
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Physics Letters B 641 (2006) 272–277

www.elsevier.com/locate/physletb

Target mass corrections to proton spin structure functions
and quark–hadron duality

Y.B. Dong

CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, PR China
Institute of High Energy Physics, Chinese Academy of Sciences, PR China

Received 15 June 2006; received in revised form 1 September 2006; accepted 5 September 2006

Available online 14 September 2006

Editor: J.-P. Blaizot

Abstract

Target mass corrections to proton spin structure functions in deep inelastic scattering region are analysed. Moreover, Bloom–Gilman quark–
hadron dualities of proton spin structure functions g1 and g2, in inelastic resonance region, are studied. The onsets of the dualities are discussed.
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1. Introduction

It is known that the study of quark–hadron duality is es-
sential to understand the physics behind the connection be-
tween perturbative QCD (pQCD) and non-perturbative QCD
[1], and thus, it shows fundamental issues in strong interaction.
In 2001, the new evidence of valence-like quark–hadron dual-
ity in nucleon unpolarised structure function F2 was reported
by Jefferson Lab. [2]. Those new data can revisit quark–hadron
duality and show that the duality works even in a rather low
momentum transfer region of Q2 ∼ 1 GeV2. We know that
the Bloom–Gilman quark–hadron duality [3] tells that promi-
nent resonances do not disappear relative to background even
at a large Q2. Moreover, the duality also means that the aver-
age of the oscillate resonance peaks in the resonance region is
the same as that of the scaling structure function at a large Q2

value. The origin of the Bloom–Gilman quark–hadron duality
has been given by Rujula et al. [4] with a QCD explanation.
It was also extensively studied in many works [5] through a
consideration of the asymptotic perturbative QCD behaviours
of the resonance electromagnetic transition amplitudes at a
large momentum transfer. Recently, many interesting studies
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of the quark–hadron duality were published [6–12]. Particu-
larly, Close and Isgur [1] discussed the evolution of the nucleon
structure function from coherent resonance region to incoher-
ent inelastic scattering one. Very late review and measurement
of the quark–hadron duality are referred to Ref. [13].

So far, one still has no any definitely experimental evidence
about the occurrence of the Bloom–Gilman quark–hadron du-
alities for the nucleon spin structure functions, like g1 and g2.
It is naturally to expect that the onset of the quark–hadron du-
ality for g1 of the proton target is at a larger Q2 point than the
Q2 value of the occurrence of the duality for proton unpolar-
ized structure function F2 [5]. This is because that very strong
Q2-dependence of g1 at low Q2 is needed by the well-known
Gerasimov–Drell–Hearn (GDH) sum rule [14]. Experimental
study of the quark–hadron duality in the nucleon spin structure
function g1 was performed by HERMES group and Jlab re-
cently [15]. Limited available data indicate that the onset of the
duality for g1 is likely at a larger Q2 than 1.7 GeV2. Theoretical
analysis also reaches the similar conclusion that the occurrence
of the duality of g

p

1 is likely at Q2 ∼ 2 GeV2 [10].
To study the Bloom–Gilman quark–hadron dualities of the

proton spin structure functions g1 and g2, one should know
the structure functions both in the resonance region with small
Q2 (centre-of-mass energy W < 2.5 GeV), and in deep inelas-
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tic scattering (DIS) region. Moreover, the role played by target
mass corrections to the structure functions in DIS region should
be also carefully analysed. On the one hand, we’ll simply regard
the parametrization forms of the proton spin structure functions
g1 and g2 by Simula et al. [16] is a good choice to simulate
the spin structure function g

p

1 in the resonance region. Those
forms contain nucleon elastic effect and the contributions of
the resonances and non-resonance background with 14 parame-
ters involved in, and fixed [16] by fitting to the available data
in the resonance region. A simple Breit–Wigner shape is used
to describe the W dependence of the contribution of an isolated
resonance. All four-star resonances, having a total transverse

photo-amplitude
√

|A1/2|2 + |A3/2|2 larger than 0.05 GeV−1/2,
are considered. On the other hand, we will employ next-to-
leading order pQCD calculations for the spin structure func-
tions in the DIS region. There are several known calculations in
the literature [17–19], like those by Glück, Reya, Stratmann and
Vogelsang (GRSV) [17], and by Leader, Sidorov and Stamenov
(LSS) [18]. In this Letter, we shall employ the results of GRSV
to analyse the target mass corrections to the spin structure func-
tions in the DIS region. Comparing the averages of the proton
spin structure functions both in the resonance and in the DIS
regions, we can phenomenologically study the Bloom–Gilman
quark–hadron dualities of the proton spin structure functions.

It should be stressed that there were several works related to
the target mass corrections for g1 in the literature [20,21]. The
target mass corrections to the Bjorken sum rule were discussed
in Ref. [22]. Recently, the target mass corrections to all the nu-
cleon spin structure functions, like g1 and g2, have been studied
carefully in Refs. [23–26].

This Letter is organized as follows. In Section 2, the target
mass corrections to the proton spin structure functions are stud-
ied. The corrections to the truncated moments of g1,2 and to the
quark–hadron dualities of the proton spin structure functions
will be discussed in Section 3. The final section is devoted to
conclusions.

2. Target mass corrections

One may follow the method proposed by Georgi and Politzer
[27], in the case of unpolarised structure function, to get the
target mass corrections (TMCs) to the spin structure functions.
The recent calculations show that [23,24]

gTMCs
1

(
x,Q2)

= 1

2πi

i∞∫
−i∞

dnx−n

∞∑
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,

where Mn
1 (Q2;M = 0) is the Cornwall–Norton (CN) moment

of g1

(2)Mn
1

(
Q2;M = 0

) =
1∫

0

dx xn−1g1
(
x,Q2;M = 0

)

calculated in the perturbative QCD where all the mass terms
O(Mn/Qn) are neglect, namely, the nucleon mass M vanishes.
The explicit twist-2 expression of g1 with the TMCs is

gTMCs
1
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where the Nachtmann variable [20] is

(4)ξ = 2x

1 + √
1 + 4M2x2/Q2

with x = Q2

Q2+W 2−M2 . Similarly, the spin structure function g2

with twist-2 contribution and with the TMCs is

gTMCs
2
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The above gTMCs
2 satisfies the well-known Wandzura–Wilczek

(WW) relation [28]

(6)g2(x) = −g1(x) +
1∫

x

dy

y
g1(y).

Namely, the WW relation is not affected by the target mass cor-
rections.

Here, it should be noted that the Nachtmann moments of the
nucleon spin structure functions, shown in the literature [21,22],
are

Mn
1
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Fig. 1. Comparisons (a) of g1(x,Q2) with gTMCs
1 (x,Q2) and (b) of −g2(x,Q2) with −gTMCs

2 (x,Q2). The solid (Q2 = 1 GeV2), dotted (Q2 = 3 GeV2) and

dashed curves (Q2 = 10 GeV2) are the results without the target mass corrections; whereas two-dashed-dotted (Q2 = 1 GeV2), two-dotted-dashed (Q2 = 3 GeV2)
and dotted-dashed (Q2 = 10 GeV2) curves represent the results with TMCs, respectively. The scaling structure function g1 is from GRSV [17].
and

Mn
2

(
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1∫
0

dx
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]
g2

(
x,Q2)},

(8)(n = 3,5, . . .).

The difference between the CN and Nachtmann moments
comes from the trace terms appearing in the matrix elements
of the operators of definite spin, which are disregarded in
the CN moments, but kept in the Nachtmann moments [26].
Mn

1,2(Q
2;N) in Eqs. (7) and (8) are constructed to protect

the moments of the structure functions from the TMCs (with
kinematical origin) and they contain only dynamical higher
twists, which are the ones related to the correlations among
parton [16].

Piccione and Ridolfi [23] have compared the moments of
Eqs. (7) and (8) with those of Eqs. (3) and (5). They argued
that Eqs. (7) and (8) are not directly applicable in a full analy-
sis of the polarized DIS data because the target mass corrected
reduced matrix elements of the relevant operators in operator
production expansion (OPE), like an and dn, were expressed in
terms of the polarized structure functions, if taking the TMCs
into account; these expressions reduce to the moments of the
structure functions in the massless limit, but do not have a sim-
ple parton model interpretation in the case of M �= 0. Thus,
they claimed that Eqs. (3) and (5) have the advantage that the
moments of the polarized structure functions are expressed as
the functions of the reduced operator matrix elements and the
effects of the TMCs on the nucleon spin structure functions,
which are of pure kinematical origin, can be explicitly seen.

To see the effects of the TMCs, we, in Fig. 1, explicitly
show the comparisons of g1(x,Q2) with gTMCs

1 (x,Q2), and of
−g2(x,Q2) with −gTMCs

2 (x,Q2). From Figs. 1(a) and (b), we
see that the TMCs play an remarkably role. They enlarge the
values of the spin structure functions, particularly in the large
x region. The figures reasonably show that the smaller the mo-
mentum transfer Q2 is, the larger the effects of the TMCs are.
Moreover, we see that in the limit x → 1, gTMCs

1,2 do not van-

ish, although g1,2(x,Q2;M = 0) → 1. This phenomenon can
be easily understood since ξ(x = 1) < 1 in the limit, for ex-
ample, ξ(x = 1,Q2) ∼ 0.64, 0.87 and 0.92 for Q2 = 1, 5 and
10 GeV2, respectively. In Fig. 1(b), we show the results starting
from x � 0.2. It should be mentioned that −g2 and −gTMCs

2
are negative in a very small x-region, so that the Burkhardt–
Cottingham (BC) [29] sum rule is satisfied.

3. Truncated moments and the quark–hadron dualities of
the proton spin structure functions

We know that the Bloom–Gilman quark–hadron duality
means that the smooth scaling curve seen at a high Q2 re-
gion is an average over the resonance bumps seen at low Q2

region. To check this quark–hadron duality, we, first of all,
calculate the truncated Cornwall–Norton moments. These trun-
cated moments are proposed by Rujula et al. [4] to justify the
Bloom–Gilman duality. One of them is defined in the resonance
production regions as

(9)M̄n
1,2

(
Q2) =

ξπ∫
ξ∗

dξ ξn−1g1,2
(
ξ,Q2),

and other one is

(10)Ān
1,2

(
Q2) =

ξπ∫
ξ∗

dξ ξn−1gTMCs
1,2

(
ξ,Q2),

where ξπ (or ξ∗) in the integrated interval stands for ξ with the
minimum of the center-of-mass energy W = M + mπ (or the
maximum of Wmax = 2.5 GeV). Here, the moments are trun-
cated ones and they are very sensitive to the Bloom–Gilman
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Fig. 2. Proton spin structure function g1(ξ,Q2) (a) without and (b) with the target mass corrections. The solid, dotted, dashed, dotted-dashed double-dotted-dashed
and dotted-double-dashed curves stand for the cases of Q2 = 1, 2, 3, 5, 10 and 30 GeV2, respectively. The scaling structure function g1 is from GRSV [17].

Fig. 3. Proton spin structure function −g2(ξ,Q2) (a) without and (b) with the target mass corrections. Notations as in Fig. 2.
quark–hadron duality with respective to un-truncated ones be-
cause most of the contributions of the resonance bumps are
involved in. Eq. (9) can be calculated by taking into account the
parametrizations given by Ref. [16]. It should be mentioned that
the integrated variables in Eqs. (9) and (10) are the Nachtmann
variable ξ which is the correct one in studying QCD scaling vi-
olations in the nucleon because the integral with respect to ξ

partially takes the TMCs into account [30].
In order to see the effects of the TMCs on the truncated mo-

ments of the nucleon spin structure functions, we, in Fig. 2,
respectively plot g1(ξ,Q2) and gTMCs

1 (ξ,Q2). Here, we replace
the argument x in g1(x,Q2) directly by the Nachtmann vari-
able ξ , and employ the result of the next-to-leading order pQCD
prediction of GRSV [17] for the scaling spin structure function
g1(x,Q2;M = 0). In the figures several different values of Q2

are selected. Moreover, in Fig. 3, we respectively show the cor-
responding results for the proton spin structure function −g2
starting from ξ � 0.2. It should be reiterated that the some of
the results with small ξ are negative so that the BC sum rule is
satisfied.
Figs. 2 and 3 show that the shapes of gTMCs
1,2 (ξ,Q2) at large

ξ are more insensitive to Q2 than those of g1,2 in the case of
Q2 � 2 GeV2. Thus, leading to an approximately dual relation

(11)gTMCs
1,2

(
ξ,Q2) ∼ g1,2

(
ξ,Q2

high

)

which is valid for ξ � 0.4 and Q2 � 2 GeV2. This result means
that the ξ -shapes of the target mass corrected scaling structure
functions gTMCs

1,2 with Q2 � 2 GeV2 are quite similar to the ξ -

shapes of the scaling spin structure functions g1(ξ,Q2;M = 0)

seen at a high Q2
high (say Q2

high = 30 GeV2, for example). It
also turns out that the TMCs almost compensate the effects
due to the pQCD evolution. The above conclusion is similar
to the one of Ref. [12] in the case of the unpolarized struc-
ture function F

p

2 . In addition, the x- (or ξ -) dependences of
the target mass corrected structure functions gTMCs

1,2 are differ-
ent from those without the TMCs, particularly, in the large x

(or ξ ) region. We know that ξ < x, and the ξ -range extends up
to ξmax = 1, corresponding to unphysical, but finite values of
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Fig. 4. (a) The ratios M̄n
1 (Q2)/Ān

1(Q2) (thick lines) and M̄n
1 (Q2)/Ān

1(Q2;S) (thin lines), and (b) the ratios M̄n
2 (Q2)/Ān

2(Q2) (thick lines) and

M̄n
2 (Q2)/Ān

2(Q2;S) (thin lines) with the GRSV scaling structure function. The solid, dotted, dashed, dotted-dashed and double-dotted-dashed curves correspond
to n = 1, 2, 3, 4 and 5, respectively.
x > 1 in the case of Q > M . Clearly, the larger the Q2 is, the
smaller the difference between g1,2 and gTMCs

1,2 becomes.
To study the Bloom–Gilman quark hadron dualities of the

nucleon spin structure functions explicitly, we respectively plot
the ratios of M̄n

1,2(Q
2)/Ān

1,2(Q
2) with different weight fac-

tor ξn−1 (like the nth CN moment) in Fig. 4. Moreover, to
check the effects of the TMCs, we also display the ratios of
M̄n

1,2/Ā
n
1,2(Q

2;S) (by the thin curves) with

(12)Ān
1,2

(
Q2;S) =

xπ∫
x∗

dx xn−1g1,2
(
x,Q2;M = 0

)
.

Clearly, when the target mass corrections vanish, we have ξ →
x, and gTMCs

1,2 (ξ,Q2) → g1,2(x,Q2). Thus, Ān
1,2(Q

2) turns to

be Ān
1,2(Q

2;S). However, when M �= 0, the effects of the
TMCs can be explicitly seen from the difference between the
two truncated moments of Eqs. (10) and (12).

From Fig. 4 one finds that the Q2-dependences of the ra-
tio M̄n

2 (Q2)/Ān
2(Q2) are much more smooth than those of

M̄n
2 (Q2)/Ān

2(Q2;S) in the large Q2-region with Q2 � 2 GeV2.
The obvious differences between the two ratios shown by
Figs. 4(a) and (b) indicate the significant role played by the tar-
get mass corrections. Moreover, the feature that the shapes of
the ratios M̄n

2 (Q2)/Ān
2(Q2), being almost n-independent and

Q2-independent in the region of Q2 � 2 GeV2, show that the
occurrences of the quark–hadron dualities for g

p

1,2 are expected

to be at around ∼ 2 GeV2. Thus, we conclude that the quark–
hadron dualities of the nucleon spin structure functions can
easily preserve if the target mass corrections are included.

4. Conclusions

To sum up, we have studied the Bloom–Gilman quark–
hadron dualities of the proton spin structure functions g1 and
g2 with the truncated moments simultaneously and phenomeno-
logically. The twist-2 contributions with the target mass correc-
tions are explicitly included. Our results show that the TMCs
play a remarkable role on the nucleon spin structure functions,
particular in the low Q2 and large x (or ξ ) region. The ξ -
dependences of gTMCs

1,2 (ξ,Q2) show that when Q2 � 2 GeV2

we have gTMCs
1,2 (ξ,Q2) ∼ g1,2(ξ,Q2

high) and consequentially

(13)Ān
1,2

(
Q2) ∼

ξπ∫
ξ∗

dξ ξn−1g1,2
(
ξ,Q2

high

)
.

It turns out that the effects of the TMCs compensate the role
due to the pQCD evolution. Moreover, we find that the ra-
tios M̄n

1,2(Q
2)/Ān

1,2(Q
2) with the TMCs become almost Q2-

independent and the weight factor ξn−1-independent when Q2

is large (say about 2 GeV2). It means that the averages of the
resonance bumps are similar to the truncated moments of the
scaling structure functions with the TMCs (or with a high Q2).
Thus, it shows that the onsets of the Bloom–Gilman quark–
hadron dualities of g1 and g2 in the inelastic region, including
nucleon resonance with M + mπ � W � Wmax = 2.5 GeV, are
expected in the region of Q2 � 2 GeV2. It should be noted that
this conclusion remains the same for other pQCD predictions
of the scaling structure function g1, like LSS [18]. The remark-
able role of the TMCs shows that they should be included for
producing the Bloom–Gilman quark–hadron dualities of the nu-
cleon spin structure functions. Here, we stress that we only ex-
amine the truncated moments which are limited to the nucleon
resonance production region. The dualities of those truncated
moments cannot have any operator production expansion based
justification [12].

Our present results depend on the parametrizations of g1 and
g2 in the resonance region [16]. They also depend on the pQCD
predictions for g1 and twist-2 WW relation for g2. It should be
pointed out that although the ratios, in Fig. 4, indicate that they
are almost Q2-independent in the large Q2 region, they are not
exact unity as the Bloom–Gilman quark–hadron duality means.
Therefore, our calculation only means that the averages of the



Y.B. Dong / Physics Letters B 641 (2006) 272–277 277
spin structure functions in the truncated resonance region are
similar to those of the scaling spin structure functions in the
DIS region.

In fact, this phenomenon also appears in the study of F
p

2
[2,12]. One reason is mainly due to the difficulty in accurately
modelling the large ξ behaviour of the scaling spin structure
functions. With increasing Q2, the moment of Eq. (10) is deter-
mined by a smaller and smaller region near ξ ∼ 1. For example,
the values of the upper (or lower) limit of ξπ (or ξ∗) in the inte-
gral are about 0.563 (0.154), 0.832 (0.464) and 0.903 (0.628)
for Q2 = 1 GeV2, 5 GeV2, and 10 GeV2, respectively. The
corresponding values of xπ (or x∗) are about 0.780 (0.157),
0.947 (0.482), and 0.973 (0.651), respectively. Those kinematic
regions are already beyond the ones of the world data used
in the pQCD predictions of the nucleon scaling spin struc-
ture functions. For example, in LSS calculation [18], the world
data, covering the kinematic region of 0.005 � x � 0.75 and
1 � Q2 � 58 GeV2, are employed. To estimate the uncertainty
in the large ξ region, we replace ξπ in the integral of Eq. (10)
by ξ ′

π = ξ(xmax = 0.75,Q2). Then, the values of the upper limit
turn to be 0.55, 0.685, and 0.714 for the three cases of Q2. Com-
paring the results of Eq. (10) with

(14)B̄n
1,2

(
Q2) =

ξ ′
π∫

ξ∗
dξ ξn−1gTMCs

1,2

(
ξ,Q2),

we find that the contributions from the large ξ region (with
x � 0.75) to the integral are around 1%, 8% and 30% for the
three Q2 values, respectively. One concludes that the scaling
structure functions in the large x region play a more impor-
tant role on the truncated integral with a large Q2 value than
on the integral with a small Q2 value. Unfortunately, there is
a very limited amount of the data of the nucleon spin structure
functions in DIS region currently available at large ξ region.
It should be mentioned that the high-precision nucleon reso-
nance data set in the large x (ξ ) region is required to test the
duality quantitatively. If the duality is quantitatively confirmed,
this would allow for a precise verification of our knowledge of
large-x parton distribution functions.
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