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1. Introduction

In recent years filters have been preferred to nets for studying convergence and cluster points in set-theoretic topol-
ogy. Equally, compactness type properties are usually defined in terms of coverings rather than using nets and sequences.
However, in a very recent paper [7], Hodel has shown the utility of a certain class of nets which he has called k-nets and
a similar approach was employed earlier in [8]. In this paper we use nets to generalize a result of Murtinova and to define
and study properties related to sequential compactness.

Throughout, ¥ will denote an infinite cardinal. We say that a net has cardinality k if its domain has cardinality x and
that a net is a k-net in a set X if its domain is the set k¥ <% directed by inclusion. Clearly a k-net has cardinality «. In [7,
Lemma 3.7] it was shown that if a net f of cardinality k¥ converges to p € X (respectively, has p as a cluster point), then
there is a k-net in the range of f which converges to p (respectively, has p as a cluster point).

A space X is k-Fréchet (respectively, «-net) if for each non-closed subset A € X and each x € cl(A) \ A (for some
x € cl(A) \ A) there is a net of cardinality at most x in A - or equivalently (see [7, Theorem 3.10]), for some A < k, a A-net
in A - which converges to x. The set A together with the limits of all such nets whose range is in A is called the k-net
closure of A, denoted by cI“(A). Clearly a space is x-Fréchet if and only if cl“(A) = cl(A) for each A C X.
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It is clear that if X is x-Fréchet then it is also x-net and is A-Fréchet for each A > k. Every space X is a xk-net space and
a A-Fréchet space for some values of ¥ and A. The minimum cardinal « such that X is k-net, denoted by o (X), is called the
net character of X and the minimum cardinal A such that X is A-Fréchet is called the Fréchet net character of X and will be
denoted by o (X). Clearly o (X) < or(X) < x(X). An w-net space is usually called a sequential space and an w-Fréchet space
is simply a Fréchet space. As usual, x (p, X) denotes the minimal cardinality of a local base at p, x (X) = sup{x(p, X): p € X}
and when p € cl(A), t(p, A) = min{|B|: B C A, and p € cl(B)}. All other notation is standard and undefined terms can be
found in [6]. All topologies are assumed to be (at least) Hausdorff.

2. Compactness-type properties defined by « -nets

If «k > X, a k-net g is a k-subnet (a finer k-net in the notation of [6, 1.6]) of a A-net f if there is ¢ : k=¥ — A=% such
that g = f o ¢ and for each Fp € .= there is Gg € k= such that if G 2 Gy, then ¢(G) 2 Fop; if A =«, a map ¢ with these
properties will be called a A-net map. A map ¢ : A= — A=“ will be said to be expansive if for all F € A<%, ¢(F) 2 F and
(as usual) monotone if F C G implies that ¢(F) C ¢(G). It is easy to see that a monotone, expansive map is a A-net map
and a composition of monotone and expansive maps is monotone and expansive.

Lemma 2.1. Suppose that f : .=® — X is a A-net in X and ¢ is a A-net map such that the A-subnet f o ¢ converges to p € X. Then
there is a monotone, expansive map  such that f oy converges to p.

Proof. The definition of v (F) is by recursion. Let ¥/ () = . Now suppose that for some n € w and all sets G of cardinality
at most n — 1 we have defined v/(G) and suppose that F € A<® has cardinality n. Then, since ¢ is a A-net map, we have:

(1) There is HF € A=% such that for all H D Hf, ¢(H) D F.
(2) For each G C F there is K¢ € A=® such that if H 2 K¢, then ¢(H) 2 ¥ (G).

Now define L € A=% as

L =FUHpU| J{Kc: GG F)

and

V(F)=¢(LF).

This defines v (F) for all F € A<% by recursion. Now, since L 2 Hp, we have from (1) that ¢ (L) 2 F = ¢(F) 2 F and
hence  is expansive. Furthermore, whenever G ¢ F, we have from (2) that Lr 2 K¢ and so ¢(Lr) 2 ¢ (G) = ¥ (F) 2 ¥ (G),
showing that ¢ is monotone.

Finally, to show that f o+ converges to p, suppose that V is a neighborhood of p. Then, since f o ¢ converges to p,
there is some Fo € A=% such that if F D Fg, then f(¢(F)) € V. Thus if F D Fy, we have that L D F 2 Fy and so f(¥(F)) =
f(¢(LF)) € V showing that f o converges to p. O

As mentioned in the introduction, it was shown in [7] (as part of an even stronger result) that if f is a net of cardinality
«x which converges to p, then there is in the range of f a «-net which converges to p. What was not explicitly stated in
that article is the following slightly stronger result, which will be important later in this section.

Lemma 2.2. If f : (D, <) — X is a net of cardinality x converging to p, then there is a k -subnet of f which converges to p.

Proof. For simplicity of notation, we identify D with x and define vy : k<® — D by ¥ (F) = @ where « is chosen so that
B <o« forall BeF. That h= f o is a subnet of f (and hence converges to p) follows from the fact that if y € D and
F2{y}, then ¥ (F)=y. O

It is easy to prove that a space is initially k-compact (see [10]) if and only if every k-net (or equivalently, every net of
cardinality «) has a cluster point if and only if each k-net (or each net of cardinality «) has a convergent A-subnet for some
cardinal A. It may happen, as in the case of Bw, A is necessarily strictly larger than «. This fact motivates the following
definition: We say that a space is strongly k-compact if for each A < k, each net of cardinality A has a convergent subnet
of cardinality at most A (and hence by an argument very similar to that of [7, Theorem 3.8] it has a convergent subnet of
cardinality A). The following result is an immediate consequence of Lemma 2.2 and the preceding remarks.

Theorem 2.3. A space is strongly k -compact if and only if for each A < k, every A-net has a convergent A-subnet. O
Since every countable net has a subnet which is a sequence, a space is strongly w-compact if and only if it is sequentially

compact. The space Bw is not strongly k-compact for any « and the ordinal w, with the order topology is strongly w1-
compact but not strongly w,-compact. The following lemma has a standard proof.
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Lemma 2.4. If X is an initially k -compact space and x (X) < «, then each net in X of cardinality at most k has a convergent subnet
of cardinality at most k.

Proof. Suppose that f : (D, <) — X is a net of cardinality at most « in X. Since X is initially x-compact, f has a cluster
point p say. Let B be a local base at p of cardinality at most k. Let E = {(U,d): U € B, de D and f(d) € U} and define
a direction < on E by (Uy,dq) < (Uz,dy) if and only if Uy 2 Uy and di < dy. As in [6, 1.6.1], the net g = f o ¢ where
¢ : E— D is defined by ¢ (U,d) =d, is a subnet of f of cardinality at most « which converges to p. O

The well-known result that each first countable, countably compact space is sequentially compact is an immediate corol-
lary of the previous lemma. However, if x is uncountable it is not possible to conclude in the previous lemma that X is
strongly x-compact - Bw is a relevant counterexample. The following is true however.

Corollary 2.5. If X is an initially k *-compact (in particular, if X is compact), strongly k-compact space and x (X) < « ™, then X is
strongly k*-compact. O

The statements of the following lemma have simple standard proofs which we omit.
Lemma 2.6. Both a closed subspace and a continuous image of a strongly « -compact space are strongly k-compact. O

Theorem 2.7. If X is a space in which for every non-isolated p € X, t(p, X \ {p}) = x (p, X), then X is strongly k -compact if and only
if it is initially x -compact.

Proof. The necessity is obvious, so suppose that X is initially x-compact and f: D — X is a net of cardinality X < «
in X. If p is a cluster point of f and f is frequently in {p}, then the result is obvious. Otherwise, we must have that
t(p, X \ {p}) <A and so there is a local base B at p of cardinality at most A. Let P ={(d,U): de D, U € B and f(d) € U}
with direction (dq,Uq) < (d2, Uy) if and only if d; <dy and U; D Uy; the net g: P — X defined by g(d,U) = f(d) is a
subnet of f of cardinality 2 which converges to p. O

Corollary 2.8. A first countable space is strongly k -compact if and only if it is initially Kk -compact. O

Countable compactness and sequential compactness are equivalent in the class of generalized orderable or GO-spaces and
while a GO-space (X, <, ) does not necessarily satisfy the hypothesis of Theorem 2.7, what is true is that for each p € X
which is not isolated in [p, —), t(p, (p, —)) = x (p, [p, —)) and similarly in (<, p]. This leads to the following result.

Theorem 2.9. A GO-space is strongly k -compact if and only if it is initially k -compact.

Proof. Again the necessity is clear. For the sufficiency, suppose that (X, <,t) is a GO-space and p € X. Suppose that
f:D— X is a net of cardinality A < k in X and p is a cluster point of f which is not in the range of f. The net f is
frequently in (p, —) or frequently in (<, p), so assume the former. We define a net g: D — X as follows: Let q € (p, —)
and

f@ if f(d) > p;
q iffd) <p.

It is easy to see that p is a cluster point of g and since t(p, (p, —)) = x(p, [p, —)) we can apply the previous theorem to
obtain the required result. 0O

mm={

Recall that a Tq-space is scattered if every non-empty subspace has an isolated point. For later use, note that if
f:(D,<) — X is a net of cardinality at most « which is frequently in A € X (that is to say, for each dg € D, there is
d > dp such that f(d) € A), then we can define Dy ={d € D: f(d) € A} with the relation < inherited from D. It is straight-
forward to show that (Dg4, <) is directed and that if i : D4 — D denotes the identity map, then foi: D4 — X is a subnet
of f (of cardinality at most «).

It was shown in [2] that countable compactness and sequential compactness are also equivalent in the class of scattered
T3-spaces. The next theorem generalizes this result.

Theorem 2.10. An initially k -compact scattered Ts-space is strongly k -compact.

Proof. Let X be scattered; we first show that every point has a neighborhood which is strongly «-compact. Suppose that

A = {x € X: x has no strongly k-compact neighborhood};
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we will show that A = ¢. If not, then since A is scattered, it has an isolated point z € A say and then z has a closed
neighborhood V in X such that V N A = {z}. We show that V is strongly «-compact which gives a contradiction. Suppose
that f:(D,<) — V is a net of cardinality at most « in V which we assume to be not convergent. Since V is initially
k-compact, f has a cluster point y € V; if y # z, then since y has a strongly x-compact neighborhood, we are done. So
suppose that z is a cluster point of f; then there is some open neighborhood W C V of z such that f is frequently in
A=V \ c(W). Applying the remarks prior to this theorem, since V \ W is initially x-compact, the subnet foi:Dg — V
has an accumulation point in V \ W and we are reduced to the previous case.

Finally note that if f: (D, <) — X is a net of cardinality « in X, then since X is initially k-compact, f has an accumu-
lation point, x say, and x has a closed strongly «-compact neighborhood U. Again by the remarks preceding this theorem,
foi:(Dy,<)— X is a subnet of f in U of cardinality at most « which in its turn has a convergent subnet of cardinality
at most k. 0O

Recall that a space X is weakly Whyburn (respectively, Whyburn) if whenever A C X is not closed, there is B € A such
that |cl(B) \ A| =1 (respectively, for each x € cl(A) \ A there is B C A such that cl(B) \ A = {x}). A Whyburn (respectively,
weakly Whyburn) space was formerly called an AP-space (respectively, WAP-space). Every Fréchet T,-space is Whyburn and
each sequential Tp-space is weakly Whyburn. Scattered Ts-spaces are weakly Whyburn and a countably compact, weakly
Whyburn Hausdorff space is sequentially compact (see [3]), thus we ask:

Question 2.11. Is it true that an initially x-compact weakly Whyburn space is strongly «-compact?

It is a simple exercise to show that the product of two strongly x-compact spaces is strongly x-compact, but to show
that this property is preserved under countably infinite products requires a little more work. Here is where Lemma 2.1 and
Theorem 2.3 come in useful.

Theorem 2.12. A countable product of strongly k -compact spaces is strongly k -compact.

Proof. Suppose that for each n € w, X, is strongly x-compact and let X = IT{X,: n € w}. Let f:A<® — X be a A-net in X
for some A <k, then 71 o f is a A-net in Xy which has a A-subnet, 71 o f o ¢1 : A=® — X7, convergent to p; say, where ¢
is a A-net map. The net my 0 f oy : A=¥ — X5 is a A-net in X, which in its turn has a A-subnet w30 f o 0y : A= — X3,
convergent to p», say. Continuing thus, we obtain for each n € w, A-nets, w10 fo @1, M0 fody,...,Tpo fo Py, ... where
foreachnew, ®p=¢1o¢p0---0¢y and 7y o f o @, converges to p, € Xp.

By Lemma 2.1 we may assume that each of the A-net maps ¢, is monotone and expansive. Now if F € A<, then |F|=n
for some n € w and we define @ : A<% — A<? by & (F) = &,,(F). We claim that @ is a monotone, expansive A-net map and
that f o @ is a convergent A-subnet of f. To prove the claim, note first that each map &5, being a composition of monotone
and expansive maps, has the same property; the map & is monotone, since if G C H, say |G| =n and |H| =n +k, then

P(H)=Ppyk(H)=¢10---0ppo---o¢pk(H)
= @p o Pnt1 0"'°¢n+k(H) 2 &p(H) 2 &4 (G) = 2(G).

The map @ is also expansive since if G € A=?, say |G| =m, then & (G) = &;(G) 2 G. Thus f o @ is a A-subnet of f and it
remains only to show that f o @ is convergent in X and for this, it suffices to show that for each n € w, 7, o f o @ converges
to pp. So suppose that U is a neighborhood of p;; since m, o f o @, converges to p,, there is some G € A<* such that
whenever H 2 G, mpo f o ®y(H) € U. Then if H > G and |H| =m > n; we have that

po fo®H)=mpofoPu(H)=mpo foProppiio--odm(H)

and the result follows since ¢py10---0pp(H)2H2G. O
The following result has a simpler proof.
Theorem 2.13. If X is initially k -compact and Y is strongly k -compact, then X x Y is initially k -compact.

Proof. Suppose that f: D — X x Y defined by f(d) = (x4, yq) is a net of cardinality A <« in X x Y. Since Y is strongly
k-compact, there is a subnet wy o fo¢: E — Y of ;y o f with |E| < A which converges to y € Y, say. Since X is initially
Kk -compact, the corresponding subnet 7rx o f o¢ : E — X has an accumulation point x € X and it is straightforward to prove
that (x, y) is an accumulation point of the original net f:D — X x Y. O

We say that a space is locally strongly x-compact if each point has a closed neighborhood which is strongly x-compact.
In a T3-space which is locally strongly «-compact, each point has a local base of closed neighborhoods which are strongly
Kk -compact. Furthermore, in a «-net space, an initially k-compact subspace is necessarily closed.



M. Madriz-Mendoza, R.G. Wilson / Topology and its Applications 158 (2011) 2043-2048 2047

The product of a Fréchet-Urysohn fan and a convergent sequence is not Fréchet and hence the product of two w-Fréchet
spaces, one of which is compact and sequentially compact need not be w-Fréchet. The product of two arbitrary Fréchet
spaces need not even have countable tightness (see [1]); however, we have the following result.

Theorem 2.14. The product of two k -net spaces, one of which is T3 and locally strongly x -compact is a k -net space.

Proof. Suppose that X,Y are x-net spaces where Y is T3 and locally strongly x-compact and A C X x Y is such that
cl(A)\ A#0, say (x,y) € cl(A) \ A. We will construct a net of cardinality ¥ in A which converges out of A. Let K be a
closed strongly x-compact neighborhood of y; we consider the space X x K. If (x, y) € cl(A N ({x} x K)), then since K is
closed in Y, K is a x-net space and so there is by [7, Lemma 3.7], some k-net in AN ({x} x K) converging to a point
(x,p) ¢ A and we are done. Thus we may assume that (x, y) ¢ cl(A N ({x} x K)) and hence there is a closed (hence «-net)
strongly «-compact neighborhood U of y such that U N (AN ({x} x K)) =@. Thus we are reduced to the case in which Y is
strongly «-compact, (x,y) €cl(A)\ A and AN({x} xY)=40.

Since X is a k-net space and mx(A) is not closed, there is some k-net f :k~® — mx(A) which converges to a point
p ¢ mwx(A). For each F € k=%, let f(F) =xfr and choose yr € Y so that (xf, yr) € A. Then g:k~“ — my(A) defined by
g(F) = yr is a k-net in Y and since Y is strongly x-compact, this net has a subnet of cardinality at most «, go ¢ :
D — my(A), where ¢ : D — =% and |D| < k, which converges to q € Y, say. The net h: D — X x Y defined by h(d) =
((fop)(d), (gop)(d)) is a net of cardinality ¥ in A which converges to (p,q) ¢ A. O

As corollaries, we have two theorems of Boehme (see [4] or [6, 3.3] and 3.10]]); note that by definition, a locally sequen-
tially compact space is Ts.

Corollary 2.15. The product of two sequential spaces, one of which is locally sequentially compact is sequential. O
Corollary 2.16. The product of two sequential spaces, one of which is locally countably compact and T3 is sequential.
Proof. A countably compact sequential space is sequentially compact. O

Question 2.17. Can the condition locally strongly k-compact be replaced by locally compact in Theorem 2.14?
3. The k-Fréchet property in countable spaces

For f,g e w®, f <" g means that f(m) < g(m) for cofinitely many m € w. A set F C w® is dominating if for each g € w?
there is f € F such that g <* f. The minimum cardinality of a dominating family is denoted by 0. It is well known and
easy to prove that wy <0 < ¢; more details can be found in [5].

A countable space has character at most ¢, but such spaces are not necessarily Whyburn (as defined following Theo-
rem 2.10) even when they are sequential — the Arens-Franklin space of Lemma 3.2 below is such a space. Below we use
nets of cardinality « to generalize [9, Proposition 2] which states that a countable space of character less than 0 is Whyburn.

Theorem 3.1. If a countable Hausdorff space X is k -Fréchet for some k < 0, then it is Whyburn.

Proof. Suppose that A C X and x € cl(A) \ A and let f: D — A be a net of cardinality at most x which converges to x,
where |D| < 0. Let Tc = {f(d): c <d e D}. If there is a neighborhood U of x such that for every neighborhood V of x,
(ANU)\V is finite, then ANU is a sequence which converges to x and since X is Hausdorff, cl(ANU) = (ANU) U {x}.

Let {Up: n € w} be such that ({cl(Uy): n € w} = {x}. Repeatedly applying the argument of the previous paragraph, we
may suppose that S; = (Up \ Upy1) N A is infinite for each n € w. We identify S, with the set {n} x w and note that each
set T, must have non-empty intersection with an infinite number of the sets S,, for otherwise, the net is contained in the
complement of some open set U,. Hence for each c € D, we can define a partial function f.:dom(f;) — w in such a way
that (k, fc(k)) € Uy N T¢ for each k € w and note that the domain of each function f; is infinite. Since |D| =« <0, there
is, by [5, Theorem 3.10], a function g :w — w such that for all c € D there exists n € dom(f.) such that g(n) > fc(n). The
set S={(n,m): m< g(n)} is contained in A and for every n, S\ U, is finite; thus x is the only possible cluster point of S.
Furthermore, for each c € D, SN T, # @ and hence x e cl(S). O

Recall that the Arens—Franklin space A is the set (w x (w+ 1)) U{p} (where p ¢ w x (w+ 1)) endowed with the following
topology:

The sets w and w + 1 have the order topology and w x (w + 1) has the product topology; the topology at p is the
strongest in order that the sequence {(n, )}y, converges to p.

It is well known that this is a countable sequential space which is not Fréchet and hence is not Whyburn.
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Lemma 3.2. There is no net of cardinality k, for any k <9, in @ x w in the Arens-Franklin space A which converges to p, that is to
say, of(A) > 0.

Proof. Suppose that |[D| =« <0 and f:(D,<) - w X w is a net in A. We will show that f does not converge to p. For
each c € D, let x. = f(c) and Ac = {x4: d > c}. We will construct a neighborhood U of p such that for each c€ D, Ac ¢ U.

If for some k € w there is ¢ € D such that Ac € |J{Ln: n <k} (where L, = {n} x w), then U = A\ U{Ln: n <k} is the
required neighborhood of p. Thus we may assume that for each c € D, A. meets an infinite number of the sets L.

Now given ¢ =cg € D, x¢, € Ly, for some ko € w; since for all d > ¢, we have Ay ;(_ (U{Ln: n < ko}, there is some kq > ko
and c; > ¢o such that x., € L,. Repeating this argument, we obtain a strictly increasing sequence (k)neo Of integers
and a sequence (Cp)new Of elements of A. such that x., € Ly, for each n € w. Define a partial function f. : dom(f) —
w by fc(kn) = m2(Xc,) (where mp denotes the projection onto w + 1). As in Theorem 3.1, since |D| =« <, there is a
function g : w — w such that for all c € D there exists n € dom(f;) such that g(n) > fc(n) and we let U = {(k,¢) € v x w:
£> g(k)} U {p}. It is clear that for each c € D, Ac € U, and our result is proved. O

Combining the last two results we have:

Corollary 3.3. The minimum Fréchet net character of a countable space which is not Whyburn is 0; that is, ® = min{A: thereisa
countable Hausdorff space X with o (X) = A and which is not Whyburn}.

Proof. It is easy to see that in the previous lemma, x (p, A) =0 and so or(A)=0. O
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