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et Laboratoire de Probabilités et Modèles Aléatoires (CNRS-UMR 7599), 78350 Jouy-en-Josas, France

Received 28 June 2004; received in revised form 17 May 2005; accepted 19 October 2005

Available online 28 November 2005
Abstract

The method introduced by Leroux [Maximum likelihood estimation for hidden Markov models,

Stochastic Process Appl. 40 (1992) 127–143] to study the exact likelihood of hidden Markov models

is extended to the case where the state variable evolves in an open interval of the real line. Under

rather minimal assumptions, we obtain the convergence of the normalized log-likelihood function to

a limit that we identify at the true value of the parameter. The method is illustrated in full details on

the Kalman filter model.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Hidden Markov models (HMMs) form a class of stochastic models which are of classical
use in numerous fields of applications. In these models, the process of interest is a Markov
chain ðUnÞ with state space U, which is not observed. Given the whole sequence of state
variables ðUnÞ, the observed random variables ðZnÞ are conditionally independent and the
conditional distribution of Zi depends only on the corresponding state variable Ui. Due to
this description, HMMs are also called state space models. They are often concretely
see front matter r 2005 Elsevier B.V. All rights reserved.
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obtained as follows. Suppose that ð�nÞ is a sequence of independent and identically
distributed random variables (a noise), independent of the unobserved Markov chain ðUnÞ,
and let the observed process be given by

Zn ¼ GðUn; �nÞ, (1)

where G is a known function. (For instance, Zn ¼ hðUnÞ þ �n is classical). These models
raise two kinds of problems which are addressed in two different areas of research and
have a wide range of applications.
�
 Problem (1): Estimation of the unobserved variable Un (resp. Unþ1) from past
observations Zn; . . . ;Z1. This is the problem of filtering (resp. prediction) in discrete
time.

�
 Problem (2): Statistical inference based on ðZ1; . . . ;ZnÞ generally with the aim of

estimating unknown parameters in the distribution of ðUnÞ.

In the literature devoted to problem (1), it is generally assumed that the spate space U of
ðUnÞ is a subset of an Euclidian space. In papers dealing with problem (2), it is more often
assumed that the hidden chain ðUnÞ has a finite state space U ¼ fu1; . . . ; umg and one wants
to estimate its transition probabilities. For general references, see e.g. [14]. More recently,
HMMs have been the object of a growing interest because they appear in the field of
finance and econometry. Indeed, in stochastic volatility models (see e.g. [11]), the observed
price process of a stock or asset, Sn, is such that logðSnþ1=SnÞ ¼ Zn ¼ hðUnÞ�n; where ðUnÞ

is a Markov chain and ð�nÞ a Gaussian white noise. The Markov chain is generally obtained
as a discretisation of a continuous time Markov process and evolves in an open subset of
an Euclidian space (see e.g. [16,1,7,8,17]).

In this paper, we are interested in problem (2), when the state variable ðUnÞ evolves in an
open interval U ¼ ðl; rÞ of the real line, with �1plorpþ1. Moreover, we assume
below that the hidden chain ðUn; n 2 ZÞ is strictly stationary and ergodic, and that the
conditional distribution of Zn given Un ¼ u does not depend on n (for instance, in (1), it is
the distribution of Gðu; �1Þ). Under these assumptions, it is well known that the joint
process ððUn;ZnÞ; n 2 ZÞ is also strictly stationary and ergodic (see e.g. [15,7]). We assume
that we observe Z1; . . . ;Zn extracted from the ergodic sequence ðZn; n 2 ZÞ. In this set-up,
our aim is to study parametric inference based on the exact likelihood of Z1; . . . ;Zn.

Before giving details on the content of our paper, let us present the results and open
problems in this domain. In a seminal paper, Leroux [15], assuming that U is a finite set,
proves the convergence of the normalized log-likelihood of ðZ1; . . . ;ZnÞ and the
consistency of the exact maximum likelihood estimator (MLE). The impressive feature
of Leroux’s paper is that his results are obtained under minimal assumptions. Relying on
the consistency result proved by Leroux, Bickel et al. [2] prove the asymptotic normality of
the exact MLE. Then, these results are extended to the case where U is a compact set by
Jensen and Petersen [12] and more completely by Douc and Matias [4]. In this context,
more general hidden Markov models such as switching autoregressive models are
investigated by Douc et al. [5].

For a general state space of ðUnÞ, the asymptotic behaviour of the exact likelihood of
ðZ1; . . . ;ZnÞ is still open, and consequently, the asymptotic behaviour of the exact MLE is
not known. However, there is a well-known model which makes exception and is
completely solved, namely the Kalman filter. In its simplest form, it may be described as
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follows. Let ðUnÞ be a one-dimensional Gaussian AR(1)-process

Un ¼ aUn�1 þ Zn, (2)

with jajo1 and ðZn; n 2 ZÞ a sequence of independent and identically distributed random
variables with Gaussian distribution Nð0;b2Þ. Suppose that the observed process is
given by

Zn ¼ Un þ �n, (3)

with ð�n; n 2 ZÞ i.i.d. Nð0; g2Þ. It is easily seen that ðZn; n 2 ZÞ is a Gaussian ARMAð1; 1Þ
process. Therefore, by the theory of ARMA Gaussian likelihood functions, it is well
known that the exact MLE of ða; b2; g2Þ is consistent and asymptotically Gaussian.
Below, we prove, for a general HMM, with U an open interval of R, the convergence of

the normalized log-likelihood to a limit that we identify at the true value of the parameter.
Our results are obtained under a set of assumptions that appear rather minimal and
hold for the Kalman filter. As an auxiliary result, we give a new simpler proof of the
convergence of the log-likelihood in the Kalman filter.
Now, we may outline the paper. We follow step by step Leroux’s paper preserving its

spirit in the sense of obtaining results under minimal assumptions, and we point out the
analogies and the differences. In Section 2, we present our framework: the unobserved
Markov chain ðUnÞ has state space U ¼ ðl; rÞ an open interval of R (�1plorpþ1). Its
transition operator Py depends on an unknown parameter y and transition probabilities
Pyðu;dvÞ ¼ pðy; u; vÞdv have densities with respect to the Lebesgue measure of U (denoted
by dv) (Assumptions (A0)–(A1)). For simplicity, the conditional distribution of Zn given
Un ¼ u, say FuðdzÞ, contains no additional unknown parameter. We assume that, when u is
considered as a parameter, FuðdzÞ ¼ f ðz=uÞmðdzÞ defines a standard dominated regular
family of distributions with f ðz=uÞ40 and, for all z, (m-a.e.), u! f ðz=uÞ continuous and
bounded on U (Assumptions (B1)–(B2)). The exact likelihood of ðZ1; . . . ;ZnÞ may be
obtained by several classical formulae that we recall. One way is to compute first the
conditional density of ðZ1; . . . ;ZnÞ given U1 ¼ u, say pnðy; z1; . . . ; zn=uÞ and then integrate
with respect to the distribution of U1. More generally, for any probability density g on U,
we define the functions

pg
nðy; z1; . . . ; znÞ ¼

Z
U

gðuÞpnðy; z1; . . . ; zn=uÞdu, (4)

and set pg
nðyÞ ¼ pg

nðy;Z1; . . . ;ZnÞ. When g is the exact density of U1, pg
nðyÞ is the likelihood

function, that we denote below by pnðyÞ. Otherwise, we call pg
nðyÞ a contrast process. As

usual we denote by y0 the true value of the parameter. Sections 3–4 are devoted to proving
that, for all positive and continuous densities g on U, 1

n
log pg

nðyÞ converges, in Py0 -
probability, to the same limit Hðy0; yÞ. This is obtained in two steps. First (Section 3), we
set, as in [15]

qnðy; z1; . . . ; znÞ ¼ sup
u2U

pnðy; z1; . . . ; zn=uÞ, (5)

and we call qnðyÞ ¼ qnðy;Z1; . . . ;ZnÞ the Leroux contrast. Since U is neither finite nor
compact, we need an adequate assumption to prove that qnðyÞ is well defined for all n:
This is obtained by assuming that the transition operator Py of ðUnÞ is Feller, a property
shared by all standard Markov chains on Euclidian spaces (Assumption (A3) and
Proposition 3.1). Then, under a weak moment Assumption (B3), we prove that 1

n
log qnðyÞ
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converges, Py0 -a.s., to a limit Hðy0; yÞ 2 ½�1;þ1Þ (Theorem 3.1). In Section 4, we prove
that 1

n
log qnðyÞ and

1
n
log pg

nðyÞ have the same limit in Py0 -probability, for all positive and
continuous g (Theorem 4.1). This requires, in our context, additional assumptions. The
main new Assumption (B4) is that the sequence of random variables

ûnðyÞ ¼ argsup
u2U

pnðy;Z1; . . . ;Zn=uÞ (6)

is Py0 -tight, for all y. By strengthening Assumption (B4), we obtain the convergence of
Ey0

1
n
log pg

nðyÞ to the limit Hðy0; yÞ (Proposition 4.1).
Section 5 is devoted to identify the limit Hðy0; y0Þ. This is done by obtaining the limit of

Ey0
1
n
log pnðy0Þ, with another approach. It requires a precise insight into the prediction

algorithm which allows to compute recursively the successive conditional distributions of
Un given Zn�1; . . . ;Z1 (Proposition 5.1). Then, we study the conditional distributions,
under Py0 , of Un given the finite past Zn�1; . . . ;Zn�p and the infinite past Zn�1 ¼

ðZn�1;Zn�2; . . .Þ. We prove that the conditional distribution of Un given Zn�1 (under Py0 )
has a continuous density ~gðy0; u=Zn�1Þ with respect to the Lebesgue measure on U.
Moreover, the process ððUn;Zn; ~gðy0; u=Zn�1 duÞÞ; n 2 ZÞ is a stationary version of the
Markov process ððUn;Zn;LPy0

ðUn=Zn�1; . . . ;Z1Þ; nX1ÞÞ(Propositions 5.2–5.4). Finally,
we use the previous results to prove that Hðy0; y0Þ is linked with the entropy of the
conditional distribution under Py0 of Z1 given the infinite past Z0 (Theorem 5.1).

In Section 6, we study in full details the Kalman filter model (see (2)–(3)). We prove that
it satisfies all our assumptions. The checking of Assumption (B4) is simple since the r.v. (6)
is explicit. The computation of the limit Hðy0; yÞ for all y (not only for y0) is also explicit
and obtained by using the limit of 1

n
log pg

nðyÞ for a well-chosen density g. In Section 7, other
examples are given. Section 8 contains concluding remarks and discusses briefly the
remaining open problems to achieve consistency.
2. General framework

2.1. Model assumptions

Let us first recall the definition of a hidden Markov model (HMM) ðZn; n 2 ZÞ;
defined for n 2 Z, with hidden chain Un 2 U and observed process Zn 2Z. We assume
that U and Z are Borel subsets of an Euclidian space equipped with their respective Borel
s-fields.

Definition 2.1. The process ðZn; n 2 ZÞ, is a HMM if
1.
 We are given a time homogeneous strictly stationary Markov chain ðUn; n 2 ZÞ, with
state space U which is unobserved.
2.
 Given the sequence ðUn; n 2 ZÞ, the random variables ðZiÞ are independent and the
conditional distribution of Zi only depends on Ui.
3.
 The conditional distribution of Zi given Ui ¼ u does not depend on i.

HMMs possess some generic properties that they inherit from the hidden chain (see e.g.

[15] for a finite state space and [7] for a general state space).
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Proposition 2.1. The joint process ððUn;ZnÞ; n 2 ZÞ satisfying the conditions of Definition 2.1
is a strictly stationary time homogeneous Markov chain. Moreover, if ðUn; n 2 ZÞ is ergodic,
so is ððUn;ZnÞ; n 2 ZÞ.

Let us now introduce our framework and assumptions on the model which are separated
into two groups. Assumptions (A) concern the hidden chain and Assumptions (B) the
conditional distribution together with the marginal distribution.
�
 (A0) U ¼ ðl; rÞ is an open interval of R, with �1plorpþ1.

�
 (A1) The transition operator Py of ðUnÞ depends on an unknown parameter

y 2 Y � Rp, pX1, and has transition densities with respect to the Lebesgue measure
on ðU;BðUÞÞ hereafter denoted by du: 8y 2 Y; Pyðu;dvÞ ¼ pðy; u; vÞdv:

�
 (A2) The transition operator of ðUnÞ satisfies

(i) 8j 2 CbðUÞ; Pyj 2 CbðUÞ, where CbðUÞ is the space of continuous and bounded
functions on U (Py is Feller),

(ii) if j40 and continuous, Pyj40.

�
 (A3) For all y 2 Y, the transition operator Py admits a stationary distribution pyðduÞ

having a density gðy; uÞ with respect to du and the chain with marginal distribution
pyðduÞ ¼ gðy; uÞdu is ergodic.

�
 (A4) For all y, u! gðy; uÞ is continuous and positive on U.

�
 (A5) For all y,

(i) ðu; vÞ ! pðy; u; vÞ is continuous.
(ii) Py is reversible, i.e., for all ðu; vÞ 2 U�U, pðy; u; vÞ=gðy; vÞ ¼ pðy; v; uÞ=gðy; uÞ:
(iii) For all compact subsets K of U, supu2K ;v2Uðpðy; u; vÞ=gðy; vÞÞoþ1:
R R

�
 (A6) U�U dudv gðy; uÞ ðp2ðy; u; vÞ=gðy; vÞÞ ¼ pðy; v; uÞpðy; u; vÞdu dvoþ1.

Assumptions (A0)–(A5) are rather weak and standard. They hold for many classical

models of Markov chains. We especially stress on the simplicity of (A2) which, together
with (B2) below, allows the existence of Leroux’s contrast. In particular, we do not need to
bound the transition densities from below as it is done in general. Assumption (A6) is less
standard. We just need it in Section 5.
�
 (B1) Z ¼ R, the conditional distribution of Zi given Ui ¼ u is known and has a density
f ðz=uÞ with respect to a dominating measure mðdzÞ on ðR;BðRÞÞ, the function ðu; zÞ !
f ðz=uÞ is jointly measurable.

�
 (B2) For m a.e. z 2 R, the function u! f ðz=uÞ is continuous and bounded from above,

and 8u 2 U; f ðz=uÞ40:

�
 (B3) Let q1ðzÞ ¼ supu2Uf ðz=uÞ. For all y 2 Y, Eyðlog

þ
ðq1ðZ1ÞÞo1:

Assumptions (B) are not stringent and concern properties of a known family of distri-

butions, the conditional laws of Zi given Ui ¼ u, for u 2 U. They mean that these laws
considered as a statistical model with respect to the parameter u, satisfy the usual properties of
a dominated statistical experiment. Assumption (B3) is very weak as we shall see in the
examples.

2.2. Likelihood and related contrast processes

We now recall some classical formulae to derive the likelihood of HMMs and con-
sider some associated contrast processes under Assumptions (A)–(B). We denote by
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O ¼ UZ � RZ the canonical space endowed with the Borel s-field A ¼ BðOÞ, ðUn;ZnÞ are
the canonical coordinates on O, and Py is the distribution of ðUn;ZnÞn2Z. For n 2 Z, the
marginal distribution of ðUn;ZnÞ is

gðy; uÞf ðz=uÞdumðdzÞ. (7)

The transition probability of the Markov chain ðUn;ZnÞ is equal to

pðy; u; u0Þf ðz0=u0Þdu0mðdz0Þ. (8)

On ðO;A;PyÞ, the process ðZnÞn2Z is a HMM in the sense of Definition 2.1. We observe the
sequence ðZ1; . . . ;ZnÞ for nX1, and study the problem of estimating the unknown
parameter y 2 Y of the hidden chain ðUnÞ. We denote by y0 the true value of the
parameter. Now, for u 2 U, the conditional distribution of ðZ1; . . . ;ZnÞ given U1 ¼ u,
under Py, has a density such that, for n ¼ 1,

p1ðy; z1=uÞ ¼ p1ðz1=uÞ ¼ f ðz1=uÞ, (9)

and for nX2, setting u1 ¼ u in the integral below,

pnðy; z1; . . . ; zn=uÞ ¼ f ðz1=uÞ

Z
Un�1

Yn

i¼2

pðy; ui�1; uiÞf ðzi=uiÞdu2 . . . dun. (10)

Under Py, ðZ1; . . . ;ZnÞ has density (with respect to mðdz1Þ � � � � � mðdznÞ)

pnðy; z1; . . . ; znÞ ¼

Z
U

gðy; uÞpnðy; z1; . . . ; zn=uÞdu. (11)

Now, let g be a probability density w.r.t. du on U and set

pg
nðy; z1; . . . ; znÞ ¼

Z
U

gðuÞpnðy; z1; . . . ; zn=uÞdu. (12)

Using these notations, the exact likelihood of ðZ1; . . . ;ZnÞ is equal to

pnðyÞ ¼ pnðy;Z1; . . . ;ZnÞ. (13)

The likelihood of ðZ1; . . . ;ZnÞ if U1 had distribution gðuÞdu is

pg
nðyÞ ¼ pg

nðy;Z1; . . . ;ZnÞ. (14)

We will study for all y under Py0 the exact likelihood pnðyÞ and the processes pg
nðyÞ, that we

shall call contrast processes.
Now, there is another expression for the exact likelihood pnðyÞ which relies on non-linear

filtering theory. Let us denote by piðy; zi=zi�1; . . . ; z1Þ the conditional density of Zi given
Zi�1 ¼ zi�1; . . . ;Z1 ¼ z1 under Py. We have

pnðy; z1; . . . ; znÞ ¼ p1ðy; z1Þ
Yn

i¼2

piðy; zi=zi�1; . . . ; z1Þ. (15)

For iX2, denote by

giðuiÞ ¼ giðy; ui=zi�1; . . . ; z1Þ (16)

the conditional density under Py of Ui given Zi�1 ¼ zi�1; . . . ;Z1 ¼ z1. Then,

piðy; zi=zi�1; . . . ; z1Þ ¼

Z
U

giðy; ui=zi�1; . . . ; z1Þf ðzi=uiÞdui. (17)
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It is well known from filtering theory that the predictive conditional densities gi can be
obtained recursively. More precisely, let us set

Fy
zðgÞðu

0Þ ¼

R
U gðuÞf ðz=uÞpðy; u; u0ÞduR

U gðuÞf ðz=uÞdu
. (18)

Then, (12) is equal to

pg
nðy; z1; . . . ; znÞ ¼ p

g
1ðy; z1Þ

Yn

i¼2

p
g
i ðy; zi=zi�1; . . . ; z1Þ, (19)

with

p
g
i ðy; zi=zi�1; . . . ; z1Þ ¼

Z
U

g
g
i ðy; ui=zi�1; . . . ; z1Þf ðzi=uiÞdui, (20)

where

g
g
i ðy; :=zi�1; . . . ; z1Þ ¼ Fy

zi�1
� � � � � Fy

z1
ðgÞ. (21)

For more details, see [3,8,9].

3. Extension of the Leroux method to a general HMM

In 1992, Leroux has introduced, for finite U, another useful contrast process. Our
Assumptions (B) together with the Feller property of the chain enable us to extend this
method to a general space U.
Let us define using (10) for all nX1

qnðy; z1; . . . ; znÞ ¼ sup
u2U

pnðy; z1; . . . ; zn=uÞ. (22)

We consider the associated process

qnðyÞ ¼ qnðy;Z1; . . . ;ZnÞ. (23)

For n ¼ 1, q1ðy; z1Þ ¼ q1ðz1Þ does not depend on y. Since U is general, we must prove that
(22)–(23) are well defined (finite). We see below that the conditional densities
pnðy; z1; . . . ; zn=uÞ inherit the properties of f ðz=uÞ.

Proposition 3.1. For nX1, y 2 Y, for m a.e. ðz1; . . . ; znÞ 2 R
n, if (B2) and (A2) are verified, the

function u! pnðy; z1; . . . ; zn=uÞ belongs to CbðUÞ, and for all u 2 U, pnðy; z1; . . . ; zn=uÞ40.

Proof. For n ¼ 1, this is (B2). For n ¼ 2, using (10),

p2ðy; z1; z2=uÞ ¼ f ðz1=uÞ

Z
U

pðy; u; u0Þf ðz2=u0Þdu0 ¼ f ðz1=uÞPyðf ðz2=:ÞÞðuÞ.

Clearly, (B2) and (A2) imply that this function belongs to CbðUÞ and is positive. The
conclusion is obtained for arbitrary n by induction. &

Therefore, we can define the random variable with values in Ū

ûnðyÞ ¼ ûnðy;Z1; . . . ;ZnÞ (24)

as any solution of qnðyÞ ¼ qnðy;Z1; . . . ;ZnÞ ¼ pnðy;Z1; . . . ;Zn=ûnðyÞÞ and study qnðyÞ.
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Theorem 3.1. Under (A0)–(A3), (B1)–(B3), the following holds:
(i)
 For all y, Py0 -a.s., as n tends to infinity,

1

n
log qnðyÞ ! Hðy0; yÞ,

where the limit Hðy0; yÞ satisfies �1pHðy0; yÞoþ1.

(ii)
 Moreover Hðy0; yÞ ¼ limn Ey0

1
n
log qnðyÞ ¼ infn Ey0

1
n
log qnðyÞ:
Proof. For n;mX1, we get using (10) that pnþmðy; z1; . . . ; znþm=uÞ is equal to

f ðz1=uÞ �

Z
Un�1

du2 . . .dun

Yn

i¼2

pðy; ui�1; uiÞf ðzi=uiÞ

�

Z
U

pðy; un; unþ1Þpmðy; znþ1; . . . ; znþm=unþ1Þdunþ1

� �
.

Therefore, bounding under the integral pm by qm, for all u, pnþmðy; z1; . . . ; znþm=uÞ is now
lower than or equal to

f ðz1=uÞ �

Z
Un�1

du2 . . . dun

Yn

i¼2

pðy; ui�1; uiÞf ðzi=uiÞ � qmðy; znþ1; . . . ; znþmÞ.

This is exactly equal to pnðy; z1; . . . ; zn=uÞqmðy; znþ1; . . . ; znþmÞ: Taking the supremum over u

leads to, for all z1; . . . ; znþm (a.e. m�nþm),

qnþmðy; z1; . . . ; znþmÞpqnðy; z1; . . . ; znÞqmðy; zmþ1; . . . ; znþmÞ. (25)

So, setting for nom, W n;m ¼ log qm�nðy;Znþ1; . . . ;ZmÞ, we obtain that W n;m is a stationary
and ergodic sequence with respect to the shift transformation W n;m !W nþ1;mþ1 under
Py0 , since, by (A3), ðZnÞ is a stationary and ergodic process under Py0 . Moreover, using
(25), it is subadditive, i.e. for all nopom (Py0 -a.s.)

W n;mpW n;p þW p;m.

Therefore, we can apply Kingman’s theorem for subadditive processes [13]: By (B3), we
have Ey0ðW

þ
0;1Þ ¼ Ey0 ðlog

þ
ðq1ðZ1ÞÞÞo1. Hence, we get Theorem 3.1. &

Remark 1. Kingman’s theorem ensures the existence of the deterministic limit Hðy0; yÞ but
this value may be equal to �1. Contrary to the classical ergodic theorem, it does not give
a representation of the limit as the expectation of some random variable. This is why it is
necessary to obtain such a representation by another proof.

4. Convergence of the loglikelihood

In this section, we study the convergence of the exact likelihood pnðyÞ and of pg
nðyÞ

defined in (13)–(14). Let us set, under (A2)–(B2), (see (10))

f nðy; uÞ ¼ log pnðy;Z1; . . . ;Zn=uÞ. (26)
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We now introduce some additional assumptions.
�
 (B4) For all y such that Hðy0; yÞ4�1, the sequence defined in (24) satisfies Py0 ðûnðyÞ 2
UÞ ! 1 as n tends to infinity and it is Py0 -tight in U.

�
 (B5) The function u! f nðy; uÞ is C2 on U, Py0 -a.s.

�
 (B6) Let BðûnðyÞ; �Þ ¼ fu 2 U; ju� ûnðyÞjp�g. There exists an �040 such that

1

n
sup

u2BðûnðyÞ;�0Þ
jf 00nðy; uÞj ! 0

in Py0 -probability. (f
00
nðy; uÞ is the second derivative with respect to u).

Assumptions (B4)–(B6) are new and replace the too stringent assumption thatU is finite or
compact. In the Kalman filter example, the random variable ûnðyÞ can be explicitly
computed and all assumptions hold for this model. Now, we prove that, under the above
additional assumptions, 1

n
log pg

nðyÞ,
1
n
log pnðyÞ have the same limit as 1

n
log qnðyÞ as n tends to

infinity.

Theorem 4.1. Assume (A0)–(A4) and (B1)–(B6). For any density g on U satisfying that

u! gðuÞ is continuous and positive on U, we have, in Py0 -probability, as n tends to infinity

lim
1

n
log pg

nðyÞ ¼ Hðy0; yÞ. (27)

In particular, the result holds for the exact likelihood.

Proof. Clearly, for all y, and all g, Py0 -a.s., pg
nðyÞpqnðyÞ (see ((10)–(12), (22)). Therefore, by

Theorem 3.1,

lim sup
1

n
log pg

nðyÞpHðy0; yÞ. (28)

The whole difficulty lies in getting the lower bound. If Hðy0; yÞ ¼ �1, the result is
immediate. Now, fix y such that Hðy0; yÞ4�1. From now on, y is omitted in the
notation (f nðuÞ ¼ f nðy; uÞ and ûn ¼ ûnðyÞ). Using (B4), for any Z40, there is an integer n0, a
compact set K � U and �1 ¼ �1ðKÞ40 such that

8nXn0; Py0ðûn 2 KÞX1� Z and Py0ðBðûn; �1Þ � KÞX1� Z. (29)

We may choose �1p�0 where �0 is given by (B6). Using (26) and (10)–(12), we get

pg
nðyÞ ¼

Z
U

gðuÞ expðf nðuÞÞduX

Z
Bðûn;�1Þ

gðuÞ expðf nðuÞÞdu. (30)

Define Znð�Þ as

Znð�Þ ¼ sup
u2Bðûn;�Þ

jf 00nðuÞj. (31)

For u 2 Bðûn; �1Þ, since f 0nðûnÞ ¼ 0, we have

f nðuÞXf nðûnÞ �
�21
2

Znð�1Þ. (32)



ARTICLE IN PRESS
V. Genon-Catalot, C. Laredo / Stochastic Processes and their Applications 116 (2006) 222–243 231
Thus, pg
nðyÞXqnðyÞ exp½�

�2
1

2
Znð�1Þ�

R
Bðûn;�1Þ

gðuÞdu. On the event fBðûn; �1Þ �Kg, infu2Bðûn;�1Þ

gðuÞXinfu2K gðuÞ ¼ cðKÞ40: Hence,

1

n
log pg

nðyÞX
1

n
log qnðyÞ �

�21
2n

Znð�1Þ þ
1

n
log 2�1cðKÞ.

Since �1p�0, Znð�1ÞpZnð�0Þ, by Assumption (B6), 1
n

Znð�1Þ tends to 0 in Py0 -probability,
which leads to Theorem 4.1 using (29). Choosing g equal to the stationary density gðy; :Þ,
we get the result for the exact likelihood. &

The next question is now to identify the limit Hðy0; yÞ. We only do it at y ¼ y0. This
requires strengthening some of the previous assumptions.
�
 (B40) Assumption (B4) holds and there exist a positive integer k and a constant C such
that, for all y, and all n, Ey0 jûnðyÞjkpC:

�
 (B50) Assumption (B5) holds and there exists �40 such that

1

n
Ey0 sup

u2BðûnðyÞ;�Þ
jf 00nðy; uÞj

" #
! 0.

Proposition 4.1. Assume (A0)–(A4), (B1)–(B3), (B40)–(B50). Let g be a positive, continuous

density satisfying

9C40; 8u 2 ðl; rÞ j log gðuÞjpCð1þ jujkÞ.

Then, for all y,

lim
1

n
Ey0 log pg

nðyÞ ¼ Hðy0; yÞ. (33)

Proof. Since pg
nðyÞpqnðyÞ, by Theorem 3.1(ii), we have

lim sup
1

n
Ey0 log pg

nðyÞpHðy0; yÞ. (34)

Using the r.v. Znð�Þ defined in (31), we have the following lower bound:

1

n
log pg

nðyÞX
1

n
log qnðyÞ �

�2

2n
Znð�Þ þ

1

n
log

Z
Bðûn;�Þ

gðuÞdu. (35)

Now, using (B40)–ðB50Þ, we get that lim sup 1
n
Ey0 log pg

nðyÞXHðy0; yÞ. &

Let us note that Assumption (B40) and the condition on g are used to control the last
term in the lower bound (35). They are fitted to the case ðl; rÞ ¼ R. If l or r is finite, these
conditions have to be adapted.
5. Entropy

This section is devoted to identifying the limit Hðy0; y0Þ.
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5.1. The prediction algorithm and its domain

Set

Hy ¼ g : U! R; continuous and
g

gðy; :Þ
2 L2

py

� �
, (36)

where pyðduÞ ¼ gðy; uÞdu is the stationary distribution of Py and L2
py is the space of square-

integrable functions w.r.t. py. We consider, on Hy, the topology associated with the
following family of semi-norms: for all compact subsets K of U,

jgjK ;y ¼ sup
u2K

jgðuÞj þ

Z
U

g2ðuÞ

g2ðy; uÞ
gðy; uÞdu

� �1=2

.

Hence, gn ! g in Hy if and only if gn ! g uniformly on each compact subset of U and
gn

gðy;:Þ !
g

gðy;:Þ in L2
py . Endowed with this topology, Hy is a Polish space. Now, we define

Fy ¼ g 2Hy; gX0;

Z
U

gðuÞdu ¼ 1

� �
, (37)

which is the set of probability densities belonging to Hy. Clearly, gðy; :Þ belongs to Fy.
Moreover, it is immediate to check that Fy is a closed subset of Hy.
Now, let us recall the algorithm at y that computes recursively the predictive conditional

densities of Ui given Zi�1 ¼ zi�1; . . . ;Z1 ¼ z1 under Py, i.e. giðy; ui=zi�1; . . . ; z1Þ (see
(16)–(18)). For g : U! R a probability density and z 2 R, let us set

Fy
zðgÞ ¼

Ay
zg

hzg
(38)

with

hzg ¼

Z
U

f ðz=uÞ gðuÞdu; Ay
zgðu0Þ ¼

Z
U

f ðz=uÞ gðuÞ pðy; u; u0Þdu. (39)

To obtain the successive conditional distributions, we must compute the iterates Fy
zn
�

Fy
zn�1
� � � � � Fy

z1
for z1; . . . ; zn in R. It is therefore central to find a proper space on which

these iterates are well-defined.

Proposition 5.1. Assume (A0)–(A5), (B1)–(B2). Then,
(1)
 For g 2Fy and m-a.e. z, Fy
zðgÞ 2Fy: If g40 and continuous, then Fy

zðgÞ40 and

continuous.

(2)
 g! Fy

zðgÞ is continuous on Fy (in the topology of Hy).

(3)
 For all g 2Fy and all n, ðu; z1; . . . ; znÞ ! Fy

zn
� Fy

zn�1
� � � � � Fy

z1
ðgÞðuÞ is measurable on

U� Rn.

(4)
 Let ðgnÞ be a sequence of functions belonging to Fy and let g 2Fy. Assume that the

sequence of probability measures nnðduÞ ¼ gnðuÞdu weakly converges to the probability

measure nðduÞ ¼ gðuÞdu, then, for all z, the sequence of probability measures Fy
zðgnÞðuÞdu

weakly converges to the probability measure Fy
zðgÞðuÞdu.
Proof. (1). Let g 2Fy. Since gX0, ga0, using (B2), we get hzg40. Therefore, Fy
zðgÞ

is well-defined, non-negative and is a probability density. Now, we use reversibility
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to get

Ay
zgðu0Þ ¼ gðy; u0Þ

Z
U

f ðz=uÞ
gðuÞ

gðy; uÞ
pðy; u0; uÞdu. (40)

This can be written as (see (B3) for q1ðzÞ)

Ay
zg

gðy; :Þ
¼ Py f ðz=:Þ

g

gðy; :Þ

� �
pq1ðzÞPy

g

gðy; :Þ

� �
. (41)

Since g=gðy; :Þ 2 L2
py , we deduce that Ay

zg=gðy; :Þ 2 L2
py . Moreover, from (40), (A4) and (A5),

we can obtain the continuity of the function Ay
zg. To complete the proof of (1), we use

(A2)(ii).
To get (2), we prove the continuity of the operators Ay

z and hz on Fy. Both are linear on
Hy. For g in Hy,

jhzgjpq1ðzÞ

Z
U

jgðuÞj

gðy; uÞ
gðy; uÞdupq1ðzÞ

g

gðy; :Þ

����
����
L2
py

. (42)

Now, suppose that, for functions gn; g inFy, the sequence ðgnÞ converges to g uniformly on
each compact subset of U. Since gn; g are probability densities, the pointwise convergence
of gn to g implies that, as n tends to infinityZ

U

jgnðuÞ � gðuÞjdu! 0. (43)

(This is the Scheffé theorem). This in turn implies the weak convergence of gnðuÞdu to
gðuÞdu. Since u! f ðz=uÞ is continuous and bounded, we deduce that hzgn ! hzg. Thus,
hz is continuous on Fy (in the topology of Hy). Now, using (41), we obtain

Ay
zg

gðy; :Þ

����
����
L2
py

pq1ðzÞ
g

gðy; :Þ

����
����
L2
py

. (44)

Consider again functions gn; g in Fy such that the sequence ðgnÞ converges to g uniformly
on each compact subset of U. Let K be a compact subset of U. We have

sup
u02K

jAy
zðgn � gÞðu0Þjp sup

u02K ;u2U
gðy; u0Þ

pðy; u0; uÞ
gðy; uÞ

Z
U

jgnðuÞ � gðuÞjdu q1ðzÞ. (45)

Thus, using (43), (A5) and (44), we obtain that Ay
z is continuous on Fy. (This achieves (2)).

To prove (3), let us check that, for g 2Fy and z1; . . . ; zn 2 R (see (10)–(12))

Fy
zn
� Fy

zn�1
� � � � � Fy

z1
ðgÞ ¼

Ay
zn
� Ay

zn�1
� � � � � Ay

z1
ðgÞ

p
g
nðy; z1; . . . ; znÞ

. (46)

For n ¼ 1, it is the definition. For n ¼ 2, using the linearity hz and Ay
z and hz1g40,

we get

Fy
z2
� Fy

z1
ðgÞ ¼

Ay
z2
� Ay

z1
g

hz2 � Ay
z1

g
. (47)
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The above denominator is equal to
R
U f ðz2=u0ÞAy

z1
ðgÞðu0Þdu0. Changing the order of

integrations lead to

hz2 � Ay
z1

g ¼

Z
U

gðuÞp2ðy; z1; z2=uÞdu.

The proof of (46) is achieved by induction. The denominator is measurable. Since ðu0; zÞ !
Ay

zðgÞðu
0Þ is measurable, the same holds for ðu; z1; . . . ; znÞ ! Ay

zn
� Ay

zn�1
� � � � � Ay

z1
ðgÞðuÞ by

induction.
Let us prove (4). Suppose that, for gn; g in Fy, gnðuÞdu weakly converges to gðuÞdu.

Since u! f ðz=uÞ is continuous and bounded, hzgn tends to hzg. By (A5)(iii), for all u0 2 U,
the function u! f ðz=uÞpðy; u0; uÞ=gðy; uÞ is also continuous and bounded. Therefore, using
(40), for all u0, Ay

zgnðu
0Þ tends to Ay

zgðu0Þ, so Fy
zðgnÞðu

0Þ tends to Fy
zðgÞðu

0Þ. Since these
functions are probability densities, by Scheffé’s theorem, we get the result. This completes
the proof of Proposition 5.1. &

5.2. Conditional distributions given the infinite past

For ðzn; n 2 ZÞ 2 RZ, we denote by zn ¼ ðzn; zn�1; . . .Þ the vector of RN defined by the
infinite past from n. Recall that, using (38)–(39),

gnþ1ðy0; :=Zn; . . . ;Z1Þ ¼ Fy0
Zn
� Fy0

Zn�1
� � � � � Fy0

Z1
ðgðy0; :ÞÞ. (48)

This is the conditional density, under Py0 , of Unþ1 given Zn; . . . ;Z1. Similarly, the
conditional density of U1 given Z0;Z�1 . . . ;Z�nþ1 (under Py0 ) is

gnþ1ðy0; :=Z0;Z�1; . . . ;Z�nþ1Þ ¼ Fy0
Z0
� Fy0

Z�1
� � � � � Fy0

Z�nþ1
ðgðy0; :ÞÞ. (49)

This sequence converges in a sense precised in Proposition 5.3 to a function ~gðy0; :=Z0Þ that
we first characterize.

Proposition 5.2. Assume (A0)–(A6). There exists a regular version of the conditional

distribution of U1 given the infinite past Z0 under Py0 having density ~gðy0; u=Z0Þdu satisfying
(1)
 8u 2 U; Ey0 ðpðy0;U0; uÞ=Z0Þ ¼ ~gðy0; u=Z0Þ; Py0 -a.s.,

(2)
 ðu;Z0ðoÞÞ ! ~gðy0; u=Z0ðoÞÞ is measurable,

(3)
 Py0 -a.s., ~gðy0; :=Z0Þ belongs to Fy0 .
Proof. Let n̂ðy0;du0;Z0ðoÞÞ be a regular version of the conditional distribution under Py0
of U0 given Z0, defined for all o 2 O. Now, set

~gðy0; u=Z0ðoÞÞ ¼
Z
U

pðy0; u0; uÞn̂ðy0;du0;Z0ðoÞÞ (50)

so that (1) holds. With our assumptions, (2) also holds and the above function is a
probability density on U. Using reversibility, we get

~gðy0; u=Z0ðoÞÞ ¼ gðy0; uÞ
Z
U

pðy0; u; u0Þ

gðy0; u0Þ
n̂ðy0; du0;Z0ðoÞÞ. (51)



ARTICLE IN PRESS
V. Genon-Catalot, C. Laredo / Stochastic Processes and their Applications 116 (2006) 222–243 235
By (A5)(iii), we deduce the continuity in u. It remains to prove that

u!

Z
U

pðy0; u; u0Þ

gðy0; u0Þ
n̂ðy0;du0;Z0ðoÞÞ 2 L2

py0
. (52)

By the Cauchy–Schwarz inequality, this is satisfied ifZ
U

gðy0; uÞdu

Z
U

p2ðy0; u; u0Þ

g2ðy0; u0Þ
n̂ðy0;du0;Z0ðoÞÞo1. (53)

Changing the order of integrations, the above quantity is equal to

Ey0

Z
U

gðy0; uÞ
p2ðy0; u;U0Þ

g2ðy0;U0Þ
du=Z0

� �
ðoÞ. (54)

This r.v. is finite Py0 -a.s. as soon as

Ey0

Z
U

gðy0; uÞ
p2ðy0; u;U0Þ

g2ðy0;U0Þ
du

� �
o1. (55)

This is exactly our assumption (A6).
It remains to prove that the conditional distribution of U1 given Z0 is exactly

~gðy0; u=Z0Þdu. Hence, let us compute, for all j : U! ½0; 1� Borel, Ey0 ðjðU1Þ=Z0Þ. Using
the Markov property of ðUn;ZnÞ and the special form of its transition probability (8)
leads to

Ey0ðjðU1Þ=U0;Z0Þ ¼ Ey0 ðjðU1Þ=U0;Z0Þ ¼ Ey0 ðjðU1Þ=U0Þ. (56)

Hence, the result is obtained since

Ey0ðjðU1Þ=Z0Þ ¼

Z
n̂ðy0;du0;Z0ðoÞÞ

Z
jðuÞpðy0; u0; uÞdu: & (57)

5.3. Convergence of the log-likelihood ratio at the true value of the parameter

Now, we are able to give a meaning for the entropy of the stationary process ðZn; n 2 ZÞ

at y0. Let

~pðy0; z=Z0Þ ¼

Z
U

f ðz=uÞ ~gðy0; u=Z0Þdu ¼ hzð ~gðy0; :=Z0ÞÞ40 ðPy0 -a.s.Þ (58)

and define

~Py0ðdz=Z0Þ ¼ ~pðy0; z=Z0ÞmðdzÞ. (59)

Relation (59) defines a random probability measure which is a regular version of the
conditional distribution, under Py0 , of Z1 given Z0. Since ~pðy0; z=Z0Þpq1ðzÞ, we have,
by (B3),

Ey0 log
þ ~pðy0;Z1=Z0Þoþ1. (60)

Hence, we can set

�Eðy0Þ ¼ Ey0 log ~pðy0;Z1=Z0Þ, (61)
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where �1p� Eðy0Þoþ1. Taking the conditional expectation given Z0 yields

�Eðy0Þ ¼ Ey0

Z
R

log ~pðy0; z=Z0Þ
~Py0 ðdz=Z0Þ

� �
. (62)

Thus, Eðy0Þ is the expectation of the usual entropy of the distribution ~Py0 ðdz=Z0Þ. Before
studying the likelihood, we need some preliminary results.

Proposition 5.3. The sequence of probability measures

ðgnþ1ðy0; u=Z0;Z�1; . . . ;Z�nþ1ÞduÞ

(see (49)) weakly converges, Py0 -a.s., to the probability measure ~gðy0; u=Z0Þdu.

Proof. Set gnþ1ðy0; u=Z0;Z�1; . . . ;Z�nþ1Þdu:¼n0;�nþ1ðy0;duÞ and n0;�1ðy0;duÞ:¼ ~gðy0; u=
Z0Þdu. For x 2 R and o 2 O, set

F nðx;oÞ ¼
Z x

�1

n0;�nþ1ðy0; du;oÞ and F ðx;oÞ ¼
Z x

�1

n0;�1ðy0;du;oÞ, (63)

which are continuous in x and non-decreasing. For all x 2 R, Py0 -a.s., we have

F nðx; :Þ ¼ Ey0 ð1ð�1;x�ðU1Þ=Z0; . . . ;Z�nþ1Þ; F ðx; :Þ ¼ Ey0 ð1ð�1;x�ðU1Þ=Z0Þ. (64)

By the martingale convergence theorem, we get that, as n!1, 8x 2 R;Py0 -a.s.,
Fnðx; :Þ ! F ðx; :Þ. Therefore, there exists a set Ny0 in A such that Py0 ðNy0Þ ¼ 0 and
8o 2 Nc

y0 ;8r 2 Q;Fnðr;oÞ ! F ðr;oÞ. Now, fix o 2 Nc
y0 and x 2 R. For �40, using the

continuity of F ð:;oÞ, there exist r0; r00 2 Q such that

r0pxpr00 and F ðx;oÞ � �pF ðr0;oÞpF ðr00;oÞpF ðx;oÞ þ �.

The inequality Fnðr
0;oÞpF nðx;oÞpF nðr

00;oÞ implies F ðr0;oÞp lim infnF nðx;oÞp
lim supnFnðx;oÞpF ðr00;oÞ. Hence, F nðx;oÞ ! F ðx;oÞ and we have shown that, for all
o 2 Nc

y0 , the weak convergence of n0;�nþ1ðy0; du;oÞ to n0;�1ðy0;du;oÞ holds. &

Proposition 5.4. Let us set ~gnðy0; uÞ ¼ ~gnðy0; u=Zn�1Þ. Then, for all n 2 Z, Py0 -a.s.,
~gnþ1ðy0; :Þ ¼ Fy0

Zn
ð ~gnðy0; :ÞÞ.

Proof. Since ðUn;ZnÞ is strictly stationary, the conditional distribution, under Py0 , of U2

given Z1 is ~gðy0; u=Z1Þdu and Proposition 5.3 leads to the weak convergence of
gnþ2ðy0; u=Z1;Z0;Z�1; . . . ;Z�nþ1Þdu to ~gðy0; u=Z1Þdu,Py0 -a.s., where the densities are all
in Fy0 . We also have

gnþ2ðy0; :=Z1;Z0;Z�1; . . . ;Z�nþ1Þ ¼ Fy0
Z1
ðgnþ1ðy0; :=Z0;Z�1; . . . ;Z�nþ1ÞÞ.

Using Propositions 5.1, (4) and 5.3, the sequence gnþ2ðy0; u=Z1;Z0;Z�1; . . . ;Z�nþ1Þdu

weakly converges, Py0 -a.s. to Fy0
Z1
ð ~gðy0; :=Z0ÞÞ. Thus, we obtain

Fy0
Z1
ð ~gðy0; u=Z0ÞÞdu ¼ ~gðy0; u=Z1Þdu.

Since the densities are continuous, we deduce Fy0
Z1
ð ~gðy0; :=Z0ÞÞ ¼ ~gðy0; :=Z1Þ. The result of

Proposition 5.4 follows. &

The two previous propositions are also proved in [9] in the context of a specific model.
An important consequence of these propositions is that, ~gnðy0; uÞdu is the conditional
distribution of Un given Zn�1 under Py0 . On ðO;A;Py0Þ, the process ðUn;Zn; ~gnðy0; :ÞÞn2Z
with state space U� R�Fy0 is strictly stationary and ergodic. So, by Proposition 5.4, we
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have obtained a stationary regime for the Markov process ððUn;Zn;F
y0
Zn
� Fy0

Zn�1

� � � � � Fy0
Z1
ðgðy0; :ÞÞ; nX1Þ. Let us set

X n ¼ log pnðy0;Z1=Z0;Z�1; . . . ;Z�nþ2Þ. (65)

Then, X n ¼ logð
R

f ðZ1=uÞgnðy0; u=Z0;Z�1; . . . ;Z�nþ2ÞduÞ, and we can state:

Theorem 5.1. Assume (A0)–(A6), (B1)–(B3) and that (B40Þ–ðB50Þ hold at y ¼ y0. Assume

moreover that the sequence of random variables ðX�n Þ is uniformly integrable. Then,
Hðy0; y0Þ4�1 and Hðy0; y0Þ ¼ �Eðy0Þ:

Proof. Using (58)–(60), an application of the ergodic theorem yields

1

n

Xn

i¼1

log ~pðy0;Zi=Zi�1Þ ! �Eðy0Þ.

Now, since u! f ðZ1=uÞ is continuous and bounded, using Proposition 5.3, X n defined in
(65) tends to X ¼ log ~pðy0;Z1=Z0Þ, as n tends to infinity, Py0 -a.s. Since, by (B3), the
sequence ðXþn Þ is uniformly integrable, the additional assumption ensures that the same
holds for ðjX njÞ. So, first, we get that Ey0 jX jo1 which implies �Eðy0Þ4�1 according to
Definition (61). Second, Ey0ðX nÞ ! Ey0ðX Þ. Now, by the strict stationarity, Ey0 ðX nÞ ¼

Ey0ðlog pnðy0;Zn=Zn�1; . . . ;Z1ÞÞ: Taking Cesaro means, we obtain

1

n

Xn

i¼1

Ey0 log piðy0;Zi=Zi�1; . . . ;Z1Þ ¼
1

n
Ey0 log pnðy0Þ ! �Eðy0Þ.

Using Proposition 4.1 and (61) leads to the equality of the two limits Hðy0; y0Þ ¼ �Eðy0Þ. &

6. Specifying the model entirely on the Kalman filter

The Kalman filter is a hidden Markov model for which the behaviour of the likelihood is
well known. Since the hidden state space is U ¼ R, it is interesting to check the
assumptions on this model, especially (B4)–(B6) and (B40)–(B50). Consider the one
dimensional AR(1)-process Un ¼ aUn�1 þ Zn, and the observed process Zn ¼ Un þ �n

defined in (2)–(3). We are interested in the estimation of y ¼ ða;b2Þ and we shall suppose
that g2 is known. The process ðUnÞ is assumed in stationary regime: the marginal
distribution of ðUnÞ is the Gaussian law

py ¼Nð0; t2Þ with t2 ¼
b2

1� a2
. (66)

Let gðy; vÞ denote the density of py. The transition operator Py of ðUnÞ has density equal to

pðy; u; vÞ ¼
1

bð2pÞ1=2
exp�

ðv� auÞ2

2b2
. (67)

Assumptions (A0)–(A5) hold. As for (A5)(iii), note that, since

sup
v2U

pðy; u; vÞ=gðy; vÞ / expðð1� a2Þu2=2b2Þ,

this quantity is not uniformly bounded on the whole state space R. Checking (A6) is also
simple since pðy; u; vÞpðy; v; uÞ is up to a constant a two-dimensional Gaussian density.
Consider now the assumptions on the conditional distribution of Zn given Un ¼ u. The
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density f ðz=uÞ is here

f ðz=uÞ ¼
1

gð2pÞ1=2
exp�

ðz� uÞ2

2g2
. (68)

In this case, q1ðzÞ ¼ 1=gð2pÞ1=2 is constant. Assumptions (B1)–(B3) are satisfied, and
Theorem 3.1 holds. However, we will not use it to compute the limit. Instead, we use a
pg

nðyÞ with a special g. To this end, we shall apply Theorem 4.1 and Proposition 4.1 after
having checked Assumptions (B4)–(B6) and (B40)–(B50).
Let us compute pg

nðy; z1; . . . ; znÞ (see (12)). For this, we need to specify the operator Fy
z

(see (18)). In the Kalman filter model, this operator has the following special property: if
nðm;s2Þ is the Gaussian density with mean m and variance s2 (with the convention that the
Dirac mass dm is a Gaussian law with nul variance and mean m), then, Fy

zðnðm;s2ÞÞ is also
Gaussian. Therefore, it is enough to specify its mean and its variance. The following result
is classically obtained by elementary computations

Fy
zðnðm;s2ÞÞ ¼ nðm̄;s̄2Þ (69)

with

m̄ ¼ aðmdðs2Þ þ zð1� dðs2ÞÞÞ; s̄2 ¼ b2 þ a2s2dðs2Þ, (70)

and

dðs2Þ ¼
g2

g2 þ s2
. (71)

Note that the degenerate case nðu;0Þ ¼ du is included in these formulae with the convention
s2 ¼ 0. The mean m̄ depends on ðm;s2Þ, on y and on the new observation z. A special
feature of the Kalman filter is that the variance s̄2 only depends on s2 and y and neither on
m nor on z. The function s2! s̄2 ¼ Fyðs2Þ is

F yðvÞ ¼ b2 þ a2 vg2

g2 þ v
. (72)

This function is convex increasing and has a unique stable fixed point vðyÞ satisfying
b2pvðyÞp b2

1�a2
.

Starting the iterations with g ¼ nðm;s2Þ, the density g
g
i ðy; :=zi�1; . . . ; z1Þ defined in (21) is

Gaussian. We denote its mean and variance by

miðy; ðm; s2Þ; zi�1; . . . ; z1Þ and s2i ðy;s
2Þ. (73)

We replace from now on the superscript g by ðm;s2Þ. Density (19) is now obtained as

pðm;s
2Þ

n ðy; z1; . . . ; znÞ

/
Yn

i¼1

ðs2i ðy;s
2Þ þ g2Þ�1=2 exp �

ðzi �miðy; ðm;s2Þ; zi�1; . . . ; z1ÞÞ
2

s2i ðy;s2Þ þ g2

� �
ð74Þ

with the convention that m1 ¼ m;s21 ¼ s2.

6.1. Checking the additional assumptions

Let us check (B4)–(B6), the assumptions that lead to Theorem 4.1. For this, we compute
explicitly ûnðy;Z1; . . . ;ZnÞ defined in (24). Consider first the equation defining s2i ðy;s

2Þ.
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Using notation (72) and starting iterations with the initial density nðm;s2Þ, we get s21ðy; s
2Þ ¼

s2 and for iX2,

s2i ðy;s
2Þ ¼ Fy � � � � � F yðs2Þ (75)

is the ði � 1Þth iterate of Fy starting from s2. By the properties of Fy, s2i ðy; s
2Þ converges as

i goes to infinity to the unique fixed point vðyÞ of F y. To simplify some notations below,
whenever s2 ¼ 0, we shall set

s2i ðyÞ ¼ s2i ðy; 0Þ. (76)

Consider now the recurrence equation defining miðy; ðu; 0Þ;Zi�1; . . .Z1Þ, i.e. the mean
obtained when starting the iterations with the Dirac mass at u, after ði � 1Þ iterations
corresponding to successive observations Z1;Z2; . . . ;Zi�1 (see (70)–(73)). We shall also
simplify the notations and set, for iX2,

miðy; uÞ ¼ miðy; ðu; 0Þ;Zi�1; . . .Z1Þ and m1ðy; uÞ ¼ u; m2ðy; uÞ ¼ au. (77)

For iX1, denote, using (71),

di ¼ dðs2i ðyÞÞ ¼
g2

s2i ðyÞ þ g2
; a0 ¼ 1 and for iX2; ai�1 ¼ ai�1

Yi�1
j¼1

di�j. (78)

We obtain that

miðy; uÞ ¼ ai�1uþmiðy; 0Þ; m1ðy; 0Þ ¼ m2ðy; 0Þ ¼ 0. (79)

For iX3

miðy; 0Þ ¼ a
Xi�1
k¼1

akð1� di�kÞZi�k. (80)

Therefore, the random function f nðy; uÞ ¼ log pnðy;Z1; . . . ;Zn=uÞ (see (26)) is equal to, C

denoting a given constant,

f nðy; uÞ ¼ �
1

2
C þ

Xn

i¼1

logðs2i ðyÞ þ g2Þ þ
ðZi � ai�1u�miðy; 0Þ

2

s2i ðyÞ þ g2

 !
. (81)

Clearly, u! f nðy; uÞ is a parabola, whose maximum is attained at point

ûnðyÞ ¼ ûnðy;Z1; . . . ;ZnÞ ¼
AnðyÞ
DnðyÞ

, (82)

with

AnðyÞ ¼
Xn

i¼1

ai�1

s2i ðyÞ þ g2
ðZi �miðy; 0ÞÞ; DnðyÞ ¼

Xn

i¼1

a2i�1
s2i ðyÞ þ g2

. (83)

By (78), it follows that jai�1jpjaji�1 with jajo1. Since s2i ðyÞ converges to vðyÞ, DnðyÞ
converges to a positive constant DðyÞ, as n tends to infinity. The numerator AnðyÞ is a
random variable defined on ðO;A;Py0Þ, which is centred and Gaussian. Let us check that
AnðyÞ converges in L2ðPy0Þ to a limiting Gaussian random variable. Let k:k2 denote the L2-
norm in L2ðPy0Þ. First note that, if Cðy0Þ ¼ kZik2,

kZi �miðy; 0Þk2pCðy0Þ 1þ
Xi�1
k¼1

jakj

 !
pCðy0Þ

1

1� jaj

� �
.

Thus, for a constant C, kAnþmðyÞ � AnðyÞk2pC
Pnþm

i¼nþ1
jai�1j

s2
i
ðyÞþg2. Since this upper bound

tends to 0 as n;m tend to infinity, the sequence AnðyÞ converges in L2ðPy0 Þ to a limiting
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random variable, say AðyÞ, and we obtain that, as n tends to infinity

ûnðyÞ !
AðyÞ
DðyÞ

and Ey0 ûnðyÞ
2pC. (84)

Hence, we have (B4) and (B40) with k ¼ 2. As for (B50), we see that q2

qu2
f nðy; uÞ, the second

derivative of f nðy; uÞ w.r.t. u, has here a simple expression, independent of u,

q2

qu2
f nðy; uÞ ¼ �DnðyÞ.

Therefore, (B50) holds. Thus, Theorem 4.1 holds and Proposition 4.1 can be applied for
any Gaussian density.

6.2. Computing the entropy Hðy0; y0Þ and the limit Hðy0; yÞ

According to Theorem 4.1, in Py0 -probability, for all y and for all g ¼ nðm;s2Þ,
1
n
log pðm;s

2Þ
n ðyÞ and 1

n
log qnðyÞ have the same limit Hðy0; yÞ. The exact likelihood corresponds

to g ¼ nð0;t2Þ (see (66)). The interest of Theorem 4.1 is that we can choose g to obtain this
common limit. Our choice leads to simpler computations.
For g, let us consider the Gaussian density with m ¼ 0 and s2 ¼ vðyÞ the fixed point of

(72) and set

pð0;vðyÞÞn ðyÞ ¼ ps
nðyÞ. (85)

Then, for all i, siðy; vðyÞÞ ¼ vðyÞ and

dðsiðy; vðyÞÞÞ ¼ dðvðyÞÞ ¼
g2

g2 þ vðyÞ
:¼dðyÞ. (86)

The iterations on the means simplify into m1 ¼ 0, m2 ¼ að1� dðyÞÞZ1 and,

miðy; ð0; vðyÞÞ;Zi�1; . . . ;Z1Þ ¼ að1� dðyÞÞ
Xi�1
k¼1

ðadðyÞÞk�1Zi�k. (87)

Let us set

Hy
zðmÞ ¼ aðmdðyÞ þ zð1� dðyÞÞÞ. (88)

Then, the algorithm defined in (70) is simply given by m! m̄ ¼ Hy
zðmÞ, and, for iX2,

miðy; ð0; vðyÞÞ;Zi�1; . . . ;Z1Þ ¼ Hy
Zi�1
� � � � �Hy

Z1
ð0Þ. (89)

Therefore, the function ps
nðyÞ now satisfies (up to a constant)

1

n
log ps

nðyÞ ¼ �
1

2
logðg2 þ vðyÞÞ þ

1

n

Xn

i¼1

ðZi �miðy; ð0; vðyÞÞ;Zi�1; . . . ;Z1ÞÞ
2

g2 þ vðyÞ

 !
. (90)

We proceed now following the method of Section 5 and introduce successive iterations
starting from the past. Let us consider

miðy; ð0; vðyÞÞ;Z0; . . . ;Z�iþ2Þ ¼ Hy
Z0
� � � � �Hy

Z�iþ2
ð0Þ ð91Þ

¼ að1� dðyÞÞ
Xi�2
k¼0

ðadðyÞÞkZ�k. ð92Þ
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Since the process ðZn; n 2 ZÞ is, under Py0 , strictly stationary and Gaussian, and since
adðyÞo1, we have as i tends to infinity, in L2ðPy0 Þ, (and a.s.)

Hy
Z0
� � � � �Hy

Z�iþ2
ð0Þ ! mðy;Z0Þ, (93)

where

mðy;Z0Þ ¼ Hy
Z0
� � � � �Hy

Z�iþ2
ð0Þ � � � � ¼ að1� dðyÞÞ

Xþ1
k¼0

ðadðyÞÞkZ�k. (94)

In this model, Assumptions (B40)–(B50) hold for all y. Moreover, the random variables

X nðyÞ ¼ log pnðy;Z1=Z0; . . . ;Z�nþ2Þ

satisfy jX nðyÞjpCðZ2
1 þm2

nðy; ð0; vðyÞÞ;Z0; . . . ;Z�nþ2ÞÞ. So, they are uniformly integrable.
Theorem 5.1 (applied for all y) yields that the limit of expression (90) is, up to a constant,

Hðy0; yÞ ¼ �
1

2
logðg2 þ vðyÞÞ þ

1

g2 þ vðyÞ
Ey0 ððZ1 �mðy;Z0ÞÞ

2
Þ

� �
. (95)

We can now relate the above result to the one obtained in a previous paper. Let us
introduce the random Gaussian distribution, well defined under Py0 , with mean mðy;Z0Þ

and variance vðyÞ þ g2:

~Py ¼Nðmðy;Z0Þ; vðyÞ þ g2Þ. (96)

Then, if KðP;QÞ denotes the Kullback information of P with respect to Q,

Hðy0; y0Þ �Hðy0; yÞ ¼ Ey0ðKð
~Py0 ; ~PyÞÞ. (97)

Hence, we recover the identifiability assumption introduced in [8, pp. 306–308], where this
quantity is proved to be non-negative and equal to 0 if and only if y ¼ y0.

Of course, in this model, the asymptotic properties of the exact MLE of y are well
known from the theory of Gaussian ARMA-processes. Our approach gives a new light
based on the point of view of HMMs.

7. Other examples

It is possible to check several of our assumptions on other models. Each group of
assumptions implies a result which has its own interest, the more complete being obtained
under the whole set of assumptions.

Let us first look at Assumptions (A) which concern the hidden chain only. A special case
with particular interest is obtained when ðUnÞ derives from a regular sampling of a
diffusion process ðV tÞ on ðl; rÞ with �1plorpþ1

dV t ¼ bðy;VtÞdtþ aðy;V tÞdW t; Un ¼ V nD, (98)

where D40 is fixed and W is a standard Brownian motion. Under classical regularity
assumptions on bðy; :Þ and aðy; :Þ, Assumptions (A0)–(A5) may be easily checked and are
standard. Assumption (A6) may possibly be checked using explicit expressions of the
transition density.

Let us look at Assumptions (B).

Example 1. Consider an additive model Zn ¼ Un þ �n where the noises ð�nÞ are Nð0; 1Þ.
Assumptions (B1)–(B3) are automatically satisfied as we have seen in the previous section.
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Example 2. When the state space of ðV tÞ is ð0;1Þ, setting Zn ¼ U1=2
n �n yields a class of

HMMs which are often called stochastic volatility models. If, moreover ð�nÞ is a sequence
of i.i.d. random variables with distribution Nð0; 1Þ, then

f ðz=uÞ ¼
1

ð2puÞ1=2
exp �

z2

2u

� �
. (99)

We can compute q1ðzÞ ¼ ð1=ð2peÞ1=2jzj�1: Assumptions (B1)–(B2) are immediate.
Assumption (B3) is a weak moment assumption on the stationary distribution of ðV tÞ.
Assumptions (B4)–(B6) remain unchecked but Theorem 3.1 holds.

Example 3. Another model is proposed in [6,9,10]. The hidden chain is a standard
Gaussian AR(1) process. The observation is given by Zn ¼ Un�n, where the noise has a
non-Gaussian distribution. For all n, �n has the distribution of �G�1=2 where � and G are
independent random variables, � is a symmetric Bernoulli variable taking values þ1;�1
with probability 1

2
and G has an exponential distribution with known parameter l40. The

exact likelihood is explicit and the checking of assumptions is on going work.

8. Concluding remarks and open problems

To complete the proof of consistency for the MLE, there remains to relate the limit
Hðy0; yÞ to a Kullback information as we have done in the Kalman filter example. This is
really difficult. The difficulty comes from the fact that identifying this limit requires
proving stability of the stochastic algorithm, for ðZnÞ under Py0 , gnþ1 ¼ fy

Zn
ðgnÞ: The

stability property needed here may be in a very weak sense as in [15] and should be related
to Assumption (B4).
It is possible, up to very slight changes, to extend our results to the case where the hidden

chain ðUnÞ has a state space equal to an open convex subset of Rk. Therefore, the case of
discrete observations of continuous time stochastic volatility models (as in [7]) may be
considered.
In the examples above, we focus on hidden chains which are discretisations of diffusion

processes. However, other classes of ergodic Markov chains may be considered. For
instance, Barndorff-Nielsen and Shephard [1] consider stochastic volatility models where
the volatility is given by a non-Gaussian Ornstein–Uhlenbeck process (O–U Lévy process).
The discretisation of such processes yields ergodic Markov chains on ð0;þ1Þ.
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