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Abstract

A three-valued function f defined on the vertex set of a graph G=(V,E), f:V — {-1,0,1}
is a minus dominating function if the sum of its function values over any closed neighborhood
is at least one. That is, for every ve V, f(N[v]) = 1, where N[v] consists of v and all vertices
adjacent to v. The weight of a minus function is f(V) =}, ., f(v). The minus domination
number of a graph G, denoted by y~(G), equals the minimum weight of a minus dominating
function of G. In this paper, sharp lower bounds on minus domination of a bipartite graph are
given. Thus, we prove a conjecture proposed by Dunbar et al. (Discrete Math. 199 (1999) 35),
and we give a lower bound on y;5(G) of a graph G.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

For a graph G=(V,E) with vertex set V' and edge set E, the open neighborhood of
veV is N(w)={ueV |uveE} and the closed neighborhood of v is N[v]={v} UN(v).
For a set S of vertices, we define the open neighborhood N(S)=J,csN(v), and the
closed neighborhood N[S]=N(S)US. A dominating set S for a graph G=(V,E) is
a subset of the vertex set V' such that every vertex v€ V is either in S or adjacent to a
vertex in S. The domination number of G, y(G), equals the minimum cardinality of a
dominating set.
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For a real function f defined on vertices of a graph G and SCV, write f(S)=
> ves f(v) and f[v]= f(N[v]). A minus dominating function of G is defined in [3]
as a function f:V —{—1,0,1} such that f[v]>1 for each veV. A signed domi-
nating function of G is defined in [4] as f:V — {—1,1} satisfying f[v]>1 for all
veV. A minus (signed) dominating function f is minimal if every minus (signed)
dominating function g satisfying g(v)< f(v) for every veV, is equal to f. It is
easy to see that a minus dominating function is minimal if and only if for
every vertex veV with f(v)>0, there exists a vertex u€N[v] with f[u]=1 and a
signed function is minimal if and only if every vertex v of weight 1, there exists
some u€N[v] such that f[u]=1 or 2. The minus domination number for a graph
G is y(G)=min{f (V)| f is a minimal minus dominating function}. Likewise, the
signed domination number for a graph G is y(G)=min{ f(¥)| f is a minimal signed
dominating function}.

A majority dominating function of G is defined in [1] as f: ¥ — {—1,1} such that
f[v]=1 for at least half the vertices of G, and the minimum weight of such a function
is the majority domination number.

For a positive integer k, a k-subdominating function (kSF) of G is a function
£V —={=1L1} such that f[v]=3", v, f(u)>1 for at least k vertices of G. The
aggregate ag(f) of such a function is defined by ag(f)=>",., f(v) and the k-
subdomination number (G) by yrs =min{ag(f): f is a kSF of G}. In the special
cases k=|V| and k=[|V|/2], yss is respectively the signed domination number y(G)
and the majority domination number ypqi(G).

Since the problems of determining the signed domination number and minus dom-
ination number are NP-complete, many works on bounds for y~(G) and y,(G) were
studied in [2,5-9,11]. In [3], the following conjecture was given.

Conjecture 1 (Dunbar et al. [3]). If G is a bipartite graph of order n, then y~(G)>=
4v/n+1-1)—n.

2. Lower bounds on minus domination of a bipartite graph

Theorem 1. If G=(X,Y) is a bipartite graph of order n, then " (G)=
4vn+1-1)—n.

Proof. Let f be a minus dominating function of G satisfying f(V)=7"(G) and
M={veV|fv)=-1}
P=f{oeV]| f(v)=1},
Z={veV]|f(v)y=0}

My=MnX, My=MnNY, Pk=PNX, y=PNY, Zxy=ZNX, Zy=ZNY, m=|My|,
my:‘MYL Px=|Pxl, py:|PY‘s qx=|Zx|, %’:|ZY|-
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Since f[v]=1 for every veV, we have |[N(v)NPy|>2 for every vEMy. So
e(Px,My) = 2m,,. (1)
For every v€ Py, |[N(v)NMy|<|N(v) N Py|. Then

e(Px,My) = |N(v) N Myl
vEPY

< ) IN@)N Pyl

vEPY
< PaDy- (2)
By (1) and (2) we have
2my < pipy.
Similarly,
2my < piPys
then
my +my < PxPy- (3)
Since
n=¢qx+qy,+m,+my,+ px+ p,
and

2/P<Dy < Px+ Py,

we have

2\/P<Dy +my +m, +qc + g, < . 4)
Using (3) and (4) we have

2\/my+m, +me+m, +q;+q, <n (5)

and

2y/my +m, +m +m, < n. (6)

By the definition, the inequalities can be deduced as follows:
77 (G) = f(V(G))
= Pt py — (mxe+my)
= 2\/pxpy — (me +my)
> 2y/mc +my — (mc +m,). (7)
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For notation convenience, we define the following

a = /my+m,,
h(y) =y +2y (y = 1),
g(y)=2y—1* (y = 1.

Since dh/dy=2y 4+ 2>2, dg/dy=2 — 2y <0, so A(y) is a monotonous increasing
function and g(y) is a monotonous decreasing function. By (6) we have h(a)=a> +
2a<n. And when y=—1++/1 +n,

h(y)=(=1+V1+nP? +2(=1+V1+n)
=1-2V14+n+14+n—-242vV1+n
=n.

Soa< —1++1+n.

By (7) we obtain

77 (G) = g(a)
> g(—1+V1+n)
=2(—1+V1+n)—(—1+V1+n)
=2(-1+V1+n)—(1=2VI+n+1+n)
=4Wn+1-1)—n

We now show that this bound is best possible by the following graphs G construct
by Dunbar et al. [3]. Let s>4 be an even integer, and let H be isomorphic to s/2
disjoint copies of K, ;. Let H; and H, be two disjoint copies of H. Further, let X; and
Y; be the sets of vertices of H; of degree 2 and s, respectively, for i=1,2. Now let
G be the graph obtained from H,UH, by joining every vertex of Y} to every vertex
of ¥,. Then G is a bipartite graph of order n=s(s + 2) with partite sets X;UY, and
XoUT. Let f be the function on G defined as follows: let f(v)=—1 if veX,UX>,
and let f(v)=1 if veUY,. Then it is easy to verify that f is a minus dominating
function on G with y~(G)=f(V(G))=2s —s*’=d(v/n+1—1)—n. O

Theorem 2. If G=(X,Y) is a bipartite graph of order n, then

77(0) = [n—(ﬁum(ax,mﬂ’

where oy =min{d(v) |veX}, dy =min{d(v)|ve Y}, and the bound is sharp.
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Proof. Let f, My, My,Py,Py,Zx,Zy, my,my,qx,qy, px and p, be defined as in the proof

of Theorem 1. For any xeV, let ¢, denotes the number of vertices of weight 0 in
N(x). Then we have

dx) — & ifxep
P

dx)—1—1t .

A=t | em
- :

So

D dy) =D INGNMy|[+ > IN@) N My|+ Y [Nx)N My
YEMy

XEPy XEZx XEMy
d(x)—t, dx)—1—t, d(x)—t,
< [ —
<Dt 5 +>° 5 1
XEPy XEZy xXeEMy
dix) & 1
_Z<2 _2)_2% - (8)
xex
Obviously,
mySy < Y d(y), 9)
yeEMy
1 1
3 =5 2_d) = ;orq. (10)
xeXxX YEZy
Combining (8)—(10) we obtain
(qy +2my)dy + (qx + 2my) < &. (11)
Similarly, we have
(qx+2mx)5)(+(qy+2my) < e (12)

If g +2m,<q, + 2m,, by (11) and (12) we have

&
< ———
G My S T ax(0x, 07)

I
qy +2m, < —.
Oy
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So,

Vi(G) =n-= (qx + 2m, + qy + Zmy)

& &
2 — _ -
’7}1 (5)/ + 1+max(5){,5y)>“

> ’ -
> [ (5 + T mtaran) |

If gy + 2m, <q, + 2m,, by (11) and (12) we have

&

+2my, <
9 + My 1 +maX(5x,5y)

Go+2m, < —.
Ox

So,

77 (G) =n—(qx + 2my + gy + 2my)
N A R S
Z " 5)( l—l—max(é)(,éy)

> ’ -
> [ (5 + T mtanan) |

In fact, this bound is sharp, it is easy to check that y~ (K ;)=1=[n—¢/0+¢/(1 + max
(0x,0y))].

3. A lower bound on k-subdomination number of a graph

The concept of k-subdomination was introduced by Cockayne and Mynhardt [1].
In [1], Cockayne and Mynhardt established a sharp lower bound on 7y, for trees.
Moreover, they also gave a sharp lower bound on 7y, for trees if £ <n/2 and proposed
a conjecture.

Theorem 3 (Cockayne and Mynhardt [1]). For any n-vertex tree T and integer
ke{l,2,....n}, s <2(k+ 1) —n.

Conjecture 2 (Cockayne and Mynhardt [1]). For any n-vertex tree and any k with
%n <k<n, s <2k —n.

In [10], the conjecture was proved and a upper bound for a connected graph was
given.
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Theorem 4 (Kang et al. [10]). For any connected graph of order n and any k with
12n<k<n, then

k
< e — —n.
Vks\ZLl A 1-‘(71 k+1)—n

In this section we give a lower bound for a graph G.

Theorem 5. For any graph G of order n and size ¢,

26+ (n— k)4 +2)
B S+ 1 '

Vs = R

Proof. Let f be a k-subdominating function on G with f(V)=v;5(G). Let P and M
be the sets of vertices in G that are assigned the values 1 and —1, respectively. Then
|P| 4+ |M|=n and y;s(G)=|P| — |M|=n — 2|M|. Furthermore, we let

Pr={veP|flv] =1},
P,=P— P,

My ={veM|[flv] =1},
M, =M — M,.

Clearly, |Pj| + |M,|>k. Since each vertex v of P is adjacent to at most (1/2)d(v)
vertices of M, each vertex v of M| is adjacent to at most d(v)/2 — 1 vertices of M.
We have

sM| <Y dw) =" IMNNE)|

veM veV
d d
TR (F )
vEP)] veEM,; vEP,UM,
1 1
=5 2 d) = M|+ 5 > d(v)
velr vEP,UM,

1

<e— M|+ > (@) +2)
vEP,UM,

A+2

<8*|M\+(|Pz|+|Mz|)T

As |B| + | Mz <n —k, it follows that

2+ (n— k)4 +2)
20+ 1) '

M| <
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Thus,

Yks = n — 2|M|

26+ (n— k)4 +2)
n— .
S+1

=

This completes the proof of Theorem 5. [

For the graphs in which each vertex has odd degree, the lower bound on 7y in
Theorem 5 can be improved slightly.

Theorem 6. For every graph G in which each vertex has odd degree,

2+ (n—k)(4+2)—k
d+1 ’

Vhs = 1

Proof. Let f,P,M,P,P,, M, and M, be defined as in the proof of Theorem 5.

Since every vertex of G has odd degree, it is easy to see that each vertex v of P
is adjacent to at most (d(v) — 1)/2 vertices of M, each vertex v of M, is adjacent to
at most (d(v) — 1)/2 — 1 vertices of M. Hence, we have

SIM| <Y d(v)=> |MNN(@)|

veEM velV
d(v)—1 dv)—1
<3 7(0)2 +3 <(v)2 - 1) + 3 dw)
vEP; vEM,; vEP,UM,

1 1 1
=5 2 dW) = S (P + M)~ M|+ 5 > dv)

velV veEP,UM,

1 d(v)+2

<o g(lnil+ oy pf 4 30 HOE2
PyUM,

1 A+2

< o= 3P|+ M) = 1] + (o] + M) 22

Since |P| + |[M\| =k, |B|+ | M| <n —k, we have

ko (At k)

< —
@+ 1M <o 3 ;

Hence,

2+ (A+2)n—k)—k

M| <
M| 20+ 1)
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Thus,
Yus(G) = n — Z‘Ml

- 2e +(44+2)n—k)—k
o+1 '
This completes the proof of Theorem 6. [J

=

By Theorems 5 and 6, we easily obtain the following lower bounds on vy for
r-regular graphs.

Theorem 7. Let G be a r-regular graph of order n, then

2
r+1kfn for r even,

Vks = :13
r—l—ilkin for r odd.

In the special cases where k=|V| and k=[|V|/2], Theorem 7 deduces to the fol-
lowing results.

Corollary 7 (Henning [7]). For every r-regular graph G of order n,

2n
dd
(G > P for r odd,
s = n
for r even

r+1

and the bounds are sharp.

Corollary 8 (Henning [7]). For every r-reqular (r=2) graph G of order n,
1—

,
2(r+1)
—r
2(r+1)

and the bounds are sharp.

n for r odd,
Vmaj(G) =
n for r even
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