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Abstract

Given languages Z; L ⊆ �∗; Z is L-decomposable ()nitely L-decomposable, resp.) if there
exists a non-trivial pair of languages ()nite languages, resp.) (A; B), such that Z = AL + B and
the operations are non-ambiguous. We show that it is decidable whether Z is L-decomposable
and whether Z is )nitely L-decomposable, in the case Z and L are regular languages. The result
in the case Z=L allows one to decide whether, given a )nite language S ⊆ �∗, there exist )nite
languages C; P such that SC∗P = �∗ with non-ambiguous operations. This problem is related
to Sch3utzenberger’s Factorization Conjecture on codes. We also construct an in)nite family of
factorizing codes.
? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the theory of formal languages the problem of decomposing languages is central.
The aim is to simplify the structure of languages of a certain type. Also the reverse
problem of composing languages is important in order to construct more complicated
languages from simple ones, while preserving some particular properties.

There is a wide variety of problems dealing with language decomposition in the
literature. We will equivalently call them factorization problems. A )rst factorization
problem was given in 1965 by Paz and Peleg. They asked whether every regular
language decomposes as a product of a )nite number of stars and primes (see [29]).
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A positive answer was given in [15]. In the same paper it was posed another (still
open) question known as the Star Removal Problem. It concerns the decomposition of
a regular language L as L=A∗

1A
∗
2 · · ·A∗

nBn (see [14]). Other factorization problems are
the ones of deciding, given language L ⊆ �∗, whether L∗ = (1 ∪ L)n [38], as well as
whether there exists a language X such that L = X n [33] or L = X n1 ∪ · · · ∪ X nk [6].
The problem of characterizing languages L such that LL = �∗ is solved in [22], for a
particular case. Other problems of decomposition of regular languages have been very
recently considered in [36].

Some factorization problems require that factorizations be non-ambiguous. Roughly
speaking, a factorization is non-ambiguous if any word decomposing in a right way,
has only one such decomposition. The concept of non-ambiguity appears many times
in theoretical computer science, for example concerning (non-) ambiguity of machines
recognizing languages, of grammars generating languages or of operations on languages.
Non-ambiguity means uniqueness in relation to the existence of a path, derivation, or
decomposition for a word.

In 1991 Perrin proposed some problems [13,8] dealing with the non-ambiguous
equation: �∗ = L1L2 · · ·Ln (see [26] for a partial solution). The problem of factor-
izing a )nite pre)x-closed language as a non-ambiguous product of two languages is
studied in [12]. Another non-ambiguous factorization problem is to )nd the square
root of a language L, i.e. a language X such that L = XX with a non-ambiguous
product [10,28] or solving the polynomial equation L = A0 + A1X + · · · + AnX n for
given L; A0; A1; : : : ; An ⊆ �∗. In [21] an algorithm for decomposing any re-
cognizable language in terms of unitary and pre)x (-free) languages is
given.

Some other problems of non-ambiguous factorization of languages are related to
Sch2utzenberger’s Factorization Conjecture [37,8]. This conjecture is very crucial in
the theory of codes, in view of structurally characterizing codes. Here code means
uniquely dechifrable variable-length code, i.e. C ⊆ �∗ is a code if any word in �∗

has at most one factorization as a concatenation of elements in C. It is said maximal
if it is not a proper subset of another code. It is said factorizing if there exist )nite
languages S; P such that SC∗P = �∗ with non-ambiguous operations. Sch3utzenberger’s
Conjecture claims that every 7nite maximal code is factorizing. The solution of this
conjecture seems to be hard: it is still open after more than 30 years and the ef-
forts of many researchers (see [37,11,13,18,19,31,34,20,39] for some partial results).
In this paper we solve a problem related to the non-ambiguous equation SC∗P =
�∗ as above, as a byproduct of the solution of the main problems here
investigated.

The main problems in this paper are the following non-ambiguous language fac-
torization problems. Consider two languages Z; L ⊆ �∗. De)ne pair (A; B) is a de-
composition of (Z; L) if Z = AL ∪ B and the operations are non-ambiguous. Decom-
position (A; B) is a 7nite decomposition if A; B are )nite. Moreover we de)ne Z is
L-decomposable (7nitely L-decomposable, resp.) if (Z; L) has a non-trivial decomposi-
tion ()nite decomposition, resp.). We say (A; B) is non-trivial if (A; B) �= (∅; Z); (1; ∅).
Indeed Z =AL∪B always holds with (A; B)= (∅; Z) and also with (A; B)= (1; ∅) when
Z = L.
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Main problems: Given regular languages Z; L ⊆ �∗:
(1) Is Z; L-decomposable?
(2) Is Z )nitely L-decomposable?

In this paper we show that the main problems are both decidable and provide non-trivial
decompositions, whenever the answer is positive. The initial motivation for studying
these problems came from Sch3utzenberger’s Conjecture. Even though, the topic might
be of interest in its own or have some practical byproducts: for instance, in com-
paring, manipulating and characterizing the nucleotide sequences in some data base.
We emphasize that in this paper we will be more speci)cally concerned with regular
languages. Given regular languages Z and L, deciding whether Z is L-decomposable
is not so diPcult. More complex is to decide whether Z is )nitely L-decomposable.
This one will be the problem more extensively studied in this paper. We solve it and
provide a set of )nite decompositions, in the case when a )nite decomposition exists.
Such )nite decompositions are minimal in length (Proposition 45), and maximal in the
sense speci)ed in Proposition 47. Examples of the construction are given at the end
of Section 6.

The search of and the construction of a )nite decomposition start from the observa-
tion (Theorem 8) of the recursive nature of the problem: if Z is )nitely L-decomposable
and (A; B) is a )nite decomposition then also languages a−1Z\L are )nitely L-decompo-
sable, for any a in the pre)x-part PP(A) of A. We construct (A; B) starting from PP(A).
We notice (Theorem 22) that the search of PP(A), for some )nite decomposition (A; B)
of (Z; L), can be restricted to a )nite set, called MIN (Z; L). The set MIN (Z; L) is de-
)ned referring to a deterministic automaton recognizing Z . Moreover we )nd that also
the search of )nite decompositions can be restricted to a sub-class of them (Propo-
sition 43). Using these considerations (and some others more) an algorithm can be
designed for deciding the )nite decomposability of a regular language and for eventu-
ally constructing some )nite decompositions. Observe that, when looking for a )nite
decomposition (A; B), we focus our attention on A. Language B is step by step con-
structed dependently to words inserted in A.

We then consider the case when a )nite decomposition does not exist. Remark that
in Proposition 6 we prove that it is decidable whether Z is L-decomposable, and that
an (in)nite) decomposition can be easily provided, when Z; L are regular languages.
However we generalize the main construction in order to obtain an algorithm that
provides special (in)nite) decompositions. These decompositions have some property of
maximality, as speci)ed in Proposition 58. Examples are given in Sections 7.1 and 7.2.

We also consider the question of how many non-trivial decompositions ()nite de-
compositions, resp.) a given pair (Z; L) can have. We show that if Z = L and (Z; L)
has a non-trivial decomposition ()nite decomposition, resp.) then (Z; L) has an in)nite
number of non-trivial decompositions ()nite decompositions, resp.) (Corollary 63). On
the contrary, when Z �=L, then (Z; L) can admit only a )nite number of non-trivial
decompositions (Example 65).

Further, Corollary 63 suggests a way to construct an in)nite family of non-trivial
decompositions ()nite decompositions, resp.) of (L; L), starting from one of them. The
construction is based on an operation here introduced and called substitution. As a
consequence, this operation allows us to construct an in)nite family of factorizing
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codes, starting from one of them. Substitution is indeed an operation preserving the
property of being a factorizing code, just as composition [8].

A byproduct of the solution of the main problems is the solution of the following
problem related to Sch3utzenberger’s Conjecture, )rstly considered in [18].
Problem SCP: Given )nite language S ⊆ �∗, do there exist )nite languages C; P,

with C maximal code, such that SC∗P = �∗ with non-ambiguous operations?
A language S for which Problem SCP has positive answer is said a polynomial hav-

ing solutions in [18] and a strong factorizing language in [3]. Remark that exchanging
the roles of S and P would provide a dual problem. Let us recall some known results.
First: if SC∗P = �∗ in a non-ambiguous way then C is necessarily a maximal code
[37,8]. Further if )nite languages S; C; P satisfy the non-ambiguous equation SC∗P=�∗,
then SZ =�∗ in a non-ambiguous way with Z =C∗P. Then, given regular language S,
it is decidable whether there exists a language Z such that SZ=�∗ with non-ambiguous
operations [4,5]. Finally, when such Z exists, then Z is unique, regular and we can con-
struct an automaton recognizing Z from an automaton recognizing S [4,5]. Therefore
we can solve Problem SCP if we prove that it is decidable whether a regular language
Z decomposes in a non-ambiguous way as Z = C∗P with C; P )nite languages. The
decidability of this problem (Theorem 66) follows from the main result of this paper
(Theorem 44) and from the observation that Z = C∗P iR Z = CZ + P.

Proofs in this paper widely use (formal power) series theory. Roughly a series is
a generalization of a language, where a “number” is associated with each word (see
Section 2.2 for more details). Furthermore, we associate labelled trees to decomposi-
tions (see Section 5), as a tool for proving results in Sections 6 and 7. We also de)ne
(De)nitions 39 and 53) labelled trees that represent all recursive calls of the proce-
dure FIND-FIN-DEC (FIND-MAX-DEC, resp.) for computing a given )nite decomposition
(decomposition, resp.) of a given input. These de)nitions are useful for proving that
the corresponding procedures are correct and always stop.

In this paper we do not consider complexity aspects of presented problems and
algorithms.

The paper is organized as follows. Section 2 recalls basic de)nitions and notations
used in the paper. In Section 3 the main problems are stated. Section 4 contains some
theoretical results on )nite decomposability and Section 5 a graphical representation of
a decomposition by means of labelled trees. The main construction of )nite decompo-
sitions is presented in Section 6. Section 7 contains a generalization of the construction
to the case when a )nite decomposition does not exist. Section 8 shows how many
decompositions pair (Z; L) can have. Last section contains the results concerning strong
factorizing languages and factorizing codes.

A preliminary and partial version of this paper is contained in [1].

2. Background and notations

Let us introduce basic de)nitions and notations used in the sequel. Classical refer-
ences to formal languages and automata are [8,24], to formal power series are [9,21,35]
and to graphs are [23].
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2.1. Languages

Given )nite alphabet �, let 〈�∗; ·; 1〉 be the free monoid generated by it.
The union of languages X; Y is X∪Y={w |w∈X or w∈Y}; it is said non-ambiguous

when X ∩ Y = ∅. The product of languages X; Y is XY = {w |w= xy; x∈X; y∈Y}; it
is said non-ambiguous when w = xy = x′y′ with x; x′ ∈X; y; y′ ∈Y implies x = x′ and
y= y′. The star of language X is X ∗ = 1∪X ∪X 2 ∪ · · · and it is said non-ambiguous
when all unions and products in the de)nition are non-ambiguous. In this paper X ⊂ Y
means that X ⊆ Y and X �=Y .

Recall that word x∈�∗ is a pre7x of a word w∈�∗, in symbols x6w, if w= xy,
with y∈�∗; it is a proper pre7x, in symbols x¡w, if y∈�+. Notation Pref(X ) is
used for the set of proper pre)xes of words in X . Language X is pre7x (-free) if,
whenever w; w′ ∈X; w �=w′, then neither w6w′ nor w′6w. Given languages X; Y ,
pair (X; Y ) is pre7x-free if no word in X is pre)x of a word in Y and conversely.
Remark that if language X is pre)x-free, then for any language L, the union

⋃
x∈X xL

is non-ambiguous. The pre7x part of language A is the language PP(A) = A \ A�+.
Given w∈�∗; X ⊆ �∗, we denote w−1X = {z |wz ∈X }.
Note 1: For the sake of simplicity, in some cases we write A=1 instead of A={1}

and denote a set by additive notation.

2.2. Formal power series

Given alphabet � and semi-ring K , a (formal power) series in non-commuting vari-
ables � and coePcients in K is a function s : �∗ → K . Let w∈�∗. The value of s on w
is denoted by (s; w) and the power series is written as a formal sum s=

∑
w∈�∗(s; w)w.

The sum of series s; s′ is de)ned by (s+s′; w)=(s; w)+(s′; w) and has 0 as its identity.
The product of series s; s′ is de)ned by (ss′; w) =

∑
w=xy((s; x)(s

′; y)) and has 1 as its
identity. The star s∗ of series s such that (s; 1) �= 0 is de)ned by s∗ = 1 + s+ s2 + · · ·.
We have that s∗ = (1 − s)−1. For a word x and a series s, the series x−1s is de)ned
by (x−1s; w) = (s; xw). Notice that x−1(s + s′) = x−1s + x−1s′.

The characteristic series of language X ⊆ �∗, denoted X , is the power series
mapping words belonging to X to 1, and words not belonging to X to 0. Note that
{1}= 1; ∅= 0. Using this formalism, we have that union X ∪ Y is non-ambiguous iR
X ∪ Y =X +Y ; product XY is non-ambiguous iR XY =X ·Y ; star X ∗ is non-ambiguous
iR X ∗ = (X )∗.
Note 2: In this paper an upper case letter denotes a language in formulas with

set-symbols (such as ⊆;∈ ;∩; \; · · ·); it denotes the characteristic series of the language
in formulas with series-symbols (such as +; ·;∗).
2.3. Graphs

An (undirected) graph G is a pair (V; E) where V is the ()nite or in)nite) set of
vertices and E consists of unordered pairs of vertices, called edges. A (rooted) tree
is a connected, acyclic, undirected graph T = (V; E) in which one of the vertices is
distinguished from the other ones and called the root of the tree. Tree T can also be
given by T = (V; child) where child : V → 2V and E = {(i; j) | i; j∈V; j∈ child(i)}.
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A labelled tree with labels in a semi-ring K is a triplet T = (V; child; lab) where
(V; child) is a tree and lab(i; j)∈K is the label of edge (i; j). Let T be a tree (labelled
tree, resp.) and i a vertex. A path in T is a sequence (i0; i1)(i1; i2) · · · (in−1; in) of
consecutive edges. Vertex i is a leaf if child(i)=∅; it is an internal vertex, otherwise.
An ancestor of i is any vertex on the unique path from the root to i. The depth of i is
the length of the path from the root to i. The depth of T is either the maximum depth
of a leaf of T , if it is )nite, or ∞ otherwise. The breadth of i is either the cardinality
of child(i), if it is )nite, or ∞ otherwise. The breadth of T is either the maximum
breadth of its vertices, if it is )nite or ∞, otherwise.

2.4. Automata

A (7nite) automaton over �, is a quadruple Aut=(Q; 1; ); F), where Q is a )nite set
of states, 1∈Q is the initial state, F ⊆ Q is the set of 7nal states and ) : Q×�→ 2Q

is the transition function. A transition is any (q; ,; p)∈Q×�×Q such that )(q; ,)=p.
The automaton Aut is deterministic if ) : Q×�→ Q. Note that, in general, we do not
require the transition function ) to be total, i.e., to be de)ned for every pair in Q×�.
If ) is total then we call Aut a complete automaton. Remark that any automaton can
be completed. It is suPcient to add a non-)nal state s, called a sink, and to extend )
to pairs (q; ,)∈Q × �, for which ) was not de)ned, by: )(q; ,) = s.

A path is a sequence p= (q1; ,1; q2)(q2; ,2; q3) · · · (qn; ,n; qn+1) of consecutive tran-
sitions. The label of p is ,1,2 · · · ,n. A sub-path of p is any sequence of consecu-
tive transitions (qi; ,i; qi+1)(qi+1; ,i+1; qi+2) · · · (qj; ,j; qj+1), for 16 i6 j6 n. Path p
is successful if q1 = 1 and qn+1 ∈F . The language L(Aut) recognized by Aut is the
set of the labels of all successful paths in Aut. A language is said regular if it is rec-
ognized by a )nite automaton. It is well-known that emptiness, )niteness of a regular
language and inclusion between regular languages are all decidable problems [24].

An automaton is trim if every state q is both accessible (there exists a path from
1 to q) and coaccessible (there exists a path from q to a )nal state). We trim an
automaton when we remove all states q that are not both accessible and coaccessible,
together with all transitions (p; ,; p′) with p = q or p′ = q.

Given a complete automaton Aut = (Q; 1; ); F), the complement of Aut is the au-
tomaton Autc =(Q; 1; ); Q \F). Remark that L(Autc)=�∗ \L(Aut). The intersection of
two complete deterministic automata AutA=(QA; 1A; )A; FA) and AutB=(QB; 1B; )B; FB)
is the automaton AutA ⊗ AutB = (Q; 1; ); F) where Q = QA × QB; 1 = (1A; 1B); F =
FA × FB and )((qA; qB); ,) = ()A(qA; ,); )B(qB; ,)), for all qA ∈QA; qB ∈QB. Remark
that L(AutA ⊗ AutB) = L(AutA) ∩ L(AutB).

Given an automaton Aut = (Q; 1; ); F), we say that p; q∈Q are distinguishable if
∃x∈�∗ such that )(p; x)∈F and )(q; x) �∈ F , or vice versa. A classical minimization
algorithm is based on (not) distinguishable states (cf. [24]).

Given word w∈�∗ and deterministic automaton Aut = (Q; 1; ); F), we use the fol-
lowing notations:
• q · w is the ending state of the (unique) path from q labelled w
• q(w) = 1 · w
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• p(w) is the (unique) path from the initial state labelled w
• q · L= {q · w |w∈L}
• Lq;F is the set of the labels of all paths from q to a state in F .

3. Main problems

In this section we introduce the non-ambiguous factorization problems we deal with
in this paper.

Let us consider the question: Given languages Z; L ⊆ �∗, do there exist languages
A; B ⊆ �∗ such that Z = AL+ B?

Recall that by notation, Z = AL + B means Z = AL + B. Remark that if we put no
restrictions on, a trivial solution to this problem is always A = ∅; B = Z . Further, if
Z = L then A= 1; B = ∅ is another trivial solution.

Remark 1. We have that L=AL+B iR L=(A)∗B (see e.g. [9;30]). Indeed L=AL+B
implies 1 �∈ A and L=AL+B iR (1−A)L=B iR L=(1−A)−1B iR L=(A)∗B. Recall
that A∗ exists iR 1 �∈ A and in this case (A)∗ = (1− A)−1.

Proposition 2. If Z; L; A; B ⊆ �∗ are such that Z=AL+B then the following properties
hold.
(1) B ⊆ Z
(2) 1∈L implies A ⊆ Z
(3) 1∈L implies A ∩ B = ∅
(4) 1∈A implies L ⊆ Z
(5) Z = L and 1∈A imply (A; B) = (1; ∅)
(6) 1∈A and (A; B) �= (1; ∅) imply L ⊂ Z
(7) Z = L and (A; B) �= (1; ∅) imply (1∈L i= 1∈B).

Proof. Items (1); (2); (3); (4) are straightforward. Let us prove item (5). Indeed;
Z = L and 1∈A imply L = (A \ 1)L + L + B which is an ambiguous equality; unless
(A; B) = (1; ∅). In order to prove item (6); note that 1∈A implies L ⊆ Z and the case
Z = L is forbidden by item (5). Item (7) follows from previous ones.

Let us state basic de)nitions.

De�nition 3. Given languages Z; L ⊆ �∗; a decomposition of (Z; L) is a pair (A; B);
A; B ⊆ �∗ such that Z =AL+B. A decomposition (A; B) is trivial if (A; B) = (∅; Z) or
(1; ∅). Language Z is L-decomposable if (Z; L) has a non-trivial decomposition.

De�nition 4. Given languages Z; L ⊆ �∗; a 7nite decomposition of (Z; L) is a de-
composition (A; B) of (Z; L) with A; B )nite. A )nite decomposition (A; B) is trivial if
(A; B)=(∅; Z) or (1; ∅). Language Z is 7nitely L-decomposable if (Z; L) has a non-trivial
)nite decomposition.
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Example 5. Let us consider some pairs of languages (Z; L) and study their decompos-
ability or )nite decomposability.
(1) Let Z=a∗+ba∗; L=a∗. Language Z is L-decomposable: non-trivial (in)nite) de-

compositions are (1; ba∗) and (b; a∗). Language Z is also )nitely L-decomposable:
)nite decompositions are (a + b; 1); (aa + b; 1 + a); (aa + ba; 1 + a + b); and so
on.

(2) Let Z = L be the language recognized by the deterministic automaton shown
in Fig. 2. Using algorithm FIN-DEC of Section 6 we will )nd that L is )nitely
L-decomposable and that (a+ ab+ b2; 1) is a )nite decomposition of (L; L) (see
Section 6.1). According to Proposition 62 another non-trivial )nite decomposition
is (ab + b2 + a2 + a2b + ab2; 1 + a) and an in)nite number of other non-trivial
)nite decompositions exists.

(3) Let Z = L be the language recognized by the deterministic automaton shown in
Fig. 3. Using algorithm FIN-DEC of Section 6 we will )nd that L is not )nitely
L-decomposable (see Section 6.2). An in)nite decomposition (A; B) is computed in
Section 7.1 using algorithm MAX-DEC of Section 7: (A; B)=((a2)+ab+(a2)+ba+
(a2)+baab+ b+ ba+ ba2b; (a2)∗).

(4) Let Z = a2b+; L = ab∗. In Example 65 it is shown that the only non-trivial
decompositions of (Z; L) are (∅; Z) and (a; ∅). Hence Z is L-decomposable and
)nitely L-decomposable.

Main problems: Given regular languages Z; L ⊆ �∗:
(1) Is Z; L-decomposable?
(2) Is Z )nitely L-decomposable?
We will show that the main problems are both decidable. Furthermore the presented

decision procedures also provide some non-trivial decompositions. Let us now show a
solution of main problem (1).

Proposition 6. It is decidable whether, given regular languages Z; L ⊆ �∗; Z is L-
decomposable.

Proof. Language Z is L-decomposable iR there exists a non-empty word u∈�+ such
that uL ⊆ Z . In this case (u; Z \ uL) is a non-trivial decomposition of (Z; L). The
decidability of this property is easy to show. It suPces to consider an automaton
recognizing Z and decide whether there exists an accessible state q such that q= q(w)
for some w∈�+ and L ⊆ Lq;F . The decidability of this property follows from the
decidability of inclusion between regular languages.

Proposition 6 solves main problem (1). Note that the decomposition (u; Z \ uL)
provided in the proof of Proposition 6, is often not a )nite decomposition. Indeed to
decide whether a language is 7nitely decomposable is much more complex. This is the
problem more extensively considered in the next sections. Also note that in Section
7 we will present another way of solving main problem (1), that yet provides special
decompositions.
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4. Finite decomposability of regular languages

In this section we consider the second main problem of the paper: Given regu-
lar languages Z; L ⊆ �∗, is Z )nitely L-decomposable? An algorithm for solving this
problem is presented in Section 6. Here we show the theoretical foundations of such
algorithm. Theorem 8 shows the recursive nature of the problem: if Z is )nitely
L-decomposable and (A; B) is a )nite decomposition then any language a−1Z \ L
is )nitely L-decomposable, for any a in the pre)x-part PP(A) of A. We will con-
struct (A; B) starting from PP(A). Theorem 22 shows that the search of PP(A)
can be restricted to a )nite set, called MIN (Z; L). The set MIN (Z; L) is de)ned
in terms of a deterministic, trim and complete automaton recognizing
Z .

Firstly let us show a result concerning non-trivial decompositions. We will then
precise it for non-trivial )nite decompositions. Remark that the hypothesis of regularity
of languages is not yet necessary.

Theorem 7. Let Z; L ⊆ �∗ be languages.
If (A; B) is a non-trivial decomposition of (Z; L) then PP(A) is a pre7x-free set and

for any a∈PP(A); (a−1A \ 1; a−1B) is a decomposition of (a−1Z \ L; L). Moreover
(a−1A \ 1; a−1B) is not trivial if a−1A \ 1 �= ∅.
Conversely, let Ap be a non-empty pre7x-free set such that for any a∈Ap; L ⊆

a−1Z and a−1Z \ L = Ba + AaL. Then (A; B) is a decomposition of (Z; L), where:
A= Ap ∪ (

⋃
a∈ApaAa) and B= Z \ Ap�∗ ∪ (

⋃
a∈ApaBa). Moreover (A; B) is not trivial

if Ap �= 1 or Z \ L �= ∅.

Proof. Let (A; B) be a non-trivial decomposition of (Z; L).
Language PP(A) is pre)x-free by de)nition. Let a∈PP(A). By hypothesis, Z=AL+B

and thus a−1Z=a−1(AL+B)=a−1AL+a−1B=(a−1A)L+a−1B=L+(a−1A−1)L+a−1B.
Notice that we have used the additivity of operator a−1 on series (see Section 2).
Therefore (a−1A \ 1; a−1B) is a decomposition of (a−1Z \ L; L). Further a−1A \ 1 �= 1
and thus (a−1A \ 1; a−1B) is not trivial if a−1A \ 1 �= ∅.

For the converse part, let Ap be as in the hypothesis. Remark that 1 �∈ Aa since
L ⊆ a−1Z \ L does not hold (see Proposition 2). Thus a−1Z = L+Ba +AaL. Further Z
can be decomposed with respect to Ap in the following non-ambiguous way: Z = Z \
Ap�∗ +Z ∩Ap�∗ =Z \Ap�∗ +

∑
a∈Ap a(a

−1Z)=Z \Ap�∗ +
∑

a∈Ap aL+
∑

a∈Ap aBa +∑
a∈Ap aAaL= AL+ B, where:
A= Ap ∪ (

⋃
a∈ApaAa) and

B = Z \ Ap�∗ ∪ (
⋃

a∈ApaBa).
Moreover if Ap �= 1 then A �= 1; ∅ and thus (A; B) is not trivial. If A=1 and Z \L �= ∅

then Aa ∪ Ba �= ∅ and )nally (A; B) is not trivial. We also have that 1 �∈ A iR 1 �∈ Ap.

Let us present a result characterizing )nite decompositions. This result is the core
of the recursive algorithm for )nding )nite decompositions presented in Section 6.
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Theorem 8. Let Z; L ⊆ �∗ be languages.
If (A; B) is a non-trivial 7nite decomposition of (Z; L) then PP(A) is a pre7x-free

7nite set such that Z \ PP(A)�∗ is 7nite and for any a∈PP(A); a−1Z \ L is either
7nitely L-decomposable or (if not) 7nite.
Conversely, let Ap be a non-empty pre7x-free 7nite set such that Z \ Ap�∗ is

7nite and for any a∈Ap; L ⊆ a−1Z and a−1Z \ L = Ba + AaL, with Aa; Ba 7nite.
Then (A; B) is a 7nite decomposition of (Z; L), where: A = Ap ∪ (

⋃
a∈Ap aAa) and

B = Z \ Ap�∗ ∪ (
⋃

a∈Ap aBa). Moreover (A; B) is not trivial if Ap �= 1 or Z \ L �= ∅.

Proof. Let (A; B) be a non-trivial )nite decomposition of (Z; L).
Language PP(A) is pre)x-free by de)nition and it is )nite since it is a subset of

A. Moreover Z \ PP(A)�∗ is )nite because it is contained in Z \ AL = B. It remains
to show that for any a∈PP(A), then a−1Z \ L is either )nitely L-decomposable or (if
not) )nite. Let a∈PP(A). By hypothesis, Z =AL+B and thus a−1Z = a−1(AL+B) =
a−1AL+ a−1B=(a−1A)L+ a−1B=L+(a−1A− 1)L+ a−1B. Notice that we have used
the additivity of operator a−1 on series (see Section 2).

If a−1A\1 �= ∅ then (a−1A\1; a−1B) is a non-trivial )nite decomposition of (a−1Z \
L; L). Otherwise, (∅; a−1B) is a (trivial) decomposition of (a−1Z \ L; L). Therefore
a−1Z \ L= a−1B and language a−1Z \ L is )nite since B is )nite.

For the converse part, let Ap be as in the hypothesis and for any a∈Ap, let a−1Z \
L = Ba + AaL, with Aa; Ba )nite and possibly empty. Remark that 1 �∈ Aa since L ⊆
a−1Z \ L does not hold (see Proposition 2). Thus a−1Z = L+Ba +AaL. Further Z can
be decomposed in a non-ambiguous way as Z = AL+ B, where: A= Ap ∪ (

⋃
a∈Ap aAa)

and B = Z \ Ap�∗ ∪ (
⋃

a∈Ap aBa) (see the proof of Theorem 7).
The )niteness of Ap; Z \ Ap�∗; Aa; Ba implies the )niteness of A; B. Moreover if

Ap �= 1 then A �= 1; ∅ and thus (A; B) is not trivial. If A=1 and Z \L �= ∅ then Aa∪Ba �= ∅
and )nally (A; B) is not trivial. We also have that 1 �∈ A iR 1 �∈ Ap.

Remark 9. Any )nite decomposition (A; B) of (a−1Z \ L; L) is such that 1 �∈ A since
L ⊆ a−1Z \ L does not hold (see Proposition 2).

Remark 10. Let (A; B) be a non-trivial )nite decomposition of (Z; L). If 1∈A then
(A\1; B) is a non-trivial )nite decomposition of (Z \L; L). Indeed Z =L+(A\1)L+B
and Z \ L= (A \ 1)L+ B.

From now on, we consider the case when Z; L are regular languages. We )x some
notations used in this section and in the following ones:

• Z; L ⊆ �∗ are regular languages
• AutZ = (Q; 1; ); F) is a deterministic, complete and trim automaton recognizing Z
• Qy = {q∈Q |L ⊆ Lq;F}
• Ay is the set of labels of all paths from 1 to a state of Qy.

Remark 11. The sets Qy; Ay are constructible from AutZ . For any state q∈Q it is
decidable whether q∈Qy; that is whether L ⊆ Lq;F . Indeed Lq;F is recognized by the
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automaton (Q; q; ); F) and the inclusion between regular languages is decidable. Then
Ay is the language recognized by (Q; 1; ); Qy).

Remark 12. For any )nite decomposition (A; B) of (Z; L) we have that A ⊆ Ay and
Z \ A�∗ ⊆ B. Indeed w∈A implies wL ⊆ AL ⊆ Z and Z \ A�∗ ⊆ Z \ AL= B.

Theorem 8 does not directly provide a constructive way to decide whether Z is
)nitely L-decomposable. Even in the case when Z; L are regular languages, the family
of all languages Ap’s as in Theorem 8 could be in)nite. This is the reason why we
introduce the set MIN (Z; L). It is a )nite family and it can be used as a test-family
for deciding whether a regular language is )nitely decomposable or not (Theorem 22).

De�nition 13. Family MIN (Z; L) is the class of all non-empty pre)x-free )nite lan-
guages A= {a1; a2; : : : ; an} such that:
(1) A ⊆ Ay
(2) for any i=1; 2; : : : ; n; path p(ai)= (q1; ,1; q2) · · · (qn; ,n; qn+1) is such that qj = qk

with 16 j¡k6 n+ 1 implies j = 1; k = n+ 1 (qj = qk = 1).

Remark that MIN (Z; L) is a )nite family. In some cases we write MIN instead of
MIN (Z; L), if no ambiguity is possible on languages Z; L referred to.

Example 14. If no loop exists on a state of Q \ Qy then PP(Ay)∈MIN (Z; L).

In order to present the main result of this section (Theorem 22), let us give some
de)nitions and preliminary results.

De�nition 15. Let Q′ ⊆ Q and p = (q0; ,0; q1)(q1; ,1; q2) · · · (qn; ,n; qn+1) be a path in
AutZ . Let i be the lowest index 16 i6 n such that ∃i¡ k6 n+ 1 and qk = qi ∈Q′.

A Q′-reduction of p is the path obtained from p by removing the sub-path from
the )rst occurrence of qi to its last occurrence.

Moreover redQ′(p) is the path obtained from p by repeated Q′-reductions until no
other Q′-reduction is possible.

De�nition 16. Let Q′ ⊆ Q; x∈�+; p(x) = (1; ,0; q1)(q1; ,1; q2) · · · (qn; ,n; qn+1) and w
the label of redQ′((q1; ,1; q2) · · · (qn; ,n; qn+1)). The word RedQ′(x)∈�+ is either the
label of redQ′(p(x)) if it is not 1 or ,0w otherwise.

De�nition 17. Let X ⊂ �∗ be a pre)x-free language. Language RedQ′(X ) is the set
RedQ′(X ) = {RedQ′(x) | x∈X }. Moreover Red(X ) is the set Red(X ) = RedQ(X ).

Remark 18. Let X be a language. Then {q(a) | a∈Red(X )}= {q(x) | x∈X }.

Remark 19. Let Z; L be regular languages and X ⊆ Ay be a non-empty language. Then
A = PP(Red(X ))∈MIN (Z; L). Indeed A is )nite; non-empty; pre)x-free and for any
a∈A; p(a) = (q1; ,1; q2) · · · (qn; ,n; qn+1) is such that qj = qk ; with 16 j¡k6 n+ 1
implies j = 1; k = n+ 1; by de)nition of Q-reduction.



140 M. Anselmo /Discrete Applied Mathematics 126 (2003) 129–165

Remark 20. If a∈�∗ then Lq(a);F = a−1Z .

Lemma 21. Let Z; L ⊆ �∗ be regular languages; Z in7nite and (A; B) be any 7nite
decomposition of (Z; L).
For any x; t ∈�∗; y∈�+ such that xy∗t ⊆ Z , there exists k¿ 0 such that PP(A)∩

Pref({xyk}) �= ∅.
Conversely, for any a∈A, there exist k¿ 0; x; t ∈�∗; y∈�+ such that xy∗t ⊆ Z

and a∈Pref({xyk}).

Proof. Suppose by the contrary; that ∀k¿ 0; PP(A) ∩ Pref({xyk}) = ∅. Then
A ∩ Pref({xyk}) = ∅ holds. Therefore an in)nite set of words xyiti; with ti6 t; is
a subset of A ∪ B; against the )niteness of A; B.

Conversely, if Z is in)nite then L is in)nite. Hence for any a∈A, language Z ∩a�∗

is in)nite because aL ⊆ Z ∩ a�∗. Moreover Z ∩ a�∗ is regular since it is the in-
tersection of two regular languages. Therefore ∃x; t ∈�∗; y∈�+ such that xy∗t ⊆
Z ∩ a�∗.

We are now able to present the main result of this section.

Theorem 22. Let Z; L ⊆ �∗ be regular languages. Language Z is 7nitely L-decompo-
sable i= MIN (Z; L) �= ∅ and there exists A∈MIN (Z; L) such that:
(1) Z \ A�∗ is 7nite;
(2) for any a∈A; a−1Z \ L is either 7nitely L-decomposable or (if not) 7nite;
(3) A �= 1 or Z \ L �= ∅.

Proof. (Direct implication) Let Z = Bf + AfL where (Af; Bf) is a non-trivial )nite
decomposition of (Z; L).

If PP(Af)=1 then A=1∈MIN (Z; L) and it satis)es (1), (2), (3). Indeed Z \A�∗ =
Z \ �∗ = ∅ is )nite, Z \ L is either )nitely L-decomposable or (if not) )nite (Remark
10) and Z \ L �= ∅ since otherwise (Af; Bf) = (1; ∅) is trivial.

If PP(Af) �= 1 then let A=PP(Red(PP(Af))). We have that A∈MIN (Z; L) (Remark
19) and thus in particular MIN (Z; L) �= ∅. Let us now show that A has properties (3),
(2), (1).

(3) We have A �= 1 from de)nition of A.
(2) Remark that for any a∈A; q(a) = q(w) for w∈PP(Af) such that a = Red(w).

Then a−1Z \ L = Lq(a);F \ L = Lq(w);F \ L is either )nitely L-decomposable or (if not)
)nite by Theorem 8.

(1) If Z is )nite then Z \ A�∗ is trivially )nite. We claim that if Z is in)nite then
A ⊆ Pref(PP(Af)) ∪ PP(Af) and thus Z \ A�∗ ⊆ Z \ PP(Af)�∗ is )nite. Indeed for
any w∈Af; w is a pre)x of xyk for some x; t ∈�∗; y∈�+; k¿ 0 such that xy∗t ⊆ Z
(Lemma 21). Therefore for any w∈Af, there exist in AutZ a path from q(w) to a
state s labelled x′, a loop on s labelled y′ and a path from s to a )nal state labelled t,
for some x′ ∈�∗; y′ ∈�+. Recall that for any a∈A; q(a)=q(w) for some w∈PP(Af)
such that a=Red(w). The existence of such x′; y′; t implies (Lemma 21 again) that for
any a∈A there exists w′ ∈PP(Af) such that w′6 axyh, for some h¿ 0. Further it is
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not the case w′¡a, otherwise Red(w′)=w′¡a, against the de)nition of A. Therefore
a6w′ and w′ ∈PP(Af).

(Inverse implication) Any A∈MIN (Z; L) that has properties (1), (2) and (3), satis)es
the hypothesis of the converse part of Theorem 8 and thus the claim.

Example 23. Let �= {a; b} and Z = L=�∗. Language L is )nitely L-decomposable.
For instance L=AfL+Bf with Af=aa+ab+b; Bf=1+a. Let AutL =({1}; 1; ); {1})
where )(1; a)=)(1; b)=1. Consider A=PP(Red(PP(Af))); as in the proof of Theorem
22. We )nd A = PP(Red(aa + ab + b)) = PP(a + b) = a + b. According to Theorem
22; A∈MIN (L; L) and (1) L \ A�∗ = 1 is )nite; (2) a−1L \ L = b−1L \ L = ∅ is )nite
and (3) A �= 1.

Remark 24. Theorem 22 in particular shows that if MIN (Z; L) = ∅ then the only )nite
decomposition of (Z; L) is the trivial one (∅; Z) if Z is )nite. Observe that if (1; ∅)
is a )nite decomposition of (Z; L) then Z = L and {1}∈MIN (Z; L). Also remark that
MIN (Z; L) = ∅ iR Qy = ∅.

5. A graphical representation of decompositions

In this section we present a graphical representation of decompositions. We associate
a labelled tree to any decomposition. This representation will be useful in the next
sections. Algorithm FIN-DEC in Section 6 constructs a )nite decomposition following
its associated tree, starting from the root and proceeding by increasing depth of the
vertices.

De�nition 25. Let Z; L ⊆ �∗; (A; B) be a decomposition of (Z; L) with A={a1; a2; : : : ;
an; : : :} �= ∅. The tree associated to (A; B) is the labelled tree TA;B = (V; child; lab)
where:

• V = {0; 1; : : : ; n; : : :}
• the root is 0
• child(0) = {j∈V | aj ∈PP(A)}
• for any i∈V \ {0}; child(i) = {j∈V | ai ¡aj and @ a∈A s:t: ai ¡a¡aj}
• the label of edge (i; j) is lab(i; j) = xi; j s.t. aj = aixi; j.

Moreover the languages associated to TA;B are:
• R0 = Z; Rj = x−1

i; j Ri \ L; for any j∈V; j∈ child(i)
• Bi;j = {a−1

i b∈B | ai ¡b¡aj}; for any internal vertex i∈V and j∈ child(i)
• Bi;∞ = {a−1

i b∈B | ai ¡b}; for any leaf i.

Example 26. Let (A; B) be a )nite decomposition of some pair of languages (Z; L).
Suppose that A = {a1; a2; : : : ; a9} where a1 ¡a4; a5; a2 ¡a6; a7; a5 ¡a8; a9 and no
other pre)x relation holds among words in A. Tree TA;B associated to (A; B) is shown
in Fig. 1.
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Fig. 1. The tree TA;B.

We have that PP(A) = {a1; a2; a3}; Pref(PP(A)) ∩ Z = B0;1 ∪ B0;2 ∪ B0;3 and
Z =Z \PP(A)�∗ + a1�∗ ∩Z + a2�∗ ∩Z + a3�∗ ∩Z =Z \PP(A)�∗ + a1L+ a1x1;4L+

a1x1;5L+a1x1;5x5;8L+a1x1;5x5;9L+a1B1;4+a1B1;5+a1x1;5B5;8+a1x1;5B5;9+a1x1;4B4;∞+
a1x1;5x5;8B8;∞+a1x1;5x5;9B9;∞+a2L+a2x2;6L+a2x2;7L+a2B2;6 +a2B2;7 +a2x2;6B6;∞+
a2x2;7B7;∞ + a3L+ a3B3;∞.

We also have that:
R1 =a−1

1 Z \L= x1;4L+ x1;5L+ x1;5x5;8L+ x1;5x5;9L+B1;4 +B1;5 + x1;5B5;8 + x1;5B5;9 +
x1;4B4;∞ + x1;5x5;8B8;∞ + x1;5x5;9B9;∞;
R2 = a−1

2 Z \ L= x2;6L+ x2;7L+ B2;6 + B2;7 + x2;6B6;∞ + x2;7B7;∞;
R3 = a−1

3 Z \ L= B3;∞;
R4 = x−1

1;4R1 \ L= B4;∞;
R5 = x−1

1;5R1 \ L= x5;8L+ x5;9L+ B5;8 + B5;9 + x5;8B8;∞ + x5;9B9;∞;
R6 = x−1

2;6R2 \ L= B6;∞;
R7 = x−1

2;7R2 \ L= B7;∞;
R8 = x−1

5;8R5 \ L= B8;∞;
R9 = x−1

5;9R5 \ L= B9;∞.
We remark that PP(A)={a1; a2; a3} is a pre)x-free )nite set such that Z\PP(A)�∗ ⊆

B is )nite and ∀a∈PP(A); a−1Z \ L is )nitely L-decomposable, as in Theorem 8. For
any i = 1; 2; 3 we have a−1

i Z \ L = Ri. Moreover (A1; B1) = (x1;4 + x1;5 + x1;5x5;8 +
x1;5x5;9; B1;4 + B1;5 + x1;5B5;8 + x1;5B5;9 + x1;4B4;∞ + x1;5x5;8B8;∞ + x1;5x5;9B9;∞) is a
)nite decomposition of (R1; L); (A2; B2)=(x2;6 + x2;7; B2;6 +B2;7 + x2;6B6;∞ + x2;7B7;∞)
is a )nite decomposition of (R2; L); (A3; B3) = (∅; B3;∞) is a )nite decomposition of
(R3; L).
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The following Propositions 27 and 28 are a transposition of Theorems 7 and 8 in
terms of the trees associated to decompositions.

Proposition 27. Let Z; L ⊆ �∗; (A; B) be a non-trivial decomposition of (Z; L); TA;B =
(V; child; lab) be the associated tree and i∈V be an internal vertex.
Then the sub-tree rooted in i is the tree associated to a non-trivial decomposition

of (Ri; L).
Conversely if (Ai; Bi) is any non-trivial decomposition of (Ri; L) then the tree ob-

tained by replacing the sub-tree rooted in i with TAi;Bi is the tree associated to a
non-trivial decomposition of (Z; L).

Proof. The statement of the proposition trivially holds for i= 0. Now we prove it for
i∈ child(0). The result for any internal vertex i follows by induction on the depth of
i.

Observe that when i∈ child(0) then x0; i=lab(0; i)=ai and {ai | i∈ child(0)}=PP(A).
Moreover child(i) �= ∅ since i is not a leaf. Following Theorem 8, (a−1

i A \ 1; a−1
i B)

is a non-trivial decomposition of (Ri; L). The sub-tree of TA;B rooted in i is the tree
associated to (a−1

i A \ 1; a−1
i B).

For the converse part, let i∈ child(0) and (Ai; Bi) be a non-trivial decomposition of
(Ri; L). We have that Z = Z \ ai�∗ + aiL+ aiRi = Z \ ai�∗ + aiL+ ai(AiL+ Bi) = (A \
ai�∗)L+ B \ ai�∗ + aiL+ aiAiL+ aiBi = (A \ ai�+ + aiAi)L+ B \ ai�∗ + aiBi. De)ne
A′ = A \ ai�+ ∪ aiAi and B′ = B \ ai�∗ ∪ aiBi. Pair (A′; B′) is thus a decomposition of
(Z; L). It is non-trivial since (Ai; Bi) is non-trivial. The associated tree is exactly the
tree obtained by replacing the sub-tree rooted in i with TAi;Bi .

Proposition 28. Let Z; L ⊆ �∗; (A; B) be a non-trivial 7nite decomposition of (Z; L);
TA;B = (V; child; lab) be the associated tree and i∈V be an internal vertex.
Then Ri is 7nitely L-decomposable and the sub-tree rooted in i is the tree associated

to a non-trivial 7nite decomposition of (Ri; L).
Conversely if (Ai; Bi) is any non-trivial 7nite decomposition of (Ri; L) then the tree

obtained by replacing the sub-tree rooted in i with TAi;Bi is the tree associated to a
non-trivial 7nite decomposition of (Z; L).

Proof. The statement of the proposition trivially holds for i= 0. Now we prove it for
i∈ child(0). The result for any internal vertex i follows by induction on the depth of i.

Observe that when i∈ child(0) then x0; i=lab(0; i)=ai and {ai | i∈ child(0)}=PP(A).
Moreover child(i) �= ∅ since i is not a leaf. The language Ri=a−1

i Z\L is not )nite since
xi; jL ⊆ Ri for any j∈ child(i). Therefore Ri is )nitely L-decomposable by Theorem 8.
Following the proof of Theorem 8, (a−1

i A\1; a−1
i B) is a non-trivial )nite decomposition

of (Ri; L). The sub-tree of TA;B rooted in i is the tree associated to (a−1
i A \ 1; a−1

i B).
The proof of the converse part is the same as the one of Proposition 27.

Remark 29. If (A; B) is a )nite decomposition of (Z; L) and i is a leaf in TA;B; then
Ri is )nite. Indeed if i is a leaf then @k ∈V such that ai ¡ak . Hence Ri = a−1

i Z \ L=
(L ∪ a−1

i B) \ L= Bi;∞ is )nite since aiBi;∞ ⊆ B is )nite.
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Example 30. Consider Z; L; A; B; TA;B; as in Example 26. We have child(0) = {1; 2; 3}.
For any i∈{1; 2; 3}; Ri = a−1

i Z \ L is )nitely L-decomposable. A non-trivial )nite de-
composition of (Ri; L) is (Ai; Bi) as de)ned in Example 26. Further for any i∈{1; 2; 3};
the sub-tree rooted in i is the tree associated to (Ai; Bi). Consider now vertex 4; it is
a leaf and R4 = B4;∞ is )nite.

The following results allow us to restrict the search of )nite decompositions to a
sub-class of them: if a )nite decomposition exists then a )nite decomposition of a
special kind exists.

De�nition 31. Let TA;B be the tree associated to decomposition (A; B) of (Z; L). Tree
TA;B is R-simple if for any path from the root 0→ i1 → · · · → in we have Rij �=Rik for
any 16 j¡k6 n. Tree TA;B is normal if it is R-simple and for any internal vertex
i of TA;B; Lab(i)∈MIN (Ri; L) and Ri \ Lab(i)�∗ is )nite; where Lab(i) denotes set
{xi; j | j∈ child(i)}.

Remark 32. If TA;B is R-simple then any sub-tree of TA;B is R-simple; if TA;B is normal
then any sub-tree of TA;B is normal.

Proposition 33. Let Z; L ⊆ �∗. If Z is 7nitely L-decomposable then (Z; L) has a
non-trivial 7nite decomposition (A; B) whose associated tree TA;B is R-simple.

Proof. Suppose that the statement does not hold for some (Z; L). Let TA;B be the
tree associated to a )nite decomposition (A; B) of (Z; L) and 0 → i1 → · · · → in be
a path from the root such that Rij = Rik for some 16 j¡k6 n. Suppose without
loss of generality; that in is a leaf. If k = n then Rij = Rik is )nite (Remark 29).
We can thus remove the sub-tree rooted in ij and obtain a tree associated to a )nite
decomposition of (Z; L). If k ¡n then the sub-tree rooted in ik is the tree associated to
a )nite decomposition of (Rik ; L) = (Rij ; L) (Proposition 28). Therefore we can replace
the sub-tree rooted in ij by the one rooted in ik and obtain a tree associated to a )nite
decomposition of (Z; L) (Proposition 28). Repeating such removals or replacement until
there is no path 0→ h1 → · · · → hm such that Rhj = Rhk for some 16 j¡k6m; we
obtain a tree associated to a )nite decomposition of (Z; L) as required. This contradicts
the initial hypothesis.

Proposition 34. Let Z; L ⊆ �∗. If Z is 7nitely L-decomposable then (Z; L) has a
non-trivial 7nite decomposition (A; B) whose associated tree TA;B is normal.

Proof. Let Z be a )nitely L-decomposable language. We show that (Z; L) has a
non-trivial )nite decomposition (X; Y ) such that TX;Y is R-simple; and for i=0; PP(X )=
Lab(i)∈MIN (Ri; L); Ri \ Lab(i)�∗ is )nite and for every h∈ child(i); the sub-tree
rooted in h is R-simple. The general statement will follow by induction on depth of i.

If Z is )nitely L-decomposable then (Z; L) has a non-trivial )nite decomposition
(X ′; Y ′) such that TX ′ ;Y ′ is R-simple (Proposition 33). Let PP(X ′) = {a1; : : : ; ak}. For
any j= 1; : : : ; k, language Rj = Lq(aj);F \ L is )nitely L-decomposable (Proposition 28).
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Further the sub-tree rooted in j is R-simple (Remark 32) and is the tree associated to a
)nite decomposition of (Rj; L) (Proposition 28). Consider A = PP(Red(PP(X ′))). We
have A∈MIN (Z; L) (Remark 19) and for any a∈A; a−1Z \L=Lq(a);F \L=Rj for some
j∈{1; : : : ; k} (Remark 18). Applying Theorem 8, we obtain a )nite decomposition
(X; Y ) of (Z; L) where TX;Y is R-simple, PP(X ) = A∈MIN (R0; L); R0 \ Lab(0)�∗ ⊆ Y
is )nite and ∀h∈ child(0) the sub-tree rooted in h is R-simple. Indeed the sub-tree
rooted in h is the sub-tree rooted in some j∈{1; : : : ; k} of TX ′ ;Y ′ . The decomposition
(X; Y ) is not trivial since A �= 1; ∅, by de)nition of Red.

Next lemmas will be used in Section 7. Note that they hold for any decomposition.

Lemma 35. Let Z; L ⊆ �∗; TA;B = (V; child; lab) be the tree associated to decomposi-
tion (A; B) of (Z; L) and i; j two vertices in TA;B. If i is an ancestor of j in TA;B then
Ri = wRj + A′L + B′; where w is the label of the path from vertex i to vertex j and
A′; B′ ⊆ �∗.

Proof. Let us suppose; without loss of generality; that the path from i to j is i →
i + 1 → · · · → j − 1 → j. Remark that for any h = i; : : : ; j − 1; Rh is either Rh =
wh;h+1L + wh;h+1Rh+1 + Rh \ wh;h+1�∗; if h �= 0 or Rh = wh;h+1L + wh;h+1Rh+1 + Rh \
wh;h+1�∗ + Z \ A�∗; if h = 0. Consider the tree obtained from the sub-tree rooted in
h by removing h + 1 from child(h). Using a proof similar to the one of Proposition
27; it can be shown that (Rh \ wh;h+1�∗; L) has a )nite decomposition (Ah; Bh). Let
us denote for any h = i; · · · ; j; wh = wi; i+1 · · ·wh−1; h. Suppose i �= 0. Then Ri = wjRj +∑

h=i+1; :::; j whL+
∑

h=i+1; :::; j−1 wh(AhL+ Bh). Equality Ri = wRj + A′L+ B′ thus holds
w = wj; A′ =

∑
h=i+1; :::; j wh +

∑
h=i+1; :::; j−1 whAh and B′ =

∑
h=i+1; :::; j−1 whBh. If i = 0

then the equality holds with B′ =
∑

h=i+1; :::; j−1 whBh + Z \ A�∗.

Lemma 36. Let Z; L ⊆ �∗; TA;B = (V; child; lab) be the tree associated to decompo-
sition (A; B) of (Z; L). Let i0 ∈V and I a set of vertices in the sub-tree rooted in i0
such that ∀i∈ I; Ri = Ri0 . Then ∃W;A; B ⊆ �∗ such that Ri0 =WRi0 + AL+ B.

Proof. By a proof similar to the one of Lemma 35; one can prove that Ri0=
∑

i∈I wiRi+
AL+B for some wi ∈�∗; A; B ⊆ �∗. Since ∀i∈ I; Ri=Ri0 ; we have Ri0 =WRi0 +AL+B;
with W =

∑
i∈I wi.

6. Main construction

Theorem 22 in Section 4 suggests a recursive way to construct a )nite decomposition
of (Z; L), when Z; L are regular languages. Indeed a )nite decomposition of (Z; L) can
be obtained from )nite decompositions of (a−1Z \ L; L) for a∈A and A∈MIN (Z; L).
The basis of this recursion is the case when MIN (Z; L) = ∅: if Z is )nite then a )nite
decomposition is simply obtained, otherwise no )nite decomposition exists at all. Based
on these results, we design an algorithm for deciding whether (Z; L) has a non-trivial
)nite decomposition and for eventually providing some ones. Proposition 42 ensures
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that the algorithm always stops in a )nite number of steps and Proposition 43 states
its correctness.

We )x some notations:
• Z; L are regular languages
• AutZ is a deterministic, complete and trim automaton recognizing Z
• AutL is a deterministic, complete and trim automaton recognizing L.

We are going to sketch algorithm FIN-DEC working on input (Z; L;AutZ ;AutL). The
algorithm calls procedure FIND-FIN-DEC. In procedure FIND-FIN-DEC, AutX = (Q; 1; ); F)
denotes a deterministic, trim automaton recognizing X and Auta is the automaton
recognizing Lq(a);F \L=Lq(a);F ∩ (�∗ \L) obtained by intersection of (Q; q(a); ); F) and
the complement of AutL (see Section 2). We emphasize that the algorithm is written
in an informal way.

FIN-DEC(Z; L;AutZ ;AutL)

1 FIND-FIN-DEC(Z; L;AutZ ;AutL; {Z})
2 if FD(Z;L) �= ∅
3 then return FD(Z;L)
4 else return “@ )nite decompositions”

FIND-FIN-DEC(X; L;AutX ;AutL; TRACK)

1 FD(X;L)← ∅
2 if X is )nite
3 then FD(X; L)← FD(X; L) ∪ {(∅; X )}
4 if MIN (X; L) �= ∅
5 then for any A∈MIN (X; L) s.t. X \ A�∗ )nite and

∀a∈A; Lq(a);F \ L �∈ TRACK
6 do for any a∈A
7 do I ← (Lq(a);F \ L; L;Auta;AutL; TRACK ∪ {Lq(a);F \ L})
8 FIND-FIN-DEC(I)
9 if ∀a∈A; FD(Lq(a);F \ L) �= ∅
10 then for any a∈A and (Aa; Ba)∈FD(Lq(a);F \ L)
11 do AM ← A ∪ (

⋃
a∈A aAa)

12 BM ← X \ A�∗ ∪ (
⋃

a∈A aBa)
13 FD(X; L)← FD(X; L) ∪ {(AM ; BM )}

Note that in the sequel, FD(Z; L) denotes the set returned by FIND-FIN-DEC(Z; L;AutZ ;
AutL; {Z}).

Remark 37. When looking for a )nite decomposition (A; B) in algorithm FIN-DEC we
focus on A. Language B is step by step constructed dependently to words inserted in
A; in such a way it is )nite too.

Our goal is now to prove that algorithm FIN-DEC always stops. Let us state a pre-
liminary lemma and then de)ne a labelled tree associated to (Z; L; AM ; BM ) where
(AM ; BM )∈FD(Z; L). The structure of such a tree exactly mirrors the structure of
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recursive calls of the procedure FIND-FIN-DEC when it adds pair (AM ; BM ) to FD(Z; L)
with initial call to (Z; L;AutZ ;AutL; {Z}).

Lemma 38. Let AutA; AutB be deterministic; complete and trim automata. Let Aut0=
AutA and ∀i¿ 1; Auti=(Qi; qi; )i; Fi) where (Qi; q0

i ; )i; Fi)=Auti−1⊗AutB and qi ∈Qi.
Then {L(Auti) | i¿ 0} is 7nite.

Proof. Let AutA = (QA; qA; )A; FA) and AutB = (QB; qB; )B; FB). We associate to each
Auti an automaton Aut′i with states in QA×2QB and show that for every i¿ 0; L(Auti)=
L(Aut′i). Since QA;QB are )nite; then QA×2QB is )nite too. Thus the family {Aut′i | i¿ 0}
is )nite and the goal is achieved.

Let p;p′ ∈Qi; p=(: : : (p0; p1); : : : ; pi); p′ =(: : : (p′
0; p

′
1); : : : ; p

′
i), with p0; p′

0 ∈QA,
and ∀j = 1; : : : ; i; pj; p′

j ∈QB. We claim that if {p1; : : : ; pi} = {p′
1; : : : ; p

′
i} then p;p′

are not distinguishable, i.e. Lp;Fi = Lp′ ;Fi . Denote P = {p1; : : : ; pi}. For any word
w∈�∗; w∈Lp;Fi iR (p0 · w∈FA and ∀j = 1; : : : ; i; pj · w∈FB) iR (p0 · w∈FA and
∀p∈P; p · w∈FB) iR (p0 · w∈FA and ∀j = 1; : : : ; i; p′

j · w∈FB) iR w∈Lp′ ;Fi .
From results of automata theory, L(Auti)=L(Aut′i), where Aut′i is obtained by identi-

fying (not distinguishable) states p=(: : : (p0; p1); : : : ; pi); p′=(: : : (p′
0; p

′
1); : : : ; p

′
i); : : : ;

p(n)=(: : : (p(n)
0 ; p(n)

1 ); : : : ; p(n)
i ) such that {p1; : : : ; pi}={p′

1; : : : ; p
′
i}=· · ·={p(n)

1 ; : : : ; p(n)
i }

in a unique state renamed (p0; {p1; : : : ; pi}).

De�nition 39. Let Z; L ⊆ �∗ and (AM ; BM )∈FD(Z; L).
The tree F(Z; L; AM ; BM ) is the following labelled tree F(Z; L; AM ; BM )=(V; child; lab)

where vertices are languages on � and labels are words on �.
The root is Z . The set child(Z) is the set of all languages Zi such that, when consid-

ering A=PP(AM ) in line 5 of FIND-FIN-DEC, then FIND-FIN-DEC calls FIND-FIN-DEC(Zi; L;
AutZi ;AutL; {Z ∪ Zi}) in line 8.

The label lab(Z; Zi) = ai, where PP(AM ) = {a1; : : : ; ak} and Zi = Lq(ai);F \ L.
For any i=1; : : : ; k, the sub-tree rooted in i is F(Zi; L; a−1

i AM\1; a−1
i BM ) if MIN (Zi; L)

�= ∅ or the tree composed of the only vertex Zi, otherwise.

An example of tree F(Z; L; AM ; BM ) is given in Section 6.1, below.

Remark 40. Suppose that FIN-DEC applies to input (Z; L;AutZ ;AutL); it returns FD(Z; L)
�= ∅ and (AM ; BM )∈FD(Z; L).

If during the computation of (AM ; BM ), the procedure FIND-FIN-DEC is called on
(X; L;AutX ;AutL; TRACK) then TRACK contains all ancestors of X in F(Z; L; AM ; BM ).

Remark 41. Let (A; B) be a )nite decomposition of (Z; L).
The trees F(Z; L; A; B) and TA;B are related by a one-to-one correspondence map-

ping vertices of F(Z; L; A; B) to vertices of TA;B. The correspondence maps root Z
of F(Z; L; A; B) to root 0 of TA;B. Further if the correspondence maps vertex Zi of
F(Z; L; A; B) to vertex i of TA;B then it maps child(Zi) to child(i). Observe that if the
correspondence maps Zi to vertex i then Ri = Zi.
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Proposition 42. The algorithm FIN-DEC always stops.

Proof. Let us suppose FIN-DEC applies to input (Z; L;AutZ ;AutL). Let C(AutZ ;AutL)
denote the family of all languages X ’s such that FIND-FIN-DEC is recursively called on
(X; L;AutX ;AutL; TRACK) during the execution of FIN-DEC. We have that C(AutZ ;AutL)
is )nite by Lemma 38. Indeed AutZ and AutL are )nite automata; each language X
is X = Lq(a);F \ L for some a; and the automaton Auta is obtained by intersection of
(Q; q(a); ); F) and the complement of AutL. Consider now the set {F(Z; L; A; B) | (A; B)
∈FD(Z; L)}. Note that such a set shows all recursive calls to FIND-FIN-DEC necessary
to compute set FD(Z; L). This set is )nite since MIN (X; L) is )nite for any regu-
lar language X ⊆ �∗ and any X = Lq(a);F \ L is a regular language. Moreover the
breadth of any vertex in F(Z; L; A; B) is )nite since any A∈MIN is )nite. Finally any
F(Z; L; A; B) has )nite depth because C(AutZ ;AL) is )nite and because of the condition
Lq(a);F \ L �∈ TRACK in line 5 of FIND-FIN-DEC and the meaning of the set TRACK in
Remark 40.

Let us now prove that algorithm FIN-DEC computes in FD(Z; L) a set of special )nite
decompositions of (Z; L).

Proposition 43. Let Z; L ⊆ �∗ be regular languages.
Then FD(Z; L) \ {(∅; Z)}= NORM (Z; L), where NORM (Z; L) is the set of all 7nite

decompositions (A; B) of (Z; L) such that TA;B is normal.

Proof. First we show the inclusion FD(Z; L) \ {(∅; Z)} ⊆ NORM (Z; L). Let (AM ; BM )
∈FD(Z; L)\{(∅; Z)}. We prove that (AM ; BM ) is a )nite decomposition and that TAM ;BM
is normal by induction on the depth d of F(Z; L; AM ; BM ) = (V; child; lab). Note that
if d= 0 then (AM ; BM ) = (∅; Z).

Suppose d = 1. For any leaf Zi of F(Z; L; AM ; BM ) we have FD(Zi; L) is either
{(∅; Zi)} if Zi is )nite or ∅. From the construction of AM (line 11 of FIND-FIN-DEC),
we necessarily have that AM=PP(AM ). Moreover the condition for entering the for loop
of line 5 implies that AM ∈MIN (Z; L); Z \AM�∗ is )nite and ∀a∈AM ; Lq(a);F \L �=Z .
Therefore AM satis)es all hypothesis of Theorem 8 (converse part). Then (AM ; BM ) is
a )nite decomposition since it is constructed (lines 11–12) according to Theorem 8.
Further TA;B is R-simple because of the condition Lq(a);F \L �∈ TRACK for entering for
loop in line 5 and because of Remark 40. Moreover it is normal. The only internal
node is i=0. For i=0 we have Lab(0)=AM ∈MIN (Z; L) and R0\Lab(0)�∗=Z \AM�∗

is )nite.
Suppose now d¿ 1. The construction of AM (line 11) implies that FIND-FIN-DEC

applied to (Z; L;AutZ ;AutL) executes the for loop in line 5 with A = PP(AM ). There-
fore PP(AM )∈MIN (Z; L); Z \ PP(AM )�∗ is )nite and ∀a∈PP(AM ); Lq(a);F \ L �=Z .
Moreover the procedure FIND-FIN-DEC calls itself on (Lq(a);F ; L;Auta;AutL) for any
a∈PP(AM ). For any a∈Lq(a);F\L and (A; B)∈FD(Lq(a);F\L; L), the depth of F(Lq(a);F\
L; L; A; B) is less than d. By the inductive hypothesis FD(Lq(a);F \ L; L) \ {(∅; Lq(a);F \
L)} = NORM (Lq(a);F \ L; L). Therefore (AM ; BM ) is a )nite decomposition since it is
constructed (line 11) according to Theorem 8. Further TAM ;BM is normal. Indeed it is



M. Anselmo /Discrete Applied Mathematics 126 (2003) 129–165 149

R-simple because of the condition Lq(a);F \L �∈ TRACK each time necessary for entering
the for loop of line 5 and because of Remark 40. Moreover let i be any internal vertex
of TAM ;BM . If i=0 then Lab(0)=PP(AM ) and R0 \Lab(0)�∗ =Z \PP(AM )�∗ are both
)nite languages because of the condition for entering the for loop of line 5. If i �= 0
then i is an internal vertex of the sub-tree Tk of TAM ;BM rooted in some k ∈ child(0).
Further Ri is the language associated to some vertex of Tk because of the de)nition of
languages associated to TAM ;BM . Therefore Lab(i) and Ri \ Lab(i)�∗ are both )nite by
inductive hypothesis.

Let us now show that NORM (Z; L) ⊆ FD(Z; L) \ {(∅; Z)}. Let (A; B) be a )nite de-
composition of (Z; L) such that TA;B=(V; child; lab) is normal. We have (A; B) �= (∅; Z)
since the de)nition of TA;B forbids that A= ∅. We prove that (A; B)∈FD(Z; L) by in-
duction on the depth d of TA;B.

If d= 0 then A= 1 and B = Z \ L. Hence A∈MIN (Z; L); Z \ A�∗ = ∅ is )nite and
Lq(1);F \ L = Z \ L = B is )nite. Therefore A is processed in line 5 of FIND-FIN-DEC

(Z; L;AutZ ;AutL) and (A; B)∈FD(Z; L).
Suppose d¿ 0. We have PP(A)=Lab(0); Z \PP(A)=R0 \Lab(0) and ∀a∈PP(A);

Lq(a);F \ L = Ri(a) for some i(a)∈ child(0). Therefore when executing FIND-FIN-DEC

(Z; L;AutZ ;AutL; {Z}) we )nd PP(A)∈MIN (Z; L); Z \PP(A) is )nite and Lq(a);F \L �∈
Track(={Z}). Hence FIND-FIN-DEC is called on (Lq(a);F \L; L;Auta;AutL; {Z; Lq(a);F \L})
for any a∈PP(A). Consider now for any a∈PP(A) the sub-tree Ta of TA;B rooted in
i(a). If Ta is empty then Lq(a);F \L is )nite. Otherwise Ta is the tree associated to some
)nite decomposition (Aa; Ba) of (Lq(a);F \ L; L) (Proposition 28). Further it is normal
since it is the sub-tree of a normal tree (Remark 32). By the inductive hypothesis
FD(Lq(a);F \L; L)\{(∅; Lq(a);F \L)}=NORM (Lq(a);F \L; L). Hence (Aa; Ba)∈FD(Lq(a);F \
L; L). Observe now that when calling FIN-DEC(Lq(a);F \ L; L;Auta;AutL) we )nd Zi �∈
TRACK for any vertex Zi of F(Lq(a);F \ L; L; Aa; Ba). Moreover, this situation holds
also if the initial call is FIN-DEC(Z; L;AutZ ;AutL), because TA;B is R-simple. Finally
(A; B)∈FD(Z; L) since its construction (line 11) follows Theorem 8.

We are now able to state the main result of this section.

Theorem 44. It is decidable (in a constructive way) whether, given regular languages
Z; L ⊆ �∗; Z is 7nitely L-decomposable.

Proof. Let Z; L ⊆ �∗ be regular languages. In order to decide whether Z is )nitely
L-decomposable or not; we choose a deterministic; complete and trim automaton AutZ
recognizing Z and a deterministic; complete and trim automaton AutL recognizing
L. Then we use algorithm FIN-DEC and the decidability of inclusion; emptiness and
)niteness for regular languages. From Proposition 34; we have that (Z; L) has a )nite
decomposition not (∅; Z) iR NORM (Z; L) �= ∅. Moreover consider the set FD(Z; L) re-
turned by FIND-FIN-DEC(Z; L;AutZ ;AutL; {Z}). We have (Proposition 43) that FD(Z; L)\
{(∅; Z)} = NORM (Z; L). Hence algorithm FIN-DEC applied to (Z; L;AutZ ;AutL) returns
in FD(Z; L) either a non-empty set of )nite decompositions of (Z; L); if (Z; L) has
some )nite decomposition not (∅; Z), or the message ”@ )nite decompositions”; oth-
erwise. In order to decide whether Z is )nitely L-decomposable or not; we can thus
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apply FIN-DEC to (Z; L;AutZ ;AutL) and decide that Z is )nitely L-decomposable iR
FD(Z; L) \ {(1; ∅)); (∅; Z)} �= ∅.

We show now that the )nite decompositions provided by FIND-FIN-DEC, if any, are
minimal with respect to the length and maximal in the sense speci)ed here below. We
denote by |w| the length of word w and by l(X ) the length of )nite language X , that
is l(X ) =

∑
x∈X |x|.

Proposition 45. Let Z; L ⊆ �∗ be regular languages.
If Z is 7nitely L-decomposable then for every non-trivial 7nite decomposition

(X; Y ) of (Z; L) such that (X; Y ) �∈ FD(Z; L), then there exists a 7nite decomposi-
tion (A; B)∈FD(Z; L) such that l(A)¡l(X ) and l(B)¡l(Y ).

Proof. Let (X; Y ) be a non-trivial )nite decomposition of (Z; L) such that (X; Y ) �∈
FD(Z; L). Let A′ = PP(Red(PP(X ))). As shown in Theorem 22; A′ ∈MIN (Z; L); Z \
A′�∗ is )nite and for any a∈A′; Lq(a);F \L is either )nitely L-decomposable or (if not)
)nite. Therefore; we can apply Theorem 8 and obtain a )nite decomposition (A; B) of
(Z; L) with PP(A) = A′. Indeed A = A′ ∪ (

⋃
a∈A′aAa) and B = Z \ A′�∗ ∪ (

⋃
a∈A′aBa);

where Lq(a);F \ L = Ba + AaL and (Aa; Ba) ∈ FD(Lq(a);F \ L; L). From Proposition 43;
(A; B)∈FD(Z; L).

Moreover, in the proof of Theorem 22, we have shown that Z \A′�∗ ⊆ Z \PP(X )�∗.
Hence l(Z \A′�∗)6 l(Z \PP(X )�∗). We are now able to show that l(A)¡l(X ) and
l(B)¡l(Y ). Indeed, for any x∈PP(X ) it holds |Red(x)|6 |x| and since (X; Y ) �∈
FD(Z; L) implies PP(X ) �∈ MIN then there exists x∈PP(X ) such that |Red(x)|¡ |x|.
Therefore:

l(A) = l(A′) +
∑

a∈A′ |a|l(Aa)¡l(PP(X )) +
∑

x s:t: Red(x)=a
|x|l(Aa) = l(X )

and

l(B) =
∑

a∈A′ | a | l(Ba) + l(Z \ A′�∗)

¡
∑

x s:t: Red(x)=a
| x | l(Ba) + l(Z \ PP(X )�∗) = l(Y ):

Remark 46. Let (A; B); (A′; B′) two )nite decompositions of (Z; L). If L is in)nite then
neither A′ ⊂ A nor A ⊂ A′. Indeed if A ⊂ A′ then there exists a∈A′ \ A and aL ⊆ Z .
Hence Z \ A�∗ would contain the in)nite language aL; against Z \ A�∗ ⊆ B is )nite.

Proposition 47. Let Z; L ⊆ �∗ be regular languages.
If Z is 7nitely L-decomposable then for every non-trivial 7nite decomposition (X; Y )

of (Z; L); (X; Y ) �∈ FD(Z; L), such that A ⊆ X for some (A; B)∈FD(Z; L), we have
A= X .

Proof. Let (X; Y ); (A; B) as in the hypothesis. Note that (A; B) is a )nite decompo-
sition of (Z; L) (Theorem 43). If L is in)nite then A ⊂ X cannot hold (Remark 46).
Hence A=X . If L is )nite then Z is )nite too; since Z =AL+B and A; B; L are )nite.



M. Anselmo /Discrete Applied Mathematics 126 (2003) 129–165 151

b

1 4

2

a

b

a

ba

b

3

Fig. 2. The automaton AutL of Section 6.1.

Therefore no loop exists on a state of AutZ . Hence MIN (Z; L)={X |X ⊆ Ay; X pre)x-
free}. Moreover for any (AM ; BM )∈FD(Z; L); any vertex Zi of F(Z; L; AM ; BM ) is )nite.
Finally FD(Z; L) is exactly the set of all )nite decompositions of (Z; L). In other words
no )nite decomposition (X; Y ) exists such that (X; Y ) �∈ FD(Z; L).

6.1. A 7rst example of execution of FIN-DEC

Let Z =L be the language recognized by deterministic automaton AutL =(Q; 1; ); F)
shown in Fig. 2. Let us apply algorithm FIN-DEC to input (L; L;AutL;AutL) and follow
the computation of a pair (AM ; BM ) in FD(Z; L).

The algorithm calls the procedure FIND-FIN-DEC on (L; L;AutL;AutL; {L}). Since L is
in)nite, it looks for MIN (L; L). We have that Qy ={1; 3; 4}. Further MIN (L; L) �= ∅ and
A = {b2; a}∈MIN (L; L). Language A satis)es the conditions for entering the for loop
in line 5. Indeed L \ A�∗ = {1} is )nite. Consider Lq(b2);F \ L and Lq(a);F \ L. We )nd
Lq(b2);F \L=L1;F \L=L\L=∅ �∈ TRACK(={L}). The language Lq(a);F \L=L3;F \L is
the language recognized by the automaton Aut3 = (Q; 3; ); F)⊗ (Q; 1; ); Q \ F), where
(Q; 3; ); F) and (Q; 1; Q \ ); F) are both canonically completed (Section 1). We )nd
L3;F \ L �∈ TRACK(={L}). Thus the for loop in line 6 is executed for any element of
A and FIND-FIN-DEC is called on input Ib2 = (∅; L;Autb2 ;AutL; {L; ∅}) and Ia = (L3;F \
L; L;Auta;AutL; {L; L3;F \ L}).

Procedure FIND-FIN-DEC(Ib2 ) returns FD(∅; L) = {(∅; ∅)}. Consider now Ia. We )nd
MIN (L3;F \ L; L) �= ∅ and A′ = {b}∈MIN (L3;F \ L; L). Looking at Aut3, we )nd
L(4;2);(F;Q\F) = L. Hence FIND-FIN-DEC (L3;F \ L; L) adds (b; ∅) to FD(L3;F \ L).

Finally the pair (AM ; BM )= ({b2; a; ab}; {1}) is constructed (lines 11–12) and added
to FD(L; L) (line 13). Indeed L= 1 + b2L1;F + aL3;F = 1 + b2L+ a(L+ bL).

Consider tree F(L; L; AM ; BM ). Its root is L; child(L) = {∅; L3;F \ L}; the vertex ∅
is a leaf and child(L3;F \ L) = {∅}. Moreover lab(L; ∅) = b2; lab(L; L3;F \ L) = a and
lab(L3;F \ L; ∅) = b.

The tree associated to (AM ; BM ) is TAM ;BM =(V; child; lab), where V ={0; 1; 2; 3}; the
root is 0; child(0) = {1; 2}; child(2) = {3} and 1; 3 are leaves. Further
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Fig. 3. The automaton AutL of Section 6.2.

lab(0; 1) = b2; lab(0; 2) = a and lab(2; 3) = b. Note the correspondence between
F(L; L; AM ; BM ) and TAM ;BM , as pointed out in Remark 41.

6.2. A second example of execution of FIN-DEC

Let Z =L be the language recognized by deterministic automaton AutL =(Q; 1; ); F)
shown in Fig. 3. Let us apply algorithm FIN-DEC to input (L; L;AutL;AutL) and follow
the computation of a pair (AM ; BM ) in FD(Z; L). The procedure FIND-FIN-DEC is called
on (L; L;AutL;AutL; {L}). We have Qy = {1; 5; 7}. For A = {1}∈MIN (L; L) we )nd
L \ A�∗ = ∅ is )nite and L1;F \ L = ∅ �∈ TRACK(={L}). Therefore the pair (1; ∅)
is added to FD(L; L). For any other A∈MIN (L; L); A �= {1}, we )nd that L \ A�∗ is
in)nite since it necessarily contains (a2)+. Indeed for every i¿ 1, word a2i ∈L and
p(a2i) never passes through a state of Qy. Procedure FIN-DEC(L; L;AutL;AutL) thus
returns FD(L; L) = {(1; ∅)}. According to Theorem 44, (L; L) has no non-trivial )nite
decomposition.

7. A generalization to in�nite decompositions

In the previous sections, we have looked for )nite decompositions of a pair (Z; L)
of regular languages. Assume now that (Z; L) has no non-trivial )nite decomposition.
We sketch here a construction generalizing the one in Section 6. It provides non-trivial
(in)nite) decompositions of (Z; L) having some property of maximality (Proposition
58). Observe that we have already proved (Proposition 6) that it is decidable whether
Z is L-decomposable, for given regular languages Z; L. However the decompositions
there provided had not in general the property here mentioned.

We )x some notations:
• Z; L ⊆ �∗ are regular languages
• AutZ = (Q; 1; ); F) is a deterministic, trim and complete automaton recognizing Z
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• AutL=(QL; 1L; )L; FL) is a deterministic, trim and complete automaton recognizing
L
• Qy = {q∈Q |L ⊆ Lq;F}
• Ay is the set of labels of all paths from 1 to a state of Qy.

Generalizing the de)nition of MIN (Z; L) in Section 6, let us de)ne the family
MIN∞(Z; L). It turns out that MIN∞(Z; L) can be used for constructing (in)nite)
non-trivial decompositions of (Z; L) having some maximality property.

De�nition 48. Family MIN∞(Z; L) is the class of all non-empty pre)x-free languages
A= {a1; a2; : : : ; an; : : :} such that:

(1) A ⊆ Ay,
(2) for any i = 1; 2; : : : n; : : : ; path p(ai) = (q1; ,1; q2) · · · (qn; ,n; qn+1) is such that

qj = qk , with 16 j¡k6 n+ 1 implies either j = 1 and k = n+ 1 or qj �∈ Qy.

We will simply write MIN∞ when no ambiguity is possible on languages Z; L re-
ferred to.

Theorem 49. Let Z; L ⊆ �∗ be regular languages.
Language Z is L-decomposable i= MIN∞(Z; L) �= ∅ and ∃A∈MIN∞(Z; L) such that

A �= 1 or Z \ L �= ∅.

Proof. The proof uses Theorem 7 and mimics the proof of Theorem 22.
Suppose that Z is L-decomposable and (A; B) is a non-trivial decomposition of (Z; L).

If A = 1 then B �= ∅ and A satis)es the requirements of the theorem. Let us sup-
pose that A �= 1. Let A′ = PP(RedQy(PP(A))). One can easily show that A′ �= 1; ∅ and
A′ ∈MIN∞(Z; L). In particular MIN∞(Z; L) �= ∅.

For the converse part, let us suppose MIN∞(Z; L) �= ∅ and A∈MIN∞(Z; L) is such
that either A �= 1 or Z \L �= ∅. For any a∈A let a−1Z \L=Ba +AaL, where (Aa; Ba) is
eventually trivial. Remark that 1 �∈ Aa because L ⊂ a−1Z \L does not hold (Proposition
2). Thus a−1Z=L+Ba+AaL and Z can be decomposed with respect to A as Z=A′L+B′

where: A′ = A ∪ (
⋃

a∈AaAa) and B′ = Z \ A�∗ ∪ (
⋃

a∈AaBa) (for details see the proof
of the vice versa in Theorem 7). The decomposition (A′; B′) is not trivial since either
A �= 1 or Aa ∪ Ba �= ∅, for a= 1.

Lemma 50. Let Z; L ⊆ �∗ be regular languages. Any A∈MIN∞(Z; L) maximal in
MIN∞(Z; L) with respect to inclusion can be decomposed as A=

⋃
q∈Q(A)Xq for some

Q(A) ⊆ Qy and Xq ⊆ �∗. Moreover the set of all A∈MIN∞(Z; L) that are maximal
in MIN∞(Z; L) with respect to inclusion is 7nite.

Proof. Languages A∈MIN∞(Z; L) that are maximal in MIN∞(Z; L) with respect to
inclusion; can be decomposed as A =

⋃
q∈Q(A)Xq for some Q(A) ⊆ Qy and Xq is the

language of labels of all paths from 1 to q without loops on states of Qy. The )niteness
of the set of all A∈MIN∞(Z; L) that are maximal in MIN∞(Z; L) with respect to
inclusion; follows from the )niteness of Qy.
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Lemma 51. Let Z; L ⊆ �∗ be regular languages. Let A∈MIN∞(Z; L) maximal in
MIN∞(Z; L) with respect to inclusion; A =

⋃
q∈Q(A)Xq and Lq;F \ L = AqL + Bq. Then

Z = AML + BM where AM = A ∪ (
⋃

q∈Q(A)XqAq); BM = Z \ A�∗ ∪ (
⋃

q∈Q(A)
XqBq).

Proof. From Theorem 7; we have that Z=A′L+B′ where A′=A∪(
⋃

a∈AaAa); B
′=Z \

A�∗∪ (
⋃

a∈AaBa) and Lq(a);F \L=AaL+Ba. Remark that Lq(a);F \L=Aq(a)L+Bq(a) and
Xq = {a | q(a)= q}. Hence A′ =A∪ (

⋃
a∈AaAa)=A∪ (

⋃
a∈AaAq(a))=A∪ (

⋃
q∈Q(A)XqAq)

and B′ = Z \�∗ ∪ (
⋃

a∈AaBa) = Z \�∗ ∪ (
⋃

a∈AaBq(a)xs) = Z \�∗ ∪ (
⋃

q∈Q(A)XqBq).

We sketch now an algorithm that applied to input (Z; L;AutZ ;AutL), where Z is
not )nitely L-decomposable, tests whether Z is L-decomposable and eventually returns
some non-trivial decompositions of (Z; L). Such decompositions are maximal in the
sense speci)ed in Proposition 58.

Note that in the following procedure FIND-MAX-DEC, for any set A considered in
line 3, Q(A) and Xq denote the sets such that A =

⋃
q∈Q(A)Xq, as in Lemma 50. We

emphasize that the algorithm is written in an informal way.
MAX-DEC(Z; L;AutZ ;AutL)

1 FIND-MAX-DEC(Z; L;AutZ ;AutL; {Z})
2 if MD(Z; L) \ {(∅; Z); (1; ∅)} �= ∅
3 then return “Z is L-decomposable”
4 else return “Z is not L-decomposable”

FIND-MAX-DEC(X; L;AutX ;AutL;TRACK)

1 if MIN∞(X; L) = ∅
2 then MD(X; L)← {(∅; X )}
3 else for any A∈MIN∞(X; L) maximal w.r.t. inclusion
4 do for any q∈Q(A) s.t. Lq;F \ L∈TRACK

and Lq;F \ L=W (Lq;F \ L) + A′L+ B′

5 do MD(Lq;F \ L; L)← MD(Lq;F \ L; L) ∪ {(W ∗A′; W ∗B′)}
6 for any q∈Q(A) s.t. Lq;F \ L �∈ TRACK
7 do I ← (Lq;F \ L; L;Auta;AutL; TRACK ∪ {Lq;F \ L})
8 FIND-MAX-DEC(I)
9 for any q∈Q(A) and (Aq; Bq)∈MD(Lq;F \ L; L)
10 do AM ← A ∪ (

⋃
q∈Q(A) XqAq)

11 BM ← X \ A�∗ ∪ (
⋃

q∈Q(A) XqBq)
12 MD(X; L)← MD(X; L) ∪ {(AM ; BM )}

Note that in the sequel MD(Z; L) denotes the set returned by FIND-MAX-DEC(Z; L;AutZ ;
AutL; {Z}).

Remark 52. Set MD(Z;L) is always non-empty. If MIN∞(Z; L) = ∅ then MD(Z; L)
contains the trivial and in)nite decomposition (∅; Z); else it contains all pairs (AM ; BM )
constructed as in lines 10–11.
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During the execution of algorithm MAX-DEC with a given input, a language A is
considered in line 3, even if it is in)nite. In the case when A in line 3 is in)nite,
we say that the resulting decomposition (AM ; BM ) is breadth-in7nite. Further in the
case when the for loop of line 4 is executed, we say that the resulting decomposition
(AM ; BM ) is depth-in7nite. The terms breadth-in)nite and depth-in)nite are in relation
to tree TAM ;BM associated to decomposition (AM ; BM ) (see Section 5).

Suppose now that MAX-DEC applies to input (Z; L;AutZ ;AutL). Let us recursively
de)ne for any (AM ; BM )∈MD(Z; L), a labelled tree. Its structure exactly mirrors the
structure of recursive calls of the procedure MAX-DEC when it computes (AM ; BM ) and
adds it to MD(Z; L). This de)nition will be useful in proving that algorithm MAX-DEC

always stops.

De�nition 53. Let Z; L ⊆ �∗ and (AM ; BM )∈MD(Z; L).
The tree M (Z; L; AM ; BM ) is the following labelled tree M (Z; L; AM ; BM ) =

(V; child; lab) whose vertices and labels are languages on �.
The root is Z . The set child(Z) is the set of all languages Zi such that, when consid-

ering A=PP(AM ) in line 3 of FIND-MAX-DEC, then FIND-MAX-DEC calls FIND-MAX-DEC

(Zi; L;AutZi ;AutL; {Z ∪ Zi}) in line 8, where A=
⋃

q∈Q(A) Xq; Q(A) = {q1; : : : ; qk}, and
Zi = Lqi;F \ L, for any i = 1; : : : ; k.

The label lab(Z; Zi) = Xqi .
For any i=1; : : : ; k, the sub-tree rooted in i, is M (Zi; L;

⋃
a∈A a

−1AM \1;
⋃

a∈A a
−1BM )

if MIN∞(Zi; L) �= ∅ or the tree composed of the only vertex Zi, otherwise.

Some examples of trees M (Z; L; A; B) are given in Sections 7.1 and 7.2.

Remark 54. Let (A; B)∈MD(Z; L). As pointed out in the proof of Proposition 56; tree
M (Z; L; A; B) is always a )nite tree: it has )nite breadth and )nite depth. On the other
hand; if (A; B) is not a )nite decomposition then TA;B is an in)nite tree: it has either
in)nite breadth or in)nite depth; following that (A; B) is either a breadth-in)nite or a
depth-in)nite decomposition; respectively.

Remark 55. Suppose that MAX-DEC applies to input (Z; L;AutZ ;AutL) and (AM ; BM )∈
MD(Z; L). If during the computation of (AM ; BM ); the procedure FIND-MAX-DEC is called
on (X; L;AutX ;AutL; TRACK) then TRACK contains all ancestors of X in M (Z; L; AM ; BM ).

Proposition 56. The algorithm MAX-DEC always stops.

Proof. The proof mimics the one of Proposition 42. Let us suppose that MAX-DEC

applies to input (Z; L;AutZ ;AutL). Let Cmax(AutZ ;AutL) denote the family of all lan-
guages X ’s such that FIND-MAX-DEC is recursively called on (X; L;AutX ;AutL; TRACK)
during the execution of MAX-DEC. We have that Cmax(AutZ ;AutL) is )nite by Lemma
38. Indeed AutZ and AutL are )nite automata; each set X is X=Lq;F \L for some q∈Q;
and the automaton Auta is obtained by intersection of (Q; q; ); F) and the complement
of AutL. Consider now the set {M (Z; L; A; B) | (A; B)∈FD(Z; L)}. Note that such a set
shows all recursive calls to FIND-MAX-DEC necessary to compute MD(Z; L). This set is
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)nite since the set of all A∈MIN∞(X; L) maximal with respect to inclusion is )nite for
any regular language X (Lemma 50) and X =Lq;F \L is a regular language. Moreover
the breadth of any vertex in M (Z; L; A; B) is )nite since Q(A) is )nite. Finally any
M (Z; L; A; B) has )nite depth since Cmax(AutZ ;AutL) is )nite and FIND-MAX-DEC calls
itself only if Lq(a);F \ L �∈ TRACK (see line 8 and Remark 55).

Let us now prove that algorithm MAX-DEC computes in MD(Z; L) a set of special
decompositions of (Z; L). Observe that Proposition 57 can be used to prove that it
is decidable whether Z is L-decomposable, for given regular languages Z; L (by a
proof similar to that of Theorem 44). This decidability result was already proved
in Proposition 6. However the decompositions provided in Proposition 6 have not
in general the maximality property of the decompositions constructed by algorithm
MAX-DEC (Proposition 58).

Proposition 57. Let Z; L ⊆ �∗ be regular languages.
The language Z is L-decomposable i= MD(Z; L) \ {(1; ∅); (∅; Z)} �= ∅. Moreover any

(A; B)∈MD(Z; L) is a decomposition of (Z; L).

Proof. We prove that
(1) any (AM ; BM )∈MD(Z; L) is a decomposition of (Z; L)
(2) if (Z; L) has a non-trivial decomposition then MD(Z; L) \ {(1; ∅); (∅; Z)} �= ∅.

(1) Let (AM ; BM )∈MD(Z; L). We prove that (AM ; BM ) is a decomposition of (Z; L)
by induction on the depth d of M (Z; L; AM ; BM ).

If d = 0 then either (AM ; BM ) = (∅; Z) (and it is a decomposition of (Z; L)) or
(AM ; BM ) is constructed in lines 10–11 as AM = A ∪ (

⋃
q∈Q(A) XqAq); BM = Z \ A�∗ ∪

(
⋃

q∈Q(A) XqBq), where A =
⋃

q∈Q(A) Xq; Lq;F \ L = W (Lq;F \ L) + A′L + B′ and Aq =
W ∗A′; Bq =W ∗B′. Using formal power series theory, we have that Lq;F \L=W (Lq;F \
L)+A′L+B′ iR (1−W )(Lq;F \L)=A′L+B′ iR Lq;F \L=W ∗(A′L+B′)=W ∗A′L+W ∗B′.
Therefore (AM ; BM ) is a decomposition of (Z; L) applying Theorem 7 and Lemma 51.

If d¿ 1 then (AM ; BM ) is constructed in lines 10–11 as AM=A∪(
⋃

q∈Q(A) XqAq); BM=
Z \ A�∗ ∪ (

⋃
q∈Q(A) XqBq), where (Aq; Bq)∈MD(Lq;F \ L; L). By inductive hypothesis

(Aq; Bq) is a decomposition of (Lq;F \ L; L) since M (Lq;F \ L; L; Aq; Bq) has depth less
than d. The goal thus follows from Theorem 7 and Lemma 51.

(2) If (Z; L) has a non-trivial decomposition then (Theorem 49) there exists X ∈
MIN∞(Z; L), such that X �= 1 or Z \ L �= ∅. If there exists Amax ∈MIN∞(Z; L) maximal
with respect to inclusion and Amax �= 1 then the pair (AM ; BM ) constructed in lines 10–11
starting from A=Amax is added to MD(Z; L) (line 12). Moreover (AM ; BM )∈MD(Z; L)\
{(1; ∅); (∅; Z)} since AM �= 1; ∅. If the only Amax ∈MIN∞(Z; L) maximal with respect
to inclusion is Amax = 1 then Z \ L �= ∅. Hence the pair (AM ; BM ) constructed in lines
10–11 starting from A = 1 is (AM ; BM ) = (1; Z \ L). Therefore (1; Z \ L)∈MD(Z; L).
Moreover (1; Z \ L)∈MD(Z; L) \ {(1; ∅); (∅; Z)} since Z \ L �= ∅.

In dealing with in)nite decompositions we cannot talk about minimality in length, as
it was the case for )nite decompositions (Proposition 45). What characterizes decom-
positions returned by algorithm MAX-DEC is the maximality property, hereafter stated.
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Proposition 58. Let Z; L ⊆ �∗ be regular languages. If Z is L-decomposable then for
every non-trivial decomposition (X; Y ) of (Z; L); (X; Y ) �∈ MD(Z; L) such that A ⊆ X ;
for some (A; B)∈MD(Z; L) we have A= X .

Proof. Let Z; L be in)nite languages and (X; Y ); (A; B) as in the hypothesis. Let
TA;B = (VA; childA; labA) be the tree associated to (A; B) and TX;Y = (VX ; childX ; labX )
be the tree associated to (X; Y ). For any vertex i∈VA (VX ; resp.); let Ri(A; B) (Ri(X; Y );
resp.) be the language associated to i in TA;B (TX;Y ; resp.). As pointed out in Propo-
sition 28; for any vertex i in TA;B (TX;Y ; resp.) language Ri(A; B) (Ri(X; Y ); resp.) is
)nitely L-decomposable and the sub-tree rooted in i is the tree associated to some )nite
decomposition (Ai; Bi) ((Xi; Yi); resp.) of (Ri(A; B); L) (Ri(X; Y ); resp.). De)ne a num-
bering n : V → N ∪ {0} on (V; child; lab); where (V; child; lab) is (VA; childA; labA)
or (VX ; childX ; labX ); in such a way that for any i; j∈V :
(1) n(i) = 0 if i is the root;
(2) n(j)¿n(i) for any j∈ child(i);
(3) i¡ j implies n(h)¡n(k) for any h∈ child(i); k ∈ child(j);
(4) if lab(i; j) is less than lab(i; k) in the lexicographical order then n(j)¡n(k);
(5) n is surjective on {0; 1; : : : ; card(V )}.

Suppose now A ⊂ X and let i be the )rst vertex in VA (following numbering n) such
that PP(Ai) ⊂ PP(Xi). Observe that Ri(A; B)=Ri(X; Y ) because R0(A; B)=R0(X; Y )=Z
and the labels of the paths from the root to i in TA;B and TX;Y are equal. Let Ri =
Ri(A; B).

Firstly, consider the case when Ai = PP(Ai) = ∅. The set MIN∞(Ri(A; B); L) = ∅
(this is the only case FIND-FIN-DEC returns Ai = ∅). By Remark 24 any other )nite
decomposition of (Ri(A; B); L) = (Ri(X; Y ); L) is trivial. If i is the root then (Ri; L)
has no non-trivial )nite decomposition. If i is not the root then any trivial )nite de-
composition of (Ri(X; Y ); L) is (∅; Ri(X; Y )). Pair (1; ∅) cannot be a )nite decompo-
sition of (Ri(X; Y ); L) since Ri �=L. Therefore Ai = Xi and this contradicts PP(Ai) ⊂
PP(Xi).

Consider now the case when PP(Ai) ⊂ PP(Xi) and PP(Ai) �= ∅. Note that
MIN∞(Ri; L) �= ∅ and PP(Ai)∈MIN∞(Ri; L), by construction. Let x∈PP(Xi)\PP(Ai).
We have {x} and PP(Ai) are pre)x-free. This implies PP(Ai) ∪ {x}∈MIN∞, against
the maximality with respect to inclusion of PP(Ai), as required in line 3 of FIND-
MAX-DEC.

Remark 59. Proposition 58 in particular shows that if (A; B); (A′; B′)∈MD(Z; L) then
neither A′ ⊂ A nor A ⊂ A′.

Proposition 60. Let Z; L ⊆ �∗ be regular languages. If (AM ; BM ) is any decomposition
in MD(Z; L) then AM ; BM are regular languages.

Proof. The proof uses induction on the number of calls of procedure FIND-MAX-DEC.
The basic cases are when the procedure adds to MD(Z; L) the pair (AM ; BM ) = (∅; Z)
(line 2) or the pair (W ∗A′; W ∗B′) (line 5). In the )rst case AM ; BM are trivially reg-
ular. In the second case AM ; BM are regular since W;A′; B′ can be obtained from
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)nite languages using a )nite number of union; product and star (see the proof of
Lemma 36).

Consider the case when (AM ; BM ) is constructed after entering the for loop in line
6. As observed in Lemma 50, languages A∈MIN∞ maximal with respect to inclusion,
can be decomposed as a )nite union A=

⋃
q∈Q(A) Xq, where Xq is the language of labels

of all paths from 1 to q without loops on states of Qy. Note that any Xq is a regular
language. Languages AM ; BM are constructed as AM =

⋃
q∈Q(A) Xq ∪ (

⋃
q∈Q(A) XqAq) and

BM = Z \ A�∗ ∪ (
⋃

q∈Q(A) XqBq), where (Aq; Bq) is a decomposition of (Lq;F \ L; L).
Therefore AM ; BM are obtained by a )nite number of unions of some Xq’s, Aq’s and
Bq’s, where Aq’s and Bq’s are regular by inductive hypothesis. Hence AM ; BM are
regular languages.

7.1. An example of a breadth-in7nite decomposition

Let Z = L be the language recognized by the automaton in Fig. 3, as considered in
Section 6.2. In Section 6.2 we noticed that (Z; L) has no non-trivial )nite decompo-
sition. We want now to construct a non-trivial in)nite decomposition of (Z; L), using
algorithm MAX-DEC. Let us apply FIND-MAX-DEC to (Z; L;AutZ ;AutL; {Z}). Looking
for MIN∞(Z; L), we )nd Qy = {1; 5; 7}. Furthermore any A in MIN∞(Z; L); A �= 1,
is in)nite. Therefore, when considering any A; A �= 1 (line 3), we will construct a
breadth-in)nite decomposition. Consider for example A = {(a2)+ab; (a2)+ba; b}. We
have A∈MIN∞(Z; L) and A maximal with respect to inclusion. Since Q(A)={1; 5; 7},
FIND-MAX-DEC is called on (Li;F \ L; L;Auti ;AutL; {Z; Li;F \ L}), where i = 1; 5; 7 and
Auti = (Q; i; ); F)⊗ (Q; 1; ); Q \ F).

We )nd that L1;F \ L= L \ L= ∅ and thus FIND-MAX-DEC returns MD(L1;F \ L; L) =
{(∅; ∅)}. Further L5;F \ L= abL. Consider now state 7. We have that L7;F \ L= �∗ \ L
and Aut7 = (Q; 1; ); Q \ F). Further A′ = {a}∈MIN∞(L7;F \ L; L). It is maximal with
respect to inclusion, since q(a) = 2 and L ⊆ L2;Q\F . Recursively calling the procedure
with X = L2;Q\F \ L, we )nd L2;Q\F \ L = abL(4; s); (Q\F;Q\F). After a last step we )nd
L(4; s); (Q\F;Q\F) \ L= ∅.

Therefore ({ab}; ∅) is a decomposition in MD(L2;Q\F \ L; L) and ({a; a2b}; ∅) is a
decomposition in MD(L7;F \L; L). Remarking that Z \A�∗ =(a2)∗, we )nally have that
pair (AM ; BM ), where AM ; BM are as follows, is constructed (lines 10–11) and added
to MD(Z; L) (line 12):
AM = {(a2)+ab; (a2)+ba; (a2)+baab; b; ba; ba2b},
BM = (a2)∗.
Indeed

Z = (a2)∗ + (a2)+abL1;F + (a2)+baL5;F + bL7;F

= (a2)∗ + (a2)+abL+ (a2)+ba(L+ abL) + b(L+ aL+ a2bL):

Tree M (Z; L; AM ; BM ) is given in Fig. 4. On the other hand, the tree associated to
decomposition (AM ; BM ) is in)nite since the root Z has a child for any word in A.
This is the reason why we call the decomposition (AM ; BM ) breadth-in)nite.
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Fig. 5. The automaton AutZ of Section 7.2.

7.2. An example of a depth-in7nite decomposition

Let Z = L be the language recognized by the deterministic automaton AutZ =
(Q; 1; ); F) shown in Fig. 5. The automaton is completed by adding a sink state s
(not shown in the )gure). Let us apply MAX-DEC to (Z; L;AutZ ;AutL). Looking for
MIN∞(Z; L), we )nd Qy = {1; 7}. Further we have that A = {a3b; a2ba2b; a2bab; b}∈
MIN∞(Z; L) and A is maximal with respect to inclusion. The procedure FIND-MAX-DEC

calls itself on input Iq = (Lq;F \ L; L;Autq;AutL; {Z; Lq;F \ L}) for q∈{1; 7} and Autq =
(Q; q; ); F)⊗ (Q; 1; ); Q \ F).
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Note that L1;F \ L = L \ L = ∅, which is )nite. Thus MD(L1;F \ L; L) = {(∅; ∅)}.
Consider now state 7. We have that L7;F \L=�∗ \L and Aut7 =(Q; 1; ); Q\F). Further
A′ = {a}∈MIN∞(�∗ \ L; L) and it is maximal with respect to inclusion. We have
q(a) = 2 and it can be shown that L ⊆ L2;Q\F . Recursively calling the procedure with
X =L2;Q\F \L, we )nd that A′′ ={ab; a3; a2ba3}∈MIN∞(L2;Q\F \L; L) and is maximal
with respect to inclusion. Considering the automaton Aut2=(Q; 2; ); Q\F)⊗(Q; 1; ); Q\
F), we have L2;Q\F \ L= abL(4; s); (Q\F;Q\F) + (a3 + a2ba3)L(s;6); (Q\F;Q\F). It can also be
shown that L4;F = �∗ \ L and then L(4; s); (Q\F;Q\F) = �∗ \ L4;F = L. Let us denote now
L6 = L(s;6); (Q\F;Q\F). Constructing, in the usual way, an automaton recognizing L6 \ L,
we )nd that L6 \ L = aL2;Q\F . Further {a}∈MIN∞(L6 \ L; L) and it is maximal with
respect to inclusion, since L ⊆ L2;Q\F . Then the procedure FIND-MAX-DEC is called on
(L2;Q\F \ L; L;Aut2;AutL;TRACK) with TRACK = {Z; L7;F \ L; L2;Q\F \ L; L6 \ L}. Since
L2;Q\F \ L∈TRACK , we are in a depth-in)nite case. Indeed denoting X = L2;Q\F \ L,
we have X = abL + (a3 + a2ba3)L + (a3 + a2ba3)aL + (a3 + a2ba3)aX and then X =
[(a3 + a2ba3)a]∗[ab+(a3 + a2ba3)+ (a3 + a2ba3)a]L. Moreover Z =(a3b+ a2ba2b)L+
(a2bab+ b)L+ (a2bab+ b)aX .

Finally (Z; L) has no )nite decomposition. An in)nite decomposition of (Z; L) is
(AM ; BM ) where:
AM = {a3b; a2ba2b; a2bab; b; {a2bab; b}a{a3a; a2ba3a}∗{ab; a3; a2ba3; a4; a2ba4}},
BM = {1}.
Tree M (Z; L; AM ; BM ) is given in Fig. 6. Tree TAM ;BM is given in Fig. 7, where T5 is

the sub-tree rooted in vertex 5. The tree TAM ;BM has )nite breadth, but in)nite depth.

8. How many decompositions?

In this section we consider the problem of how many non-trivial decompositions
()nite decompositions, resp.) a pair (Z; L) of languages can have. We show that if
Z = L and L is L-decomposable ()nitely L-decomposable, resp.) then it has an in)nite
number of non-trivial decompositions ()nite decompositions, resp.). This is not the case
when Z �=L. We introduce an operation called substitution. It allows to construct an
in)nite family of non-trivial decompositions of (L; L), starting from some known ones.

De�nition 61. Given languages A; B; A′; B′ ⊆ �∗; with A �= ∅; a substitution of (A′; B′)
in (A; B) with respect to a∈A is the pair (A− a+ aA′; B + aB′).

Proposition 62. Let L ⊆ �∗ and (A′; B′); (A; B) be two decompositions of (L; L). If
A; A′ �= ∅ and (A′; B′); (A; B) �= (1; ∅) then for all a∈A the substitution (A′′; B′′) of
(A′; B′) in (A; B) with respect to a is a non-trivial decomposition of (L; L). Moreover
if A; B; A′; B′ are 7nite languages then A′′; B′′ are 7nite and l(A∪B); l(A′∪B′)¡l(A′′∪
B′′).

Proof. L=AL+B=(A−a)L+aL+B=(A−a)L+a(B′ +A′L)+B=(A−a+aA′)L+
(B + aB′). Notice that all equalities are unambiguous. Remark that since L denotes
a characteristic series then also A − a + aA′ and B + aB′ are characteristic series. In
particular A \ {a} ∩ aA′ = ∅ and B ∩ aB′ = ∅.
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Corollary 63. Let L ⊆ �∗. If L is L-decomposable (7nitely L-decomposable; resp.);
then (L; L) has an in7nite number of non-trivial decompositions (7nite decompositions;
resp.).

Example 64. Let (A; B) be a non-trivial decomposition of (L; L) with A={a1; a2; : : : ; an}.
Consider the substitution of (A; B) in (A; B) with respect to a1; say (A1; B1); then the
substitution of (A; B) in (A1; B1) with respect to a2 and so on. We obtain that (A2; B+
AB) is a decomposition of (L; L). Indeed; L=AL+B=A(B+AL)+B=A2L+B+AB.
Another example is Example 5.

Consider now the case when Z �=L. We show that (Z; L) can have only a )nite
number of non-trivial decompositions by the following example. Remark that this is
not always the case. Let Z = a∗ + ba∗; L=A∗, as in Example 5. We have that for any
n¿ 1, pair (an + b; 1 + a+ · · ·+ an−1) is a )nite decomposition of (Z; L).

Example 65. Let Z = a2b∗; L = ab∗. The equality Z = a2b∗ = Aab∗ + B implies B =
aab∗−Aab∗=(a−A)ab∗=(a−A)a(1−b)−1; that implies B(1−b)=(a−A)a=a2−Aa.
If B= ∅ then (a; ∅) is a non-trivial decomposition. If B �= ∅ let w be the shortest word
in B. Then (B − Bb; w) = 1. Since (−Aa; w)6 0 then (a2; w) = 1 and (−Aa; w) = 0.
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This means w = a2 and (A; a) = 0; i.e. a �∈ A. On the other hand; for every i¿ 1 we
have a2bi ∈B since a2bi ∈Z and a2bi �∈ Aab∗. Therefore B = a2b∗ = Z; A = ∅. Finally
the only decompositions of (Z; L) are (a; ∅) and (∅; Z).

9. An application to the Factorization Conjecture

We present here some results in the theory of codes, as developed by Sch3utzenberger
and his school. Many deep results about codes have been proved (see [8] for a complete
survey on this topic and [13] for a list of open problems in this area). Nevertheless, the
structure of these objects is not yet completely investigated. In particular, more than
thirty years ago Sch3utzenberger gave the following Factorization Conjecture which is
still open (see [37,11,13,18,19,31,34,20,39] for some partial results). We show here
some results related to this conjecture. They are based on results shown in previous
sections.

We say that C ⊆ �∗ is a code (over �) if for any c1; : : : ; ch; c′1; : : : ; c
′
k ∈C; c1 · · · ch=

c′1 · · · c′k implies h = k and for every i∈{1; : : : ; h}; ci = c′i . In terms of series C is a
code iR C∗ = (C)∗. A code C is maximal (over �) if for any code C′ over � then
C ⊆ C′ implies that C = C′. A code C is factorizing (over �) if there exist )nite
subsets S, P of �∗ such that S C∗P=�∗. Pair (S; P) is called a factorization of C. As
an example, maximal pre)x codes C are factorizing, by taking S=1 and P=Pref(C).

Factorization Conjecture (Sch3utzenberger [37]).
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Any 7nite maximal code is factorizing.

In this paper we consider the following problem related to Factorization Conjecture.
Problem SCP: Given )nite language S, do there exist )nite languages C; P, with C

maximal code, such that SC∗P = �∗ with non-ambiguous operations?
Problem SCP was )rst proposed in [18]. A language S for which Problem SCP has

a positive answer is said a polynomial having solutions in [18] and a strong factorizing
language in [5]. Remark that exchanging the roles of S and P gives raise to a dual
problem.

Theorem 66. It is decidable (in a constructive way) whether given a 7nite language
S ⊆ �∗ there exist 7nite languages C; P; with C maximal code; such that S C∗P=�∗.

Proof. Let S ⊆ �∗ be a )nite language. From results in [3;4] we know that it is
decidable whether there exists an (in)nite) language Z such that S Z = �∗; that Z
is regular and that an automaton recognizing Z can be constructed starting from one
recognizing S. Because S C∗P = �∗ implies S C∗P = �∗; then; if there does not exist
a language Z such that S Z = �∗; then also Problem SCP has no solution. Otherwise;
let Z such a solution. Recall that if )nite languages S; C; P satisfy the non-ambiguous
equation SC∗P=�∗; then C is necessarily a maximal code [37;8]. The problem reduces
to the problem of factorizing in a non-ambiguous way the regular language Z as
Z = C∗P with C; P )nite languages. In other words; we have to decide whether Z is
)nitely Z-decomposable and eventually provide a )nite decomposition. This problem
is solved in previous sections.

Example 67. Let S = 1 + a + a2b. We know [4;5] that there exists a language Z
such that S Z = �∗. Further; applying techniques shown in [2]; we have that Z is
recognized by the automaton in Fig. 3. As shown in Section 6.2; language Z is not
)nitely Z-decomposable; i.e. there do not exist )nite languages C; P such that Z= C∗P.
We can thus claim that there do not exist )nite languages C; P such that S C∗P=�∗.

We show now how to construct an in)nite family of factorizing codes, starting from
one of them, as a byproduct of results in previous sections. We de)ne the operation of
substitution on languages and show that it preserves the property of being a factorizing
code.

De�nition 68. Given languages C; C′ �= ∅ a substitution of C′ in C with respect to
c∈C is the language C \ {c} ∪ cC′.

Proposition 69. If C and C′ are factorizing codes with factorizations (S; P) and
(S; P′); respectively; then C′′ =C \ c∪ cC′ is a factorizing code; C′′ �=C; C′. Moreover
(S; P ∪ cP′) is a factorization of C′′ and l(C); l(C′)¡l(C′′).

Proof. By hypothesis; S C∗P = S C′∗P′ = �∗. By the uniqueness of language Z such
that S Z = �∗ [3;4]; we have Z = C∗P = C′∗P′. Moreover (C; P) and (C′; P′) are two
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non-trivial )nite decompositions of (Z; Z). The goal thus follows from Proposition 62.

Corollary 70. Given a factorizing code C; we can construct an in7nite family
{Ci | i∈N} of factorizing codes.

Proof. Consider for example C0 = C; and Ci = Ci−1 \ {c} ∪ cCi−1; for some c∈Ci−1.
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