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Abstract This study handles artificial neural networks (ANN) modeling to predict tire contact area

and rolling resistance due to the complex and nonlinear interactions between soil and wheel that

mathematical, numerical and conventional models fail to investigate multivariate input and output

relationships with nonlinear and complex characteristics. Experimental data acquisitioning was car-

ried out using a soil bin facility with single-wheel tester at seven inflation pressures of tire (i.e. 100–

700 kPa) and seven different wheel loads (1–7 KN) with two soil textures and two tire types. The

experimental datasets were used to develop a feed-forward with back propagation ANN model.

Four criteria (i.e. R-value, T value, mean squared error, and model simplicity) were used to evaluate

model’s performance. A well-trained optimum 4-6-2 ANN provided the best accuracy in modeling

contact area and rolling resistance with regression coefficients of 0.998 and 0.999 and T value and

MSE of 0.996 and 2.55 · 10�12, respectively. It was found that ANNs due to faster, more precise,

and considerably reliable computation of multivariable, nonlinear, and complex computations are

highly appropriate for soil–wheel interaction modeling.
ª 2013 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Soil–tool interactions have been discussed and investigated by

many researchers due to highly complex behavior of soil that
inhibits to obtain generalized yet highly valid models. Wheel
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as an imperative part of off-road vehicles portends sophisti-
cated relations with soil. The significance of contact area in
the domain of soil–wheel interactions is considerable (Taghavi-

far and Mardani, 2012). Contact area of tire, in addition to
major parameters affecting contact area (i.e. tire inflation pres-
sure and wheel load), is reliant on mutual and multiple actions

between variables. These actions complicate to distinguish that
contact area is chiefly impressed by which of variables. Fur-
thermore, rolling resistance (RR) of wheel is a major produc-

tion of soil–wheel interactions. RR in essence is the required
energy to compact the soil beneath the wheel while traversing
a definite distance. Consequently it is a resistive force against

movement multiplied by the distance obtained as following.

R ¼ bw

Z Zmax KC
Ku

� �
ZndZ ð1Þ
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where n is sinkage exponent, bw is tire width, b is the smaller
dimension of the rectangular contact area, Z is the sinkage,
and KC and Ku are the soil condition parameters, respectively.

It should be noted that validity of equation above in order to
predict rolling resistance based on soil deformation was of-
fered by Wong (1984) that for wheel diameters more than

50 cm and sinkage levels less than 15% of wheel diameter.
Additionally, RR relies on contact area since contact area de-
fines the area of soil to be compacted. Contact area and RR

interactions are influential on their determinations.
Artificial neural networks (ANN) are widely used to facili-

tate answering complicated problems in variety of science and
engineering domains chiefly wherever conventional and math-

ematical modeling fail to succeed. Artificial neural networks
have been carried out in an effectively manner in the fields
of pattern recognition, modeling, and control (Haykin,

1999). A well-trained ANN, which is fundamentally inspired
by human being neural system, is applicable to be utilized as
a predictive model for a specific application in science. ANN

models and their performance are relying on training experi-
mental data followed by validating and testing the model by
independent datasets. Accommodating multiple input vari-

ables, while it has the ability to improve its performance with
new sets of data, multiple output variables can be efficiently
predicted. Conventional models as well as mathematical ones
are usually incapable of predicting complex nonlinear phe-

nomena exempt from simplifying the models by neglecting
Figure 1 The picture o
interactions between parameters. This brings about rising inac-
curacy. Furthermore, ANN advantages of much faster and
more accurate calculations compared with mathematical or

conventional methods as no prolonged repetitive calculations
are needed. However, appropriate ANN topology is significant
to attain simple models with lower mean squared error (MSE)

and higher accuracy. Each input to the artificial neural net-
work is multiplied by the synaptic weight, added together
and dealt with an activation function. ANNs are trained by

frequently exploring the best relationship between the input
and output values creating a model after a sufficient number
of learning repetitions, or training known as epochs (Jaiswal
et al., 2005). After training, the model can be generalized with

new input values to predict, simulate and re-establish the con-
dition identified as testing procedure.

Modeling draught, as an index of RR, has long been dis-

cussed in the literature. Roul et al. (2009) successfully applied
ANN model predicting the draught requirement of tillage
implements under varying operating and soil conditions.

Zhang and Kushwaha (1999) utilized RBF function in ANN
to estimate draught of narrow blades in soil under multiple in-
put variables. They stated that an appropriate neural network

model could effectively predict the required draught for the
blade. Literature survey further indicated that no outstanding
attempt has been made to utilize ANN to predict RR and con-
tact area simultaneously. Appropriate application of ANN in

this case is highlighted when taking into account that conven-
f test soil bin facility.



Table 1 Summary of experiment conducted.

Soil texture Tire type Independent parameters Dependent parameters

Wheel load (kN) Inflation pressure (kPa)

Clay loam 220/65R21 1 100

Sandy clay loam 9.5L-14 2 200 Contact area

3 300

4 400

5 500 Rolling resistance

6 600

7 700

Table 2 Soil constituents and its measured properties.

Item Value

Sand (%) 34.3a 56.8b

Silt (%) 22.2a 23.1b

Clay (%) 43.5a 20.1b

Frictional angle (�) 32a 40b

Cone Index (kPa) 437a 382b

a Clay loam soil.
b Sandy clay loam soil.
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tional models to predict objective parameters have no solution
except considering one variable to be changed while others are

stable, however, ANN settles this difficulty. Moreover, con-
ventional and mathematical models fail to yield multiple out-
put variables when ANN tackles to solve this deficiency.

Given such complex relations, regression models are required
for outputs.

The objectives of this research were to (1) develop an ANN

model and evaluate the predictability performance on the basis
of statistical criteria, (2) evaluate the effects of the ANN
parameters on model performance, and (3) to propose a super-
vised ANN-based model generalized by two prominent soil

and tire types used for output predictions.

2. Experimental investigation

A long soil bin was constructed in the Faculty of Agriculture,
Urmia University, Iran. This soil bin features 23 m length, 2 m
width and 1 m depth (Mardani et al., 2010). This long channel

had the ability to hold a wheel carriage, a single-wheel tester,
and different tillage tools to be moved altogether in the length
Figure 2 ANN general configuration fo
of the soil bin. A three-phase electromotor of 30 hp was used

to move a carriage through the length of soil bin by means
of chain system along with the wheel-tester when the carriage
had the ability to traverse at the speed of about 20 km/hr. Four

S-shape load cells with the capacity of 200 kg were calibrated
and then were located at proper places in parallel-horizontal
pattern between the carriage and single-wheel tester. Load cells
were interfaced to data acquisition system included a data log-

ger, enabled monitoring the data on a screen and simulta-
neously, the data were transmitted to a computer. A single-
wheel tester was assembled to the carriage system with four

S-shape load cells to measure the rolling resistance alterations
caused by motion of wheel in various treatments being tested
(wheel loads were chosen as for test of principals). The utilized

tires were 220/65R21 and 9.5L-14, 6 radial ply agricultural
tractor tire. The system set up is shown in Fig. 1. Transmitted
files recorded were subsequently imported to MATLAB soft-
ware (version 7.6, 2008, Mathworks Company) for processing

and post-processing. Summary of treatments being tested is
shown in Table 1. In order to determine contact area experi-
mentally, at each treatment, white powder was spread on the

periphery of soil–tire interface to define contact area. A digital
camera was used to take images of contact areas. Image pro-
cessing method was then used to define contact area with supe-

rior performance taking into account the borders of contact.
The soil bin was filled with two soil textures of clay–loam

and sandy clay–loam soil that exist in most regions of Urmia,

Iran. Particular equipments were employed to organize soil
bed including leveler and harrow since it is exceedingly crucial
to have well-prepared soil inside soil bin for acquiring reliable
and precise results from this experiment. Additionally, they

were used since soil condition should be reverted to previous
state. Soil constituents and properties are defined in Table 2.
r prediction of contact area and RR.



Table 3 Summary of various developed networks evaluated to yield the criteria of network performance.

Activation function Training function Network topography MSE R-value of contact area R-value of RR T

logsig trainlm (4,6,2) 2.55 · 10�12 0.998 0.999 0.996

purelin trainbfg (4,6,5,2) 4.23 · 10�6 0.995 0.994 0.987

purelin traingdx (4,6,5,2) 3.28 · 10�1 0.959 0.942 0.989

purelin trainrp (4,6,2) 1.77 · 10�1 0.994 0.993 0.961

purelin trainscg (4,6,2) 2.63 · 10�2 0.990 0.982 0.967

Tansig trainlm (4,6,2) 1.27 · 10�4 0.913 0.942 0.973

Tansig traingdx (4,6,5,2) 2.62 · 10�5 0.998 0.987 0.977

Tansig trainscg (4,6,2) 1.35 0.996 0.994 0.884

purelin trainlm (4,6,5,2) 2.27 · 10�6 0.997 0.989 0.982

Logsig trainscg (4,6,5,2) 1.75 · 10�5 0.965 0.974 0.980

Logsig traingdx (4,6,5,2) 3.01 0.942 0.924 0.827

Figure 3 The general process of ANN application to predict output variables.
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3. Neural network design

To achieve the best model, numerous structures of neural
network were trained and then evaluated. ANN model was

developed utilizing the experimental data as the input set
in order to identify the effects of tire inflation pressure
and wheel load by two commonly used tires and at two soil
textures on contact area and RR. A multi-layered feed
forward with back propagation algorithm varied from one

to two hidden layers. The general configuration of multilayer
artificial neural network of current research is depicted in
Fig. 2. Back propagation algorithm is the technique



Figure 4 Validation error (MSE) curve.

Figure 5 Correlation between the experimental data and predicted values of the ANN model for prediction of contact area.
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calculating the gradient and the Jacobian, which involves
performing computations backward through the network.

The back propagation computation is derived using the
chain rule of calculus until it can approximate a function.
This algorithm minimizes error function expressed as

following:
Error ¼ 1

m

X
m

X
l

ðdmk � olkÞ ð2Þ

where m is the index of training pairs, l is the index of output
elements, dmk is the kth element of the mth desired model, and

olk is the kth element of output data. The performance of the



Figure 6 Correlation between the experimental data and predicted values of the ANN model for prediction of RR.

Table 4 Statistical specifications for the optimal model of the

study for training and testing partitions of the study outputs.

Contact area (m2) RR (N)

Train Test Train Test

Min 0.013 0.012 4.241 5.524

Max 0.035 0.028 542.8 569.3

Mean 0.024 0.026 272.3 275.4

Standard deviation 0.008 0.011 2.091 5.263
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trained model by the network is calculated by comparison be-
tween the ANN predicted outputs and the actual outputs of
experimentations. Another criterion was T value that com-
putes the scattering around the line (1:1), a T value close to

1 is prevailed. The T value is described as follows:

T ¼ 1�

XN
i¼1
ðYi;a � Yi;pÞ2

XN
i¼1
ðYi;a � YÞ2

ð3Þ

where Yi,a and Yi,p are ith output variables obtained by exper-

iment and neural network, respectively, Y is the average over
N samples, and N is the number of samples used in each step.
Since the range of input variables was different, in order to

achieve fast convergence to minimal MSE, each of input vari-
ables was normalized in the range of �1 to 1 by following
equation.
Xn ¼ 2
Xr � Xr;min

Xr;max � Xr;min

� 1 ð4Þ

where Xn denotes normalized input variable, Xr is the raw in-
put variable, and Xr,min and Xr,max denote minimum and max-
imum of input variable, respectively. At the end of training
and testing processes, error was computed by using the differ-

ences between experimental data and output data modeled
with ANN.

A total of 392 data were available, so 392 arrays were gen-

erated. In the current study the back-propagation neural net-
works (BPNN) were trained utilizing datasets with 50% of
data, 25% for validating the developed model and 25% for

testing the de veloped model.
Four neurons in the first layer and two neurons in the last

layer, as well as varying neurons in the interim layer were rep-

resentatives of input data, output data and ANN developed
neurons, respectively. The output of a neuron is defined as:

Output ¼ fðnÞ ð5Þ

where

n ¼
Xs
i¼1

wixi þ b ð6Þ

where xi and wi are the input data and the weights of neurons,
respectively, b is the bias and f(n) is the activation function.

Activation function establishes the relation between inputs
and outputs of a neuron. The utilized activation functions in
configuration of ANNs in the case of this study were:

Linear transfer function (purelin):



Figure 7 The effect of learning rate and momentum values on the learning ability of the ANN model.
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fðnÞ ¼ n ð7Þ

Log–sigmoik transfer function (logsig):

fðnÞ ¼ 1

1þ e�n
ð8Þ

Hyperbolic tangent sigmoid transfer function (tansig):

fðnÞ ¼ 2

1þ e�2n
� 1 ð9Þ

purlin function generates outputs in the range of �1 to

+1, logsig function produces outputs in the range of 0 to 1,
and tansig function produces outputs in the range of �1 to
+1(M. Bouabaz, M. Hamami, 2008). In this study, however,
Figure 8 A comparison between predicted and measured values
many networks with several functions and topologies were

examined which is briefly shown in Table 3. Of the used train-
ing functions, trainlm, traingdx, trainrp, trainscg, and trainbfg
are known as the fastest and most profitable BPNN algorithm

(Graupe, 2007).
trainlm is a network training function that updates weight

and bias values according to Levenberg–Marquardt optimiza-

tion and is often the fastest back propagation algorithm which
is highly recommended as a first-choice supervised algorithm,
albeit it needs more memory compared with the other algo-

rithms. traingdx is a network training function that updates
weight and bias values according to gradient descent momen-
tum and an adaptive learning rate. It combines adaptive learn-
of contact area for experiment numbers of training partition.



Figure 9 A comparison between predicted and measured values of RR for experiment numbers of training partition.
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ing rate with momentum training rate. trainrp is a network

training function that updates weight and bias values accord-
ing to the resilient back propagation algorithm. trainscg is a
network training function that updates weight and bias values

according to the scaled conjugate gradient method. trainbfg is
a network training function that updates weight and bias val-
ues according to the BFGS quasi-Newton method. The train-
ing and testing performance (MSE) was selected to be the error

criterion along with regression coefficient, T value and struc-
ture simplicity. Where various training functions were initially
developed, trainlm, trainbfg, and trainscg were selected. MAT-

LAB software (version 7.6, 2008, Mathworks Company) was
used to develop ANN predictive models. For more under-
standing, the general ANN workflow is depicted in Fig. 3.

4. Results and discussion

The topology, number of neurons within each layer is deter-

mined based on the complexity of the problem. The criterion
R-value was chosen to decide which network can yield the
optimum model. As well, Mean Squared Error (MSE) was se-

lected as second criteria to evaluate the performance of each
trained algorithms. Another criterion was T value that com-
putes the scattering around the line (1:1), a T value close to
1 is prevailed. Furthermore, size and complexity of the net-

work were a significant parameter, and consequently, smaller
ANNs were chosen. Various training functions, transferring
functions, and network topographies were utilized. Leven-

berg–Marquadt (trainlm) was successfully chosen as the opti-
mum training function. The R- values in Table 3
demonstrate the correlation coefficient between the outputs

and targets, T values are representatives of scattering around
the selected line and MSE. The performance of the network
for training is depicted in Fig. 4.

Of trained and developed networks, a few of them could

suitably provide low error, where simplest ones were selected.
The correlation between the experimental data and the pre-
dicted values of the ANN model for prediction of contact area

and RR yielded are shown in Figs. 5 and 6, respectively. The
scatter plots in these figures revealed that for both the output
parameters, the predictability was satisfactory and data points

were well concentrated around the selected ideal unity-slope
line. For both the outputs, the linear adjustment between mea-
sured and estimated values gives a slope practically equal to 1.
ANN advantages are fast, precise, and reliable computation of

multivariable, nonlinear, and complex computations com-
pared to mathematical, conventional, and numerical methods.
Table 4 shows the statistical specifications for the optimal

model of the study for training and testing partitions of the
study outputs.

The learning rate equilibrates the error downing level sub-

sequent to ongoing iterations. The learning rate presents the
respective more or less portion of adjustment to the elder
weight. The neural network may learn more quickly if the fac-
tor is set to a large amount. Nevertheless, if there is a large

instability in the input set then the network may not learn very
well or at all. In real terms, setting the learning rate to a large
value is inappropriate and inhibitor to learning. In the case

that learning rate is slow, adjustment of the factor to a small
value and subsequent increase are prevailed. Momentum is
mainly used to speed up the learning rate, particularly when

learning rate is adjusted at a low level. The objective in
ANN is to change iteratively the weights between the neurons
for minimization of error which is related to learning rate and

momentum by the steepest descent method. This can improve
the learning rate in some situations, by helping to smooth out
unusual conditions in the training set.

Fig. 7 shows the effect of learning rate and momentum val-

ues on the training MSE. Generally with increased learning
rate, the training MSE tended to decrease in the range of tested
values. This implies that in this range, the necessary weight

adjustments were suitable. Also Fig. 7 shows that performance
of the ANN model was negligibly affected by momentum. The
optimal values of learning rate and momentum of ANN used
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to predict the process in the obtained supervised ANN model
were 0.9 and 0.8, respectively. Moreover, comparisons between
simulated and experimental data for outputs are depicted in

Figs. 8 and 9. It demonstrates the compliance between the
experimental output and the simulated output by optimal
ANN model during experiment number.

Radial basis function (RBF) networks were also tested in
this paper. Nevertheless, it was incapable to furnish superior
model for output prediction with T value of 0.84, MSE of

0.828 and R-values of 0.934 and 0.957 for contact area and
RR, respectively.

It should be noted that experimental tests revealed that the
increase of tire inflation pressure as well as the decrease of

wheel load resulted in a decrease of contact area. Furthermore,
a decrease of tire inflation pressure and an increase of wheel
load both resulted in an increase of RR.

Two more common soil textures and two tires widely used
in Urmia region were used in this model for generalization in
spite of which more works are required to demonstrate the

generalized value of presented ANN model including more tire
types and soil textures.

5. Conclusion

It is indicated that artificial neural networks (ANN) as a po-
tent modeling method can effectively predict contact area of

wheel with soil and RR particularly because they have complex
and nonlinear behavior where mathematical, numerical and
conventional models fail to model and predict multivariate
relations. The results of utilizing various training algorithms

revealed that a feed-forward back propagation ANN with
topography of 4–6-2 neurons could achieve the optimum mod-
el. High values of coefficient of regression were obtained after
training and testing the model and separately evaluating the
objective parameters. R-value, MSE, and simplicity of model
were the deciding criteria to select the optimum training

algorithm.
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