
Available online at www.sciencedirect.com
Journal of Functional Analysis 263 (2012) 3804–3856

www.elsevier.com/locate/jfa

γ -Radonifying operators and UMD-valued
Littlewood–Paley–Stein functions in the Hermite

setting on BMO and Hardy spaces ✩

J.J. Betancor a, A.J. Castro a, J. Curbelo b,c, J.C. Fariña a,
L. Rodríguez-Mesa a,∗

a Departamento de Análisis Matemático, Universidad de la Laguna, Campus de Anchieta, Avda. Astrofísico
Francisco Sánchez, s/n, 38271, La Laguna (Sta. Cruz de Tenerife), Spain

b Instituto de Ciencias Matemáticas (CSIC-UAM-UCM-UC3M), Nicolás Cabrera, 13-15, 28049, Madrid, Spain
c Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid,

Spain

Received 3 May 2012; accepted 19 September 2012

Available online 3 October 2012

Communicated by G. Schechtman

Abstract

In this paper we study Littlewood–Paley–Stein functions associated with the Poisson semigroup
for the Hermite operator on functions with values in a UMD Banach space B. If we denote by H the
Hilbert space L2((0,∞), dt/t), γ (H,B) represents the space of γ -radonifying operators from H

into B. We prove that the Hermite square function defines bounded operators from BMOL(Rn,B)

(respectively, H 1
L(Rn,B)) into BMOL(Rn, γ (H,B)) (respectively, H 1

L(Rn, γ (H,B))), where

BMOL and H 1
L denote BMO and Hardy spaces in the Hermite setting. Also, we obtain equivalent

norms in BMOL(Rn,B) and H 1
L(Rn,B) by using Littlewood–Paley–Stein functions. As a conse-

quence of our results, we establish new characterizations of the UMD Banach spaces.
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1. Introduction

The Littlewood–Paley–Stein g-function associated with the classical Poisson semigroup
{Pt }t>0 is given by

g
({Pt }t>0

)
(f )(x) =

( ∞∫
0

∣∣t∂tPtf (x)
∣∣2 dt

t

)1/2

, x ∈ Rn.

It is well-known that this g-function defines an equivalent norm in Lp(Rn), 1 < p < ∞.
Indeed, for every 1 < p < ∞ there exists Cp > 0 such that

1

Cp

‖f ‖Lp(Rn) �
∥∥g({Pt }t>0

)
(f )

∥∥
Lp(Rn)

� Cp‖f ‖Lp(Rn), f ∈ Lp
(
Rn

)
. (1)

Equivalence (1) is useful, for instance, to study Lp-boundedness properties of certain type
of spectral multipliers.

In [31] g-functions associated with diffusion semigroups {Tt }t>0 on the measure space
(Ω,μ) were considered. In this general case (1) takes the following form, for every 1 <

p < ∞,

1

Cp

∥∥f − E0(f )
∥∥

Lp(Ω,μ)
�
∥∥g({Tt }t>0

)
(f )

∥∥
Lp(Ω,μ)

� Cp‖f ‖Lp(Ω,μ), f ∈ Lp(Ω,μ),

where Cp > 0. Here E0 is the projection onto the fixed point space of {Tt }t>0.
Suppose that B is a Banach space. For every 1 < p < ∞, we denote by Lp(Rn,B) the

p-Bochner–Lebesgue space. The natural way of extending the definition of g({Pt }t>0) to
Lp(Rn,B), 1 < p < ∞, is the following

gB
({Pt }t>0

)
(f )(x) =

( ∞∫
0

∥∥t∂tPtf (x)
∥∥2
B

dt

t

)1/2

, f ∈ Lp
(
Rn,B

)
, 1 < p < ∞.

Kwapień in [25] proved that B is isomorphic to a Hilbert space if and only if

‖f ‖Lp(Rn,B) ∼ ∥∥gB({Pt }t>0
)
(f )

∥∥
Lp(Rn)

, f ∈ Lp
(
Rn,B

)
, (2)

for some (or equivalently, for any) 1 < p < ∞.
Xu [41] considered generalized g-functions defined by

gB,q

({Pt }t>0
)
(f )(x) =

( ∞∫ ∥∥t∂tPt (f )(x)
∥∥q

B

dt

t

)1/q

, f ∈ Lp
(
Rn,B

)
, 1 < p < ∞,
0
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where 1 < q < ∞. He characterized those Banach spaces B for which one of the following
inequalities holds

• ‖gB,q ({Pt }t>0)(f )‖Lp(Rn) � C‖f ‖Lp(Rn,B), f ∈ Lp(Rn,B), 1 < p < ∞,
• ‖f ‖Lp(Rn,B) � C‖gB,q ({Pt }t>0)(f )‖Lp(Rn), f ∈ Lp(Rn,B), 1 < p < ∞.

The validity of these inequalities is characterized by the q-martingale type or cotype of the
Banach space B.

Xu’s results were extended to diffusion semigroups by Martínez, Torrea and Xu [27].
In order to get new equivalent norms in Lp(Rn,B) for a wider class of Banach spaces,

Hytönen [22] and Kaiser and Weis [23,24] have introduced new definitions of g-functions
for Banach valued functions.

In this paper we are motivated by the ideas developed by Kaiser and Weis [23,24]. They
defined g-functions for Banach valued functions by using γ -radonifying operators.

The main definitions and properties about γ -radonifying operators can be found in [40].
We now recall those aspects of the theory of γ -radonifying operators that will be useful
in the sequel. We consider the Hilbert space H = L2((0,∞), dt/t). Suppose that (ek)

∞
k=1

is an orthonormal basis in H and (γk)
∞
k=1 is a sequence of independent standard Gaussian

random variables on a probability space (Ω,P). A bounded operator T from H into B is a
γ -radonifying operator, shortly T ∈ γ (H,B), when

∑∞
k=1 γkT ek converges in L2(Ω,B).

We define the norm ‖T ‖γ (H,B) by

‖T ‖γ (H,B) =
(
E

∥∥∥∥∥
∞∑

k=1

γkT ek

∥∥∥∥∥
2

B

)1/2

.

This definition does not depend on the orthonormal basis (ek)
∞
k=1 of H . γ (H,B) is a Ba-

nach space which is continuously contained in the space L(H,B) of bounded operators
from H into B.

If f : (0,∞) −→ B is a measurable function such that for every S ∈ B∗, the dual space
of B, S ◦ f ∈ H , there exists Tf ∈ L(H,B) for which

〈
S,Tf (h)

〉
B∗,B =

∞∫
0

〈
S,f (t)

〉
B∗,Bh(t)

dt

t
, h ∈ H and S ∈ B∗,

where 〈·,·〉B∗,B denotes the duality pairing in (B∗,B). When Tf ∈ γ (H,B) we say that
f ∈ γ (H,B) and we write ‖f ‖γ (H,B) to refer us to ‖Tf ‖γ (H,B).

The Hilbert transform H(f ) of f ∈ Lp(R), 1 � p < ∞, is defined by

H(f )(x) = 1

π
lim

ε→0+

∫
|x−y|>ε

f (y)

x − y
, a.e. x ∈R.

The Hilbert transform H is defined on Lp(R) ⊗ B, 1 � p < ∞, in a natural way. We
say that B is a UMD Banach space when for some (equivalent, for every) 1 < p < ∞
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the Hilbert transformation can be extended from Lp(R,B) as a bounded operator from
Lp(R,B) into itself. There exist many other characterizations of the UMD Banach spaces
(see, for instance, [1,9,10,17,18,22,24]). Every Hilbert space is a UMD space and γ (H,B)

is UMD provided that B is UMD.
UMD Banach spaces are a suitable setting to establish Banach valued Fourier multiplier

theorems [15,20]. Convolution operators are closely connected with Fourier multipliers.
Suppose that ψ ∈ L2(Rn). We consider ψt(x) = 1

tn
ψ(x/t), x ∈Rn and t > 0. The wavelet

transform Wψ associated with ψ is defined by

Wψ(f )(x, t) = (f ∗ ψt)(x), x ∈Rn and t > 0,

where f ∈ S(Rn,B), the B-valued Schwartz space.
In [24, Theorem 4.2] Kaiser and Weis gave sufficient conditions for ψ in order to

‖Wψf ‖E(Rn,γ (H,B)) ∼ ‖f ‖E(Rn,B), (3)

for every f ∈ E(Rn,B), where B is a UMD Banach space and E represents Lp , 1 < p <

∞, H 1 or BMO. Here, as usual, H 1 and BMO denote the Hardy spaces and the space of
bounded mean oscillation functions, respectively.

If P(x) = Γ ((n + 1)/2)/π(n+1)/2(1 + |x|2)−(n+1)/2, x ∈ Rn, then Pt (x) = 1
tn

P (x
t
),

x ∈ Rn and t > 0, is the classical Poisson kernel. By taking ψ(x) = ∂tPt (x)|t=1, x ∈ Rn,
we have that

Wψ(f )(x, t) = t∂tPt (f )(x), x ∈Rn and t > 0.

Moreover, γ (H,C) = H and γ (H,H) = L2((0,∞), dt/t;H), provided that H is a Hilbert
space [40, p. 3]. Then, when E = Lp , 1 < p < ∞, (3) can be seen as a Banach valued
extension of (1) and (2).

Also, in [24, Remark 4.6] UMD Banach spaces are characterized by using wavelet trans-
forms.

Harmonic analysis associated with the harmonic oscillator (also called Hermite) opera-
tor L = −	 + |x|2 on Rn has been developed in last years by several authors (see [1,5,33,
35,36,38,39], amongst others). Littlewood–Paley g-functions in the Hermite setting were
analyzed in [35] for scalar functions and in [6] for Banach valued functions. Motivated by
the ideas developed by Kaiser and Weis [24], the authors in [2, Theorem 1] established new
equivalent norms for the Bochner–Lebesgue space Lp(Rn,B) by using Littlewood–Paley
functions associated with Poisson semigroups for the Hermite operator and γ -radonifying
operators, provided that B is a UMD space. Our objectives in this paper are the following
ones:

(a) To obtain equivalent norms for the B-valued Hardy space H 1
L(Rn,B) and

BMOL(Rn,B) associated to the Hermite operator, when B is a UMD Banach space,
and

(b) To characterize the UMD Banach spaces in terms of H 1
L(Rn,B) and BMOL(Rn,B),

by using Littlewood–Paley functions for the Poisson semigroup in the Hermite context
and γ -radonifying operators.
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We recall some definitions and properties about the Hermite setting. For every k ∈ N the
k-th Hermite function is hk(x) = (

√
π 2kk!)−1/2Hk(x)e−x2/2, x ∈ R, where Hk represents

the k-th Hermite polynomial [26, p. 60]. If k = (k1, . . . , kn) ∈ Nn the k-th multidimensional
Hermite function hk is defined by

hk(x) =
n∏

j=1

hkj
(xj ), x = (x1, . . . , xn) ∈Rn,

and we have that

Lhk = (
2|k| + n

)
hk,

where |k| = k1 + · · · + kn. The system {hk}k∈Nn is a complete orthonormal system for
L2(Rn). We define, the operator L as follows

Lf =
∑
k∈Nn

(
2|k| + n

)〈f,hk〉hk, f ∈ D(L),

where the domain D(L) is constituted by all those f ∈ L2(Rn) such that∑
k∈Nn(2|k| + n)2|〈f,hk〉|2 < ∞. Here 〈·,·〉 denotes the usual inner product in L2(Rn). It

is clear that if φ ∈ C∞
c (Rn), the space of smooth functions with compact support in Rn,

then Lφ = Lφ.
For every t > 0 we consider the operator WL

t defined by

WL
t (f ) =

∑
k∈Nn

e−t (2|k|+n)〈f,hk〉hk, f ∈ L2(Rn
)
.

The family {WL
t }t>0 is a semigroup of operators generated by −L in L2(Rn) which is

usually called the heat semigroup associated to L. By taking into account the Mehler’s
formula [38, (1.1.36)] we can write, for every f ∈ L2(Rn),

WL
t (f )(x) =

∫
Rn

WL
t (x, y)f (y) dy, x ∈ Rn and t > 0,

where, for every x, y ∈Rn and t > 0,

WL
t (x, y) =

(
e−2t

π(1 − e−4t )

)n/2

exp

(
−1

4

(
1 + e−2t

1 − e−2t
|x − y|2 + 1 − e−2t

1 + e−2t
|x + y|2

))
.

The Poisson semigroup {PL
t }t>0 associated to L, that is, the semigroup of operators gen-

erated by −√
L, can be written by using the subordination formula by

PL
t (f ) = t√

4π

∞∫
s−3/2e−t2/(4s)WL

s (f ) ds, f ∈ L2(Rn
)

and t > 0. (4)
0
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The families {WL
t }t>0 and {PL

t }t>0 are also C0-semigroups in Lp(Rn), for every 1 < p <

∞ (see [31]), but they are not Markovian.
In [35] Stempak and Torrea studied the Littlewood–Paley g-functions in the Hermite

setting. They proved that the g-function defined by

g
({

PL
t

}
t>0

)
(f )(x) =

( ∞∫
0

∣∣t∂tP
L
t f (x)

∣∣2 dt

t

)1/2

, x ∈Rn,

is bounded from Lp(Rn) into itself, when 1 < p < ∞ [35, Theorem 3.2]. Also, we have
that

‖f ‖Lp(Rn) ∼ ∥∥g({PL
t

}
t>0

)∥∥
Lp(Rn)

, f ∈ Lp
(
Rn

)
, (5)

[4, Proposition 2.3].
From [6, Theorems 1 and 2] and [25] we deduce that by defining, for every 1 < p < ∞,

gB
({

PL
t

}
t>0

)
(f )(x) =

( ∞∫
0

∥∥t∂tP
L
t f (x)

∥∥2
B

dt

t

)1/2

, f ∈ Lp
(
Rn,B

)
,

then, for some (equivalently, for every) 1 < p < ∞,

‖f ‖Lp(Rn,B) ∼ ∥∥gB({PL
t

}
t>0

)
(f )

∥∥
Lp(Rn)

, f ∈ Lp
(
Rn,B

)
,

if, and only if, B is isomorphic to a Hilbert space.
We consider the operator GL,B defined by

GL,B(f )(x, t) = t∂tP
L
t (f )(x), x ∈ Rn and t > 0,

for every f ∈ Lp(Rn,B), 1 � p < ∞.
In [2] the authors proved that, for every 1 < p < ∞,

‖f ‖Lp(Rn,B) ∼ ∥∥GL,B(f )
∥∥

Lp(Rn,γ (H,B))
, (6)

provided that B is a UMD Banach space. Since γ (H,C) = H , (6) can be seen as a Banach
valued extension of (5).

Our first objective is to establish (6) when the space Lp is replaced by the Hardy
space H 1 and the BMO space associated with the Hermite operator.

Dziubański and Zienkiewicz [14] investigated the Hardy space H 1
SV

(Rn) in the
Schrödinger context, where SV = −	 + V and V is a suitable positive potential. The
Hermite operator is a special case of the Schrödinger operator. In [13] the dual space
of H 1

SV
(Rn) is characterized as the space BMOSV

(Rn) that is contained in the classi-
cal BMO(Rn) of bounded mean oscillation function in Rn. The results in [13] and [14]
hold when the dimension n is greater than 2, but when V (x) = |x|2, x ∈ Rn, that is, when
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SV = L the results in [13] and [14] about Hardy and BMO spaces hold for every dimension
n� 1.

We say that a function f ∈ L1(Rn,B) is in H 1
L(Rn,B) when

sup
t>0

∥∥WL
t (f )

∥∥
B

∈ L1(Rn
)
.

As usual we consider on H 1
L(Rn,B) the norm ‖ · ‖H 1

L(Rn,B) defined by

‖f ‖H 1
L(Rn,B) =

∥∥∥sup
t>0

∥∥WL
t (f )

∥∥
B

∥∥∥
L1(Rn)

, f ∈ H 1
L
(
Rn,B

)
.

The dual space of H 1
L(Rn,B) is the space BMOL(Rn,B∗) defined as follows, provided

that B satisfies the Radon–Nikodým property (see [7]). Note that every UMD space is
reflexive [28, Proposition 2, p. 205] and therefore verifies the Radon–Nikodým property
[11, Corollary 13, p. 76]. A function f ∈ L1

loc(R
n,B) is in BMOL(Rn,B) if there exists

C > 0 such that

(i) for every a ∈Rn and 0 < r < ρ(a)

1

|B(a, r)|
∫

B(a,r)

∥∥f (z) − fB(a,r)

∥∥
B

dz � C,

where fB(a,r) = 1
|B(a,r)|

∫
B(a,r)

f (z) dz, and
(ii) for every a ∈Rn and r � ρ(a),

1

|B(a, r)|
∫

B(a,r)

∥∥f (z)
∥∥
B

dz � C.

Here ρ is given by

ρ(x) =
{

1
1+|x| , |x| � 1,

1
2 , |x| < 1.

When B = C we simply write H 1
L(Rn) and BMOL(Rn), instead of H 1

L(Rn,C) and
BMOL(Rn,C), respectively.

In [3] it was established a T1 type theorem that gives sufficient conditions in order that
an operator is bounded between BMOL spaces.

Suppose that B1 and B2 are Banach spaces and T is a linear operator bounded from
L2(Rn,B1) into L2(Rn,B2) such that

T (f )(x) =
∫
n

K(x, y)f (y) dy, x /∈ supp(f ), f ∈ L∞
c

(
Rn,B1

)
,

R
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where K(x,y) is a bounded operator from B1 into B2, for every x, y ∈ Rn, x = y, and the
integral is understood in the B2-Bochner sense.

As in [3] we say that T is a (B1,B2)-Hermite–Calderón–Zygmund operator when the
following two conditions are satisfied:

(i) ‖K(x,y)‖L(B1,B2) � C e−c(|x−y|2+|x||x−y|)
|x−y|n , x, y ∈ Rn, x = y,

(ii) ‖K(x,y) − K(x, z)‖L(B1,B2) + ‖K(y,x) − K(z, x)‖L(B1,B2) � C
|y−z|

|x−y|n+1 , |x − y| >

2|y − z|,

where C,c > 0 and L(B1,B2) denotes the space of bounded operators from B1 into B2.
If T is a Hermite–Calderón–Zygmund operator, we define the operator T on

BMOL(Rn,B1) as follows: for every f ∈ BMOL(Rn,B1),

T(f )(x) = T (f χB)(x) +
∫

Rn\B
K(x, y)f (y) dy,

a.e. x ∈ B = B(x0, r0), x0 ∈ Rn and r0 > 0.

This definition is consistent in the sense that it does not depend on x0 or r0. Note that if
f ∈ BMOL(Rn,B1), B = B(x0, r0), and B∗ = B(x0,2r0) where x0 ∈ Rn and r0 > 0, then

T(f )(x) = T
(
(f − fB)χB∗

)
(x) +

∫
Rn\B∗

K(x,y)
(
f (y) − fB

)
dy +T(fB)(x),

a.e x ∈ B∗.

Note that if f ∈ L∞
c (Rn,B1) then T(f ) = T (f ). In Theorems 1.2 and 1.3 below we es-

tablish the boundedness of certain Banach valued Hermite–Calderón–Zygmund operators
between BMOL spaces. When we say that an operator T is bounded between BMOL spaces
we always are speaking of the corresponding operator T, although we continue writing T .
In order to show the boundedness of our operators in Banach valued BMOL spaces we will
use a Banach valued version of [3, Theorem 1.1] (see [3, Remark 1.1]).

Theorem 1.1. Let B1 and B2 be Banach spaces. Suppose that T is a (B1,B2) Hermite–
Calderón–Zygmund operator. Then, the operator T is bounded from BMOL(Rn,B1) into
BMOL(Rn,B2) provided that there exists C > 0 such that:

(i) for every b ∈ B1 and x ∈ Rn,

1

|B(x,ρ(x))|
∫

B(x,ρ(x))

∥∥T (b)(y)
∥∥
B2

dy � C‖b‖B1,
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(ii) for every b ∈ B1, x ∈Rn and 0 < s � ρ(x),(
1 + log

(
ρ(x)

s

))
1

|B(x, s)|
∫

B(x,s)

∥∥T (b)(y) − (
T (b)

)
B(x,s)

∥∥
B2

dy � C‖b‖B1,

where (T (b))B(x,s) = 1
|B(x,s)|

∫
B(x,s)

T (b)(y) dy.

This result can be proved in the same way as [3, Theorem 1.1]. In some special cases
the conditions (i) and (ii) reduce to simpler forms. For instance, if T (b) = T̃ (1)b, b ∈ B1,
where T̃ is a (C,L(B1,B2)) operator (where (C,L(B1,B2)) has the obvious meaning)
then properties (i) and (ii) are satisfied provided that T̃ (1) ∈ L∞(Rn,L(B1,B2)) and
∇T̃ (1) ∈ L∞(Rn,L(B1,B2)).

We denote by {PL+α
t }t>0 the Poisson semigroup associated with the operator L + α,

when α > −n. We can write

PL+α
t (f ) = t√

4π

∞∫
0

s−3/2e−t2/(4s)e−αsWL
s (f ) ds.

The operator GL+α,B is defined by

GL+α,B(f )(x, t) = t∂tP
L+α
t (f )(x), x ∈ Rn and t > 0.

Our first result is the following one.

Theorem 1.2. Let B be a UMD Banach space and α > −n. Then, if E represents H 1
L or

BMOL we have that

‖f ‖E(Rn,B) ∼ ∥∥GL+α,B(f )
∥∥

E(Rn,γ (H,B))
, f ∈ E

(
Rn,B

)
.

In order to establish our characterization for the UMD Banach spaces we introduce the
operators T L

j,±, j = 1, . . . , n, defined as follows:

T L
j,±(f )(x, t) = t (∂xj

± xj )P
L
t (f )(x), x ∈ Rn and t > 0.

In [2, Theorem 2] it was established that if B is a UMD Banach space then the operators
T L

j,± are bounded from Lp(Rn,B) into Lp(Rn, γ (H,B)), for every 1 < p < ∞ and j =
1, . . . , n, provided that n� 3 in the case of T L

j,−.

The behavior of the operators T L
j,± on the spaces H 1

L(Rn,B) and BMOL(Rn,B) is now
stated.

Theorem 1.3. Let B be a UMD Banach space and j = 1, . . . , n. By E we represent
the space H 1

L or BMOL. Then, the operators T L
j,± are bounded from E(Rn,B) into

E(Rn, γ (H,B)), provided that n� 3 in the case of T L
j,−.
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UMD Banach spaces are characterized as follows.

Theorem 1.4. Let B be a Banach space. Then, the following assertions are equivalent.

(i) B is UMD.
(ii) For some (equivalently, for every) j = 1, . . . , n, there exists C > 0 such that, for every

f ∈ H 1
L(Rn) ⊗B,

‖f ‖H 1
L(Rn,B) � C

∥∥GL+2,B(f )
∥∥

H 1
L(Rn,γ (H,B))

,

and ∥∥T L
j,+(f )

∥∥
H 1
L(Rn,γ (H,B))

� C‖f ‖H 1
L(Rn,B).

(iii) For some (equivalently, for every) j = 1, . . . , n, there exists C > 0 such that, for every
f ∈ BMOL(Rn) ⊗B,

‖f ‖BMOL(Rn,B) � C
∥∥GL+2,B(f )

∥∥
BMOL(Rn,γ (H,B))

and ∥∥T L
j,+(f )

∥∥
BMOL(Rn,γ (H,B))

� C‖f ‖BMOL(Rn,B).

In (ii) and (iii) the operators GL+2,B and T L
j,+, j = 1, . . . , n, can be replaced by GL−2,B

and T L
j,−, j = 1, . . . , n, respectively, provided that n� 3.

In the following sections we present proofs of Theorems 1.2, 1.3 and 1.4. In Appendix A
we show that the Riesz transforms in the Hermite setting can be extended as bounded op-
erators from BMOL(Rn,B) into itself and from H 1

L(Rn,B) into itself. These boundedness
properties will be needed when proving Theorem 1.4. Moreover, they have interest in them-
self and complete the results established in [3] and in [14].

Throughout this paper by C and c we always denote positive constants that can change
on each occurrence.

2. Proof of Theorem 1.2

We distinguish four parts in the proof of Theorem 1.2.

2.1. We are going to show that the operator GL+α,B is bounded from BMOL(Rn,B)

into BMOL(Rn, γ (H,B)). In order to see this we will use Theorem 1.1. According to
[2, Theorem 1] the operator GL+α,B is bounded from L2(Rn,B) into L2(Rn, γ (H,B)),
because B is UMD.



3814 J.J. Betancor et al. / Journal of Functional Analysis 263 (2012) 3804–3856
Suppose that f ∈ BMOL(Rn,B). Then, f is a B-valued function with bounded mean
oscillation and hence

∫
Rn ‖f (x)‖B/(1 + |x|)n+1 dx < ∞. The kernel PL+α

t (x, y) of the

operator PL+α
t can be written as

PL+α
t (x, y) = t√

4π

∞∫
0

s−3/2e−t2/(4s)−αsWL
s (x, y) ds, x, y ∈Rn and t > 0.

We have that

t∂tP
L+α
t (x, y) = t√

4π

∞∫
0

s−3/2
(

1 − t2

2s

)
e−t2/(4s)−αsWL

s (x, y) ds,

x, y ∈Rn and t > 0.

By [3, (4.4) and (4.5)] we have that, for every x, y ∈ Rn and s > 0,

WL
s (x, y) � C

e−ns

(1 − e−4s)n/2
exp

(
−c

( |x − y|2
1 − e−2s

+ (
1 − e−2s

)|x + y|2

+ (|x| + |y|)|x − y|
))

� Ce−c(|x−y|2+(|x|+|y|)|x−y|) e−ns−c
|x−y|2

s
−c(1−e−2s )|x+y|2

(1 − e−4s)n/2
. (7)

Hence, since α + n > 0, for each x, y ∈ Rn and t > 0,

∣∣t∂tP
L+α
t (x, y)

∣∣� Cte−c(|x−y|2+(|x|+|y|)|x−y|)
∞∫

0

e−c
|x−y|2+t2

s

s3/2

e−(α+n)s

(1 − e−4s)n/2
ds

� Cte−c(|x−y|2+(|x|+|y|)|x−y|)
∞∫

0

e−c
|x−y|2+t2

s

s(n+3)/2
ds

� Ce−c(|x−y|2+(|x|+|y|)|x−y|) t

(t + |x − y|)n+1

� C
t

(t + |x − y|)n+1
. (8)

Then,
∫
Rn |t∂tP

L+α
t (x, y)|‖f (y)‖B dy < ∞, for every x ∈ Rn and t > 0, and we deduce

that

t∂tP
L+α
t (f )(x) =

∫
n

t∂tP
L+α
t (x, y)f (y) dy, x ∈Rn and t > 0.
R
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Moreover, by (8) we get that,

∥∥t∂tP
L+α
t (x, y)

∥∥
H
� Ce−c(|x−y|2+|y||x−y|)

( ∞∫
0

t

(t + |x − y|)2(n+1)
dt

)1/2

� C
e−c(|x−y|2+|y||x−y|)

|x − y|n , x, y ∈Rn, x = y. (9)

Let x, y ∈ Rn, x = y. We write F(x, y; t) = t∂tP
L+α
t (x, y), t > 0. Since F(x, y; ·) ∈

H , for every b ∈ B, the function Fb(x, y; t) = F(x, y; t)b, t > 0, defines an element
F̃b(x, y; ·) ∈ γ (H,B) satisfying that

〈
S, F̃b(x, y; ·)(h)

〉
B∗,B =

∞∫
0

〈
S,Fb(x, y; t)〉

B∗,Bh(t)
dt

t

= 〈S,b〉B∗,B

∞∫
0

F(x, y; t)h(t)
dt

t
, S ∈ B∗ and h ∈ H.

Then, for every b ∈ B,

F̃b(x, y; ·)(h) =
( ∞∫

0

F(x, y; t)h(t)
dt

t

)
b, h ∈ H.

We consider the operator τ(x, y)(b) = F̃b(x, y; ·), b ∈ B. We have that

∥∥τ(x, y)(b)
∥∥

γ (H,B)
=
(
E

∥∥∥∥∥
∞∑

k=1

γkF̃b(x, y; ·)(ek)

∥∥∥∥∥
2

B

)1/2

=
(
E

∥∥∥∥∥
∞∑

k=1

γk

∞∫
0

F(x, y; t)ek(t)
dt

t
b

∥∥∥∥∥
2

B

)1/2

=
(
E

∣∣∣∣∣
∞∑

k=1

γk

∞∫
0

F(x, y; t)ek(t)
dt

t

∣∣∣∣∣
2)1/2

‖b‖B

= ∥∥F(x, y; ·)∥∥
H

‖b‖B, b ∈ B. (10)

Hence, if L(B, γ (H,B)) denotes the space of bounded operators from B into γ (H,B), we
obtain

∥∥τ(x, y)
∥∥

L(B,γ (H,B))
� C

e−c(|x−y|2+|y||x−y|)
n

.
|x − y|
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Let j = 1, . . . , n. We have that

∂xj

(
t∂tP

L+α
t (x, y)

)= t√
4π

∞∫
0

s−3/2
(

1 − t2

2s

)
e−t2/(4s)−αs∂xj

(
WL

s (x, y)
)
ds

x, y ∈Rn and t > 0.

Since

∂xj

(
WL

s (x, y)
)= −1

2

(
1 + e−2s

1 − e−2s
(xj − yj ) + 1 − e−2s

1 + e−2s
(xj + yj )

)
WL

s (x, y),

x, y ∈Rn and s > 0,

we obtain that

∣∣∂xj

(
WL

s (x, y)
)∣∣� Ce−c(|x−y|2+(|x|+|y|)|x−y|) e−ns−c

|x−y|2
s

(1 − e−4s)(n+1)/2
, x, y ∈Rn and s > 0.

(11)

By proceeding as above we get

∥∥∂xj

(
t∂tP

L+α
t (x, y)

)∥∥
H
� C

|x − y|n+1
, x, y ∈Rn, x = y,

and then

∥∥∂xj
τ (x, y)

∥∥
L(B,γ (H,B))

� C

|x − y|n+1
, x, y ∈ Rn, x = y.

By taking into account symmetries we obtain the same estimates when ∂xj
is replaced

by ∂yj
.

Next we show that if f ∈ L∞
c (Rn,B) then

t∂tP
L+α
t (f )(x) =

∫
Rn

τ (x, y)f (y) dy, x /∈ supp(f ), (12)

where the integral is understood in the γ (H,B)-Bochner sense. Indeed, let f ∈ L∞
c (Rn,B)

and x /∈ supp(f ). We have that∫
Rn

∥∥τ(x, y)f (y)
∥∥

γ (H,B)
dy � C

∫
supp(f )

‖f (y)‖B
|x − y|n dy < ∞.
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Since γ (H,B) is continuously contained in the space L(H,B), τ(x, ·)f ∈
L1(Rn,L(H,B)). Then, there exists a sequence (Tk)k∈N in L1(Rn) ⊗ L(H,B) such that

Tk −→ τ(x, ·)f, as k → ∞, in L1(Rn,L(H,B)
)
.

Hence, ∫
Rn

Tk(y) dy −→
∫
Rn

τ (x, y)f (y) dy, as k → ∞, in L(H,B),

and also, for every h ∈ H ,

Tk[h] −→ τ(x, ·)f [h], as k → ∞, in L1(Rn,B
)
.

Suppose that T = ∑m
�=1 f�τ�, where f� ∈ L1(Rn) and τ� ∈ L(H,B), � = 1, . . . ,m ∈ N.

We can write( ∫
Rn

T (y) dy

)
[h] =

m∑
�=1

τ�[h]
∫
Rn

f�(y) dy =
∫
Rn

T (y)[h]dy, h ∈ H.

Hence, we conclude that( ∫
Rn

τ (x, y)f (y) dy

)
[h] =

∫
Rn

τ (x, y)f (y)[h]dy, h ∈ H,

where the last integral is understood in the B-Bochner sense.
For every h ∈ H , by (9) we have that

∫
Rn

τ (x, y)f (y)[h]dy =
∫

supp(f )

( ∞∫
0

t∂tP
L+α
t (x, y)h(t)

dt

t

)
f (y)dy

=
∞∫

0

( ∫
supp(f )

t∂tP
L+α
t (x, y)f (y) dy

)
h(t)

dt

t

=
∞∫

0

t∂tP
L+α
t (f )(x)h(t)

dt

t
= (

t∂tP
L+α
t (f )(x)

)[h].

Thus (12) is established.
We conclude that GL+α,B is a (B, γ (H,B))-Hermite–Calderón–Zygmund operator.
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On the other hand, by [34, Proposition 3.3] we have that

WL
t (1)(x) = 1

πn/2

(
e−2t

1 + e−4t

)n/2

exp

(
− 1 − e−4t

2(1 + e−4t )
|x|2

)
, x ∈ Rn and t > 0. (13)

It follows that, for every x ∈ Rn and t > 0,

∂tW
L+α
t (1)(x) = ∂t

(
e−αtWL

t (1)(x)
)

= −e−αt

(
α + n

1 − e−4t

1 + e−4t
+ |x|2 4e−4t

(1 + e−4t )2

)
WL

t (1)(x). (14)

We can write

GL+α,C(1)(x, t) = t√
π

∞∫
0

e−u

√
u

∂tW
L+α

t2/(4u)
(1)(x) du

= t2

√
4π

∞∫
0

e−u

u3/2
∂zW

L+α
z (1)(x)|z=t2/(4u) du, x ∈ Rn and t > 0. (15)

Minkowski’s inequality leads to

∥∥GL+α,C(1)(x, ·)∥∥
H
� C

∞∫
0

e−u

u3/2

∥∥t2∂zW
L+α
z (1)(x)|z=t2/(4u)

∥∥
H

du

� C

∞∫
0

e−u

u1/2

∥∥z∂zW
L+α
z (1)(x)

∥∥
H

du, x ∈ Rn.

Moreover, we have that

∥∥z∂zW
L+α
z (1)(x)

∥∥
H
� C

( 1∫
0

e−cz|x|2(1 + |x|4)z dz +
∞∫

1

e−2(n+α)zz dz

)1/2

� C,

x ∈ Rn.

Hence, ‖GL+α,C(1)(x, ·)‖H ∈ L∞(Rn). As above, this means that GL+α,C(1) ∈
L∞(Rn,H).

In a similar way we can see that, for every j = 1, . . . , n, ∂xj
GL+α,C(1) ∈ L∞(Rn,H).

By using Theorem 1.1 we can show that the operator GL+α,B is bounded from
BMOL(Rn,B) into BMOL(Rn, γ (H,B)).
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2.2. We are going to prove that GL+α,B is a bounded operator from H 1
L(Rn,B) into

H 1
L(Rn, γ (H,B)). In order to show this property we extend to a Banach valued setting the

atomic characterization of Hardy spaces due to Dziubański and Zienkiewicz [12,14].
A strongly measurable function a : Rn −→ B is an atom for H 1

L(Rn,B) when there
exist x0 ∈ Rn and 0 < r0 � ρ(x0) such that the support of a is contained in B(x0, r0) and

(i) ‖a‖L∞(Rn,B) � |B(x0, r0)|−1,
(ii)

∫
Rn a(x) dx = 0, provided that r0 � ρ(x0)/2.

Proposition 2.1. Let Y be a Banach space. Suppose that f ∈ L1(Rn,Y ). The following
assertions are equivalent.

(i) supt>0 ‖WL
t (f )‖Y ∈ L1(Rn).

(ii) supt>0 ‖PL
t (f )‖Y ∈ L1(Rn).

(iii) There exist a sequence (aj )j∈N of atoms in H 1
L(Rn,Y ) and a sequence (λj )j∈N of

complex numbers such that
∑

j∈N |λj | < ∞ and f =∑
j∈N λjaj .

Proof. Dziubański and Zienkiewicz proved in [14, Theorem 1.5] (see also [12]) that (i) ⇔
(iii) for Y = C. In order to show [14, Theorem 1.5] they use the atomic decomposition
for the functions in the local Hardy space h1(Rn) established by Goldberg [16, Lemma 5].
By reading carefully [32, Theorem 1, p. 91, and Theorem 2, p. 107] we can see that the
classical Banach valued H 1(Rn,Y ) can be defined by using different maximal functions
and by atomic representations, that is, [32, Theorem 1, p. 91, and Theorem 2, p. 107]
continue being true when we replace H 1(Rn) by H 1(Rn,Y ). Then, if we define the Banach
valued local Hardy space h1(Rn,Y ) in the natural way, h1(Rn,Y ) can be described by the
corresponding maximal functions and by atomic decompositions (see [16, Theorem 1 and
Lemma 5]). More precisely, the arguments in the proofs of [16, Theorem 1 and Lemma 5]
allow us to show that if f ∈ L1(Rn,Y ) then f ∈ h1(Rn,Y ) if and only if f =∑

j∈N λjaj ,

where λj ∈ C, j ∈ N, and
∑

j∈N |λj | < ∞, and, for every j ∈ N, aj is an h1-atom as in
[16, p. 37] but taking values in Y . With these comments in mind and by proceeding as in
the proof of [14, Theorem 1.5] we conclude that (i) ⇔ (iii).

By the subordination representation (4) of PL
t , t > 0, we deduce that (i) ⇒ (ii).

To finish the proof we are going to see that (ii) ⇒ (iii). In order to show this we can
proceed as in the proof of [14, Theorem 1.5]. We present a sketch of the proof. Firstly,
by (4) and (7) and proceeding as in (8) we deduce that

PL
t (x, y)� Ce−c(|x−y|2+|x||x−y|) t

(t + |x − y|)n+1
, x, y ∈ Rn and t > 0. (16)

Hence, for every � ∈ N, there exists C > 0 such that

PL
t (x, y)� C

(
1 + |x − y|)−�

|x − y|−n, x, y ∈Rn and t > 0. (17)

ρ(x)
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Moreover, for every M > 0 we can find C > 0 for which

∣∣PL
t (x, y) − Pt (x − y)

∣∣� C

( |x − y|
ρ(x)

)1/2

|x − y|−n,

x, y ∈Rn, |x − y| � Mρ(x) and t > 0, (18)

where Pt denotes the classical Poisson semigroup.
Indeed, let M > 0. According to (4) we can write

∣∣PL
t (x, y) − Pt (x − y)

∣∣� Ct

∞∫
0

e−t2/(4s)

s3/2

∣∣WL
s (x, y) − Ws(x − y)

∣∣ds,

x, y ∈Rn and t > 0,

where Wt(x) = e−|x|2/(4t)/(4πt)n/2, x ∈Rn and t > 0. From (7) it follows that

t

∞∫
ρ(x)2

e−t2/(4s)

s3/2

∣∣WL
s (x, y) − Ws(x − y)

∣∣ds

� Ct

∞∫
ρ(x)2

e−c(t2+|x−y|2)/s

s(n+3)/2
ds � C

∞∫
ρ(x)2

ds

s(n+2)/2

� C

ρ(x)n
= C

( |x − y|
ρ(x)

)n 1

|x − y|n , x, y ∈ Rn, x = y and t > 0.

On the other hand, we have that

t

ρ(x)2∫
0

e−t2/(4s)

s3/2

∣∣WL
s (x, y) − Ws(x − y)

∣∣ds

� C

{
t

ρ(x)2∫
0

e−c(t2+|x−y|2)/s

s(n+3)/2

∣∣e−ns − 1
∣∣ds

+ t

ρ(x)2∫
0

e−c(t2+|x−y|2)/s

s3/2

∣∣∣∣ 1

(1 − e−4s)n/2
− 1

(4s)n/2

∣∣∣∣ds

+ t

ρ(x)2∫
e−c(t2+|x−y|2)/s

s(n+3)/2

∣∣∣∣exp

(
−1

4

1 − e−2s

1 + e−2s
|x + y|2

)
− 1

∣∣∣∣ds
0
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+ t

ρ(x)2∫
0

e−t2/(4s)

s(n+3)/2

∣∣∣∣exp

(
−1

4

1 + e−2s

1 − e−2s
|x − y|2

)
− e−|x−y|2/(4s)

∣∣∣∣ds

}

= C

4∑
j=1

Ij (x, y, t) x, y ∈ Rn and t > 0.

Since |e−ns − 1|� Cs, s > 0, and∣∣∣∣ 1

(1 − e−4s)n/2
− 1

(4s)n/2

∣∣∣∣� C

sn/2−1
, 0 < s < 1,

we deduce that

Ij (x, y, t) � Ct

ρ(x)2∫
0

e−c(t2+|x−y|2)/s

s(n+1)/2
ds

� C

1∫
0

e−c(t2+|x−y|2)/s

sn/2
ds � C

1

(t2 + |x − y|2)(n/2−1/4)

1∫
0

ds

s1/4

� C

|x − y|n−1/2

� C

( |x − y|
ρ(x)

)1/2 1

|x − y|n , x, y ∈Rn, x = y, t > 0 and j = 1,2.

Also, we have that, for every x, y ∈Rn and s > 0,∣∣∣∣exp

(
−1

4

1 + e−2s

1 − e−2s
|x − y|2

)
− e−|x−y|2/(4s)

∣∣∣∣� Ce−|x−y|2/(4s)|x − y|2 � Cse−c|x−y|2/s .

Then, by proceeding as above we get

I4(x, y, t)� C

( |x − y|
ρ(x)

)1/2 1

|x − y|n , x, y ∈Rn, x = y and t > 0.

Finally, we analyze I3. We have that∣∣∣∣exp

(
−1

4

1 − e−2s

1 + e−2s
|x + y|2

)
− 1

∣∣∣∣� Cs|x + y|2 � C
s

ρ(x)2
,

|x − y| � Mρ(x) and s > 0.

Hence, it follows that



3822 J.J. Betancor et al. / Journal of Functional Analysis 263 (2012) 3804–3856
I3(x, y, t)� C

ρ(x)2

ρ(x)2∫
0

e−c(t2+|x−y|2)/s

sn/2
ds

� C

ρ(x)2|x − y|n−1/2

ρ(x)2∫
0

ds

s1/4
= C

( |x − y|
ρ(x)

)1/2 1

|x − y|n ,

provided that |x − y|� Mρ(x), x = y and t > 0.
By combining the above estimates we obtain (18).
Estimations (17) and (18) can be also obtained when n � 3 as special cases of

[14, Lemma 3.0].
According to [30, p. 517, line 5]

ρ(x) ∼ 1

M(x)
= sup

{
r > 0:

1

rn−2

∫
B(x,r)

|y|2 dy � 1

}
.

Since ρ(x) � 1/2, there exists m0 ∈ Z such that the set Bm = {x ∈ Rn: 2m/2 � M(x) <

2
m+1

2 } is empty, provided that m < m0. Then, for every m ∈ Z, m � m0, and k ∈ N we can
consider x(m,k) ∈ Rn as in [14, Lemma 2.3] and choose, according to [14, Lemma 2.5],
a function ψ(m,k) ∈ C∞

c (B(x(m,k),2(2−m)/2)) such that ‖∇ψ(m,k)‖L∞(Rn) � C2m/2 and∑
(m,k) ψ(m,k) = 1, x ∈Rn. Here C > 0 does not depend on (m, k). We can assume m0 = 0

to make the reading easier.
For every m,k ∈ N, let us define B(m,k) = B(x(m,k),2(4−m)/2) and B̂(m,k) =

B(x(m,k), (
√

n + 1)2(4−m)/2) and consider the maximal operators

M̃m(f ) = sup
0<t�2−m

∥∥Pt (f ) − PL
t (f )

∥∥
Y
, ML

m(f ) = sup
0<t�2−m

∥∥PL
t (f )

∥∥
Y
,

Mm(f ) = sup
0<t�2−m

∥∥Pt (f )
∥∥

Y
,

and the maximal commutator operator

ML
(m,k)(f ) = sup

0<t�2−m

∥∥PL
t (ψ(m,k)f ) − ψ(m,k)P

L
t (f )

∥∥
Y
.

Let m,k ∈ N. By using (16) we deduce that, for a certain C > 0 independent of m and k,

sup
y∈B(m,k)

∫
Rn\B̂(m,k)

sup
0<t�2−m

∣∣PL
t (x, y) − Pt (x, y)

∣∣dx � C.

Indeed, if x, y ∈ Rn, x = y, the function w(t) = t/(t2 + |x − y|2)(n+1)/2, t > 0, is increas-
ing in the interval (0, |x − y|/√n ) and it is decreasing in the interval (|x − y|/√n,∞). If
x ∈ Rn \ B̂(m,k) and y ∈ B(m,k), |x − y|� √

n2(4−m)/2. Hence, from (16) it follows that



J.J. Betancor et al. / Journal of Functional Analysis 263 (2012) 3804–3856 3823
sup
y∈B(m,k)

∫
Rn\B̂(m,k)

sup
0<t�2−m

∣∣PL
t (x, y) − Pt (x, y)

∣∣dx

� C2−m sup
y∈B(m,k)

∫
Rn\B̂(m,k)

1

(2−2m + |x − y|2)(n+1)/2
dx

� C2−m

∫
Rn\B(0,

√
n2(4−m)/2)

1

(2−2m + |u|2)(n+1)/2
du� C

2−m

2−m + √
n2(4−m)/2

� C.

By (18) and arguing as in [14, Lemma 3.9], we conclude that, for a certain C > 0,∥∥M̃m(ψ(m,k)f )
∥∥

L1(Rn)
� C‖ψ(m,k)f ‖L1(Rn,Y ), f ∈ L1(Rn,Y

)
.

Also, by proceeding as in the proof of [14, Lemma 3.11] we can find C > 0 such that

∑
(m,k)

∥∥ML
(m,k)(f )

∥∥
L1(Rn)

� C‖f ‖L1(Rn,Y ), f ∈ L1(Rn,Y
)
.

By combining the above estimates we deduce that

∑
(m,k)

∥∥Mm(ψ(m,k)f )
∥∥

L1(Rn)
� C

(
‖f ‖L1(Rn,Y ) +

∥∥∥sup
t>0

∥∥PL
t f

∥∥
Y

∥∥∥
L1(Rn)

)
< ∞,

provided that (ii) holds.
Now the proof of (ii) ⇒ (iii) can be finished as in [14, Section 4]. �
In the next result we complete the last proposition characterizing the Hardy space by

the maximal operator associated with the semigroup {PL+α
t }t>0.

Proposition 2.2. Let Y be a Banach space and α > −n. Suppose that f ∈ L1(Rn,Y ). Then
f ∈ H 1

L(Rn,Y ) if, and only if, supt>0 ‖PL+α
t (f )‖Y ∈ L1(Rn).

Proof. We consider the operator Lα defined by

Lα(g) = sup
t>0

∥∥PL+α
t (g) − PL

t (g)
∥∥

Y
, g ∈ L1(Rn,Y

)
.

We can write

Lα(g)(x) = sup
t>0

∥∥∥∥ ∫
n

Lα(x, y; t)g(y) dy

∥∥∥∥
Y

, x ∈Rn,
R
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where

Lα(x, y; t) = t√
4π

∞∫
0

e−t2/(4u)

u3/2

(
e−αu − 1

)
WL

u (x, y) du, x, y ∈ Rn and t > 0.

From (7) and by taking into account that |e−(α+n)u − e−nu| � Cue−cu, u ∈ (0,∞), we
obtain that

∣∣Lα(x, y; t)∣∣� Cte−c|x−y|2
∞∫

0

e−c(t2+|x−y|2)/u

u3/2

|e−(α+n)u − e−nu|
(1 − e−4u)n/2

du

� Cte−c|x−y|2
∞∫

0

e−c(|x−y|2+t2)/ue−cu

u1/2(1 − e−4u)n/2
du

� Cte−c|x−y|2
∞∫

0

e−c(|x−y|2+t2)/u

un/2+5/4
du

� C
e−c|x−y|2

|x − y|n−1/2
, x, y ∈ Rn, x = y and t > 0.

Hence, for every g ∈ L1(Rn,Y ),

∫
Rn

∣∣Lα(g)(x)
∣∣dx � C

∫
Rn

∫
Rn

e−c|x−y|2

|x − y|n−1/2

∥∥g(y)
∥∥

Y
dy dx � C‖g‖L1(Rn,Y ).

This shows that Lα is a bounded (sublinear) operator from L1(Rn,Y ) into L1(Rn).
The proof of this property can be finished by using Proposition 2.1. �
As usual by H 1(Rn,B) we denote the classical B-valued Hardy space.

Proposition 2.3. Let Y be a UMD Banach space and α > −n. The (sublinear) operator T L
α

defined by

T L
α (f )(x) = sup

s>0

∥∥PL+α
s GL+α,Y (f )(x, ·)∥∥

γ (H,Y )
,

is bounded from H 1(Rn,Y ) into L1(Rn) and from L1(Rn,Y ) into L1,∞(Rn).

Proof. In order to show this property we use Banach valued Calderón–Zygmund the-
ory [29].
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As in (8) we can see that

PL+α
t (x, y)� C

t

(t + |x − y|)n+1
, x, y ∈Rn and t > 0.

Hence, it follows that

sup
t>0

∥∥PL+α
t (g)

∥∥
Y
� C sup

t>0
Pt

(‖g‖Y

)
, g ∈ Lp

(
Rn,Y

)
, 1 � p < ∞,

and from well-known results we deduce that the maximal operator

PL+α∗ (g) = sup
t>0

∥∥PL+α
t (g)

∥∥
Y
,

is bounded from Lp(Rn,Y ) into Lp(Rn), for every 1 < p < ∞, and from L1(Rn,Y ) into
L1,∞(Rn).

Moreover, according to [2, Theorem 1] the operator GL+α,Y is bounded from

• Lp(Rn,Y ) into Lp(Rn, γ (H,Y )), 1 < p < ∞,
• L1(Rn,Y ) into L1,∞(Rn, γ (H,Y )), and
• H 1(Rn,Y ) into L1(Rn, γ (H,Y )).

Hence, if we define the operator TL
α by

TL
α (f )(x, s, t) = PL+α

s GL+α,Y (f )(x, t), x ∈ Rn, s, t > 0,

it is bounded from Lp(Rn,Y ) into Lp(Rn,L∞((0,∞), γ (H,Y ))), 1 < p < ∞, and from
H 1(Rn,Y ) into L1,∞(Rn,L∞((0,∞), γ (H,Y ))).

We are going to show that TL
α is bounded from L1(Rn,Y ) into L1,∞(Rn,L∞((0,∞),

γ (H,Y ))) and from H 1(Rn,Y ) into L1(Rn,L∞((0,∞), γ (H,Y ))).
We consider the function

Ωα(x, y; s, t) = t∂tP
L+α
t+s (x, y), x, y ∈Rn and s, t > 0. (19)

It follows from (8) that∣∣Ωα(x, y; s, t)∣∣� C
t

(s + t + |x − y|)n+1
, x, y ∈Rn and s, t > 0. (20)

Let j = 1, . . . , n. By (11) we get

∣∣∂xj
Ωα(x, y; s, t)∣∣� Ct

∞∫
0

1

u(n+4)/2
e−c(|x−y|2+(s+t)2)/u du

� C
t

n+2
, x, y ∈Rn and s, t > 0. (21)
(s + t + |x − y|)
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By taking into account the symmetries we also have that

∣∣∂yj
Ωα(x, y; s, t)∣∣� C

t

(s + t + |x − y|)n+2
, x, y ∈Rn and s, t > 0. (22)

Let N ∈ N and C([1/N,N ], Y ) be the space of continuous functions over the interval
[1/N,N ] which take values in the Banach space Y . The function Ωα(x, y; s, t) satisfies
the following Calderón–Zygmund type estimates

∥∥Ωα(x, y; ·,·)∥∥
C([1/N,N],H)

�
∥∥Ωα(x, y; ·,·)∥∥

L∞((0,∞),H)
� C

|x − y|n ,

x, y ∈Rn, x = y, (23)

and

∥∥∇xΩα(x, y; ·, ·)∥∥
C([1/N,N],H)

+ ∥∥∇yΩα(x, y; ·,·)∥∥
C([1/N,N],H)

�
∥∥∇xΩα(x, y; ·,·)∥∥

L∞((0,∞),H)
+ ∥∥∇yΩα(x, y; ·,·)∥∥

L∞((0,∞),H)

� C

|x − y|n+1
, x, y ∈Rn, x = y. (24)

Note that the constant C does not depend on N . Indeed, by (20) we get

∥∥Ωα(x, y; ·,·)∥∥
L∞((0,∞),H)

� C sup
s>0

( ∞∫
0

t

((s + t)2 + |x − y|2)n+1
dt

)1/2

� C

( ∞∫
0

dt

(t + |x − y|)2n+1

)1/2

� C

|x − y|n , x, y ∈Rn, x = y,

and (23) is established. In a similar way we can deduce (24) from (21) and (22).
Suppose now that g ∈ L∞

c (Rn). By (23) it is clear that∫
Rn

∥∥Ωα(x, y; ·,·)∥∥
C([1/N,N],H)

∣∣g(y)
∣∣dy < ∞, x /∈ supp(g).

We define

Sα(g)(x) =
∫
n

Ωα(x, y; ·,·)g(y) dy, x /∈ supp(g),
R
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where the integral is understood in the C([1/N,N ],H)-Bochner sense. We have that

[
Sα(g)(x)

]
(s, ·) =

∫
Rn

Ωα(x, y; s, ·)g(y) dy, x /∈ supp(g) and s ∈ [1/N,N ].

Here the equality and the integral are understood in H and in the H -Bochner sense, re-
spectively.

For every h ∈ H , we can write〈
h,

∫
Rn

Ωα(x, y; s, ·)g(y) dy

〉
H,H

=
∫
Rn

∞∫
0

Ωα(x, y; s, t)h(t)
dt

t
g(y) dy

=
∞∫

0

∫
Rn

Ωα(x, y; s, t)g(y) dyh(t)
dt

t
, x /∈ supp(g) and s ∈ [1/N,N ].

Hence, for every x /∈ supp(g) and s > 0,∫
Rn

Ωα(x, y; s, t)g(y) dy =
( ∫
Rn

Ωα(x, y; s, ·)g(y) dy

)
(t),

as elements of H .
We have proved that

PL+α
s GL+α,C(g)(x, ·) = [

Sα(g)(x)
]
(s, ·), x /∈ supp(g) and s ∈ [1/N,N ],

in the sense of equality in H .
Assume that g =∑m

j=1 bjgj , where bj ∈ Y and gj ∈ L∞
c (Rn), j = 1, . . . ,m ∈N. Then,

PL+α
s GL+α,Y (g)(x, ·)

=
m∑

j=1

bjP
L+α
s GL+α,C(gj )(x, ·) =

m∑
j=1

bj

[
Sα(gj )(x)

]
(s, ·)

=
( ∫
Rn

Ωα(x, y; ·, ·)g(y) dy

)
(s, ·), x /∈ supp(g) and s ∈ [1/N,N ],

where the last integral is understood in the C([1/N,N ], γ (H,Y ))-Bochner sense.
According to Banach valued Calderón–Zygmund theory (see [29]) we deduce that the

operator TL
α can be extended from
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• L2(Rn,Y ) ∩ L1(Rn,Y ) to L1(Rn,Y ) as a bounded operator from L1(Rn,Y ) into
L1,∞(Rn,C([1/N,N ], γ (H,Y ))), and as

• a bounded operator from H 1(Rn,Y ) into L1(Rn,C([1/N,N ], γ (H,Y ))).

Moreover, if we denote by T̃L
α,N the extension of TL

α to L1(Rn,Y ) there exists C > 0
independent of N such that∥∥T̃L

α,N

∥∥
L1(Rn,Y )→L1,∞(Rn,C([1/N,N],γ (H,Y )))

� C

and ∥∥T̃L
α,N

∥∥
H 1(Rn,Y )→L1(Rn,C([1/N,N],γ (H,Y )))

� C.

Let g ∈ L1(Rn,Y ) and let (gk)k∈N be a sequence in L1(Rn,Y ) ∩ L2(Rn,Y ) such that

gk −→ g, as k → ∞, in L1(Rn,Y
)
.

It is not difficult to see that

TL
α (g)(x, s, t) = GL+α,Y

(
PL+α

s (g)
)
(x, t), x ∈ Rn and s, t > 0,

and

TL
α (gk)(x, s, t) = GL+α,Y

(
PL+α

s (gk)
)
(x, t), x ∈Rn, s, t > 0 and k ∈N.

Hence, since PL+α
s is bounded from L1(Rn,Y ) into itself, for every s > 0, and GL+α,Y is

bounded from L1(Rn,Y ) into L1,∞(Rn, γ (H,Y )) [2, Theorem 1],

TL
α (gk)(·, s, ·) −→ TL

α (g)(·, s, ·), as k → ∞, in L1,∞(
Rn, γ (H,Y )

)
,

for every s > 0. Moreover, we can find a subsequence (gk�
)�∈N of (gk)k∈N verifying that

for every s ∈ Q,

TL
α (gk�

)(x, s, ·) −→ TL
α (g)(x, s, ·), as � → ∞, in γ (H,Y ),

a.e. x ∈ Rn. On the other hand,

TL
α (gk�

) = T̃L
α,N (gk�

) −→ T̃L
α,N (g), as � → ∞, in L1,∞(

Rn,C
([1/N,N ], γ (H,Y )

))
,

and then, there exists a subsequence (gk�j
)j∈N of (gk�

)�∈N such that, for every s ∈
[1/N,N ],

TL
α (gk�

)(x, s, ·) −→ T̃L
α,N (g)(x, s, ·), as j → ∞, in γ (H,Y ),
j
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a.e. x ∈ Rn. Thus, for every s ∈ [1/N,N ] ∩Q,

T̃L
α,N (g)(x, s, ·) = TL

α (g)(x, s, ·), a.e. x ∈Rn, in γ (H,Y ).

Finally,

∣∣∣{x ∈Rn: sup
s>0

∥∥TL
α (g)(x, s, ·)∥∥

γ (H,Y )
> λ

}∣∣∣
�
∣∣∣∣ ⋃
N∈N

{
x ∈Rn: sup

s∈[1/N,N]
∥∥TL

α (g)(x, s, ·)∥∥
γ (H,Y )

> λ
}∣∣∣∣

= lim
N→∞

∣∣∣{x ∈ Rn: sup
s∈[1/N,N]∩Q

∥∥TL
α (g)(x, s, ·)∥∥

γ (H,Y )
> λ

}∣∣∣
= lim

N→∞

∣∣∣{x ∈ Rn: sup
s∈[1/N,N]∩Q

∥∥T̃L
α,N (g)(x, s, ·)∥∥

γ (H,Y )
> λ

}∣∣∣
� C

λ
‖g‖L1(Rn,Y ), λ > 0,

and we conclude that TL
α is bounded from L1(Rn,Y ) into L1,∞(Rn,L∞((0,∞),

γ (H,Y ))).
By proceeding in a similar way we can show that TL

α is also bounded from H 1(Rn,Y )

into L1(Rn,L∞((0,∞), γ (H,Y ))). �
We now establish that GL+α,B is bounded from H 1

L(Rn,B) into H 1
L(Rn, γ (H,B)). Ac-

cording to Proposition 2.2 it is sufficient to show that GL+α,B(f ) ∈ L1(Rn, γ (H,B)), for
every f ∈ H 1

L(Rn,B), and that the operator

T L
α (f )(x) = sup

s>0

∥∥PL+α
s GL+α,B(f )(x, ·)∥∥

γ (H,B)
,

is bounded from H 1
L(Rn,B) into L1(Rn).

First of all, we are going to see that GL+α,B is a bounded operator from H 1
L(Rn,B)

into L1(Rn, γ (H,B)). By [2, Theorem 1], GL+α,B is bounded from H 1(Rn,B) into
L1(Rn, γ (H,B)). Hence, if a is an atom for H 1

L(Rn,B) such that
∫
Rn a(x) dx = 0, then

∥∥GL+α,B(a)
∥∥

L1(Rn,γ (H,B))
� C‖a‖L1(Rn,B) � C,

where C > 0 does not depend on the atom a.
Suppose now that a is an atom for H 1

L(Rn,B) such that supp(a) ⊂ B = B(x0, r0), where
x0 ∈ Rn and ρ(x0)/2 � r0 � ρ(x0), and that ‖a‖L∞(Rn,B) � |B|−1. Since GL+α,B is a
bounded operator from L2(Rn,B) into L2(Rn, γ (H,B)) [2, Theorem 1], we have that
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∫
B∗

∥∥GL+α,B(a)(x, ·)∥∥
γ (H,B)

dx �
∣∣B∗∣∣1/2

(∫
B∗

∥∥GL+α,B(a)(x, ·)∥∥2
γ (H,B)

dx

)1/2

� C|B|1/2
(∫

B

∥∥a(x)
∥∥2
B

dx

)1/2

� C, (25)

being B∗ = B(x0,2r0).
Moreover, if y ∈ B and x /∈ B∗, it follows that |x − y| � r0 � ρ(x0)/2 and ρ(y) ∼

ρ(x0). Then, by taking into account (9), (10) and (12) we get∫
Rn\B∗

∥∥GL+α,B(a)(x, ·)∥∥
γ (H,B)

dx

�
∫

Rn\B∗

∫
B

∥∥t∂tP
L+α
t (x, y)

∥∥
H

∥∥a(y)
∥∥
B

dy dx

� C

∫
Rn\B∗

∫
B

e−c(|x−y|2+|y||x−y|)

|x − y|n
∥∥a(y)

∥∥
B

dy dx

� C

∫
B

∥∥a(y)
∥∥
B

∞∑
j=0

∫
2j−1ρ(x0)�|x−y|<2j ρ(x0)

dx dy

|x − y|n+1/2ρ(x0)−1/2

� C

∞∑
j=0

1

(2j ρ(x0))1/2ρ(x0)−1/2
� C

∞∑
j=0

1

2j/2
� C. (26)

From (25) and (26) we infer that∥∥GL+α,B(a)
∥∥

L1(Rn,γ (H,B))
� C,

where C > 0 does not depend on a.
We consider f = ∑∞

j=1 λjaj , where aj is an atom for H 1
L(Rn,B) and λj ∈ C, j ∈ N,

being
∑∞

j=1 |λj | < ∞. The series converges in L1(Rn,B). Hence, as a consequence of
[2, Theorem 1], we have that

GL+α,B(f ) =
∞∑

j=1

λjGL+α,B(aj ),

as elements of L1,∞(Rn, γ (H,B)). Also,

∥∥GL+α,B(f )
∥∥

L1(Rn,γ (H,B))
�

∞∑
|λj |

∥∥GL+α,B(aj )
∥∥

L1(Rn,γ (H,B))
� C

∞∑
|λj |,
j=1 j=1
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where C > 0 does not depend on f . Thus,∥∥GL+α,B(f )
∥∥

L1(Rn,γ (H,B))
� C‖f ‖H 1

L(Rn,B).

Finally, to show that T L
α is bounded from H 1

L(Rn,B) into L1(Rn) we can proceed as
above by considering the action of the operator on the two types of atoms of H 1

L(Rn,B),
and taking in mind the following facts, which can be deduced from the proof of Proposi-
tion 2.3:

• T L
α is bounded from H 1(Rn,B) into L1(Rn),

• T L
α is bounded from L2(Rn,B) into L2(Rn),

• PL+α
s GL+α,B can be associated to an integral operator with kernel Ωα (see (19)) veri-

fying that

sup
s>0

∥∥Ωα(x, y, s, ·)∥∥
H
� C

e−c(|x−y|2+|y||x−y|)

|x − y|n , x, y ∈ Rn, x = y,

• T L
α is bounded from L1(Rn,B) into L1,∞(Rn).

2.3. Our next objective is to see that there exists C > 0 such that

‖f ‖BMOL(Rn,B) � C
∥∥GL+α,B(f )

∥∥
BMOL(Rn,γ (H,B))

, f ∈ BMOL
(
Rn,B

)
. (27)

In order to prove this we need to establish the following polarization equality.

Proposition 2.4. Let B be a Banach space. If a ∈ L∞
c (Rn) ⊗ B∗ and f ∈ BMOL(Rn,B),

then

∞∫
0

∫
Rn

〈
GL+α,B∗(a)(x, t),GL+α,B(f )(x, t)

〉
B∗,B

dx dt

t
= 1

4

∫
Rn

〈
a(x), f (x)

〉
B∗,B dx.

Proof. Firstly we consider a ∈ L∞
c (Rn) and f ∈ BMOL(Rn). In order to prove that

∞∫
0

∫
Rn

GL+α,C(a)(x, t)GL+α,C(f )(x, t)
dx dt

t
= 1

4

∫
Rn

a(x)f (x) dx, (28)

we use the ideas developed in the proof of [13, Lemma 4].
According to [13, Lemma 5] we can write

∞∫ ∫
n

∣∣GL+α,C(a)(x, t)
∣∣∣∣GL+α,C(f )(x, t)

∣∣dx dt

t
� C

∥∥Sα(a)
∥∥

L1(Rn)

∥∥Iα(f )
∥∥

L∞(Rn)
, (29)
0 R
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where

Sα(a)(x) =
( ∞∫

0

∫
|x−y|<t

∣∣GL+α,C(a)(y, t)
∣∣2 dy dt

tn+1

)1/2

, x ∈Rn,

and

Iα(f )(x) = sup
B�x

(
1

|B|

r(B)∫
0

∫
B

∣∣GL+α,C(f )(y, t)
∣∣2 dy dt

t

)1/2

, x ∈Rn.

Here B represents a ball in Rn and r(B) is its radius.
We are going to show that the area integral operator Sα is bounded from H 1

L(Rn) into
L1(Rn). According to [19, Theorem 8.2] S0 is bounded from H 1

L(Rn) into L1(Rn). Then,
it is sufficient to see that Sα − S0 is bounded from L1(Rn) into itself.

By using Minkowski’s inequality we obtain( ∞∫
0

∫
|x−y|<t

∣∣GL+α,C(g)(y, t) − GL,C(g)(y, t)
∣∣2 dy dt

tn+1

)1/2

�
∫
Rn

∣∣g(z)
∣∣( ∞∫

0

∫
|x−y|<t

∣∣t∂t

[
PL+α

t (y, z) − PL
t (y, z)

]∣∣2 dy dt

tn+1

)1/2

dz, g ∈ L1(Rn
)
.

Since,

t∂t

[
PL+α

t (y, z) − PL
t (y, z)

]
= t√

4π

∞∫
0

e−t2/(4s)

s3/2

(
1 − t2

2s

)(
e−αs − 1

)
WL

s (y, z) ds, y, z ∈Rn, t > 0,

by employing Minkowski’s inequality and (7) it follows that( ∞∫
0

∫
|x−y|<t

∣∣t∂t

[
PL+α

t (y, z) − PL
t (y, z)

]∣∣2 dy dt

tn+1

)1/2

� C

∞∫
0

|e−αs − 1|
s3/2

( ∞∫
0

∫
|x−y|<t

∣∣te−t2/(8s)WL
s (y, z)

∣∣2 dy dt

tn+1

)1/2

ds

� C

∞∫ |e−(α+n)s − e−ns |
s3/2(1 − e−4s)n/2

( ∞∫ ∫
e−c(t2+|y−z|2)/s dy dt

tn−1

)1/2

ds, x, z ∈Rn.
0 0 |x−y|<t
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By taking into account again that |e−(α+n)s − e−ns | � Cse−cs , s ∈ (0,∞), and that t2 +
|z − y|2 � (t2 + |z − x|2)/4, when |x − y| < t , we can write

( ∞∫
0

∫
|x−y|<t

∣∣t∂t

[
PL+α

t (y, z) − PL
t (y, z)

]∣∣2 dy dt

tn+1

)1/2

� C

∞∫
0

e−cse−c|x−z|2/s

s(1 − e−4s)n/2

( ∞∫
0

∫
|x−y|<t

e−ct2/s dy dt

tn−1

)1/2

ds

� C

∞∫
0

e−cse−c|x−z|2/s

s(n+1)/2
ds, x, z ∈Rn.

Then,

∫
Rn

( ∞∫
0

∫
|x−y|<t

∣∣t∂t

[
PL+α

t (y, z) − PL
t (y, z)

]∣∣2 dy dt

tn+1

)1/2

dx � C

∞∫
0

e−cs

s1/2
ds � C,

z ∈Rn.

Hence, the operator Sα − S0 is bounded from L1(Rn) into itself.
Our next objective is to see that Iα(f ) ∈ L∞(Rn). Let x0 ∈ Rn and r0 > 0. We denote

by B the ball B(x0, r0) and we decompose f as follows

f = (f − fB∗)χB∗ + (f − fB∗)χRn\B∗ + fB∗ = f1 + f2 + f3,

where B∗ = B(x0,2r0).
According to [2, (4)], since γ (H,C) = H , we can write

1

|B|

r0∫
0

∫
B

∣∣GL+α,C(f1)(y, t)
∣∣2 dy dt

t
� 1

|B|
∫
Rn

∞∫
0

∣∣GL+α,C(f1)(y, t)
∣∣2 dt dy

t

� C

|B|
∫
B∗

∣∣f (x) − fB∗
∣∣2 dx � C‖f ‖2

BMOL(Rn). (30)

By using (8) we can proceed as in [13, p. 338] to obtain

1

|B|

r0∫
0

∫
B

∣∣GL+α,C(f2)(y, t)
∣∣2 dy dt

t
� C‖f ‖2

BMOL(Rn). (31)

If r0 � ρ(x0), since GL+α,C(1) ∈ L∞(Rn,H) (see Section 2.1), then
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1

|B|

r0∫
0

∫
B

∣∣GL+α,C(f3)(y, t)
∣∣2 dy dt

t
� |fB∗ |2

|B|
∫
B

∥∥GL+α,C(1)(y, ·)∥∥2
H

dy

� C|fB∗ |2 � C‖f ‖2
BMOL(Rn). (32)

Suppose now that r0 < ρ(x0). According to (15), we have that

GL+α,C(1)(x, t) = t2

√
4π

∞∫
0

e−u

u3/2
∂zW

L+α
z (1)(x)|z=t2/(4u) du, x ∈Rn and t > 0.

By (14) it follows that, for every x ∈Rn and z > 0,

∣∣∂zW
L+α
z (1)(x)

∣∣� C
e−(α+n)ze−c(1−e−4z)|x|2

(ρ(x))2

� C
e−cz max{e−cz/(ρ(x)2), e−c/(ρ(x))2}

(ρ(x))2
� C

1

(ρ(x))1/2z3/4
.

Then, we conclude that

∣∣GL+α,C(1)(x, t)
∣∣� C

(
t

ρ(x)

)1/2

, x ∈Rn and t > 0.

The arguments developed in [13, p. 339] allow us to obtain

1

|B|

r0∫
0

∫
B

∣∣GL+α,C(f3)(y, t)
∣∣2 dy dt

t
� C‖f ‖2

BMOL(Rn). (33)

Putting together (30), (31), (32) and (33) we get

1

|B|

r0∫
0

∫
B

∣∣GL+α,C(f )(y, t)
∣∣2 dy dt

t
� C‖f ‖2

BMOL(Rn),

where C does not depend on B , and we prove that Iα(f ) ∈ L∞(Rn).
Since a ∈ H 1

L(Rn), from (29) we deduce that

∞∫ ∫
n

∣∣GL+α,C(a)(x, t)
∣∣∣∣GL+α,C(f )(x, t)

∣∣dx dt

t
< ∞. (34)
0 R
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Then,

∞∫
0

∫
Rn

GL+α,C(a)(x, t)GL+α,C(f )(x, t)
dx dt

t

= lim
N→∞

N∫
1/N

∫
Rn

GL+α,C(a)(x, t)GL+α,C(f )(x, t)
dx dt

t
.

Let N ∈N. By interchanging the order of integration we obtain

N∫
1/N

∫
Rn

GL+α,C(a)(x, t)GL+α,C(f )(x, t)
dx dt

t

=
∫
Rn

f (y)

N∫
1/N

GL+α,C

(
GL+α,C(a)(·, t1)

)
(y, t)|t1=t

dt dy

t
.

We are going to justify this interchange in the order of integration. For that we will see that

N∫
1/N

∫
Rn

∣∣f (y)
∣∣ ∫
Rn

∣∣t∂tP
L+α
t (x, y)GL+α,C(a)(x, t)

∣∣dx dy dt

t
< ∞. (35)

By using (8) it follows that∫
Rn

∣∣t∂tP
L+α
t (x, y)

∣∣ ∫
Rn

∣∣t∂tP
L+α
t (x, z)

∣∣∣∣a(z)
∣∣dzdx

� C

∫
Rn

∣∣a(z)
∣∣ ∫
Rn

t

(|x − z|2 + t2)(n+1)/2

t

(|x − y|2 + t2)(n+1)/2
dx dz

� C

∫
Rn

∣∣a(z)
∣∣ t

(t + |z − y|)n+1
dz, x, y ∈ Rn and t > 0.

Suppose that supp(a) ⊂ B = B(0,R). We have that∫
Rn

∣∣t∂tP
L+α
t (x, y)

∣∣ ∫
Rn

∣∣t∂tP
L+α
t (x, z)

∣∣∣∣a(z)
∣∣dzdx

� C‖a‖L∞(Rn) �
C

n+1
, y ∈ B∗ and t > 0. (36)
(1 + |y|)
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On the other hand, if y /∈ B∗ = B(0,2R) and z ∈ B , then |z − y| � |y|/2. Hence, we get∫
Rn

∣∣t∂tP
L+α
t (x, y)

∣∣ ∫
Rn

∣∣t∂tP
L+α
t (x, z)

∣∣∣∣a(z)
∣∣dzdx

� CRn‖a‖L∞(Rn)

t

(t + |y|)n+1
, y /∈ B∗ and t > 0. (37)

Since f ∈ BMOL(Rn), (36) and (37) imply (35).
By taking into account that a ∈ L2(Rn) we can write, for every x ∈Rn and t > 0,

GL+α,C

(
GL+α,C(a)(·, t1)

)
(x, t)|t1=t

= −GL+α,C

( ∑
k∈Nn

t1
√

2|k| + n + αe−t1
√

2|k|+n+α〈a,hk〉hk

)
(x, t)|t1=t

= t2
∑
k∈Nn

(
2|k| + n + α

)
e−2t

√
2|k|+n+α〈a,hk〉hk(x).

Note that the last series converges uniformly in (x, t) ∈ Rn × [a, b], for every 0 < a < b <

∞. We have that

N∫
1/N

GL+α,C

(
GL+α,C(a)(·, t1)

)
(y, t)|t1=t

dt

t

=
∑
k∈Nn

〈a,hk〉hk(y)
(
2|k| + n + α

) N∫
1/N

te−2t
√

2|k|+n+α dt

=
∑
k∈Nn

〈a,hk〉hk(y)

[
−1

2

√
2|k| + n + α

(
Ne−2N

√
2|k|+n+α − 1

N
e− 2

N

√
2|k|+n+α

)

− 1

4

(
e−2N

√
2|k|+n+α − e− 2

N

√
2|k|+n+α

)]
= −1

4

[
PL+α

2N (a)(y) − PL+α
2/N (a)(y)

]− 1

4

[
GL+α,C(a)(y,2N) − GL+α,C(a)(y,2/N)

]
,

y ∈Rn.

According to (8) it follows that

sup
t>0

∣∣GL+α,C(a)(y, t)
∣∣� C sup

t>0

∫
Rn

t |a(z)|
(t + |z − y|)n+1

dz � C‖a‖L∞(Rn)

� C

n+1
, y ∈ B∗,
(1 + |y|)



J.J. Betancor et al. / Journal of Functional Analysis 263 (2012) 3804–3856 3837
and by proceeding as in (8) and using (7), we get

sup
t>0

∣∣GL+α,C(a)(y, t)
∣∣� C sup

t>0

∫
B

∣∣a(z)
∣∣ te−c|y||z−y|

(t + |z − y|)n+1
dz

� C‖a‖L∞(Rn)e
−c|y|2

∫
Rn

t

(t + |z − y|)n+1
dz

� C

(1 + |y|)n+1
, y /∈ B∗.

In a similar way we can prove that

sup
t>0

∣∣PL+α
t (a)(y)

∣∣� C

(1 + |y|)n+1
, y ∈ Rn.

We conclude that

sup
N∈N

∣∣∣∣∣
N∫

1/N

GL+α,C

(
GL+α,C(a)(·, t1)

)
(y, t)|t1=t

dt

t

∣∣∣∣∣� C

(1 + |y|)n+1
, y ∈Rn.

Hence, for every increasing sequence (Nm)m∈N ⊂N, we have that

∞∫
0

∫
Rn

GL+α,C(a)(x, t)GL+α,C(f )(x, t)
dx dt

t

=
∫
Rn

f (y) lim
m→∞

Nm∫
1/Nm

GL+α,C

(
GL+α,C(a)(·, t1)

)
(y, t)|t1=t

dt dy

t
,

because f ∈ BMOL(Rn).
Then, (28) will be proved when we show that

lim
N→∞

N∫
1/N

GL+α,C

(
GL+α,C(a)(·, t1)

)
(y, t)|t1=t

dt

t
= a(y)

4
, in L2(Rn

)
. (38)

In order to see that (38) holds we use Plancherel equality to get

∥∥∥∥∥
N∫
GL+α,C

(
GL+α,C(a)(·, t1)

)
(y, t)|t1=t

dt

t
− a(y)

4

∥∥∥∥∥
2

L2(Rn)
1/N
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=
∑
k∈Nn

∣∣〈a,hk〉
∣∣2∣∣∣∣√2|k| + n + α

2

(
−Ne−2N

√
2|k|+n+α + 1

N
e− 2

N

√
2|k|+n+α

)

− 1

4

(
e−2N

√
2|k|+n+α − e− 2

N

√
2|k|+n+α

)− 1

4

∣∣∣∣2.
The dominated convergence theorem leads to

lim
N→∞

∥∥∥∥∥
N∫

1/N

GL+α,C

(
GL+α,C(a)(·, t1)

)
(y, t)|t1=t

dt

t
− a(y)

4

∥∥∥∥∥
2

L2(Rn)

= 0.

Thus, the proof of (28) is finished.
Suppose now that f ∈ BMOL(Rn,B) and a = ∑m

j=1 ajbj , where aj ∈ L∞
c (Rn) and

bj ∈ B∗, j = 1, . . . ,m ∈N. We have that

∞∫
0

∫
Rn

〈
GL+α,B∗(a)(x, t),GL+α,B(f )(x, t)

〉
B∗,B

dx dt

t

=
m∑

j=1

∞∫
0

∫
Rn

GL+α,C(aj )(x, t)
〈
bj ,GL+α,B(f )(x, t)

〉
B∗,B

dx dt

t

=
m∑

j=1

∞∫
0

∫
Rn

GL+α,C(aj )(x, t)GL+α,C

(〈bj , f 〉B∗,B
)
(x, t)

dx dt

t
.

Since, 〈bj , f 〉B∗,B ∈ BMOL(Rn), j = 1, . . . ,m, the proof can be completed by us-
ing (28). �

We now prove (27). Let f ∈ BMOL(Rn,B). We denote by A the following linear space

A= span
{
a: a is an atom in H 1

L
(
Rn

)}
.

We have that

‖f ‖BMOL(Rn,B) = sup
a∈A⊗B∗

‖a‖
H1
L(Rn,B∗)

�1

∣∣∣∣ ∫
Rn

〈
f (x), a(x)

〉
B,B∗ dx

∣∣∣∣.

Note that, according to [21, Lemma 2.4] A⊗B∗ is a dense subspace of H 1
L(Rn,B∗). More-

over, since B is UMD, B is reflexive and B∗ is also a UMD space. Hence (H 1
L(Rn,B∗))∗ =

BMOL(Rn,B).
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By Proposition 2.4 we deduce that

∫
Rn

〈
a(x), f (x)

〉
B∗,B dx = 4

∞∫
0

∫
Rn

〈
GL+α,B∗(a)(x, t),GL+α,B(f )(x, t)

〉
B∗,B

dx dt

t
,

a ∈ A⊗B∗.

Proposition 2.5. Let Y be a Banach space. Suppose that g ∈ BMOL(Rn,Y ) and h ∈
H 1
L(Rn,Y ∗) such that

∫
Rn

∣∣〈h(x), g(x)
〉
Y ∗,Y

∣∣dx < ∞.

Then, ∣∣∣∣ ∫
Rn

〈
h(x), g(x)

〉
Y ∗,Y dx

∣∣∣∣� C‖h‖H 1
L(Rn,Y ∗)‖g‖BMOL(Rn,Y ).

Proof. Note firstly that g defines an element Tg of (H 1
L(Rn,Y ∗))∗ such that

Tg(a) =
∫
Rn

〈
a(x), g(x)

〉
Y ∗,Y dx,

and ∣∣∣∣ ∫
Rn

〈
a(x), g(x)

〉
Y ∗,Y dx

∣∣∣∣� C‖a‖H 1
L(Rn,Y ∗)‖g‖BMOL(Rn,Y ),

provided that a is a linear combination of atoms in H 1
L(Rn,Y ∗). Moreover, it is well-

known that the function F(x) = 〈a(x), g(x)〉Y ∗,Y , x ∈ Rn, might not be integrable on Rn

when a ∈ H 1
L(Rn,Y ∗). On the other hand, if g̃ ∈ L∞(Rn,Y ), then g̃ ∈ BMOL(Rn,Y ),

Tg̃(a) =
∫
Rn

〈
a(x), g̃(x)

〉
Y ∗,Y dx, a ∈ H 1

L
(
Rn,Y ∗),

and ∣∣∣∣ ∫
n

〈
a(x), g̃(x)

〉
Y ∗,Y dx

∣∣∣∣� C‖a‖H 1
L(Rn,Y ∗)‖g̃‖BMOL(Rn,Y ), a ∈ H 1

L
(
Rn,Y ∗).
R
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Let � ∈N. We define the function Φ� : Y −→ Y by

Φ�(b) =
{

�b
‖b‖Y

, ‖b‖Y � �,

b, ‖b‖Y < �.

Φ� is a Lipschitz function. Indeed, let b1, b2 ∈ Y . If ‖b1‖Y � � and ‖b2‖Y � �, then

∥∥Φ�(b1) − Φ�(b2)
∥∥

Y
=
∥∥∥∥ �b1

‖b1‖Y

− �b2

‖b2‖Y

∥∥∥∥
Y

�
∥∥∥∥b1 − b2

‖b1‖Y

‖b2‖Y

∥∥∥∥
Y

� ‖b1 − b2‖Y + ‖b2‖Y

∣∣∣∣1 − ‖b1‖Y

‖b2‖Y

∣∣∣∣� 2‖b1 − b2‖Y .

Moreover, if ‖b1‖Y < � and ‖b2‖Y � �, it follows that

∥∥Φ�(b1) − Φ�(b2)
∥∥

Y
=
∥∥∥∥b1 − �b2

‖b2‖Y

∥∥∥∥
Y

� ‖b1 − b2‖Y +
∥∥∥∥b2 − �b2

‖b2‖Y

∥∥∥∥
Y

� ‖b1 − b2‖Y + ∣∣‖b2‖Y − �
∣∣� ‖b1 − b2‖Y + ‖b2‖Y − ‖b1‖Y

� 2‖b1 − b2‖Y .

We define the function g�(x) = Φ�(g(x)), x ∈ Rn. We have that g� ∈ BMOL(Rn,Y ) and
‖g�‖BMOL(Rn,Y ) � C‖g‖BMOL(Rn,Y ). Moreover,∣∣〈h(x), g�(x)

〉
Y ∗,Y

∣∣� ∣∣〈h(x), g(x)
〉
Y ∗,Y

∣∣, a.e. x ∈ Rn.

By using convergence dominated theorem, since lim�→∞〈h(x), g�(x)〉Y ∗,Y =
〈h(x), g(x)〉Y ∗,Y a.e. x ∈ Rn, we deduce that∣∣∣∣ ∫

Rn

〈
h(x), g(x)

〉
Y ∗,Y dx

∣∣∣∣= lim
�→∞

∣∣∣∣ ∫
Rn

〈
h(x), g�(x)

〉
Y ∗,Y dx

∣∣∣∣
� C lim

�→∞‖h‖H 1
L(Rn,Y ∗)‖g�‖BMOL(Rn,Y )

� C‖h‖H 1
L(Rn,Y ∗)‖g‖BMOL(Rn,Y ). �

Suppose that a = ∑m
j=1 ajbj , where aj is an atom for H 1

L(Rn) and bj ∈ B∗, j =
1, . . . ,m ∈ N. Then, according to Theorem 1.2 for H 1

L(Rn,B∗), we have that

GL+α,B∗(a) =
m∑

j=1

bjGL+α,C(aj ) ∈ H 1
L
(
Rn, γ

(
H,B∗)).

If (e�)
∞
�=1 is an orthonormal basis in H by taking into account that γ (H,B)∗ =

γ (H,B∗) via trace duality we can write
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〈
GL+α,B∗(a)(x, ·),GL+α,B(f )(x, ·)〉

γ (H,B∗),γ (H,B)

=
m∑

j=1

〈
bjGL+α,C(aj )(x, ·),GL+α,B(f )(x, ·)〉

γ (H,B∗),γ (H,B)

=
m∑

j=1

∞∑
�=1

∞∫
0

e�(t)

∞∫
0

〈
bjGL+α,C(aj )(x,u),GL+α,B(f )(x, t)

〉
B∗,Be�(u)

du

u

dt

t

=
m∑

j=1

∞∑
�=1

∞∫
0

e�(t)

∞∫
0

GL+α,C(aj )(x,u)GL+α,C

(〈bj , f 〉B∗,B
)
(x, t)e�(u)

du

u

dt

t

=
m∑

j=1

∞∫
0

GL+α,C(aj )(x, t)GL+α,C

(〈bj , f 〉B∗,B
)
(x, t)

dt

t

=
m∑

j=1

∞∫
0

〈
GL+α,B∗(aj bj )(x, t),GL+α,B(f )(x, t)

〉
B∗,B

dt

t

=
∞∫

0

〈
GL+α,B∗(a)(x, t),GL+α,B(f )(x, t)

〉
B∗,B

dt

t
, a.e. x ∈ Rn.

Moreover, since 〈bj , f 〉B∗,B ∈ BMOL(Rn), j = 1, . . . ,m, from (34) we deduce that∫
Rn

∣∣〈GL+α,B∗(a)(x, ·),GL+α,B(f )(x, ·)〉
γ (H,B∗),γ (H,B)

∣∣dx

�
m∑

j=1

∫
Rn

∞∫
0

∣∣GL+α,C(aj )(x, t)
∣∣∣∣GL+α,C

(〈bj , f 〉B∗,B
)
(x, t)

∣∣dt dx

t
< ∞.

Hence, according to Proposition 2.5 and the results proved in Section 2.2 we get∣∣∣∣ ∫
Rn

〈
a(x), f (x)

〉
B∗,B dx

∣∣∣∣= 4

∣∣∣∣ ∫
Rn

〈
GL+α,B∗(a)(x, ·),GL+α,B(f )(x, ·)〉

γ (H,B∗),γ (H,B)
dx

∣∣∣∣
� C

∥∥GL+α,B∗(a)
∥∥

H 1
L(Rn,γ (H,B∗))

∥∥GL+α,B(f )
∥∥

BMOL(Rn,γ (H,B))

� C‖a‖H 1
L(Rn,B∗)

∥∥GL+α,B(f )
∥∥

BMOL(Rn,γ (H,B))
.

We conclude that

‖f ‖BMOL(Rn,B) � C
∥∥GL+α,B(f )

∥∥
BMOL(Rn,γ (H,B))

.
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2.4. We are going to show that, for every g ∈ H 1
L(Rn,B),

‖g‖H 1
L(Rn,B) � C

∥∥GL+α,B(g)
∥∥

H 1
L(Rn,γ (H,B))

. (39)

Suppose that a ∈ A ⊗ B, where A is defined in Section 2.3. Since B is UMD,
(H 1

L(Rn,B))∗ = BMOL(Rn,B∗), and we have that

‖a‖H 1
L(Rn,B) = sup

f ∈BMOL(Rn,B∗)
‖f ‖BMOL(Rn,B∗)�1

∣∣∣∣ ∫
Rn

〈
f (x), a(x)

〉
B∗,B dx

∣∣∣∣.
Moreover, for every f ∈ BMOL(Rn,B∗), since GL+α,B∗ is bounded from BMOL(Rn,B∗)
into BMOL(Rn, γ (H,B∗)) (see Section 2.1), again by Proposition 2.5 it follows that∣∣∣∣ ∫
Rn

〈
f (x), a(x)

〉
B∗,B dx

∣∣∣∣� C
∥∥GL+α,B∗(f )

∥∥
BMOL(Rn,γ (H,B∗))

∥∥GL+α,B(a)
∥∥

H 1
L(Rn,γ (H,B))

� C‖f ‖BMOL(Rn,B∗)
∥∥GL+α,B(a)

∥∥
H 1
L(Rn,γ (H,B))

.

Hence,

‖a‖H 1
L(Rn,B) � C

∥∥GL+α,B(a)
∥∥

H 1
L(Rn,γ (H,B))

.

Since A ⊗ B is a dense subspace in H 1
L(Rn,B) and GL+α,B is bounded from H 1

L(Rn,B)

into H 1
L(Rn, γ (H,B)) (see Section 2.2) we conclude that (39) holds for every g ∈

H 1
L(Rn,B).

3. Proof of Theorem 1.3

3.1. We are going to prove that the operator T L
j,+ is bounded from BMOL(Rn,B) into

BMOL(Rn, γ (H,B)). The corresponding property for T L
j,− when n� 3 can be shown in a

similar way.
We consider the function Ω defined by

Ω(x,y, t) = t2

√
4π

∞∫
0

e−t2/(4s)

s3/2
(∂xj

+ xj )W
L
s (x, y) ds, x, y ∈Rn and t > 0.

We have that

(∂xj
+ xj )W

L
s (x, y) =

(
xj − 1

2

1 + e−2s

1 − e−2s
(xj − yj ) − 1

2

1 − e−2s

1 + e−2s
(xj + yj )

)
WL

s (x, y),

x, y ∈Rn and s > 0.
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Note that |a| � |a + b| + |a − b|, a, b ∈ R. Then, it follows that, for every x, y ∈ Rn and
s > 0,

∣∣(∂xj
+ xj )W

L
s (x, y)

∣∣� C
1√

1 − e−2s

(
e−2s

1 − e−4s

)n/2

× exp

(
−1

8

(
1 + e−2s

1 − e−2s
|x − y|2 + 1 − e−2s

1 + e−2s
|x + y|2

))
.

As in (7) we obtain, for every x, y ∈ Rn and t > 0,

∣∣Ω(x,y, t)
∣∣� Ct2e−c(|x−y|2+|y||x−y|)

∞∫
0

e−c(t2+|x−y|2)/se−ns

s3/2(1 − e−4s)(n+1)/2
ds

� Ct2e−c(|x−y|2+|y||x−y|)
∞∫

0

e−c(t2+|x−y|2)/s

s(n+4)/2
ds

� C
t2e−c(|x−y|2+|y||x−y|)

(t + |x − y|)n+2
. (40)

Hence, it follows that

∥∥Ω(x,y, ·)∥∥
H
� Ce−c(|x−y|2+|y||x−y|)

( ∞∫
0

t3

(t + |x − y|)2n+4
dt

)1/2

� C
e−c(|x−y|2+|y||x−y|)

|x − y|n , x, y ∈Rn, x = y. (41)

Let i = 1, . . . , n. We can write, if i = j ,

∂xi
(∂xj

+ xj )W
L
s (x, y) = −

(
xj − 1

2

1 + e−2s

1 − e−2s
(xj − yj ) − 1

2

1 − e−2s

1 + e−2s
(xj + yj )

)
×
(

1

2

1 + e−2s

1 − e−2s
(xi − yi) + 1

2

1 − e−2s

1 + e−2s
(xi + yi)

)
WL

s (x, y),

x, y ∈Rn and s > 0,

and

∂xj
(∂xj

+ xj )W
L
s (x, y)

= −
{

2e−4s

−4s
+
(

xj − 1 1 + e−2s

−2s
(xj − yj ) − 1 1 − e−2s

−2s
(xj + yj )

)

1 − e 2 1 − e 2 1 + e
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×
(

1

2

1 + e−2s

1 − e−2s
(xj − yj ) + 1

2

1 − e−2s

1 + e−2s
(xj + yj )

)}
WL

s (x, y),

x, y ∈Rn and s > 0.

Then, we get, for each x, y ∈Rn and s > 0,

∣∣∂xi
(∂xj

+ xj )W
L
s (x, y)

∣∣� C
1

1 − e−2s

(
e−2s

1 − e−4s

)n/2

× exp

(
−1

8

(
1 + e−2s

1 − e−2s
|x − y|2 + 1 − e−2s

1 + e−2s
|x + y|2

))
.

By proceeding as above we obtain

∥∥∂xi
Ω(x, y, ·)∥∥

H
� C

|x − y|n+1
, x, y ∈ Rn, x = y. (42)

In a similar way we can see that

∥∥∂yi
Ω(x, y, ·)∥∥

H
� C

|x − y|n+1
, x, y ∈ Rn, x = y. (43)

Putting together (42) and (43) we conclude that

∥∥∇xΩ(x, y, ·)∥∥
H

+ ∥∥∇yΩ(x, y, ·)∥∥
H
� C

|x − y|n+1
, x, y ∈ Rn, x = y.

According to [2, Theorem 2] the operator T L
j,+ is bounded from L2(Rn,B) into

L2(Rn, γ (H,B)). Moreover, the same argument we have used in Section 2.1 allows us
to show that, for every f ∈ L∞

c (Rn,B),

T L
j,+(f )(x, t) =

( ∫
Rn

Ω(x, y, ·)f (y) dy

)
(t), a.e. x /∈ supp(f ).

By taking into account (13), for each x ∈ Rn and s > 0, we obtain that

(∂xj
+ xj )W

L
s (1)(x) = 1

πn/2

(
e−2s

1 + e−4s

)n/2(
1 − 1 − e−4s

1 + e−4s

)
xj exp

(
− 1 − e−4s

2(1 + e−4s)
|x|2

)
.

Hence, Minkowski’s inequality leads to

∥∥T L
j,+(1)(x, ·)∥∥

H
� C

∞∫
e−s

√
s

∥∥t (∂xj
+ xj )W

L
t2/4s

(1)(x)
∥∥

H
ds
0
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� C

∞∫
0

e−s
∥∥√u(∂xj

+ xj )W
L
u (1)(x)

∥∥
H

ds � C, x ∈ Rn.

In a similar way we can see that ∇xT
L
j,+(1) ∈ L∞(Rn,H).

By using Theorem 1.1 we conclude that T L
j,+ is bounded from BMOL(Rn,B) into

BMOL(Rn, γ (H,B)).

3.2. We are going to see that T L
j,+ is a bounded operator from H 1

L(Rn,B) into

H 1
L(Rn, γ (H,B)). The boundedness property of T L

j,− can be proved in a similar way, for
n� 3.

In Section 3.1 we saw that T L
j,+ is a Calderón–Zygmund operator. Hence, it follows

that T L
j,+ can be extended from L2(Rn,B) ∩ L1(Rn,B) to L1(Rn,B) as a bounded oper-

ator from H 1(Rn,B) into L1(Rn, γ (H,B)) and from L1(Rn,B) into L1,∞(Rn, γ (H,B)).
Moreover, according to [2, Theorem 2], T L

j,+ is a bounded operator from H 1(Rn,B) into

L1(Rn, γ (H,B)) and from L1(Rn,B) into L1,∞(Rn, γ (H,B)). By using (41), the pro-
cedure developed in Section 2.2 allows us to see that the operator T L

j,+ is bounded from

H 1
L(Rn,B) into L1(Rn, γ (H,B)).
We consider the maximal operator S defined by

S(f )(x) = sup
s>0

∥∥PL+2
s

(
T L

j,+(f )
)
(x, ·)∥∥

γ (H,B)
.

According to Proposition 2.2 the proof of our objective will be finished when we establish
that the operator S is bounded from H 1

L(Rn,B) into L1(Rn).
The maximal operator M∗ given by

M∗(g) = sup
s>0

∥∥PL+2
s (g)

∥∥
γ (H,B)

is known to be bounded from Lp(Rn, γ (H,B)) into Lp(Rn), for every 1 < p < ∞,
and from L1(Rn, γ (H,B)) into L1,∞(Rn). Since T L

j,+ is bounded from Lp(Rn,B)

into Lp(Rn, γ (H,B)), 1 < p < ∞, from L1(Rn,B) into L1,∞(Rn, γ (H,B)), and from
H 1(Rn,B) into L1(Rn, γ (H,B)), the operator S defined by

S(f )(x, s, t) = PL+2
s

(
T L

j,+(f )(·, t))(x)

is bounded from Lp(Rn,B) into Lp(Rn,L∞((0,∞), γ (H,B))), 1 < p < ∞, and from
H 1(Rn,B) into L1,∞(Rn,L∞((0,∞), γ (H,B))).

According to [33, Lemmas 4.1 and 4.2] we have that, for every f ∈ L∞
c (Rn) ⊗B,

S(f )(x, s, t) = t (∂xj
+ xj )P

L
s+t (f )(x), x ∈Rn and s, t > 0.
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We consider the function

Y(x, y, s, t) = t
s + t√

4π

∞∫
0

e−(s+t)2/(4u)

u3/2
(∂xj

+ xj )W
L
u (x, y) du,

x, y ∈Rn, x = y and s, t > 0.

By proceeding as in (41) we can see that

∥∥Y(x, y, ·,·)∥∥
L∞((0,∞),H)

� C
e−c(|x−y|2+|y||x−y|)

|x − y|n , x, y ∈Rn, x = y, (44)

and

∥∥∇xY(x, y, ·,·)∥∥
L∞((0,∞),H)

+ ∥∥∇yY(x, y, ·,·)∥∥
L∞((0,∞),H)

� C

|x − y|n+1
,

x, y ∈ Rn, x = y.

Moreover, as in Section 2.2 we can see that, for every g ∈ L∞
c (Rn) ⊗B,

S(g)(x, s, t) =
( ∫
Rn

Y(x, y, ·,·)g(y) dy

)
(s, t), x /∈ supp(g),

being the integral understood in the L∞((0,∞), γ (H,B))-Bochner sense.
Vector valued Calderón–Zygmund theory implies that the operator S can be extended

from L2(Rn,B) ∩ L1(Rn,B) to L1(Rn,B) as a bounded operator from L1(Rn,B) to
L1,∞(Rn,L∞((0,∞), γ (H,B))) and from H 1(Rn,B) into L1(Rn,L∞((0,∞),

γ (H,B))). In order to see that S is in fact bounded from L1(Rn,B) into L1,∞(Rn,

L∞((0,∞), γ (H,B))) and from H 1(Rn,B) into L1(Rn, L∞((0,∞), γ (H,B))), we can
proceed as at the end of the proof of Proposition 2.3.

By taking into account that

• (44) holds,
• S is bounded from L1(Rn,B) into L1,∞(Rn,L∞((0,∞), γ (H,B))),
• S is bounded from H 1(Rn,B) into L1(Rn,L∞((0,∞), γ (H,B))),

we can prove, by using the procedure employed in the final part of Section 2.2, that S is
bounded from H 1

L(Rn,B) into L1(Rn,L∞((0,∞), γ (H,B))).
Thus the proof of Theorem 1.3 for T L

j,+ is finished.

4. Proof of Theorem 1.4

Theorems 1.2 and 1.3 show that (i) implies (ii) and (i) implies (iii).
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Suppose that (ii) is true for some j = 1, . . . , n. Let f =∑m
i=1 fibi , where fi ∈ H 1

L(Rn)

and bi ∈ B, i = 1, . . . ,m ∈ N. We denote by RL
j,+ the j -th Riesz transform in the Hermite

setting (see Appendix A for definitions). According to Proposition A.2,

RL
j,+(f ) =

m∑
i=1

biR
L
j,+(fi) ∈ H 1

L
(
Rn

)⊗B.

By applying [33, Lemmas 4.1 and 4.2] we get, for every atom a for H 1
L(Rn),

T L
j,+(a) = −GL+2,CRL

j,+(a).

Moreover, T L
j,+ and GL+2,C ◦ RL

j,+ are bounded operators from H 1
L(Rn) into H 1

L(Rn,H)

(see Theorem 1.3, Proposition A.2 and Theorem 1.2). Then, we have that

T L
j,+(g) = −GL+2,CRL

j,+(g), g ∈ H 1
L
(
Rn

)
,

and this implies

T L
j,+(f ) = −GL+2,BRL

j,+(f ).

We can write

∥∥RL
j,+(f )

∥∥
H 1
L(Rn,B)

� C
∥∥GL+2,BRL

j,+(f )
∥∥

H 1
L(Rn,γ (H,B))

= C
∥∥T L

j,+f
∥∥

H 1
L(Rn,γ (H,B))

� C‖f ‖H 1
L(Rn,B).

Since H 1
L(Rn) ⊗ B is a dense subspace of H 1

L(Rn,B) [21, Lemma 2.4], H 1(Rn,B) ⊂
H 1
L(Rn,B) and H 1

L(Rn,B) ⊂ L1(Rn,B) [27, Theorem 4.1] implies that RL
j,+ can be

extended to L2(Rn,B) as a bounded operator from L2(Rn,B) into itself. Then, from
[1, Theorem 2.3] we deduce that B is UMD.

Assume now (iii) holds for some j = 1, . . . , n. By proceeding as above, this time ap-
plying Proposition A.1, we can see that, for every f ∈ L∞

c (Rn) ⊗B,∥∥RL
j,+(f )

∥∥
BMOL(Rn,B)

� C‖f ‖BMOL(Rn,B). (45)

Let E be a finite dimensional subspace of B. By taking into account that L∞
c (Rn) ⊗

E = L∞
c (Rn,E) ⊂ BMOL(Rn,E) and BMOL(Rn,E) ⊂ BMO(Rn,E), from (45) and

[27, Theorem 4.1] we deduce that RL
j,+ can be extended to L2(Rn,E) as a bounded op-

erator from L2(Rn,E) into itself and∥∥RL
j,+(f )

∥∥
2 n � C‖f ‖L2(Rn,E), f ∈ L2(Rn,E

)
,

L (R ,E)
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where C > 0 does not depend on E. Hence,∥∥RL
j,+(f )

∥∥
L2(Rn,B)

� C‖f ‖L2(Rn,B), f ∈ L2(Rn
)⊗B.

From [1, Theorem 2.3] it follows that B is UMD.
The proof of the result when T L

j,+ and GL+2,B are replaced by T L
j,− and GL−2,B, respec-

tively, can be made similarly, for every n� 3.

Appendix A

The Hermite operator L can be written as follows

L = −1

2

[
(∇ + x)(∇ − x) + (∇ − x)(∇ + x)

]
.

This decomposition suggests to call Riesz transforms in the Hermite setting to the operators
formally defined by

RL
j,± = (∂xj

± xj )L−1/2, j = 1, . . . , n (46)

(see [33] and [37]).
Let j = 1, . . . , n. We denote by ej the j -th coordinate vector in Rn. It is well known

that

(∂xj
+ xj )hk = (2kj )

1/2hk−ej
, (∂xj

− xj )hk = −(2kj + 2)1/2hk+ej
, (47)

for every k = (k1, . . . , kn) ∈Nn.
The negative square root L−1/2 of L is defined by

L−1/2(f )(x) =
∞∫

0

PL
t (f )(x) dt, f ∈ L2(Rn

)
.

We have that

L−1/2(f ) =
∑
k∈Nn

1√
2|k| + n

〈f,hk〉hk, f ∈ L2(Rn
)
. (48)

Equalities (46), (47) and (48) lead to define the Riesz transforms RL
j,± by

RL
j,+(f ) =

∑
n

√
2kj

2|k| + n
〈f,hk〉hk−ej

, f ∈ L2(Rn
)
,

k∈N
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and

RL
j,−(f ) = −

∑
k∈Nn

√
2kj + 2

2|k| + n
〈f,hk〉hk+ej

, f ∈ L2(Rn
)
.

Plancherel equality imply that RL
j,± is bounded from L2(Rn) into itself. Lp-boundedness

properties of RL
j,± were established by Stempak and Torrea in [33] (see also [39]). They

use Calderón–Zygmund theory and show that RL
j,± are singular integrals associated to the

Calderón–Zygmund kernels

RL
j,±(x, y) =

∞∫
0

(∂xj
± xj )P

L
t (x, y) dt, x, y ∈ Rn, x = y. (49)

RL
j,± can be extended from L2(Rn) ∩ Lp(Rn) to Lp(Rn) as a bounded operator from

Lp(Rn) into itself, 1 < p < ∞, and from L1(Rn) into L1,∞(Rn) [33, Corollary 3.4]. We
continue denoting by RL

j,± the extended operators.

In the following propositions we analyze the behavior of RL
j,±, j = 1, . . . , n, in the

spaces BMOL(Rn) and H 1
L(Rn).

Proposition A.1. Let j = 1, . . . , n. Then, the Riesz transforms RL
j,± are bounded from

BMOL(Rn) into itself.

Proof. We only analyze RL
j,+. The operator RL

j,− can be studied similarly. In

[3, Section 4.3] it was shown that the operator RL
j,+−xjL−1/2 is bounded from BMOL(Rn)

into itself.
We consider now the operator Tj = xjL−1/2. By (4) we can write

Tj (f )(x) = xj√
π

∞∫
0

WL
t (f )(x)

dt√
t

=
∞∫

0

Mj(x, y)f (y) dy, f ∈ L2(Rn
)
,

where

Mj(x, y) = xj√
π

∞∫
0

WL
t (x, y)

dt√
t
, x, y ∈ Rn, x = y.

According to [8, Lemma 3] the operator Tj is bounded from L2(Rn) into itself.
We are going to show that

∣∣Mj(x, y)
∣∣� C

e−c(|x−y|2+|x||x−y|)
n

, x, y ∈Rn and x = y,
|x − y|
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and

∣∣∇xMj (x, y)
∣∣+ ∣∣∇yMj (x, y)

∣∣� C

|x − y|n+1
, x, y ∈Rn and x = y.

By using (7) we deduce

∣∣Mj(x, y)
∣∣� C|x|e−c(|x−y|2+|x||x−y|)

∞∫
0

e−c(|x−y|2/t+(1−e2t )|x+y|2)

t (n+1)/2
dt

� C
(|x + y| + |x − y|)e−c(|x−y|2+|x||x−y|)

×
( 1∫

0

e−c(|x−y|2/t+t |x+y|2)

t (n+1)/2
dt + e−c|x+y|2

)

� Ce−c(|x−y|2+|x||x−y|)
( 1∫

0

e−c|x−y|2/t

t (n+2)/2
dt + 1

)

� C
e−c(|x−y|2+|x||x−y|)

|x − y|n , x, y ∈ Rn, x = y.

Let i = 1, . . . , n. For every x, y ∈Rn, x = y, and i = j , we have that

∂xi
Mj (x, y) = − 1

2
√

π
xj

∞∫
0

(
1 + e−2t

1 − e−2t
(xi − yi) + 1 − e−2t

1 + e−2t
(xi + yi)

)
WL

t (x, y)
dt√

t
,

and

∂xj
Mj (x, y) = 1√

π

∞∫
0

(
1 − xj

1 + e−2t

2(1 − e−2t )
(xj − yj )

− xj

1 − e−2t

2(1 + e−2t )
(xj + yj )

)
WL

t (x, y)
dt√

t
.

Hence, by (7) we get

∣∣∂xi
Mj (x, y)

∣∣
� C

∞∫ (
1 + |x| |x − y|

1 − e−2t
+ (|x + y| + |x − y|)(1 − e−2t

)|x + y|
)

WL
t (x, y)

dt√
t

0
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� C

∞∫
0

e−c|x−y|2/t e−ct

(1 − e−4t )(n+2)/2

dt√
t
� C

∞∫
0

e−c|x−y|2/t

t (n+3)/2
dt

� C

|x − y|n+1
, x, y ∈Rn, x = y.

In a similar way we can see that, for every i = 1, . . . , n,

∣∣∂yi
Mj (x, y)

∣∣� C

|x − y|n+1
, x, y ∈Rn, x = y.

According to (13) we can write

Tj (1)(x) = xj

π(n+1)/2

∞∫
0

(
e−2t

1 + e−4t

)n/2

exp

(
− 1 − e−4t

2(1 + e−4t )
|x|2

)
dt√

t
, x ∈ Rn.

It follows that

∣∣Tj (1)(x)
∣∣� C|x|

( 1∫
0

e−ct |x|2
√

t
dt + e−c|x|2

∞∫
1

e−nt dt

)
� C, x ∈Rn.

Moreover, for every i = 1, . . . , n, i = j , we have that

∂xi
Tj (1)(x) = −xjxi√

π

∞∫
0

1 − e−4t

1 + e−4t
WL

t (1)(x)
dt√

t
, x ∈Rn,

and

∂xj
Tj (1)(x) = 1√

π

∞∫
0

(
1 − 1 − e−4t

1 + e4t
x2
j

)
WL

t (1)(x)
dt√

t
, x ∈Rn.

Then, we can deduce that ∇Tj (1) ∈ L∞(Rn).
By [3, Theorem 1.1] we conclude that Tj can be extended to BMOL(Rn) as a bounded

operator from BMOL(Rn) into itself. �
Proposition A.2. Let j = 1, . . . , n. Then, the Riesz transforms RL

j,± can be extended from

L2(Rn) ∩ H 1
L(Rn) to H 1

L(Rn) as bounded operators from H 1
L(Rn) into itself.

Proof. We study the operator RL
j,+. RL

j,− can be analyzed in a similar way.
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By taking in mind Proposition 2.2 it is enough to see that RL
j,+ can be extended as a

bounded operator from H 1
L(Rn) into L1(Rn) and that the operator G defined by

G(f )(x, t) = PL+2
t

(
RL

j,+(f )
)
(x),

is bounded from H 1
L(Rn) into L1(Rn,L∞(0,∞)).

In [33, Theorem 3.3] it was proved that the Riesz transform RL
j,+ is a Calderón–

Zygmund operator associated to the kernel given in (49). Thus, in order to see that RL
j,+

can be extended as a bounded operator from H 1
L(Rn) into L1(Rn), we only need to show

that

∣∣RL
j,+(x, y)

∣∣� C
e−c(|x−y|2+|y||x−y|)

|x − y|n , x, y ∈ Rn, x = y (50)

and then reasoning as at the end of Section 2.2. Estimation (50) follows from (40).
Now we establish that G can be extended as a bounded operator from H 1

L(Rn) into
L1(Rn,L∞(0,∞)). We observe that (see [33, (4.1) and (4.3)])

G(f )(x, t) =
∑
k∈Nn

√
2kj

2|k| + n
e−t

√
2|k|+n〈f,hk〉hk−ej

(x)

= RL
j,+

(
PL

t (f )
)
(x), f ∈ L2(Rn

)
.

We consider the function

C(x, y, t) =
∞∫

0

(∂xj
+ xj )P

L
t+s(x, y) ds, x, y ∈ Rn and t ∈ (0,∞).

This function C satisfies the following L∞(0,∞)-Hermite–Calderón–Zygmund condi-
tions:

∥∥C(x, y, ·)∥∥
L∞(0,∞)

� C
e−c(|x−y|2+|y||x−y|)

|x − y|n , x, y ∈Rn, x = y (51)

and

∥∥∇xC(x, y, ·)∥∥
L∞(0,∞)

+ ∥∥∇yC(x, y, ·)∥∥
L∞(0,∞)

� C

|x − y|n+1
,

x, y ∈Rn, x = y. (52)
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Indeed, by (40) it follows that

∥∥C(x, y, ·)∥∥
L∞(0,∞)

� e−c(|x−y|2+|y||x−y|) sup
t>0

∞∫
0

t + s

(t + s + |x − y|)n+2
ds

� C sup
t>0

e−c(|x−y|2+|y||x−y|)

(t + |x − y|)n

� C
e−c(|x−y|2+|y||x−y|)

|x − y|n , x, y ∈Rn, x = y.

In order to show (52) we can proceed in a similar way.
Suppose now that f ∈ C∞

c (Rn). We can write

G(f )(x, t) =
∫
Rn

C(x, y, t)f (y) dy, x /∈ supp(f ) and t > 0.

Let x /∈ supp(f ). Note that, for every y ∈ Rn, the function gx,y(t) = C(x, y, t)f (y), t ∈
(0,∞) is continuous, limt→∞ gx,y(t) = 0, and there exists the limit limt→0+ gx,y(t).

We denote by C0([0,∞)) the space of continuous functions on [0,∞) that converge
to zero in infinity. C0([0,∞)) is endowed with the supremum norm. The dual space of
C0([0,∞)) is the space of complex measures M([0,∞)) on [0,∞).

By (51) we have that
∫
Rn ‖C(x, y, ·)‖L∞(0,∞)|f (y)|dy < ∞. We define

Lx(f ) =
∫
Rn

C(x, y, ·)f (y) dy,

where the last integral is understood in the C0([0,∞))-Bochner sense. Let μ ∈M([0,∞)).
We can write

〈
μ,Lx(f )

〉
M([0,∞)),C0([0,∞))

=
∫

[0,∞)

Lx(f )(s) dμ(s) =
∫
Rn

∫
[0,∞)

C(x, y, s) dμ(s)f (y) dy

=
∫

[0,∞)

∫
Rn

C(x, y, s)f (y) dy dμ(s).

Then,

Lx(f )(t) =
∫
n

C(x, y, t)f (y) dy, t ∈ [0,∞),
R
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and we conclude that

G(f )(x, t) =
( ∫
Rn

C(x, y, ·)f (y) dy

)
(t), t ∈ (0,∞),

where the integral is understood in the C0([0,∞))-Bochner sense.
RL

j,+ is bounded from L2(Rn) into itself. Moreover, the maximal operator

PL+2∗ (g) = sup
t>0

∣∣PL+2
t (g)

∣∣
is also bounded from L2(Rn) into itself. Hence, G is bounded operator from L2(Rn) into
L2(Rn, L∞(0,∞)).

According to Banach valued Calderón–Zygmund theory we deduce that G can be ex-
tended to L1(Rn) as a bounded operator from L1(Rn) into L1,∞(Rn,L∞(0,∞)) and from
H 1(Rn) into L1(Rn,L∞(0,∞)).

By proceeding now as in the final part of Section 2.2, (51) allows us to conclude that G

can be extended to H 1
L(Rn) as a bounded operator from H 1

L(Rn) into L1(Rn,L∞(0,∞))).
We denote by G̃ this extension.

Suppose that f ∈ H 1
L(Rn). There exist a sequence (ai)i∈N of atoms for H 1

L(Rn) and a
sequence (λi)i∈N of complex numbers such that

∑∞
i=1 |λi | < ∞ and f =∑∞

i=1 λiai . Since
this series converge in H 1

L(Rn), we have that

G̃(f ) =
∞∑
i=1

λiG(ai), in L1(Rn,L∞(0,∞)
)
.

Then, for every t > 0,

G̃(f )(·, t) =
∞∑
i=1

λiG(ai)(·, t) =
∞∑
i=1

λiP
L+2
t

(
RL

j,+(ai)
)
, in L1(Rn

)
.

Moreover, for every t > 0,

PL+2
t RL

j,+(f ) =
∞∑
i=1

λiP
L+2
t

(
RL

j,+(ai)
)
, in L1(Rn

)
.

We conclude that

G̃(f )(·, t) = PL+2
t

(
RL

j,+(f )
)
, t > 0,

and the proof of this property is finished. �
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