CORE

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Topological properties defined by nets \ddagger

Maira Madriz-Mendoza, Richard G. Wilson*

Departamento de Matemáticas, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco, #186, Apartado Postal 55-532, 09340, México, D.F., Mexico

ARTICLE INFO

Dedicated to L. Michael Brown on the occasion of his 70th birthday

MSC: primary 54D99 secondary 54A20

Keywords: κ -Net space κ -Fréchet space Initially κ -compact space Strongly κ -compact space Fréchet space Whyburn space Sequential space Scattered T₃-space Dominating family

1. Introduction

In recent years filters have been preferred to nets for studying convergence and cluster points in set-theoretic topology. Equally, compactness type properties are usually defined in terms of coverings rather than using nets and sequences. However, in a very recent paper [7], Hodel has shown the utility of a certain class of nets which he has called κ -nets and a similar approach was employed earlier in [8]. In this paper we use nets to generalize a result of Murtinová and to define and study properties related to sequential compactness.

Throughout, κ will denote an infinite cardinal. We say that a *net has cardinality* κ if its domain has cardinality κ and that a net is a κ -net in a set X if its domain is the set $\kappa^{<\omega}$ directed by inclusion. Clearly a κ -net has cardinality κ . In [7, Lemma 3.7] it was shown that if a net f of cardinality κ converges to $p \in X$ (respectively, has p as a cluster point), then there is a κ -net in the range of f which converges to p (respectively, has p as a cluster point).

A space X is κ -Fréchet (respectively, κ -net) if for each non-closed subset $A \subseteq X$ and each $x \in cl(A) \setminus A$ (for some $x \in cl(A) \setminus A$) there is a net of cardinality at most κ in A – or equivalently (see [7, Theorem 3.10]), for some $\lambda \leq \kappa$, a λ -net in A – which converges to x. The set A together with the limits of all such nets whose range is in A is called the κ -net *closure of A*, denoted by $cl^{\kappa}(A)$. Clearly a space is κ -Fréchet if and only if $cl^{\kappa}(A) = cl(A)$ for each $A \subseteq X$.

Corresponding author.

ABSTRACT

Nets are used to generalize a result of Murtinová and to define and study a class of properties related to sequential compactness.

© 2011 Elsevier B.V. All rights reserved.

Research supported by the network Algebra, Topología y Análisis del PROMEP, Project 12611243 (Mexico). The authors wish to thank the Departament de Matemàtiques de la Universitat Jaume I for support from Pla 2009 de Promoció de la Investigació, Fundació Bancaixa, Castelló, during the preparation of this article.

E-mail addresses: seber@xanum.uam.mx (M. Madriz-Mendoza), rgw@xanum.uam.mx (R.G. Wilson).

^{0166-8641/\$ –} see front matter $\ \ \odot$ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2011.06.047

It is clear that if X is κ -Fréchet then it is also κ -net and is λ -Fréchet for each $\lambda \ge \kappa$. Every space X is a κ -net space and a λ -Fréchet space for some values of κ and λ . The minimum cardinal κ such that X is κ -net, denoted by $\sigma(X)$, is called the *net character of* X and the minimum cardinal λ such that X is λ -Fréchet is called the *Fréchet net character of* X and will be denoted by $\sigma_F(X)$. Clearly $\sigma(X) \le \sigma_F(X) \le \chi(X)$. An ω -net space is usually called a *sequential space* and an ω -Fréchet space is simply a *Fréchet space*. As usual, $\chi(p, X)$ denotes the minimal cardinality of a local base at p, $\chi(X) = \sup\{\chi(p, X): p \in X\}$ and when $p \in cl(A)$, $t(p, A) = \min\{|B|: B \subseteq A, \text{ and } p \in cl(B)\}$. All other notation is standard and undefined terms can be found in [6]. All topologies are assumed to be (at least) Hausdorff.

2. Compactness-type properties defined by κ -nets

If $\kappa \ge \lambda$, a κ -net g is a κ -subnet (a *finer* κ -*net* in the notation of [6, 1.6]) of a λ -net f if there is $\phi : \kappa^{<\omega} \to \lambda^{<\omega}$ such that $g = f \circ \phi$ and for each $F_0 \in \lambda^{<\omega}$ there is $G_0 \in \kappa^{<\omega}$ such that if $G \supseteq G_0$, then $\phi(G) \supseteq F_0$; if $\lambda = \kappa$, a map ϕ with these properties will be called a λ -*net map*. A map $\phi : \lambda^{<\omega} \to \lambda^{<\omega}$ will be said to be *expansive* if for all $F \in \lambda^{<\omega}$, $\phi(F) \supseteq F$ and (as usual) *monotone* if $F \subseteq G$ implies that $\phi(F) \subseteq \phi(G)$. It is easy to see that a monotone, expansive map is a λ -net map and a composition of monotone and expansive maps is monotone and expansive.

Lemma 2.1. Suppose that $f : \lambda^{<\omega} \to X$ is a λ -net in X and ϕ is a λ -net map such that the λ -subnet $f \circ \phi$ converges to $p \in X$. Then there is a monotone, expansive map ψ such that $f \circ \psi$ converges to p.

Proof. The definition of $\psi(F)$ is by recursion. Let $\psi(\emptyset) = \emptyset$. Now suppose that for some $n \in \omega$ and all sets *G* of cardinality at most n - 1 we have defined $\psi(G)$ and suppose that $F \in \lambda^{<\omega}$ has cardinality *n*. Then, since ϕ is a λ -net map, we have:

(1) There is $H_F \in \lambda^{<\omega}$ such that for all $H \supseteq H_F$, $\phi(H) \supseteq F$.

(2) For each $G \subsetneq F$ there is $K_G \in \lambda^{<\omega}$ such that if $H \supseteq K_G$, then $\phi(H) \supseteq \psi(G)$.

Now define $L_F \in \lambda^{<\omega}$ as

$$L_F = F \cup H_F \cup \bigcup \{K_G \colon G \subsetneq F\}$$

and

$$\psi(F) = \phi(L_F).$$

This defines $\psi(F)$ for all $F \in \lambda^{<\omega}$ by recursion. Now, since $L_F \supseteq H_F$, we have from (1) that $\phi(L_F) \supseteq F \Rightarrow \psi(F) \supseteq F$ and hence ψ is expansive. Furthermore, whenever $G \subsetneq F$, we have from (2) that $L_F \supseteq K_G$ and so $\phi(L_F) \supseteq \psi(G) \Rightarrow \psi(F) \supseteq \psi(G)$, showing that ψ is monotone.

Finally, to show that $f \circ \psi$ converges to p, suppose that V is a neighborhood of p. Then, since $f \circ \phi$ converges to p, there is some $F_0 \in \lambda^{<\omega}$ such that if $F \supseteq F_0$, then $f(\phi(F)) \in V$. Thus if $F \supseteq F_0$, we have that $L_F \supseteq F \supseteq F_0$ and so $f(\psi(F)) = f(\phi(L_F)) \in V$ showing that $f \circ \psi$ converges to p. \Box

As mentioned in the introduction, it was shown in [7] (as part of an even stronger result) that if f is a net of cardinality κ which converges to p, then there is in the range of f a κ -net which converges to p. What was not explicitly stated in that article is the following slightly stronger result, which will be important later in this section.

Lemma 2.2. If $f:(D, \preccurlyeq) \rightarrow X$ is a net of cardinality κ converging to p, then there is a κ -subnet of f which converges to p.

Proof. For simplicity of notation, we identify *D* with κ and define $\psi : \kappa^{<\omega} \to D$ by $\psi(F) = \alpha$ where α is chosen so that $\beta \preccurlyeq \alpha$ for all $\beta \in F$. That $h = f \circ \psi$ is a subnet of *f* (and hence converges to *p*) follows from the fact that if $\gamma \in D$ and $F \supseteq \{\gamma\}$, then $\psi(F) \succcurlyeq \gamma$. \Box

It is easy to prove that a space is initially κ -compact (see [10]) if and only if every κ -net (or equivalently, every net of cardinality κ) has a cluster point if and only if each κ -net (or each net of cardinality κ) has a convergent λ -subnet for some cardinal λ . It may happen, as in the case of $\beta\omega$, λ is necessarily strictly larger than κ . This fact motivates the following definition: We say that a space is *strongly* κ -*compact* if for each $\lambda \leq \kappa$, each net of cardinality λ has a convergent subnet of cardinality at most λ (and hence by an argument very similar to that of [7, Theorem 3.8] it has a convergent subnet of cardinality λ). The following result is an immediate consequence of Lemma 2.2 and the preceding remarks.

Theorem 2.3. A space is strongly κ -compact if and only if for each $\lambda \leq \kappa$, every λ -net has a convergent λ -subnet. \Box

Since every countable net has a subnet which is a sequence, a space is strongly ω -compact if and only if it is sequentially compact. The space $\beta \omega$ is not strongly κ -compact for any κ and the ordinal ω_2 with the order topology is strongly ω_1 -compact but not strongly ω_2 -compact. The following lemma has a standard proof.

Lemma 2.4. If X is an initially κ -compact space and $\chi(X) \leq \kappa$, then each net in X of cardinality at most κ has a convergent subnet of cardinality at most κ .

Proof. Suppose that $f: (D, \preccurlyeq) \to X$ is a net of cardinality at most κ in X. Since X is initially κ -compact, f has a cluster point p say. Let \mathcal{B} be a local base at p of cardinality at most κ . Let $E = \{(U, d): U \in \mathcal{B}, d \in D \text{ and } f(d) \in U\}$ and define a direction \leqslant on E by $(U_1, d_1) \leqslant (U_2, d_2)$ if and only if $U_1 \supseteq U_2$ and $d_1 \preccurlyeq d_2$. As in [6, 1.6.1], the net $g = f \circ \phi$ where $\phi: E \to D$ is defined by $\phi(U, d) = d$, is a subnet of f of cardinality at most κ which converges to p. \Box

The well-known result that each first countable, countably compact space is sequentially compact is an immediate corollary of the previous lemma. However, if κ is uncountable it is not possible to conclude in the previous lemma that X is strongly κ -compact – $\beta\omega$ is a relevant counterexample. The following is true however.

Corollary 2.5. If X is an initially κ^+ -compact (in particular, if X is compact), strongly κ -compact space and $\chi(X) \leq \kappa^+$, then X is strongly κ^+ -compact. \Box

The statements of the following lemma have simple standard proofs which we omit.

Lemma 2.6. Both a closed subspace and a continuous image of a strongly κ -compact space are strongly κ -compact.

Theorem 2.7. If X is a space in which for every non-isolated $p \in X$, $t(p, X \setminus \{p\}) = \chi(p, X)$, then X is strongly κ -compact if and only if it is initially κ -compact.

Proof. The necessity is obvious, so suppose that *X* is initially κ -compact and $f: D \to X$ is a net of cardinality $\lambda \leq \kappa$ in *X*. If *p* is a cluster point of *f* and *f* is frequently in $\{p\}$, then the result is obvious. Otherwise, we must have that $t(p, X \setminus \{p\}) \leq \lambda$ and so there is a local base \mathcal{B} at *p* of cardinality at most λ . Let $\mathcal{P} = \{(d, U): d \in D, U \in \mathcal{B} \text{ and } f(d) \in U\}$ with direction $(d_1, U_1) \leq (d_2, U_2)$ if and only if $d_1 \leq d_2$ and $U_1 \supseteq U_2$; the net $g: \mathcal{P} \to X$ defined by g(d, U) = f(d) is a subnet of *f* of cardinality λ which converges to *p*. \Box

Corollary 2.8. A first countable space is strongly κ -compact if and only if it is initially κ -compact. \Box

Countable compactness and sequential compactness are equivalent in the class of generalized orderable or *GO*-spaces and while a *GO*-space $(X, <, \tau)$ does not necessarily satisfy the hypothesis of Theorem 2.7, what is true is that for each $p \in X$ which is not isolated in $[p, \rightarrow)$, $t(p, (p, \rightarrow)) = \chi(p, [p, \rightarrow))$ and similarly in $(\leftarrow, p]$. This leads to the following result.

Theorem 2.9. A GO-space is strongly κ -compact if and only if it is initially κ -compact.

Proof. Again the necessity is clear. For the sufficiency, suppose that $(X, <, \tau)$ is a *GO*-space and $p \in X$. Suppose that $f: D \to X$ is a net of cardinality $\lambda \leq \kappa$ in X and p is a cluster point of f which is not in the range of f. The net f is frequently in (p, \rightarrow) or frequently in (\leftarrow, p) , so assume the former. We define a net $g: D \to X$ as follows: Let $q \in (p, \rightarrow)$ and

$$g(d) = \begin{cases} f(d) & \text{if } f(d) > p; \\ q & \text{if } f(d) < p. \end{cases}$$

It is easy to see that *p* is a cluster point of *g* and since $t(p, (p, \rightarrow)) = \chi(p, [p, \rightarrow))$ we can apply the previous theorem to obtain the required result. \Box

Recall that a T_1 -space is *scattered* if every non-empty subspace has an isolated point. For later use, note that if $f:(D, \leq) \to X$ is a net of cardinality at most κ which is frequently in $A \subseteq X$ (that is to say, for each $d_0 \in D$, there is $d \ge d_0$ such that $f(d) \in A$), then we can define $D_A = \{d \in D: f(d) \in A\}$ with the relation \leq inherited from D. It is straightforward to show that (D_A, \leq) is directed and that if $i: D_A \to D$ denotes the identity map, then $f \circ i: D_A \to X$ is a subnet of f (of cardinality at most κ).

It was shown in [2] that countable compactness and sequential compactness are also equivalent in the class of scattered T_3 -spaces. The next theorem generalizes this result.

Theorem 2.10. An initially κ -compact scattered T₃-space is strongly κ -compact.

Proof. Let X be scattered; we first show that every point has a neighborhood which is strongly κ -compact. Suppose that

 $A = \{x \in X: x \text{ has no strongly } \kappa \text{-compact neighborhood}\};$

we will show that $A = \emptyset$. If not, then since A is scattered, it has an isolated point $z \in A$ say and then z has a closed neighborhood V in X such that $V \cap A = \{z\}$. We show that V is strongly κ -compact which gives a contradiction. Suppose that $f : (D, \leq) \to V$ is a net of cardinality at most κ in V which we assume to be not convergent. Since V is initially κ -compact, f has a cluster point $y \in V$; if $y \neq z$, then since y has a strongly κ -compact neighborhood, we are done. So suppose that z is a cluster point of f; then there is some open neighborhood $W \subseteq V$ of z such that f is frequently in $A = V \setminus cl(W)$. Applying the remarks prior to this theorem, since $V \setminus W$ is initially κ -compact, the subnet $f \circ i : D_A \to V$ has an accumulation point in $V \setminus W$ and we are reduced to the previous case.

Finally note that if $f : (D, \leq) \to X$ is a net of cardinality κ in X, then since X is initially κ -compact, f has an accumulation point, x say, and x has a closed strongly κ -compact neighborhood U. Again by the remarks preceding this theorem, $f \circ i : (D_U, \leq) \to X$ is a subnet of f in U of cardinality at most κ which in its turn has a convergent subnet of cardinality at most κ . \Box

Recall that a space *X* is *weakly Whyburn* (respectively, *Whyburn*) if whenever $A \subseteq X$ is not closed, there is $B \subseteq A$ such that $|cl(B) \setminus A| = 1$ (respectively, for each $x \in cl(A) \setminus A$ there is $B \subseteq A$ such that $cl(B) \setminus A = \{x\}$). A Whyburn (respectively, weakly Whyburn) space was formerly called an AP-space (respectively, WAP-space). Every Fréchet T_2 -space is Whyburn and each sequential T_2 -space is weakly Whyburn. Scattered T_3 -spaces are weakly Whyburn and a countably compact, weakly Whyburn Hausdorff space is sequentially compact (see [3]), thus we ask:

Question 2.11. Is it true that an initially κ -compact weakly Whyburn space is strongly κ -compact?

It is a simple exercise to show that the product of two strongly κ -compact spaces is strongly κ -compact, but to show that this property is preserved under countably infinite products requires a little more work. Here is where Lemma 2.1 and Theorem 2.3 come in useful.

Theorem 2.12. A countable product of strongly κ -compact spaces is strongly κ -compact.

Proof. Suppose that for each $n \in \omega$, X_n is strongly κ -compact and let $X = \Pi\{X_n: n \in \omega\}$. Let $f: \lambda^{<\omega} \to X$ be a λ -net in X for some $\lambda \leq \kappa$, then $\pi_1 \circ f$ is a λ -net in X_1 which has a λ -subnet, $\pi_1 \circ f \circ \phi_1: \lambda^{<\omega} \to X_1$, convergent to p_1 say, where ϕ_1 is a λ -net map. The net $\pi_2 \circ f \circ \phi_1: \lambda^{<\omega} \to X_2$ is a λ -net in X_2 which in its turn has a λ -subnet $\pi_2 \circ f \circ \phi_1 \circ \phi_2: \lambda^{<\omega} \to X_2$, convergent to p_2 , say. Continuing thus, we obtain for each $n \in \omega$, λ -nets, $\pi_1 \circ f \circ \phi_1, \pi_2 \circ f \circ \phi_2, \ldots, \pi_n \circ f \circ \phi_n, \ldots$ where for each $n \in \omega$, $\phi_n = \phi_1 \circ \phi_2 \circ \cdots \circ \phi_n$ and $\pi_n \circ f \circ \phi_n$ converges to $p_n \in X_n$.

By Lemma 2.1 we may assume that each of the λ -net maps ϕ_n is monotone and expansive. Now if $F \in \lambda^{<\omega}$, then |F| = n for some $n \in \omega$ and we define $\Phi : \lambda^{<\omega} \to \lambda^{<\omega}$ by $\Phi(F) = \Phi_n(F)$. We claim that Φ is a monotone, expansive λ -net map and that $f \circ \Phi$ is a convergent λ -subnet of f. To prove the claim, note first that each map Φ_n , being a composition of monotone and expansive maps, has the same property; the map Φ is monotone, since if $G \subseteq H$, say |G| = n and |H| = n + k, then

$$\Phi(H) = \Phi_{n+k}(H) = \phi_1 \circ \cdots \circ \phi_n \circ \cdots \circ \phi_{n+k}(H)$$
$$= \Phi_n \circ \phi_{n+1} \circ \cdots \circ \phi_{n+k}(H) \supseteq \Phi_n(H) \supseteq \Phi_n(G) = \Phi(G).$$

The map Φ is also expansive since if $G \in \lambda^{<\omega}$, say |G| = m, then $\Phi(G) = \Phi_m(G) \supseteq G$. Thus $f \circ \Phi$ is a λ -subnet of f and it remains only to show that $f \circ \Phi$ is convergent in X and for this, it suffices to show that for each $n \in \omega$, $\pi_n \circ f \circ \Phi$ converges to p_n . So suppose that U is a neighborhood of p_n ; since $\pi_n \circ f \circ \Phi_n$ converges to p_n , there is some $G \in \lambda^{<\omega}$ such that whenever $H \supseteq G$, $\pi_n \circ f \circ \Phi_n(H) \in U$. Then if $H \supseteq G$ and $|H| = m \ge n$; we have that

$$\pi_n \circ f \circ \Phi(H) = \pi_n \circ f \circ \Phi_m(H) = \pi_n \circ f \circ \Phi_n \circ \phi_{n+1} \circ \cdots \circ \phi_m(H)$$

and the result follows since $\phi_{n+1} \circ \cdots \circ \phi_m(H) \supseteq H \supseteq G$. \Box

The following result has a simpler proof.

Theorem 2.13. If X is initially κ -compact and Y is strongly κ -compact, then X \times Y is initially κ -compact.

Proof. Suppose that $f: D \to X \times Y$ defined by $f(d) = (x_d, y_d)$ is a net of cardinality $\lambda \leq \kappa$ in $X \times Y$. Since Y is strongly κ -compact, there is a subnet $\pi_Y \circ f \circ \phi : E \to Y$ of $\pi_Y \circ f$ with $|E| \leq \lambda$ which converges to $y \in Y$, say. Since X is initially κ -compact, the corresponding subnet $\pi_X \circ f \circ \phi : E \to X$ has an accumulation point $x \in X$ and it is straightforward to prove that (x, y) is an accumulation point of the original net $f: D \to X \times Y$. \Box

We say that a space is *locally strongly* κ -compact if each point has a closed neighborhood which is strongly κ -compact. In a T_3 -space which is locally strongly κ -compact, each point has a local base of closed neighborhoods which are strongly κ -compact. Furthermore, in a κ -net space, an initially κ -compact subspace is necessarily closed. The product of a Fréchet–Urysohn fan and a convergent sequence is not Fréchet and hence the product of two ω -Fréchet spaces, one of which is compact and sequentially compact need not be ω -Fréchet. The product of two arbitrary Fréchet spaces need not even have countable tightness (see [1]); however, we have the following result.

Theorem 2.14. The product of two κ -net spaces, one of which is T_3 and locally strongly κ -compact is a κ -net space.

Proof. Suppose that *X*, *Y* are κ -net spaces where *Y* is T_3 and locally strongly κ -compact and $A \subseteq X \times Y$ is such that $\operatorname{cl}(A) \setminus A \neq \emptyset$, say $(x, y) \in \operatorname{cl}(A) \setminus A$. We will construct a net of cardinality κ in *A* which converges out of *A*. Let *K* be a closed strongly κ -compact neighborhood of *y*; we consider the space $X \times K$. If $(x, y) \in \operatorname{cl}(A \cap (\{x\} \times K))$, then since *K* is closed in *Y*, *K* is a κ -net space and so there is by [7, Lemma 3.7], some κ -net in $A \cap (\{x\} \times K)$ converging to a point $(x, p) \notin A$ and we are done. Thus we may assume that $(x, y) \notin \operatorname{cl}(A \cap (\{x\} \times K))$ and hence there is a closed (hence κ -net) strongly κ -compact neighborhood *U* of *y* such that $U \cap (A \cap (\{x\} \times K)) = \emptyset$. Thus we are reduced to the case in which *Y* is strongly κ -compact, $(x, y) \in \operatorname{cl}(A) \setminus A$ and $A \cap (\{x\} \times Y) = \emptyset$.

Since X is a κ -net space and $\pi_X(A)$ is not closed, there is some κ -net $f : \kappa^{<\omega} \to \pi_X(A)$ which converges to a point $p \notin \pi_X(A)$. For each $F \in \kappa^{<\omega}$, let $f(F) = x_F$ and choose $y_F \in Y$ so that $(x_F, y_F) \in A$. Then $g : \kappa^{<\omega} \to \pi_Y(A)$ defined by $g(F) = y_F$ is a κ -net in Y and since Y is strongly κ -compact, this net has a subnet of cardinality at most κ , $g \circ \phi : D \to \pi_Y(A)$, where $\phi : D \to \kappa^{<\omega}$ and $|D| \leq \kappa$, which converges to $q \in Y$, say. The net $h : D \to X \times Y$ defined by $h(d) = ((f \circ \phi)(d), (g \circ \phi)(d))$ is a net of cardinality κ in A which converges to $(p, q) \notin A$. \Box

As corollaries, we have two theorems of Boehme (see [4] or [6, 3.3] and 3.10J]); note that by definition, a locally sequentially compact space is T_3 .

Corollary 2.15. The product of two sequential spaces, one of which is locally sequentially compact is sequential.

Corollary 2.16. The product of two sequential spaces, one of which is locally countably compact and T_3 is sequential.

Proof. A countably compact sequential space is sequentially compact.

Question 2.17. Can the condition locally strongly κ -compact be replaced by locally compact in Theorem 2.14?

3. The κ -Fréchet property in countable spaces

For $f, g \in \omega^{\omega}$, $f \leq g$ means that $f(m) \leq g(m)$ for cofinitely many $m \in \omega$. A set $\mathcal{F} \subseteq \omega^{\omega}$ is *dominating* if for each $g \in \omega^{\omega}$ there is $f \in \mathcal{F}$ such that $g \leq f$. The minimum cardinality of a dominating family is denoted by \mathfrak{d} . It is well known and easy to prove that $\omega_1 \leq \mathfrak{d} \leq \mathfrak{c}$; more details can be found in [5].

A countable space has character at most c, but such spaces are not necessarily Whyburn (as defined following Theorem 2.10) even when they are sequential – the Arens–Franklin space of Lemma 3.2 below is such a space. Below we use nets of cardinality κ to generalize [9, Proposition 2] which states that a countable space of character less than ϑ is Whyburn.

Theorem 3.1. If a countable Hausdorff space X is κ -Fréchet for some $\kappa < \mathfrak{d}$, then it is Whyburn.

Proof. Suppose that $A \subseteq X$ and $x \in cl(A) \setminus A$ and let $f : D \to A$ be a net of cardinality at most κ which converges to x, where $|D| < \mathfrak{d}$. Let $T_c = \{f(d): c \leq d \in D\}$. If there is a neighborhood U of x such that for every neighborhood V of x, $(A \cap U) \setminus V$ is finite, then $A \cap U$ is a sequence which converges to x and since X is Hausdorff, $cl(A \cap U) = (A \cap U) \cup \{x\}$.

Let $\{U_n: n \in \omega\}$ be such that $\bigcap \{cl(U_n): n \in \omega\} = \{x\}$. Repeatedly applying the argument of the previous paragraph, we may suppose that $S_n = (U_n \setminus U_{n+1}) \cap A$ is infinite for each $n \in \omega$. We identify S_n with the set $\{n\} \times \omega$ and note that each set T_c must have non-empty intersection with an infinite number of the sets S_n , for otherwise, the net is contained in the complement of some open set U_n . Hence for each $c \in D$, we can define a partial function $f_c: \operatorname{dom}(f_c) \to \omega$ in such a way that $(k, f_c(k)) \in U_k \cap T_c$ for each $k \in \omega$ and note that the domain of each function f_c is infinite. Since $|D| = \kappa < \mathfrak{d}$, there is, by [5, Theorem 3.10], a function $g: \omega \to \omega$ such that for all $c \in D$ there exists $n \in \operatorname{dom}(f_c)$ such that $g(n) > f_c(n)$. The set $S = \{(n, m): m \leq g(n)\}$ is contained in A and for every n, $S \setminus U_n$ is finite; thus x is the only possible cluster point of S. Furthermore, for each $c \in D$, $S \cap T_c \neq \emptyset$ and hence $x \in \operatorname{cl}(S)$.

Recall that the *Arens–Franklin space A* is the set $(\omega \times (\omega + 1)) \cup \{p\}$ (where $p \notin \omega \times (\omega + 1)$) endowed with the following topology:

The sets ω and $\omega + 1$ have the order topology and $\omega \times (\omega + 1)$ has the product topology; the topology at p is the strongest in order that the sequence $\{(n, \omega)\}_{n \in \omega}$ converges to p.

It is well known that this is a countable sequential space which is not Fréchet and hence is not Whyburn.

Lemma 3.2. There is no net of cardinality κ , for any $\kappa < \mathfrak{d}$, in $\omega \times \omega$ in the Arens–Franklin space A which converges to p, that is to say, $\sigma_F(A) \ge \mathfrak{d}$.

Proof. Suppose that $|D| = \kappa < \mathfrak{d}$ and $f : (D, \leq) \to \omega \times \omega$ is a net in *A*. We will show that *f* does not converge to *p*. For each $c \in D$, let $x_c = f(c)$ and $A_c = \{x_d : d \ge c\}$. We will construct a neighborhood *U* of *p* such that for each $c \in D$, $A_c \notin U$.

If for some $k \in \omega$ there is $c \in D$ such that $A_c \subseteq \bigcup \{L_n: n \leq k\}$ (where $L_n = \{n\} \times \omega$), then $U = A \setminus \bigcup \{L_n: n \leq k\}$ is the required neighborhood of p. Thus we may assume that for each $c \in D$, A_c meets an infinite number of the sets L_n .

Now given $c = c_0 \in D$, $x_{c_0} \in L_{k_0}$ for some $k_0 \in \omega$; since for all $d \ge c$, we have $A_d \nsubseteq \bigcup \{L_n: n \le k_0\}$, there is some $k_1 > k_0$ and $c_1 > c_0$ such that $x_{c_1} \in L_{k_1}$. Repeating this argument, we obtain a strictly increasing sequence $(k_n)_{n \in \omega}$ of integers and a sequence $(c_n)_{n \in \omega}$ of elements of A_c such that $x_{c_n} \in L_{k_n}$ for each $n \in \omega$. Define a partial function $f_c: \operatorname{dom}(f_c) \to \omega$ by $f_c(k_n) = \pi_2(x_{c_n})$ (where π_2 denotes the projection onto $\omega + 1$). As in Theorem 3.1, since $|D| = \kappa < \mathfrak{d}$, there is a function $g: \omega \to \omega$ such that for all $c \in D$ there exists $n \in \operatorname{dom}(f_c)$ such that $g(n) > f_c(n)$ and we let $U = \{(k, \ell) \in \omega \times \omega: \ell > g(k)\} \cup \{p\}$. It is clear that for each $c \in D$, $A_c \nsubseteq U$, and our result is proved. \Box

Combining the last two results we have:

Corollary 3.3. The minimum Fréchet net character of a countable space which is not Whyburn is \mathfrak{d} ; that is, $\mathfrak{d} = \min{\{\lambda: \text{ there is a countable Hausdorff space } X \text{ with } \sigma_F(X) = \lambda \text{ and which is not Whyburn}\}.$

Proof. It is easy to see that in the previous lemma, $\chi(p, A) = \mathfrak{d}$ and so $\sigma_F(A) = \mathfrak{d}$. \Box

References

- [1] A. Arhangel'skii, Frequency spectrum of a topological space and classification of spaces, Dokl. Akad. Nauk SSSR 206 (1972) 265-268 (in Russian).
- [2] J.W. Baker, Ordinal subspaces of topological spaces, General Topology Appl. 3 (1973) 85-91.
- [3] A. Bella, On spaces with the property of weak approximation by points, Commentationes Mathematicae Universitatis Carolinae 35 (2) (1994) 357-360.
- [4] T.K. Boehme, Linear s-spaces, Symposium on Convergence Structures, University of Oklahoma, Norman, 1965.
- [5] E. van Douwen, The integers and topology, in: K. Kunen, J. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 111–168.
- [6] R. Engelking, General Topology, Heldermann-Verlag, Berlin, 1989.
- [7] R.E. Hodel, A theory of convergence and cluster points based on κ-nets, Topology Proceedings 35 (2010) 291-330.
- [8] P.R. Meyer, Sequential space methods in general topological spaces, Colloquium Mathematicum 22 (1971) 223-228.
- [9] E. Murtinová, On (weakly) Whyburn spaces, Topology and its Applications 155 (17/18) (2008) 2211-2215.
- [10] R.M. Stephenson Jr., Initially κ-compact and related spaces, in: K. Kunen, J. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 603–632.