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1. Introduction

In recent years filters have been preferred to nets for studying convergence and cluster points in set-theoretic topol-
ogy. Equally, compactness type properties are usually defined in terms of coverings rather than using nets and sequences.
However, in a very recent paper [7], Hodel has shown the utility of a certain class of nets which he has called κ-nets and
a similar approach was employed earlier in [8]. In this paper we use nets to generalize a result of Murtinová and to define
and study properties related to sequential compactness.

Throughout, κ will denote an infinite cardinal. We say that a net has cardinality κ if its domain has cardinality κ and
that a net is a κ-net in a set X if its domain is the set κ<ω directed by inclusion. Clearly a κ-net has cardinality κ . In [7,
Lemma 3.7] it was shown that if a net f of cardinality κ converges to p ∈ X (respectively, has p as a cluster point), then
there is a κ-net in the range of f which converges to p (respectively, has p as a cluster point).

A space X is κ-Fréchet (respectively, κ-net) if for each non-closed subset A ⊆ X and each x ∈ cl(A) \ A (for some
x ∈ cl(A) \ A) there is a net of cardinality at most κ in A – or equivalently (see [7, Theorem 3.10]), for some λ � κ , a λ-net
in A – which converges to x. The set A together with the limits of all such nets whose range is in A is called the κ-net
closure of A, denoted by clκ (A). Clearly a space is κ-Fréchet if and only if clκ (A) = cl(A) for each A ⊆ X .
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It is clear that if X is κ-Fréchet then it is also κ-net and is λ-Fréchet for each λ � κ . Every space X is a κ-net space and
a λ-Fréchet space for some values of κ and λ. The minimum cardinal κ such that X is κ-net, denoted by σ(X), is called the
net character of X and the minimum cardinal λ such that X is λ-Fréchet is called the Fréchet net character of X and will be
denoted by σF (X). Clearly σ(X) � σF (X) � χ(X). An ω-net space is usually called a sequential space and an ω-Fréchet space
is simply a Fréchet space. As usual, χ(p, X) denotes the minimal cardinality of a local base at p, χ(X) = sup{χ(p, X): p ∈ X}
and when p ∈ cl(A), t(p, A) = min{|B|: B ⊆ A, and p ∈ cl(B)}. All other notation is standard and undefined terms can be
found in [6]. All topologies are assumed to be (at least) Hausdorff.

2. Compactness-type properties defined by κ-nets

If κ � λ, a κ-net g is a κ-subnet (a finer κ-net in the notation of [6, 1.6]) of a λ-net f if there is φ : κ<ω → λ<ω such
that g = f ◦ φ and for each F0 ∈ λ<ω there is G0 ∈ κ<ω such that if G ⊇ G0, then φ(G) ⊇ F0; if λ = κ , a map φ with these
properties will be called a λ-net map. A map φ : λ<ω → λ<ω will be said to be expansive if for all F ∈ λ<ω , φ(F ) ⊇ F and
(as usual) monotone if F ⊆ G implies that φ(F ) ⊆ φ(G). It is easy to see that a monotone, expansive map is a λ-net map
and a composition of monotone and expansive maps is monotone and expansive.

Lemma 2.1. Suppose that f : λ<ω → X is a λ-net in X and φ is a λ-net map such that the λ-subnet f ◦ φ converges to p ∈ X. Then
there is a monotone, expansive map ψ such that f ◦ ψ converges to p.

Proof. The definition of ψ(F ) is by recursion. Let ψ(∅) = ∅. Now suppose that for some n ∈ ω and all sets G of cardinality
at most n − 1 we have defined ψ(G) and suppose that F ∈ λ<ω has cardinality n. Then, since φ is a λ-net map, we have:

(1) There is H F ∈ λ<ω such that for all H ⊇ H F , φ(H) ⊇ F .
(2) For each G � F there is KG ∈ λ<ω such that if H ⊇ KG , then φ(H) ⊇ ψ(G).

Now define L F ∈ λ<ω as

L F = F ∪ H F ∪
⋃

{KG : G � F }
and

ψ(F ) = φ(L F ).

This defines ψ(F ) for all F ∈ λ<ω by recursion. Now, since L F ⊇ H F , we have from (1) that φ(L F ) ⊇ F ⇒ ψ(F ) ⊇ F and
hence ψ is expansive. Furthermore, whenever G � F , we have from (2) that L F ⊇ KG and so φ(L F ) ⊇ ψ(G) ⇒ ψ(F ) ⊇ ψ(G),
showing that ψ is monotone.

Finally, to show that f ◦ ψ converges to p, suppose that V is a neighborhood of p. Then, since f ◦ φ converges to p,
there is some F0 ∈ λ<ω such that if F ⊇ F0, then f (φ(F )) ∈ V . Thus if F ⊇ F0, we have that L F ⊇ F ⊇ F0 and so f (ψ(F )) =
f (φ(L F )) ∈ V showing that f ◦ ψ converges to p. �

As mentioned in the introduction, it was shown in [7] (as part of an even stronger result) that if f is a net of cardinality
κ which converges to p, then there is in the range of f a κ-net which converges to p. What was not explicitly stated in
that article is the following slightly stronger result, which will be important later in this section.

Lemma 2.2. If f : (D,�) → X is a net of cardinality κ converging to p, then there is a κ-subnet of f which converges to p.

Proof. For simplicity of notation, we identify D with κ and define ψ : κ<ω → D by ψ(F ) = α where α is chosen so that
β � α for all β ∈ F . That h = f ◦ ψ is a subnet of f (and hence converges to p) follows from the fact that if γ ∈ D and
F ⊇ {γ }, then ψ(F ) � γ . �

It is easy to prove that a space is initially κ-compact (see [10]) if and only if every κ-net (or equivalently, every net of
cardinality κ ) has a cluster point if and only if each κ-net (or each net of cardinality κ ) has a convergent λ-subnet for some
cardinal λ. It may happen, as in the case of βω, λ is necessarily strictly larger than κ . This fact motivates the following
definition: We say that a space is strongly κ-compact if for each λ � κ , each net of cardinality λ has a convergent subnet
of cardinality at most λ (and hence by an argument very similar to that of [7, Theorem 3.8] it has a convergent subnet of
cardinality λ). The following result is an immediate consequence of Lemma 2.2 and the preceding remarks.

Theorem 2.3. A space is strongly κ-compact if and only if for each λ � κ , every λ-net has a convergent λ-subnet. �
Since every countable net has a subnet which is a sequence, a space is strongly ω-compact if and only if it is sequentially

compact. The space βω is not strongly κ-compact for any κ and the ordinal ω2 with the order topology is strongly ω1-
compact but not strongly ω2-compact. The following lemma has a standard proof.
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Lemma 2.4. If X is an initially κ-compact space and χ(X) � κ , then each net in X of cardinality at most κ has a convergent subnet
of cardinality at most κ .

Proof. Suppose that f : (D,�) → X is a net of cardinality at most κ in X . Since X is initially κ-compact, f has a cluster
point p say. Let B be a local base at p of cardinality at most κ . Let E = {(U ,d): U ∈ B, d ∈ D and f (d) ∈ U } and define
a direction � on E by (U1,d1) � (U2,d2) if and only if U1 ⊇ U2 and d1 � d2. As in [6, 1.6.1], the net g = f ◦ φ where
φ : E → D is defined by φ(U ,d) = d, is a subnet of f of cardinality at most κ which converges to p. �

The well-known result that each first countable, countably compact space is sequentially compact is an immediate corol-
lary of the previous lemma. However, if κ is uncountable it is not possible to conclude in the previous lemma that X is
strongly κ-compact – βω is a relevant counterexample. The following is true however.

Corollary 2.5. If X is an initially κ+-compact (in particular, if X is compact), strongly κ-compact space and χ(X) � κ+ , then X is
strongly κ+-compact. �

The statements of the following lemma have simple standard proofs which we omit.

Lemma 2.6. Both a closed subspace and a continuous image of a strongly κ-compact space are strongly κ-compact. �
Theorem 2.7. If X is a space in which for every non-isolated p ∈ X, t(p, X \ {p}) = χ(p, X), then X is strongly κ-compact if and only
if it is initially κ-compact.

Proof. The necessity is obvious, so suppose that X is initially κ-compact and f : D → X is a net of cardinality λ � κ
in X . If p is a cluster point of f and f is frequently in {p}, then the result is obvious. Otherwise, we must have that
t(p, X \ {p}) � λ and so there is a local base B at p of cardinality at most λ. Let P = {(d, U ): d ∈ D, U ∈ B and f (d) ∈ U }
with direction (d1, U1) � (d2, U2) if and only if d1 � d2 and U1 ⊇ U2; the net g : P → X defined by g(d, U ) = f (d) is a
subnet of f of cardinality λ which converges to p. �
Corollary 2.8. A first countable space is strongly κ-compact if and only if it is initially κ-compact. �

Countable compactness and sequential compactness are equivalent in the class of generalized orderable or GO-spaces and
while a GO-space (X,<, τ ) does not necessarily satisfy the hypothesis of Theorem 2.7, what is true is that for each p ∈ X
which is not isolated in [p,→), t(p, (p,→)) = χ(p, [p,→)) and similarly in (←, p]. This leads to the following result.

Theorem 2.9. A GO-space is strongly κ-compact if and only if it is initially κ-compact.

Proof. Again the necessity is clear. For the sufficiency, suppose that (X,<, τ ) is a GO-space and p ∈ X . Suppose that
f : D → X is a net of cardinality λ � κ in X and p is a cluster point of f which is not in the range of f . The net f is
frequently in (p,→) or frequently in (←, p), so assume the former. We define a net g : D → X as follows: Let q ∈ (p,→)

and

g(d) =
{

f (d) if f (d) > p;
q if f (d) < p.

It is easy to see that p is a cluster point of g and since t(p, (p,→)) = χ(p, [p,→)) we can apply the previous theorem to
obtain the required result. �

Recall that a T1-space is scattered if every non-empty subspace has an isolated point. For later use, note that if
f : (D,�) → X is a net of cardinality at most κ which is frequently in A ⊆ X (that is to say, for each d0 ∈ D , there is
d � d0 such that f (d) ∈ A), then we can define D A = {d ∈ D: f (d) ∈ A} with the relation � inherited from D . It is straight-
forward to show that (D A,�) is directed and that if i : D A → D denotes the identity map, then f ◦ i : D A → X is a subnet
of f (of cardinality at most κ ).

It was shown in [2] that countable compactness and sequential compactness are also equivalent in the class of scattered
T3-spaces. The next theorem generalizes this result.

Theorem 2.10. An initially κ-compact scattered T3-space is strongly κ-compact.

Proof. Let X be scattered; we first show that every point has a neighborhood which is strongly κ-compact. Suppose that

A = {x ∈ X: x has no strongly κ-compact neighborhood};
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we will show that A = ∅. If not, then since A is scattered, it has an isolated point z ∈ A say and then z has a closed
neighborhood V in X such that V ∩ A = {z}. We show that V is strongly κ-compact which gives a contradiction. Suppose
that f : (D,�) → V is a net of cardinality at most κ in V which we assume to be not convergent. Since V is initially
κ-compact, f has a cluster point y ∈ V ; if y = z, then since y has a strongly κ-compact neighborhood, we are done. So
suppose that z is a cluster point of f ; then there is some open neighborhood W ⊆ V of z such that f is frequently in
A = V \ cl(W ). Applying the remarks prior to this theorem, since V \ W is initially κ-compact, the subnet f ◦ i : D A → V
has an accumulation point in V \ W and we are reduced to the previous case.

Finally note that if f : (D,�) → X is a net of cardinality κ in X , then since X is initially κ-compact, f has an accumu-
lation point, x say, and x has a closed strongly κ-compact neighborhood U . Again by the remarks preceding this theorem,
f ◦ i : (DU ,�) → X is a subnet of f in U of cardinality at most κ which in its turn has a convergent subnet of cardinality
at most κ . �

Recall that a space X is weakly Whyburn (respectively, Whyburn) if whenever A ⊆ X is not closed, there is B ⊆ A such
that |cl(B) \ A| = 1 (respectively, for each x ∈ cl(A) \ A there is B ⊆ A such that cl(B) \ A = {x}). A Whyburn (respectively,
weakly Whyburn) space was formerly called an AP-space (respectively, WAP-space). Every Fréchet T2-space is Whyburn and
each sequential T2-space is weakly Whyburn. Scattered T3-spaces are weakly Whyburn and a countably compact, weakly
Whyburn Hausdorff space is sequentially compact (see [3]), thus we ask:

Question 2.11. Is it true that an initially κ-compact weakly Whyburn space is strongly κ-compact?

It is a simple exercise to show that the product of two strongly κ-compact spaces is strongly κ-compact, but to show
that this property is preserved under countably infinite products requires a little more work. Here is where Lemma 2.1 and
Theorem 2.3 come in useful.

Theorem 2.12. A countable product of strongly κ-compact spaces is strongly κ-compact.

Proof. Suppose that for each n ∈ ω, Xn is strongly κ-compact and let X = Π{Xn: n ∈ ω}. Let f : λ<ω → X be a λ-net in X
for some λ � κ , then π1 ◦ f is a λ-net in X1 which has a λ-subnet, π1 ◦ f ◦ φ1 : λ<ω → X1, convergent to p1 say, where φ1
is a λ-net map. The net π2 ◦ f ◦φ1 : λ<ω → X2 is a λ-net in X2 which in its turn has a λ-subnet π2 ◦ f ◦φ1 ◦φ2 : λ<ω → X2,
convergent to p2, say. Continuing thus, we obtain for each n ∈ ω, λ-nets, π1 ◦ f ◦ Φ1, π2 ◦ f ◦ Φ2, . . . ,πn ◦ f ◦ Φn, . . . where
for each n ∈ ω, Φn = φ1 ◦ φ2 ◦ · · · ◦ φn and πn ◦ f ◦ Φn converges to pn ∈ Xn .

By Lemma 2.1 we may assume that each of the λ-net maps φn is monotone and expansive. Now if F ∈ λ<ω , then |F | = n
for some n ∈ ω and we define Φ : λ<ω → λ<ω by Φ(F ) = Φn(F ). We claim that Φ is a monotone, expansive λ-net map and
that f ◦Φ is a convergent λ-subnet of f . To prove the claim, note first that each map Φn , being a composition of monotone
and expansive maps, has the same property; the map Φ is monotone, since if G ⊆ H , say |G| = n and |H| = n + k, then

Φ(H) = Φn+k(H) = φ1 ◦ · · · ◦ φn ◦ · · · ◦ φn+k(H)

= Φn ◦ φn+1 ◦ · · · ◦ φn+k(H) ⊇ Φn(H) ⊇ Φn(G) = Φ(G).

The map Φ is also expansive since if G ∈ λ<ω , say |G| = m, then Φ(G) = Φm(G) ⊇ G . Thus f ◦ Φ is a λ-subnet of f and it
remains only to show that f ◦Φ is convergent in X and for this, it suffices to show that for each n ∈ ω, πn ◦ f ◦Φ converges
to pn . So suppose that U is a neighborhood of pn; since πn ◦ f ◦ Φn converges to pn , there is some G ∈ λ<ω such that
whenever H ⊇ G , πn ◦ f ◦ Φn(H) ∈ U . Then if H ⊇ G and |H| = m � n; we have that

πn ◦ f ◦ Φ(H) = πn ◦ f ◦ Φm(H) = πn ◦ f ◦ Φn ◦ φn+1 ◦ · · · ◦ φm(H)

and the result follows since φn+1 ◦ · · · ◦ φm(H) ⊇ H ⊇ G . �
The following result has a simpler proof.

Theorem 2.13. If X is initially κ-compact and Y is strongly κ-compact, then X × Y is initially κ-compact.

Proof. Suppose that f : D → X × Y defined by f (d) = (xd, yd) is a net of cardinality λ � κ in X × Y . Since Y is strongly
κ-compact, there is a subnet πY ◦ f ◦ φ : E → Y of πY ◦ f with |E| � λ which converges to y ∈ Y , say. Since X is initially
κ-compact, the corresponding subnet πX ◦ f ◦ φ : E → X has an accumulation point x ∈ X and it is straightforward to prove
that (x, y) is an accumulation point of the original net f : D → X × Y . �

We say that a space is locally strongly κ-compact if each point has a closed neighborhood which is strongly κ-compact.
In a T3-space which is locally strongly κ-compact, each point has a local base of closed neighborhoods which are strongly
κ-compact. Furthermore, in a κ-net space, an initially κ-compact subspace is necessarily closed.
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The product of a Fréchet–Urysohn fan and a convergent sequence is not Fréchet and hence the product of two ω-Fréchet
spaces, one of which is compact and sequentially compact need not be ω-Fréchet. The product of two arbitrary Fréchet
spaces need not even have countable tightness (see [1]); however, we have the following result.

Theorem 2.14. The product of two κ-net spaces, one of which is T3 and locally strongly κ-compact is a κ-net space.

Proof. Suppose that X, Y are κ-net spaces where Y is T3 and locally strongly κ-compact and A ⊆ X × Y is such that
cl(A) \ A = ∅, say (x, y) ∈ cl(A) \ A. We will construct a net of cardinality κ in A which converges out of A. Let K be a
closed strongly κ-compact neighborhood of y; we consider the space X × K . If (x, y) ∈ cl(A ∩ ({x} × K )), then since K is
closed in Y , K is a κ-net space and so there is by [7, Lemma 3.7], some κ-net in A ∩ ({x} × K ) converging to a point
(x, p) /∈ A and we are done. Thus we may assume that (x, y) /∈ cl(A ∩ ({x} × K )) and hence there is a closed (hence κ-net)
strongly κ-compact neighborhood U of y such that U ∩ (A ∩ ({x} × K )) = ∅. Thus we are reduced to the case in which Y is
strongly κ-compact, (x, y) ∈ cl(A) \ A and A ∩ ({x} × Y ) = ∅.

Since X is a κ-net space and πX (A) is not closed, there is some κ-net f : κ<ω → πX (A) which converges to a point
p /∈ πX (A). For each F ∈ κ<ω , let f (F ) = xF and choose yF ∈ Y so that (xF , yF ) ∈ A. Then g : κ<ω → πY (A) defined by
g(F ) = yF is a κ-net in Y and since Y is strongly κ-compact, this net has a subnet of cardinality at most κ , g ◦ φ :
D → πY (A), where φ : D → κ<ω and |D| � κ , which converges to q ∈ Y , say. The net h : D → X × Y defined by h(d) =
(( f ◦ φ)(d), (g ◦ φ)(d)) is a net of cardinality κ in A which converges to (p,q) /∈ A. �

As corollaries, we have two theorems of Boehme (see [4] or [6, 3.3J and 3.10J]); note that by definition, a locally sequen-
tially compact space is T3.

Corollary 2.15. The product of two sequential spaces, one of which is locally sequentially compact is sequential. �
Corollary 2.16. The product of two sequential spaces, one of which is locally countably compact and T3 is sequential.

Proof. A countably compact sequential space is sequentially compact. �
Question 2.17. Can the condition locally strongly κ-compact be replaced by locally compact in Theorem 2.14?

3. The κ-Fréchet property in countable spaces

For f , g ∈ ωω , f �∗ g means that f (m) � g(m) for cofinitely many m ∈ ω. A set F ⊆ ωω is dominating if for each g ∈ ωω

there is f ∈ F such that g �∗ f . The minimum cardinality of a dominating family is denoted by d. It is well known and
easy to prove that ω1 � d � c; more details can be found in [5].

A countable space has character at most c, but such spaces are not necessarily Whyburn (as defined following Theo-
rem 2.10) even when they are sequential – the Arens–Franklin space of Lemma 3.2 below is such a space. Below we use
nets of cardinality κ to generalize [9, Proposition 2] which states that a countable space of character less than d is Whyburn.

Theorem 3.1. If a countable Hausdorff space X is κ-Fréchet for some κ < d, then it is Whyburn.

Proof. Suppose that A ⊆ X and x ∈ cl(A) \ A and let f : D → A be a net of cardinality at most κ which converges to x,
where |D| < d. Let Tc = { f (d): c � d ∈ D}. If there is a neighborhood U of x such that for every neighborhood V of x,
(A ∩ U ) \ V is finite, then A ∩ U is a sequence which converges to x and since X is Hausdorff, cl(A ∩ U ) = (A ∩ U ) ∪ {x}.

Let {Un: n ∈ ω} be such that
⋂{cl(Un): n ∈ ω} = {x}. Repeatedly applying the argument of the previous paragraph, we

may suppose that Sn = (Un \ Un+1) ∩ A is infinite for each n ∈ ω. We identify Sn with the set {n} × ω and note that each
set Tc must have non-empty intersection with an infinite number of the sets Sn , for otherwise, the net is contained in the
complement of some open set Un . Hence for each c ∈ D , we can define a partial function fc : dom( fc) → ω in such a way
that (k, fc(k)) ∈ Uk ∩ Tc for each k ∈ ω and note that the domain of each function fc is infinite. Since |D| = κ < d, there
is, by [5, Theorem 3.10], a function g : ω → ω such that for all c ∈ D there exists n ∈ dom( fc) such that g(n) > fc(n). The
set S = {(n,m): m � g(n)} is contained in A and for every n, S \ Un is finite; thus x is the only possible cluster point of S .
Furthermore, for each c ∈ D , S ∩ Tc = ∅ and hence x ∈ cl(S). �

Recall that the Arens–Franklin space A is the set (ω × (ω + 1))∪ {p} (where p /∈ ω × (ω + 1)) endowed with the following
topology:

The sets ω and ω + 1 have the order topology and ω × (ω + 1) has the product topology; the topology at p is the
strongest in order that the sequence {(n,ω)}n∈ω converges to p.

It is well known that this is a countable sequential space which is not Fréchet and hence is not Whyburn.
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Lemma 3.2. There is no net of cardinality κ , for any κ < d, in ω × ω in the Arens–Franklin space A which converges to p, that is to
say, σF (A) � d.

Proof. Suppose that |D| = κ < d and f : (D,�) → ω × ω is a net in A. We will show that f does not converge to p. For
each c ∈ D , let xc = f (c) and Ac = {xd: d � c}. We will construct a neighborhood U of p such that for each c ∈ D , Ac � U .

If for some k ∈ ω there is c ∈ D such that Ac ⊆ ⋃{Ln: n � k} (where Ln = {n} × ω), then U = A \ ⋃{Ln: n � k} is the
required neighborhood of p. Thus we may assume that for each c ∈ D , Ac meets an infinite number of the sets Ln .

Now given c = c0 ∈ D , xc0 ∈ Lk0 for some k0 ∈ ω; since for all d � c, we have Ad �
⋃{Ln: n � k0}, there is some k1 > k0

and c1 > c0 such that xc1 ∈ Lk1 . Repeating this argument, we obtain a strictly increasing sequence (kn)n∈ω of integers
and a sequence (cn)n∈ω of elements of Ac such that xcn ∈ Lkn for each n ∈ ω. Define a partial function fc : dom( fc) →
ω by fc(kn) = π2(xcn ) (where π2 denotes the projection onto ω + 1). As in Theorem 3.1, since |D| = κ < d, there is a
function g : ω → ω such that for all c ∈ D there exists n ∈ dom( fc) such that g(n) > fc(n) and we let U = {(k, �) ∈ ω × ω:
� > g(k)} ∪ {p}. It is clear that for each c ∈ D , Ac � U , and our result is proved. �

Combining the last two results we have:

Corollary 3.3. The minimum Fréchet net character of a countable space which is not Whyburn is d; that is, d = min{λ: there is a
countable Hausdorff space X with σF (X) = λ and which is not Whyburn}.

Proof. It is easy to see that in the previous lemma, χ(p, A) = d and so σF (A) = d. �
References

[1] A. Arhangel’skii, Frequency spectrum of a topological space and classification of spaces, Dokl. Akad. Nauk SSSR 206 (1972) 265–268 (in Russian).
[2] J.W. Baker, Ordinal subspaces of topological spaces, General Topology Appl. 3 (1973) 85–91.
[3] A. Bella, On spaces with the property of weak approximation by points, Commentationes Mathematicae Universitatis Carolinae 35 (2) (1994) 357–360.
[4] T.K. Boehme, Linear s-spaces, Symposium on Convergence Structures, University of Oklahoma, Norman, 1965.
[5] E. van Douwen, The integers and topology, in: K. Kunen, J. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984,

pp. 111–168.
[6] R. Engelking, General Topology, Heldermann-Verlag, Berlin, 1989.
[7] R.E. Hodel, A theory of convergence and cluster points based on κ-nets, Topology Proceedings 35 (2010) 291–330.
[8] P.R. Meyer, Sequential space methods in general topological spaces, Colloquium Mathematicum 22 (1971) 223–228.
[9] E. Murtinová, On (weakly) Whyburn spaces, Topology and its Applications 155 (17/18) (2008) 2211–2215.

[10] R.M. Stephenson Jr., Initially κ-compact and related spaces, in: K. Kunen, J. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Ams-
terdam, 1984, pp. 603–632.


	Topological properties deﬁned by nets
	1 Introduction
	2 Compactness-type properties deﬁned by κ-nets
	3 The κ-Fréchet property in countable spaces
	References


