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Electromagnetic induction (EMI) method results are shown for vertical magnetic dipole (VMD) configuration
by using the EM38 equipment. Performance in the location of metallic pipes and electrical cables is compared
as a function of instrumental drift correction by linear and quadratic adjusting under controlled conditions.
Metallic pipes and electrical cables are buried at the IAG/USP shallow geophysical test site in São Paulo City,
Brazil. Results show that apparent electrical conductivity and magnetic susceptibility data were affected by
ambient temperature variation. In order to obtain better contrast between background and metallic targets it
was necessary to correct the drift. This correction was accomplished by using linear and quadratic relation
between conductivity/susceptibility and temperature intending comparative studies. The correction of
temperature drift by using a quadratic relation was effective, showing that all metallic targets were located as
well deeper targets were also improved.
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1. Introduction

Cities are quickly and irregularly increasing as a result of
unplanned land occupation. Due to that it is necessary to improve
infrastructure all through geotechnical subsurfaceworks, for example,
subway enlargement lines, the installation of electrical and telephone
cables, gas and water pipelines, galleries of pluvial water canalization,
and sewerage system.

Due to underground constructions it is evident that the occurrence
of accidents related to the disruption of pre-existing cables and pipes,
leading to financial disorders, hard traffic, and putting people's lives at
risk. Applied geophysics can minimize incident occurrence by using
nondestructive methods to characterize subsurface in order to locate
underground interference or environmental studies.

According to Reynolds (1997) the main advantages of geophysical
methods are low cost and quickness in field surveys. Conversely, the
use of geophysical methods in urban areas has several limitations
caused by: (1) large amount of electromagnetic noise, (2) cultural
factors may compromise data quality, and (3) ambiguity found in
result interpretation. For those reasons, it becomes a great challenge
to employ shallow geophysical methods in urban environment. A line
of research with geophysical surveys in urban areas performs studies
under controlled conditions, with the objective of better understand-
ing of normal response patterns caused by different targets in
subsurface. Several researchers have completed studies in areas
with these characteristics, such as Radzevicius and Daniels, 2000;
Gerber et al., 2004; Paniagua et al., 2004; Porsani & Sauck, 2007; Naser
& Junge, 2008; Porsani et al., 2010, among others.

In that context, the present paper aims at comparing correction of
instrumental drift provoked by data obtained with the EM38
equipment using linear and quadratic adjusting in order to improve
the image quality of underground targets, such as metallic pipes, and
electrical cables buried in urban subsoil usually occurring in
worldwide largest cities.

Data were acquired from the Institute of Astronomy, Geophysics
and Atmospheric Science (IAG) at the University of São Paulo (USP)
test site located in São Paulo City, Brazil. This test site objectifies to
simulate geotechnical problems as well as environmental and
archaeological studies in which different materials were buried
along seven study lines, such as archaeology (line 1), PVC pipes
(line 2), concrete tubes (line 3), metallic drums (line 4), plastic drums
(line 5), metallic pipes (line 6), electrical cables, metallic pipes, and
PVC conduits (line 7). Detailed information about the IAG/USP test site
installation as well some geophysical results are found in literature
(Porsani et al., 2006; Rodrigues and Porsani, 2006; Porsani and Sauck,
2007; Borges, 2007; Santos, 2009; Porsani et al., 2010).

Although there are some authors who approach inductive
electromagnetic method results by using linear adjusting to correct
instrumental drift provoked by environmental temperature in
apparent conductivity measure, for instance, Sudduth et al. (2001),
here the objective is to investigate a better way to correct that
instrumental drift. Electromagnetic induction (EMI) method results
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Fig. 1. IAG/USP test site location showing seven study lines and metallic pipe guide (addapted from Porsani et al., 2010).
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over metallic pipes and electrical cables (line 7) from the IAG/USP test
site are presented in this paper. Data revealed quadratic variation
between apparent conductivity/magnetic susceptibility and environ-
mental temperature. As a result, in this paper we present an effective
correction of temperature drift through quadratic adjusting in which
the location of metallic deeper targets were clearer, improving the
picture quality of subsurface targets.

2. Study area: IAG/USP test site

Geologically, the study area is characterized by sand-clayey
sediments of Resende and São Paulo formations underlined local
Fig. 2. Layout of targets buried at l
area, overlapping onto granite-gneissic basement (Porsani et al.,
2004).

The IAG/USP test site is located inside USP campus, in São Paulo City,
Brazil, and it is characterized by seven study lines, with a total area of
1500 m2 (30 m in NS direction×50m in EW direction). Fig. 1 shows the
IAG/USP test site location, seven study lines, and metallic pipe guide. The
depths of target tops vary from 0.5 to 2 m, and in 15 m position (NS
direction) a metallic pipe with a 3.8 cm diameter and 51 m length (EW
direction) was perpendicularly buried in survey lines. It accomplishes a
role as reference guide for geophysical surveys.

In this paper, EMI results are present for targets buried at line 7
(Fig. 2). This line is characterized by metallic pipes with a 16 cm
ine 7 at the IAG/USP test site.

image of Fig.�2


Fig. 3. a) Metallic pipe with a 16 cm diameter. b) Electrical cable with a 2 in diameter.

Fig. 4. Scheme of survey lines around targets buried at line 7 at the IAG/USP test site.
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diameter and 2 m length (Fig. 3a), electrical cables not energized
(Fig. 3b), PVC conduits for optical fiber passage, and PVC pipes with
electrical cables inside concrete box. In the largest cities, these
materials are usually used for electricity, telephone, water, and gas
transport.

3. Acquisition and data treatment

The electromagnetic induction (EMI) method for low induction
number has the ability to directly measure apparent electrical
conductivity and magnetic susceptibility of soil and subsurface
targets. The EM38 equipment known as portable soil conductivity
has a coil spacing of 1 m and an operating frequency of 14.6 kHz
(Geonics, 1998). According to McNeill (1980), it enables users to
obtain electrical conductivity and magnetic susceptibility in theoret-
ical depths of 0.75 m in HMD (horizontal magnetic dipole) and 1.5 m
in VMD (vertical magnetic dipole). Its main applications are: (1) study
of precision agriculture, (2) soil salinity mapping, (3) archaeology,
and (4) mapping of metal pipes, among others.

Usually, EMI data present some type of drift due to topographic
variation and temperature. Corrections are necessary in order to
improve contrast between physical properties of background and
subsurface targets. A good discussion about topographic drift
correction can be found in Santos et al. (2009). On the other hand,
Sudduth et al. (2001) showed that there is an increase in values of
apparent ground conductivity with decreasing temperature, and vice
versa. In the same research line, Robinson et al. (2004), after
laboratory and field tests, found instability in apparent conductivity
measures obtained with the EM38 equipment, once there is a
differential heating with control panel being warmer than coils.
Through product wrapped in an electric blanket (simulating warming
attributable to solar radiation), there was an increase in values of
apparent conductivity at the time equipment reaches a temperature
of 40°–46 °C. However, when it reaches 53 °C, values tend to decrease.
Subsequently to decreasing equipment temperature, it was observed
there was a discrepancy in values of apparent conductivity.

From EMI data (EM38 equipment) obtained at the IAG/USP test
site, it was observed that conductivity decreases as temperature
increases andwith timemeasurement acquisition. In themorning, the
moment when much data were collected, temperature increases,
affirming that conductivity decreases with time.

Around line 7, nine VMD profiles with a sensor with a 0.1 m height
were acquired. Profiles were spaced by 0.5 m, the measured interval
was 0.5 m, and 5 stacking measures were used. Fig. 4 shows the
position of survey lines over and around buried targets at line 7.
According to Sudduth et al. (2001), the effect caused by the
variation of environmental temperature can be corrected by linear
adjusting. To correct this variation, initially a base line at 21 m EW-
position was defined, because in this position we don't have any
buried target. Therefore, data were collected along the base line at
21 m position before and after EMI data were acquired around line 7.
The observed difference is due to variation in electric conductivity and
susceptibility magnetic values caused by temperature. In such a way,
the difference is distributed in whole data.

Subsequently, the equipment in VMD configuration was left for
20 min in a local where there are no metallic targets at the IAG/USP
test site, acquiring a total of 2400 measures in 0.5 sec intervals. This
procedure was necessary to verify the influence of environment
temperature in measurement of electrical conductivity and magnetic
susceptibility. To validate this procedure, an experiment was done in
seven different locations at the test site, and each and every one had
the same feature. Temperature variation was less than 1 °C.
4. Discussion of results

Fig. 5 shows inductive electromagnetic method (EMI) result
obtained around line 7 without any drift correction. This figure
objective shows that targets buried in subsoil are not clearly
determined, and only targets located at the 1 m position presented
good location. Observe in the figure that values of apparent
conductivity (Fig. 5a) and magnetic susceptibility (Fig. 5b) are very
high. Therefore, in order to improve the contrast between the physical
properties of subsurface targets and background it is necessary to
apply some data correction.

Fig. 6 shows EMI data obtained around line 7 with linear correction
according to Sudduth et al. (2001). As expected, several metallic
anomalies were observed. Apparent conductivity values ranged
between −8.5 and 56.5 mS/m, and magnetic susceptibility between
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Fig. 5. EM38 result around line 7 without any correction. a) Apparent conductivity. b) Magnetic susceptibility.
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−0.9 and 2.3 ppt. Fig. 6a shows conductivity data in which five
anomalies can be observed: metallic pipes at positions 1 m (“target
A”), 4 m (“target B”), and 7 m (“target C”), metallic guide pipe at 15 m
(“target F”), and position of 22 m has the presence of an electrical
cable (“target K”). Fig. 6b shows susceptibility data, whose “target A,”
“target B” and “target C” anomalies related tometallic pipe can only be
observed. In both figures, an anomaly located at 29.5 m is clearly
observed. It is related to concrete structure with metallic bars
installed in boundary corners at the IAG/USP test site.

As observed in Fig. 6, apparent conductivity and magnetic
susceptibility results showed negative values. These values have no
physical significance to previously said properties, but as they are
related to shallow metallic targets buried at 0.5 m depth, the limit of
Fig. 6. EM38 result around line 7 by using linear correction
low induction number was broken. So, this is a characteristic of
inductive electromagnetic method, and it is used just as a good
indicator of shallow metallic targets.

In order to find the best equation to correct EMI data affected by
environment temperature, graphics of apparent conductivity×time,
and magnetic susceptibility × time were analyzed. Fig. 7 shows
corresponding graphs for the points located at the X=21 m and
Y=21 m positions. Observe that the relation between time (or
temperature) and electric conductivity and magnetic susceptibility
were best represented by a quadratic function.

These graphics show values of electric conductivity (σa) and
magnetic susceptibility (χ) without temperature influence. According-
ly, the first minute of measurement was chosen as reference value.
. a) Apparent conductivity. b) Magnetic susceptibility.

image of Fig.�6
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Fig. 7. Influence of environment temperature versus time at the X=21 m and Y=21 m positions at the base line. a) Apparent conductivity. b) Magnetic susceptibility.
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Average data of 120 measurements for conductivity (σ̄a=4.12±0.20)
and susceptibility (χ̄m=−0.35±0.02) were used as reference values
representing values with no influence of temperature variation.

With these values in hand subtract them from each data, electric
conductivity andmagnetic susceptibility in order to get a residue of an
entire data set, and confirming that the relation between σa/χm and
temperature is quadratic, graphics can adjust the curve to find the
relation between variables. Fig. 8 shows a residue of apparent
conductivity and a residue of magnetic susceptibility. This adjustment
is necessary to correct or remove the temperature effects of (1)
electric conductivity and (2)magnetic susceptibility from EMI data. Its
mathematics relation is given by

σa = −0:0155 t2 + 0:749 t−0:0016 ð1Þ

χm = −0:0015 t2 + 0:0863 t + 0:67: ð2Þ

Thus, after relations were determined, noted in schedule time
interval between the start and the end of surveys, the interval is
distributed to data according to the above-mentioned mathematics
relations correcting temperature drift. Therefore, this procedure
Fig. 8. Residue of adjusting responsible for quadratic correction at the X=21 m and Y=
allows us to reduce fieldwork time because it is not necessary to
acquire data at the base line, and it becomes quick.

Fig. 9a and b shows electric conductivity and magnetic suscepti-
bility results around line 7 after removing instrumental drift with a
quadratic function. Observe that deeper targets were highlighted and
the shallower targets were better defined. Results of conductivity
(Fig. 9a) allow us to locate five anomalies, such as metallic pipes
“target A,” “target B,” “target C,” and “target D,” metallic pipe guide
“target F,” and electrical cable “target K.” For magnetic susceptibility
(Fig. 9b), targets “A,” “B” and “C” were clearly located. These
anomalies were enhanced due to higher contrast in physical
properties related to the background.

Fig. 10 shows differences obtained with the correction of
instrumental drift by using linear and quadratic adjusting for line 7
at the IAG/USP test site. Note the difference in amplitude between two
corrections to apparent conductivity and magnetic susceptibility
whose quadratic correction amplitude is greater.

5. Conclusions

The correction of temperature drift in apparent electric conduc-
tivity and magnetic susceptibility from inductive electromagnetic
21 m positions at the base line. a) Apparent conductivity. b) Magnetic susceptibility.
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Fig. 9. EM38 result around line 7 by using quadratic correction. a) Apparent conductivity. b) Magnetic susceptibility.
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data (EM38 equipment) by using quadratic function adjust was
effective for the location of metallic pipes and electrical cables buried
at line 7 at the IAG/USP test site (São Paulo, Brazil). Electric
conductivity and magnetic susceptibility anomalies were enhanced,
improving lateral pipes positioning and deeper targets. This proce-
dure can be used to enhance masked anomalies by the influence of
temperature variation. Besides, data acquisition and treatment
become faster because it is not necessary to survey and re-occupation
a base line.

Quadratic relation found in this work is valid for geological
conditions at our study area. For other areas it is necessary to perform
procedures to find better relation between apparent electric conduc-
tivity/magnetic susceptibility and time (or temperature). In this
manner it is possible to calculate correct data relation.
Fig. 10. EM38 result over line 7 by using linear and quadratic correction. a) Apparent
conductivity. b) Magnetic susceptibility.
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