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Abstract

A three-valued function f de.ned on the vertex set of a graph G=(V; E), f :V → {−1; 0; 1}
is a minus dominating function if the sum of its function values over any closed neighborhood
is at least one. That is, for every v∈V , f(N [v])¿ 1, where N [v] consists of v and all vertices
adjacent to v. The weight of a minus function is f(V ) =

∑
v∈V f(v). The minus domination

number of a graph G, denoted by 	−(G), equals the minimum weight of a minus dominating
function of G. In this paper, sharp lower bounds on minus domination of a bipartite graph are
given. Thus, we prove a conjecture proposed by Dunbar et al. (Discrete Math. 199 (1999) 35),
and we give a lower bound on 	ks(G) of a graph G.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

For a graph G=(V; E) with vertex set V and edge set E, the open neighborhood of
v∈V is N (v)={u∈V | uv∈E} and the closed neighborhood of v is N [v]={v}∪N (v).
For a set S of vertices, we de.ne the open neighborhood N (S)=

⋃
v∈S N (v), and the

closed neighborhood N [S]=N (S)∪S. A dominating set S for a graph G=(V; E) is
a subset of the vertex set V such that every vertex v∈V is either in S or adjacent to a
vertex in S. The domination number of G, 	(G), equals the minimum cardinality of a
dominating set.
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For a real function f de.ned on vertices of a graph G and S ⊆V , write f(S)=∑
v∈S f(v) and f[v]=f(N [v]). A minus dominating function of G is de.ned in [3]

as a function f :V →{−1; 0; 1} such that f[v]¿1 for each v∈V . A signed domi-
nating function of G is de.ned in [4] as f :V →{−1; 1} satisfying f[v]¿1 for all
v∈V . A minus (signed) dominating function f is minimal if every minus (signed)
dominating function g satisfying g(v)6f(v) for every v∈V , is equal to f. It is
easy to see that a minus dominating function is minimal if and only if for
every vertex v∈V with f(v)¿0, there exists a vertex u∈N [v] with f[u]=1 and a
signed function is minimal if and only if every vertex v of weight 1, there exists
some u∈N [v] such that f[u]=1 or 2. The minus domination number for a graph
G is 	−(G)=min{f(V ) |f is a minimal minus dominating function}. Likewise, the
signed domination number for a graph G is 	s(G)=min{f(V ) |f is a minimal signed
dominating function}.
A majority dominating function of G is de.ned in [1] as f :V →{−1; 1} such that

f[v]¿1 for at least half the vertices of G, and the minimum weight of such a function
is the majority domination number.
For a positive integer k, a k-subdominating function (kSF) of G is a function

f :V →{−1; 1} such that f[v] =
∑

u∈N (v) f(u)¿1 for at least k vertices of G. The
aggregate ag(f) of such a function is de.ned by ag(f)=

∑
v∈V f(v) and the k-

subdomination number 	ks(G) by 	ks =min{ag(f): f is a kSF of G}. In the special
cases k= |V | and k=	|V |=2
, 	ks is respectively the signed domination number 	s(G)
and the majority domination number 	maj(G).
Since the problems of determining the signed domination number and minus dom-

ination number are NP-complete, many works on bounds for 	−(G) and 	s(G) were
studied in [2,5–9,11]. In [3], the following conjecture was given.

Conjecture 1 (Dunbar et al. [3]). If G is a bipartite graph of order n, then 	−(G)¿
4(
√

n + 1− 1)− n.

2. Lower bounds on minus domination of a bipartite graph

Theorem 1. If G=(X; Y ) is a bipartite graph of order n, then 	−(G)¿
4(
√

n + 1− 1)− n.

Proof. Let f be a minus dominating function of G satisfying f(V )=	−(G) and

M = {v ∈ V |f(v) = −1};

P = {v ∈ V | f(v) = 1};

Z = {v ∈ V |f(v) = 0}:

MX =M ∩X; MY =M ∩Y; PX =P ∩X; PY =P ∩Y; ZX =Z ∩X; ZY =Z ∩Y; mx= |MX |;
my= |MY |; px= |PX |; py= |PY |; qx= |ZX |; qy= |ZY |:
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Since f[v]¿1 for every v∈V , we have |N (v)∩PX |¿2 for every v∈MY . So

e(PX ; MY )¿ 2my: (1)

For every v∈PX , |N (v)∩MY |6|N (v)∩PY |. Then
e(PX ; MY ) =

∑
v∈PX

|N (v) ∩ MY |

6
∑
v∈PX

|N (v) ∩ PY |

6pxpy: (2)

By (1) and (2) we have

2my 6 pxpy:

Similarly,

2mx 6 pxpy;

then

mx + my 6 pxpy: (3)

Since

n = qx + qy + mx + my + px + py

and

2
√

pxpy 6 px + py;

we have

2
√

pxpy + mx + my + qx + qy 6 n: (4)

Using (3) and (4) we have

2
√

mx + my + mx + my + qx + qy 6 n (5)

and

2
√

mx + my + mx + my 6 n: (6)

By the de.nition, the inequalities can be deduced as follows:

	−(G) = f(V (G))

= px + py − (mx + my)

¿ 2
√

pxpy − (mx + my)

¿ 2
√

mx + my − (mx + my): (7)
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For notation convenience, we de.ne the following

a =
√

mx + my;

h(y) = y2 + 2y (y ¿ 1);

g(y) = 2y − y2 (y ¿ 1):

Since dh=dy=2y + 2¿2, dg=dy=2 − 2y60, so h(y) is a monotonous increasing
function and g(y) is a monotonous decreasing function. By (6) we have h(a)=a2 +
2a6n. And when y=− 1 +

√
1 + n,

h(y) = (−1 +
√
1 + n)2 + 2(−1 +

√
1 + n)

= 1− 2
√
1 + n + 1 + n − 2 + 2

√
1 + n

= n:

So a6− 1 +
√
1 + n.

By (7) we obtain

	−(G)¿ g(a)

¿ g(−1 +
√
1 + n)

= 2(−1 +
√
1 + n)− (−1 +

√
1 + n)2

= 2(−1 +
√
1 + n)− (1− 2

√
1 + n + 1 + n)

= 4(
√

n + 1− 1)− n:

We now show that this bound is best possible by the following graphs G construct
by Dunbar et al. [3]. Let s¿4 be an even integer, and let H be isomorphic to s=2
disjoint copies of K2; s. Let H1 and H2 be two disjoint copies of H . Further, let Xi and
Yi be the sets of vertices of Hi of degree 2 and s, respectively, for i=1; 2. Now let
G be the graph obtained from H1∪H2 by joining every vertex of Y1 to every vertex
of Y2. Then G is a bipartite graph of order n=s(s + 2) with partite sets X1∪Y2 and
X2∪Y1. Let f be the function on G de.ned as follows: let f(v)=− 1 if v∈X1∪X2,
and let f(v)=1 if v∈Y1∪Y2. Then it is easy to verify that f is a minus dominating
function on G with 	−(G)=f(V (G))=2s − s2=4(

√
n + 1− 1)− n:

Theorem 2. If G=(X; Y ) is a bipartite graph of order n, then

	−(G)¿
⌈

n −
(

!
"
+

!
1 + max("X ; "Y )

)⌉
;

where "X =min{d(v) | v∈X }; "Y =min{d(v) | v∈Y}, and the bound is sharp.
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Proof. Let f; MX ; MY ; PX ; PY ; ZX ; ZY ; mx; my; qx; qy; px and py be de.ned as in the proof
of Theorem 1. For any x∈V , let tx denotes the number of vertices of weight 0 in
N (x). Then we have

|N (x) ∩ M |6




d(x)− tx
2

if x ∈ P

d(x)− 1− tx
2

if x ∈ Z

d(x)− tx
2

− 1 if x ∈ M:

So

∑
y∈MY

d(y) =
∑
x∈PX

|N (x) ∩ MY |+
∑
x∈ZX

|N (x) ∩ MY |+
∑

x∈MX

|N (x) ∩ MY |

6
∑
x∈PX

d(x)− tx
2

+
∑
x∈ZX

d(x)− 1− tx
2

+
∑

x∈MX

(
d(x)− tx

2
− 1

)

=
∑
x∈X

(
d(x)
2

− tx
2

)
− 1

2
qx − mx: (8)

Obviously,

my"Y 6
∑

y∈MY

d(y); (9)

∑
x∈X

tx
2
=

1
2

∑
y∈ZY

d(y)¿
1
2

"Y qy: (10)

Combining (8)–(10) we obtain

(qy + 2my)"Y + (qx + 2mx)6 !: (11)

Similarly, we have

(qx + 2mx)"X + (qy + 2my)6 !: (12)

If qx + 2mx6qy + 2my, by (11) and (12) we have

qx + 2mx 6
!

1 + max("X ; "Y )
;

qy + 2my 6
!

"Y
:
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So,

	−(G) = n − (qx + 2mx + qy + 2my)

¿
⌈

n −
(

!
"Y

+
!

1 + max("X ; "Y )

)⌉

¿
⌈

n −
(

!
"
+

!
1 + max("X ; "Y )

)⌉
:

If qy + 2my¡qx + 2mx, by (11) and (12) we have

qy + 2my ¡
!

1 + max("X ; "Y )
;

qx + 2mx 6
!

"X
:

So,

	−(G) = n − (qx + 2mx + qy + 2my)

¿
⌈

n −
(

!
"X

+
!

1 + max("X ; "Y )

)⌉

¿
⌈

n −
(

!
"
+

!
1 + max("X ; "Y )

)⌉
:

In fact, this bound is sharp, it is easy to check that 	−(K1; k)=1=	n− !="+ !=(1+max
("X ; "Y ))
:

3. A lower bound on k-subdomination number of a graph

The concept of k-subdomination was introduced by Cockayne and Mynhardt [1].
In [1], Cockayne and Mynhardt established a sharp lower bound on 	ks for trees.
Moreover, they also gave a sharp lower bound on 	ks for trees if k6n=2 and proposed
a conjecture.

Theorem 3 (Cockayne and Mynhardt [1]). For any n-vertex tree T and integer
k∈{1; 2; : : : ; n}, 	ks62(k + 1)− n.

Conjecture 2 (Cockayne and Mynhardt [1]). For any n-vertex tree and any k with
1
2n¡k6n, 	ks62k − n:

In [10], the conjecture was proved and a upper bound for a connected graph was
given.
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Theorem 4 (Kang et al. [10]). For any connected graph of order n and any k with
1=2n¡k6n, then

	ks 6 2
⌈

k
n − k + 1

⌉
(n − k + 1)− n:

In this section we give a lower bound for a graph G.

Theorem 5. For any graph G of order n and size !,

	ks ¿ n − 2! + (n − k)(' + 2)
" + 1

:

Proof. Let f be a k-subdominating function on G with f(V )=	ks(G). Let P and M
be the sets of vertices in G that are assigned the values 1 and −1, respectively. Then
|P|+ |M |=n and 	ks(G)= |P| − |M |=n − 2|M |. Furthermore, we let

P1 = {v ∈ P |f[v]¿ 1};

P2 = P − P1;

M1 = {v ∈ M |f[v]¿ 1};

M2 = M − M1:

Clearly, |P1| + |M1|¿k. Since each vertex v of P1 is adjacent to at most (1=2)d(v)
vertices of M , each vertex v of M1 is adjacent to at most d(v)=2 − 1 vertices of M .
We have

"|M |6
∑
v∈M

d(v) =
∑
v∈V

|M ∩ N (v)|

6
∑
v∈P1

d(v)
2

+
∑
v∈M1

(
d(v)
2

− 1
)
+

∑
v∈P2∪M2

d(v)

=
1
2

∑
v∈V

d(v)− |M1|+ 1
2

∑
v∈P2∪M2

d(v)

6 ! − |M |+ 1
2

∑
v∈P2∪M2

(d(v) + 2)

6 ! − |M |+ (|P2|+ |M2|)' + 2
2

:

As |P2|+ |M2|6n − k, it follows that

|M |6 2! + (n − k)(' + 2)
2(" + 1)

:
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Thus,

	ks = n − 2|M |

¿ n − 2! + (n − k)(' + 2)
" + 1

:

This completes the proof of Theorem 5.

For the graphs in which each vertex has odd degree, the lower bound on 	ks in
Theorem 5 can be improved slightly.

Theorem 6. For every graph G in which each vertex has odd degree,

	ks ¿ n − 2! + (n − k)(' + 2)− k
" + 1

:

Proof. Let f; P; M; P1; P2; M1 and M2 be de.ned as in the proof of Theorem 5.
Since every vertex of G has odd degree, it is easy to see that each vertex v of P1

is adjacent to at most (d(v)− 1)=2 vertices of M , each vertex v of M1 is adjacent to
at most (d(v)− 1)=2− 1 vertices of M . Hence, we have

"|M |6
∑
v∈M

d(v) =
∑
v∈V

|M ∩ N (v)|

6
∑
v∈P1

d(v)− 1
2

+
∑
v∈M1

(
d(v)− 1

2
− 1

)
+

∑
v∈P2∪M2

d(v)

=
1
2

∑
v∈V

d(v)− 1
2
(|P1|+ |M1|)− |M1|+ 1

2

∑
v∈P2∪M2

d(v)

6 ! − 1
2
(|P1|+ |M1|)− |M |+

∑
P2∪M2

d(v) + 2
2

6 ! − 1
2
(|P1|+ |M1|)− |M |+ (|P2|+ |M2|)' + 2

2
:

Since |P1|+ |M1|¿k; |P2|+ |M2|6n − k, we have

(" + 1)|M |6 ! − k
2
+

(' + 2)(n − k)
2

:

Hence,

|M |6 2! + (' + 2)(n − k)− k
2(" + 1)

:
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Thus,

	ks(G) = n − 2|M |

¿ n − 2! + (' + 2)(n − k)− k
" + 1

:

This completes the proof of Theorem 6.

By Theorems 5 and 6, we easily obtain the following lower bounds on 	ks for
r-regular graphs.

Theorem 7. Let G be a r-regular graph of order n, then

	ks ¿




r + 2
r + 1

k − n for r even;

r + 3
r + 1

k − n for r odd:

In the special cases where k= |V | and k=	|V |=2
, Theorem 7 deduces to the fol-
lowing results.

Corollary 7 (Henning [7]). For every r-regular graph G of order n,

	s(G)¿




2n
r + 1

for r odd;

n
r + 1

for r even

and the bounds are sharp.

Corollary 8 (Henning [7]). For every r-regular (r¿2) graph G of order n,

	maj(G)¿




1− r
2(r + 1)

n for r odd;

−r
2(r + 1)

n for r even

and the bounds are sharp.
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