathrm{b}}$ Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Hong Kong, China
${ }^{\mathrm{c}}$ Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA

Abstract

A three-valued function f defined on the vertex set of a graph $G=(V, E), f: V \rightarrow\{-1,0,1\}$ is a minus dominating function if the sum of its function values over any closed neighborhood is at least one. That is, for every $v \in V, f(N[v]) \geqslant 1$, where $N[v]$ consists of v and all vertices adjacent to v. The weight of a minus function is $f(V)=\sum_{v \in V} f(v)$. The minus domination number of a graph G, denoted by $\gamma^{-}(G)$, equals the minimum weight of a minus dominating function of G. In this paper, sharp lower bounds on minus domination of a bipartite graph are given. Thus, we prove a conjecture proposed by Dunbar et al. (Discrete Math. 199 (1999) 35), and we give a lower bound on $\gamma_{k s}(G)$ of a graph G.

(c) 2002 Elsevier Science B.V. All rights reserved.

Keywords: Domination number; Minus domination; k-subdomination

1. Introduction

For a graph $G=(V, E)$ with vertex set V and edge set E, the open neighborhood of $v \in V$ is $N(v)=\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is $N[v]=\{v\} \cup N(v)$. For a set S of vertices, we define the open neighborhood $N(S)=\bigcup_{v \in S} N(v)$, and the closed neighborhood $N[S]=N(S) \cup S$. A dominating set S for a graph $G=(V, E)$ is a subset of the vertex set V such that every vertex $v \in V$ is either in S or adjacent to a vertex in S. The domination number of $G, \gamma(G)$, equals the minimum cardinality of a dominating set.

[^0]For a real function f defined on vertices of a graph G and $S \subseteq V$, write $f(S)=$ $\sum_{v \in S} f(v)$ and $f[v]=f(N[v])$. A minus dominating function of G is defined in [3] as a function $f: V \rightarrow\{-1,0,1\}$ such that $f[v] \geqslant 1$ for each $v \in V$. A signed dominating function of G is defined in [4] as $f: V \rightarrow\{-1,1\}$ satisfying $f[v] \geqslant 1$ for all $v \in V$. A minus (signed) dominating function f is minimal if every minus (signed) dominating function g satisfying $g(v) \leqslant f(v)$ for every $v \in V$, is equal to f. It is easy to see that a minus dominating function is minimal if and only if for every vertex $v \in V$ with $f(v) \geqslant 0$, there exists a vertex $u \in N[v]$ with $f[u]=1$ and a signed function is minimal if and only if every vertex v of weight 1 , there exists some $u \in N[v]$ such that $f[u]=1$ or 2 . The minus domination number for a graph G is $\gamma^{-}(G)=\min \{f(V) \mid f$ is a minimal minus dominating function $\}$. Likewise, the signed domination number for a graph G is $\gamma_{\mathrm{s}}(G)=\min \{f(V) \mid f$ is a minimal signed dominating function $\}$.

A majority dominating function of G is defined in [1] as $f: V \rightarrow\{-1,1\}$ such that $f[v] \geqslant 1$ for at least half the vertices of G, and the minimum weight of such a function is the majority domination number.

For a positive integer k, a k-subdominating function (kSF) of G is a function $f: V \rightarrow\{-1,1\}$ such that $f[v]=\sum_{u \in N(v)} f(u) \geqslant 1$ for at least k vertices of G. The aggregate $\operatorname{ag}(f)$ of such a function is defined by $\operatorname{ag}(f)=\sum_{v \in V} f(v)$ and the k subdomination number $\gamma_{k s}(G)$ by $\gamma_{k s}=\min \{\operatorname{ag}(f): f$ is a k SF of $G\}$. In the special cases $k=|V|$ and $k=\lceil|V| / 2\rceil, \gamma_{k s}$ is respectively the signed domination number $\gamma_{\mathrm{s}}(G)$ and the majority domination number $\gamma_{\text {maj }}(G)$.

Since the problems of determining the signed domination number and minus domination number are NP-complete, many works on bounds for $\gamma^{-}(G)$ and $\gamma_{\mathrm{s}}(G)$ were studied in [2,5-9,11]. In [3], the following conjecture was given.

Conjecture 1 (Dunbar et al. [3]). If G is a bipartite graph of order n, then $\gamma^{-}(G) \geqslant$ $4(\sqrt{n+1}-1)-n$.

2. Lower bounds on minus domination of a bipartite graph

Theorem 1. If $G=(X, Y)$ is a bipartite graph of order n, then $\gamma^{-}(G) \geqslant$ $4(\sqrt{n+1}-1)-n$.

Proof. Let f be a minus dominating function of G satisfying $f(V)=\gamma^{-}(G)$ and

$$
\begin{aligned}
& \quad M=\{v \in V \mid f(v)=-1\}, \\
& \\
& P=\{v \in V \mid f(v)=1\}, \\
& Z=\{v \in V \mid f(v)=0\} . \\
& M_{X}=M \cap X, M_{Y}=M \cap Y, P_{X}=P \cap X, P_{Y}=P \cap Y, Z_{X}=Z \cap X, Z_{Y}=Z \cap Y, m_{x}=\left|M_{X}\right|, \\
& m_{y}=\left|M_{Y}\right|, \quad p_{x}=\left|P_{X}\right|, \quad p_{y}=\left|P_{Y}\right|, q_{x}=\left|Z_{X}\right|, q_{y}=\left|Z_{Y}\right| .
\end{aligned}
$$

Since $f[v] \geqslant 1$ for every $v \in V$, we have $\left|N(v) \cap P_{X}\right| \geqslant 2$ for every $v \in M_{Y}$. So

$$
\begin{equation*}
e\left(P_{X}, M_{Y}\right) \geqslant 2 m_{y} \tag{1}
\end{equation*}
$$

For every $v \in P_{X},\left|N(v) \cap M_{Y}\right| \leqslant\left|N(v) \cap P_{Y}\right|$. Then

$$
\begin{align*}
e\left(P_{X}, M_{Y}\right) & =\sum_{v \in P_{X}}\left|N(v) \cap M_{Y}\right| \\
& \leqslant \sum_{v \in P_{X}}\left|N(v) \cap P_{Y}\right| \\
& \leqslant p_{x} p_{y} . \tag{2}
\end{align*}
$$

By (1) and (2) we have

$$
2 m_{y} \leqslant p_{x} p_{y}
$$

Similarly,

$$
2 m_{x} \leqslant p_{x} p_{y}
$$

then

$$
\begin{equation*}
m_{x}+m_{y} \leqslant p_{x} p_{y} \tag{3}
\end{equation*}
$$

Since

$$
n=q_{x}+q_{y}+m_{x}+m_{y}+p_{x}+p_{y}
$$

and

$$
2 \sqrt{p_{x} p_{y}} \leqslant p_{x}+p_{y}
$$

we have

$$
\begin{equation*}
2 \sqrt{p_{x} p_{y}}+m_{x}+m_{y}+q_{x}+q_{y} \leqslant n \tag{4}
\end{equation*}
$$

Using (3) and (4) we have

$$
\begin{equation*}
2 \sqrt{m_{x}+m_{y}}+m_{x}+m_{y}+q_{x}+q_{y} \leqslant n \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \sqrt{m_{x}+m_{y}}+m_{x}+m_{y} \leqslant n \tag{6}
\end{equation*}
$$

By the definition, the inequalities can be deduced as follows:

$$
\begin{align*}
\gamma^{-}(G) & =f(V(G)) \\
& =p_{x}+p_{y}-\left(m_{x}+m_{y}\right) \\
& \geqslant 2 \sqrt{p_{x} p_{y}}-\left(m_{x}+m_{y}\right) \\
& \geqslant 2 \sqrt{m_{x}+m_{y}}-\left(m_{x}+m_{y}\right) . \tag{7}
\end{align*}
$$

For notation convenience, we define the following

$$
\begin{aligned}
& a=\sqrt{m_{x}+m_{y}}, \\
& h(y)=y^{2}+2 y(y \geqslant 1), \\
& g(y)=2 y-y^{2}(y \geqslant 1) .
\end{aligned}
$$

Since $\mathrm{d} h / \mathrm{d} y=2 y+2 \geqslant 2, \mathrm{~d} g / \mathrm{d} y=2-2 y \leqslant 0$, so $h(y)$ is a monotonous increasing function and $g(y)$ is a monotonous decreasing function. By (6) we have $h(a)=a^{2}+$ $2 a \leqslant n$. And when $y=-1+\sqrt{1+n}$,

$$
\begin{aligned}
h(y) & =(-1+\sqrt{1+n})^{2}+2(-1+\sqrt{1+n}) \\
& =1-2 \sqrt{1+n}+1+n-2+2 \sqrt{1+n} \\
& =n .
\end{aligned}
$$

So $a \leqslant-1+\sqrt{1+n}$.
By (7) we obtain

$$
\begin{aligned}
\gamma^{-}(G) & \geqslant g(a) \\
& \geqslant g(-1+\sqrt{1+n}) \\
& =2(-1+\sqrt{1+n})-(-1+\sqrt{1+n})^{2} \\
& =2(-1+\sqrt{1+n})-(1-2 \sqrt{1+n}+1+n) \\
& =4(\sqrt{n+1}-1)-n
\end{aligned}
$$

We now show that this bound is best possible by the following graphs G construct by Dunbar et al. [3]. Let $s \geqslant 4$ be an even integer, and let H be isomorphic to $s / 2$ disjoint copies of $K_{2, s}$. Let H_{1} and H_{2} be two disjoint copies of H. Further, let X_{i} and Y_{i} be the sets of vertices of H_{i} of degree 2 and s, respectively, for $i=1,2$. Now let G be the graph obtained from $H_{1} \cup H_{2}$ by joining every vertex of Y_{1} to every vertex of Y_{2}. Then G is a bipartite graph of order $n=s(s+2)$ with partite sets $X_{1} \cup Y_{2}$ and $X_{2} \cup Y_{1}$. Let f be the function on G defined as follows: let $f(v)=-1$ if $v \in X_{1} \cup X_{2}$, and let $f(v)=1$ if $v \in Y_{1} \cup Y_{2}$. Then it is easy to verify that f is a minus dominating function on G with $\gamma^{-}(G)=f(V(G))=2 s-s^{2}=4(\sqrt{n+1}-1)-n$.

Theorem 2. If $G=(X, Y)$ is a bipartite graph of order n, then

$$
\gamma^{-}(G) \geqslant\left[n-\left(\frac{\varepsilon}{\delta}+\frac{\varepsilon}{1+\max \left(\delta_{X}, \delta_{Y}\right)}\right)\right]
$$

where $\delta_{X}=\min \{d(v) \mid v \in X\}, \delta_{Y}=\min \{d(v) \mid v \in Y\}$, and the bound is sharp.

Proof. Let $f, M_{X}, M_{Y}, P_{X}, P_{Y}, Z_{X}, Z_{Y}, m_{x}, m_{y}, q_{x}, q_{y}, p_{x}$ and p_{y} be defined as in the proof of Theorem 1. For any $x \in V$, let t_{x} denotes the number of vertices of weight 0 in $N(x)$. Then we have

$$
|N(x) \cap M| \leqslant \begin{cases}\frac{d(x)-t_{x}}{2} & \text { if } x \in P \\ \frac{d(x)-1-t_{x}}{2} & \text { if } x \in Z \\ \frac{d(x)-t_{x}}{2}-1 & \text { if } x \in M\end{cases}
$$

So

$$
\begin{align*}
\sum_{y \in M_{Y}} d(y) & =\sum_{x \in P_{X}}\left|N(x) \cap M_{Y}\right|+\sum_{x \in Z_{X}}\left|N(x) \cap M_{Y}\right|+\sum_{x \in M_{X}}\left|N(x) \cap M_{Y}\right| \\
& \leqslant \sum_{x \in P_{X}} \frac{d(x)-t_{x}}{2}+\sum_{x \in Z_{X}} \frac{d(x)-1-t_{x}}{2}+\sum_{x \in M_{X}}\left(\frac{d(x)-t_{x}}{2}-1\right) \\
& =\sum_{x \in X}\left(\frac{d(x)}{2}-\frac{t_{x}}{2}\right)-\frac{1}{2} q_{x}-m_{x} . \tag{8}
\end{align*}
$$

Obviously,

$$
\begin{align*}
& m_{y} \delta_{Y} \leqslant \sum_{y \in M_{Y}} d(y), \tag{9}\\
& \sum_{x \in X} \frac{t_{x}}{2}=\frac{1}{2} \sum_{y \in Z_{Y}} d(y) \geqslant \frac{1}{2} \delta_{Y} q_{y} . \tag{10}
\end{align*}
$$

Combining (8)-(10) we obtain

$$
\begin{equation*}
\left(q_{y}+2 m_{y}\right) \delta_{Y}+\left(q_{x}+2 m_{x}\right) \leqslant \varepsilon \tag{11}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left(q_{x}+2 m_{x}\right) \delta_{X}+\left(q_{y}+2 m_{y}\right) \leqslant \varepsilon \tag{12}
\end{equation*}
$$

If $q_{x}+2 m_{x} \leqslant q_{y}+2 m_{y}$, by (11) and (12) we have

$$
\begin{aligned}
q_{x}+2 m_{x} & \leqslant \frac{\varepsilon}{1+\max \left(\delta_{X}, \delta_{Y}\right)} \\
q_{y}+2 m_{y} & \leqslant \frac{\varepsilon}{\delta_{Y}}
\end{aligned}
$$

So,

$$
\begin{aligned}
\gamma^{-}(G) & =n-\left(q_{x}+2 m_{x}+q_{y}+2 m_{y}\right) \\
& \geqslant\left[n-\left(\frac{\varepsilon}{\delta_{Y}}+\frac{\varepsilon}{1+\max \left(\delta_{X}, \delta_{Y}\right)}\right)\right] \\
& \geqslant\left[n-\left(\frac{\varepsilon}{\delta}+\frac{\varepsilon}{1+\max \left(\delta_{X}, \delta_{Y}\right)}\right)\right] .
\end{aligned}
$$

If $q_{y}+2 m_{y}<q_{x}+2 m_{x}$, by (11) and (12) we have

$$
\begin{aligned}
q_{y}+2 m_{y} & <\frac{\varepsilon}{1+\max \left(\delta_{X}, \delta_{Y}\right)} \\
q_{x}+2 m_{x} & \leqslant \frac{\varepsilon}{\delta_{X}}
\end{aligned}
$$

So,

$$
\begin{aligned}
\gamma^{-}(G) & =n-\left(q_{x}+2 m_{x}+q_{y}+2 m_{y}\right) \\
& \geqslant\left[n-\left(\frac{\varepsilon}{\delta_{X}}+\frac{\varepsilon}{1+\max \left(\delta_{X}, \delta_{Y}\right)}\right)\right] \\
& \geqslant\left[n-\left(\frac{\varepsilon}{\delta}+\frac{\varepsilon}{1+\max \left(\delta_{X}, \delta_{Y}\right)}\right)\right] .
\end{aligned}
$$

In fact, this bound is sharp, it is easy to check that $\gamma^{-}\left(K_{1, k}\right)=1=\lceil n-\varepsilon / \delta+\varepsilon /(1+\max$ $\left.\left.\left(\delta_{X}, \delta_{Y}\right)\right)\right]$.

3. A lower bound on \boldsymbol{k}-subdomination number of a graph

The concept of k-subdomination was introduced by Cockayne and Mynhardt [1]. In [1], Cockayne and Mynhardt established a sharp lower bound on $\gamma_{k s}$ for trees. Moreover, they also gave a sharp lower bound on $\gamma_{k s}$ for trees if $k \leqslant n / 2$ and proposed a conjecture.

Theorem 3 (Cockayne and Mynhardt [1]). For any n-vertex tree T and integer $k \in\{1,2, \ldots, n\}, \gamma_{k s} \leqslant 2(k+1)-n$.

Conjecture 2 (Cockayne and Mynhardt [1]). For any n-vertex tree and any k with $\frac{1}{2} n<k \leqslant n, \gamma_{k s} \leqslant 2 k-n$.

In [10], the conjecture was proved and a upper bound for a connected graph was given.

Theorem 4 (Kang et al. [10]). For any connected graph of order n and any k with $1 / 2 n<k \leqslant n$, then

$$
\gamma_{k s} \leqslant 2\left\lceil\frac{k}{n-k+1}\right\rceil(n-k+1)-n
$$

In this section we give a lower bound for a graph G.
Theorem 5. For any graph G of order n and size ε,

$$
\gamma_{k s} \geqslant n-\frac{2 \varepsilon+(n-k)(\Delta+2)}{\delta+1}
$$

Proof. Let f be a k-subdominating function on G with $f(V)=\gamma_{k s}(G)$. Let P and M be the sets of vertices in G that are assigned the values 1 and -1 , respectively. Then $|P|+|M|=n$ and $\gamma_{k s}(G)=|P|-|M|=n-2|M|$. Furthermore, we let

$$
\begin{aligned}
& P_{1}=\{v \in P \mid f[v] \geqslant 1\}, \\
& P_{2}=P-P_{1}, \\
& M_{1}=\{v \in M \mid f[v] \geqslant 1\}, \\
& M_{2}=M-M_{1} .
\end{aligned}
$$

Clearly, $\left|P_{1}\right|+\left|M_{1}\right| \geqslant k$. Since each vertex v of P_{1} is adjacent to at most ($1 / 2$)d(v) vertices of M, each vertex v of M_{1} is adjacent to at most $d(v) / 2-1$ vertices of M. We have

$$
\begin{aligned}
\delta|M| & \leqslant \sum_{v \in M} d(v)=\sum_{v \in V}|M \cap N(v)| \\
& \leqslant \sum_{v \in P_{1}} \frac{d(v)}{2}+\sum_{v \in M_{1}}\left(\frac{d(v)}{2}-1\right)+\sum_{v \in P_{2} \cup M_{2}} d(v) \\
& =\frac{1}{2} \sum_{v \in V} d(v)-\left|M_{1}\right|+\frac{1}{2} \sum_{v \in P_{2} \cup M_{2}} d(v) \\
& \leqslant \varepsilon-|M|+\frac{1}{2} \sum_{v \in P_{2} \cup M_{2}}(d(v)+2) \\
& \leqslant \varepsilon-|M|+\left(\left|P_{2}\right|+\left|M_{2}\right|\right) \frac{\Delta+2}{2}
\end{aligned}
$$

As $\left|P_{2}\right|+\left|M_{2}\right| \leqslant n-k$, it follows that

$$
|M| \leqslant \frac{2 \varepsilon+(n-k)(\Delta+2)}{2(\delta+1)}
$$

Thus,

$$
\begin{aligned}
\gamma_{k s} & =n-2|M| \\
& \geqslant n-\frac{2 \varepsilon+(n-k)(\Delta+2)}{\delta+1}
\end{aligned}
$$

This completes the proof of Theorem 5.
For the graphs in which each vertex has odd degree, the lower bound on $\gamma_{k s}$ in Theorem 5 can be improved slightly.

Theorem 6. For every graph G in which each vertex has odd degree,

$$
\gamma_{k \mathrm{~s}} \geqslant n-\frac{2 \varepsilon+(n-k)(\Delta+2)-k}{\delta+1}
$$

Proof. Let $f, P, M, P_{1}, P_{2}, M_{1}$ and M_{2} be defined as in the proof of Theorem 5.
Since every vertex of G has odd degree, it is easy to see that each vertex v of P_{1} is adjacent to at most $(d(v)-1) / 2$ vertices of M, each vertex v of M_{1} is adjacent to at most $(d(v)-1) / 2-1$ vertices of M. Hence, we have

$$
\begin{aligned}
\delta|M| & \leqslant \sum_{v \in M} d(v)=\sum_{v \in V}|M \cap N(v)| \\
& \leqslant \sum_{v \in P_{1}} \frac{d(v)-1}{2}+\sum_{v \in M_{1}}\left(\frac{d(v)-1}{2}-1\right)+\sum_{v \in P_{2} \cup M_{2}} d(v) \\
& =\frac{1}{2} \sum_{v \in V} d(v)-\frac{1}{2}\left(\left|P_{1}\right|+\left|M_{1}\right|\right)-\left|M_{1}\right|+\frac{1}{2} \sum_{v \in P_{2} \cup M_{2}} d(v) \\
& \leqslant \varepsilon-\frac{1}{2}\left(\left|P_{1}\right|+\left|M_{1}\right|\right)-|M|+\sum_{P_{2} \cup M_{2}} \frac{d(v)+2}{2} \\
& \leqslant \varepsilon-\frac{1}{2}\left(\left|P_{1}\right|+\left|M_{1}\right|\right)-|M|+\left(\left|P_{2}\right|+\left|M_{2}\right|\right) \frac{\Delta+2}{2}
\end{aligned}
$$

Since $\left|P_{1}\right|+\left|M_{1}\right| \geqslant k,\left|P_{2}\right|+\left|M_{2}\right| \leqslant n-k$, we have

$$
(\delta+1)|M| \leqslant \varepsilon-\frac{k}{2}+\frac{(\Delta+2)(n-k)}{2}
$$

Hence,

$$
|M| \leqslant \frac{2 \varepsilon+(\Delta+2)(n-k)-k}{2(\delta+1)}
$$

Thus,

$$
\begin{aligned}
\gamma_{k s}(G) & =n-2|M| \\
& \geqslant n-\frac{2 \varepsilon+(\Delta+2)(n-k)-k}{\delta+1}
\end{aligned}
$$

This completes the proof of Theorem 6.
By Theorems 5 and 6, we easily obtain the following lower bounds on $\gamma_{k s}$ for r-regular graphs.

Theorem 7. Let G be a r-regular graph of order n, then

$$
\gamma_{k \mathrm{~s}} \geqslant \begin{cases}\frac{r+2}{r+1} k-n & \text { for } r \text { even } \\ \frac{r+3}{r+1} k-n & \text { for } r \text { odd }\end{cases}
$$

In the special cases where $k=|V|$ and $k=\lceil|V| / 2\rceil$, Theorem 7 deduces to the following results.

Corollary 7 (Henning [7]). For every r-regular graph G of order n,

$$
\gamma_{\mathrm{s}}(G) \geqslant\left\{\begin{array}{cl}
\frac{2 n}{r+1} & \text { for } r \text { odd } \\
\frac{n}{r+1} & \text { for } r \text { even }
\end{array}\right.
$$

and the bounds are sharp.
Corollary 8 (Henning [7]). For every r-regular ($r \geqslant 2$) graph G of order n,

$$
\gamma_{\mathrm{maj}}(G) \geqslant \begin{cases}\frac{1-r}{2(r+1)} n & \text { for } r \text { odd } \\ \frac{-r}{2(r+1)} n & \text { for } r \text { even }\end{cases}
$$

and the bounds are sharp.

References

[1] E.J. Cockayne, C.M. Mynhardt, On a generalization of signed dominating function of graphs, Ars Combin. 43 (1996) 235-245.
[2] J.E. Dunbar, W. Goddard, S.T. Hedetniemi, M.A. Henning, A. McRae, The algorithm complexity of minus domination in graphs, Discrete Appl. Math. 68 (1996) 73-84.
[3] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, A. McRae, Minus domination in graphs, Discrete Math. 199 (1999) 35-47.
[4] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, P.J. Slater, Signed domination in graphs, in: Y. Alavi, A. Schwenk (Eds.), Graph Theory, Combinatorics, and Applications, Wiley, New York, 1995, pp. 311-321.
[5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[6] S.T. Hedetniemi, P.J. Slater, Fundamenters of Domination in Graphs, Marcel Dekker, New York, 1998.
[7] M.A. Henning, Domination in regular graphs, Ars Combin. 43 (1996) 263-271.
[8] M.A. Henning, H.R. Hind, Strict majority functions on graphs, J. Graph Theorem 28 (1998) 49-56.
[9] M.A. Henning, P.J. Slater, Inequality relation domination parameters in cube graphs, Discrete Math. 158 (1996) 87-98.
[10] Kang Liying, Dang Chuangyin, Cai Maocheng, Shan Erfang, Upper bounds for k-subdomination number of graphs, Discrete Math. 247 (2002) 229-234.
[11] Kang Liying, Shan Erfang, Lower bounds on dominating functions in graphs, Ars Combin. 56 (2000) 121-128.

[^0]: ${ }^{2}$ This work was supported by NSFC.

 * Corresponding author.

 E-mail address: kangliying39@hotmail.com (L. Kang).

