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Abstract

The method introduced by Leroux [Maximum likelihood estimation for hidden Markov models,
Stochastic Process Appl. 40 (1992) 127-143] to study the exact likelihood of hidden Markov models
is extended to the case where the state variable evolves in an open interval of the real line. Under
rather minimal assumptions, we obtain the convergence of the normalized log-likelihood function to
a limit that we identify at the true value of the parameter. The method is illustrated in full details on
the Kalman filter model.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Hidden Markov models (HMMs) form a class of stochastic models which are of classical
use in numerous fields of applications. In these models, the process of interest is a Markov
chain (U,) with state space %, which is not observed. Given the whole sequence of state
variables (U,), the observed random variables (Z,) are conditionally independent and the
conditional distribution of Z; depends only on the corresponding state variable U;. Due to
this description, HMMs are also called state space models. They are often concretely
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obtained as follows. Suppose that (g,) is a sequence of independent and identically
distributed random variables (a noise), independent of the unobserved Markov chain (U,,),
and let the observed process be given by

Zy = G(Uy, &), )

where G is a known function. (For instance, Z, = h(U,) + ¢, is classical). These models
raise two kinds of problems which are addressed in two different areas of research and
have a wide range of applications.

® Problem (1): Estimation of the unobserved variable U, (resp. U,.;) from past

observations Z,,...,Z;. This is the problem of filtering (resp. prediction) in discrete
time.
e Problem (2): Statistical inference based on (Z,...,Z,) generally with the aim of

estimating unknown parameters in the distribution of (U,,).

In the literature devoted to problem (1), it is generally assumed that the spate space % of
(U,) is a subset of an Euclidian space. In papers dealing with problem (2), it is more often
assumed that the hidden chain (U},) has a finite state space # = {u,,...,u,} and one wants
to estimate its transition probabilities. For general references, see e.g. [14]. More recently,
HMMs have been the object of a growing interest because they appear in the field of
finance and econometry. Indeed, in stochastic volatility models (see e.g. [11]), the observed
price process of a stock or asset, S,, is such that log(S,+1/S,) = Z, = W(U,)s,, where (U,)
is a Markov chain and (¢,) a Gaussian white noise. The Markov chain is generally obtained
as a discretisation of a continuous time Markov process and evolves in an open subset of
an Euclidian space (see e.g. [16,1,7,8,17]).

In this paper, we are interested in problem (2), when the state variable (U,,) evolves in an
open interval % = ([,r) of the real line, with —co</<r< + oo. Moreover, we assume
below that the hidden chain (U,,n € Z) is strictly stationary and ergodic, and that the
conditional distribution of Z,, given U,, = u does not depend on # (for instance, in (1), it is
the distribution of G(u,¢;)). Under these assumptions, it is well known that the joint
process (U,, Z,),n € Z) is also strictly stationary and ergodic (see e.g. [15,7]). We assume
that we observe Z1, ..., Z, extracted from the ergodic sequence (Z,,n € Z). In this set-up,
our aim is to study parametric inference based on the exact likelihood of Zy,...,Z,.

Before giving details on the content of our paper, let us present the results and open
problems in this domain. In a seminal paper, Leroux [15], assuming that % is a finite set,
proves the convergence of the normalized log-likelihood of (Z,...,Z,) and the
consistency of the exact maximum likelihood estimator (MLE). The impressive feature
of Leroux’s paper is that his results are obtained under minimal assumptions. Relying on
the consistency result proved by Leroux, Bickel et al. [2] prove the asymptotic normality of
the exact MLE. Then, these results are extended to the case where % is a compact set by
Jensen and Petersen [12] and more completely by Douc and Matias [4]. In this context,
more general hidden Markov models such as switching autoregressive models are
investigated by Douc et al. [5].

For a general state space of (U,), the asymptotic behaviour of the exact likelihood of
(Z,,...,2Z,)is still open, and consequently, the asymptotic behaviour of the exact MLE is
not known. However, there is a well-known model which makes exception and is
completely solved, namely the Kalman filter. In its simplest form, it may be described as
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follows. Let (U,) be a one-dimensional Gaussian AR(1)-process
Un = aUn—l + Ure (2)

with |a| <1 and (3,,n € Z) a sequence of independent and identically distributed random
variables with Gaussian distribution .47(0, ?). Suppose that the observed process is
given by

Zn = Un + &, (3)

with (e,,n € Z) ii.d. A47(0,7?). It is easily seen that (Z,,n € Z) is a Gaussian ARMA(I, 1)
process. Therefore, by the theory of ARMA Gaussian likelihood functions, it is well
known that the exact MLE of (a, 2, 7%) is consistent and asymptotically Gaussian.

Below, we prove, for a general HMM, with % an open interval of R, the convergence of
the normalized log-likelihood to a limit that we identify at the true value of the parameter.
Our results are obtained under a set of assumptions that appear rather minimal and
hold for the Kalman filter. As an auxiliary result, we give a new simpler proof of the
convergence of the log-likelihood in the Kalman filter.

Now, we may outline the paper. We follow step by step Leroux’s paper preserving its
spirit in the sense of obtaining results under minimal assumptions, and we point out the
analogies and the differences. In Section 2, we present our framework: the unobserved
Markov chain (U,) has state space % = (/,r) an open interval of R (—oco</<r< 4 00). Its
transition operator Py depends on an unknown parameter 6 and transition probabilities
Py(u,dv) = p(0, u,v)dv have densities with respect to the Lebesgue measure of % (denoted
by dv) (Assumptions (A0)—(Al)). For simplicity, the conditional distribution of Z, given
U, = u, say F,(dz), contains no additional unknown parameter. We assume that, when u is
considered as a parameter, F,(dz) = f(z/u)u(dz) defines a standard dominated regular
family of distributions with f(z/u)>0 and, for all z, (u-a.e.), u — f(z/u) continuous and
bounded on # (Assumptions (B1)-(B2)). The exact likelihood of (Z,...,Z,) may be
obtained by several classical formulae that we recall. One way is to compute first the
conditional density of (Z,...,Z,) given U| = u, say p,(0,zi,...,z,/u) and then integrate
with respect to the distribution of U,. More generally, for any probability density g on %,
we define the functions

PIO,z1,. .., z,) = /Z/g(u)pn(ﬁ,zl,...,zn/u)du, @)
and set p9(0) = p9(0,Z, ..., Z,). When g is the exact density of Uy, pJ(0) is the likelihood
function, that we denote below by p,(0). Otherwise, we call p¥(0) a contrast process. As
usual we denote by 6, the true value of the parameter. Sections 3—4 are devoted to proving
that, for all positive and continuous densities g on %, %log pI(0) converges, in Py, -
probability, to the same limit H(6y, 0). This is obtained in two steps. First (Section 3), we
set, as in [15]

q,0,z1,...,z,) =sup p,(0,z1,...,2,/u), ®)
ueU
and we call ¢,(0) = q,(0,Z,,...,Z,) the Leroux contrast. Since % is neither finite nor

compact, we need an adequate assumption to prove that ¢,(0) is well defined for all n:
This is obtained by assuming that the transition operator Py of (U,) is Feller, a property
shared by all standard Markov chains on Euclidian spaces (Assumption (A3) and
Proposition 3.1). Then, under a weak moment Assumption (B3), we prove that %log q,(0)
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converges, Pp,-a.s., to a limit H (0, 0) € [-o0, +00) (Theorem 3.1). In Section 4, we prove
that %log q,(0) and %log pI(0) have the same limit in Py, -probability, for all positive and
continuous ¢ (Theorem 4.1). This requires, in our context, additional assumptions. The
main new Assumption (B4) is that the sequence of random variables

in(0) = argsup p,(0,Z,,...,Z,/u) (6)

ueU

is Pg,-tight, for all 0. By strengthening Assumption (B4), we obtain the convergence of
Eg, %10gp2(9) to the limit H(6y, 0) (Proposition 4.1).

Section 5 is devoted to identify the limit H (6o, 0y). This is done by obtaining the limit of
[Egoilog ,(0p), with another approach. It requires a precise insight into the prediction
algorithm which allows to compute recursively the successive conditional distributions of
U, given Z,_,,...,Z; (Proposition 5.1). Then, we study the conditional distributions,
under Pg,, of U, given the finite past Z,_i,...,Z,_, and the infinite past Z, | =
(Zy-1,Zy-2,...). We prove that the conditional distribution of U, given Z,_; (under Py,)
has a continuous density §(0,u/Z,_;) with respect to the Lebesgue measure on %.
Moreover, the process (U, Z,, §(60,u/Z,_, du)),n € Z) is a stationary version of the
Markov process (U, Z,, ffﬂ)oo(U,,/Zn,l, ..., Z1),n=1))(Propositions 5.2-5.4). Finally,
we use the previous results to prove that H(6,0) is linked with the entropy of the
conditional distribution under Py, of Z; given the infinite past Z, (Theorem 5.1).

In Section 6, we study in full details the Kalman filter model (see (2)—(3)). We prove that
it satisfies all our assumptions. The checking of Assumption (B4) is simple since the r.v. (6)
is explicit. The computation of the limit H (6o, #) for all 6 (not only for ;) is also explicit
and obtained by using the limit of %log pI(0) for a well-chosen density g. In Section 7, other
examples are given. Section 8 contains concluding remarks and discusses briefly the
remaining open problems to achieve consistency.

2. General framework
2.1. Model assumptions

Let us first recall the definition of a hidden Markov model (HMM) (Z,,n € 7),
defined for n € Z, with hidden chain U, € % and observed process Z, € Z. We assume

that # and & are Borel subsets of an Euclidian space equipped with their respective Borel
o-fields.

Definition 2.1. The process (Z,,n € Z), is a HMM if

1. We are given a time homogeneous strictly stationary Markov chain (U,,n € Z), with
state space % which is unobserved.

2. Given the sequence (U,,n € Z), the random variables (Z;) are independent and the
conditional distribution of Z; only depends on U,.

3. The conditional distribution of Z; given U; = u does not depend on i.

HMMs possess some generic properties that they inherit from the hidden chain (see e.g.
[15] for a finite state space and [7] for a general state space).
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Proposition 2.1. The joint process (U, Z,),n € Z) satisfying the conditions of Definition 2.1
is a strictly stationary time homogeneous Markov chain. Moreover, if (U,,n € Z) is ergodic,
sois (Uy, Zy),n € 7).

Let us now introduce our framework and assumptions on the model which are separated
into two groups. Assumptions (A) concern the hidden chain and Assumptions (B) the
conditional distribution together with the marginal distribution.

® (A0) % = (I,r) is an open interval of R, with —co</<r< + oo.

® (Al) The transition operator Py of (U,) depends on an unknown parameter
0 e ®C R, p=1, and has transition densities with respect to the Lebesgue measure
on (%, %)) hereafter denoted by du: VO € @, Py(u,dv) = p(0,u,v)dv.

® (A2) The transition operator of (U,) satisfies
(1) Yo € Cp(U), Pyp € Cp(U), where Cp(%) is the space of continuous and bounded

functions on % (Py is Feller),

(i1) if ¢ >0 and continuous, Py >0.

® (A3) For all 6 € @, the transition operator Py admits a stationary distribution my(du)
having a density ¢(0,u) with respect to du and the chain with marginal distribution
ng(du) = g(0, u) du is ergodic.

® (A4) For all 6, u — ¢g(0,u) is continuous and positive on %.

® (AS) For all 6,
(1) (u,v) — p(6,u,v) is continuous.
(ii) Py is reversible, i.e., for all (u,v) € % x U, p(0,u,v)/9(0,v) = p(0,v,u)/g(0,u).
(iii) For all compact subsets K of %, sup,x ,c4(p(0,u,v)/g(0,v)) < + oo.

® (A6) [, dudvg(0,u)(p*(0,u,v)/g(0,v)) = [ p(0,v,u)p(0,u,v)dudv< + oc.

Assumptions (A0)—(AS5) are rather weak and standard. They hold for many classical
models of Markov chains. We especially stress on the simplicity of (A2) which, together
with (B2) below, allows the existence of Leroux’s contrast. In particular, we do not need to
bound the transition densities from below as it is done in general. Assumption (A6) is less
standard. We just need it in Section 5.

e (B1) Z = R, the conditional distribution of Z; given U; = u is known and has a density
f(z/u) with respect to a dominating measure u(dz) on (R, Z(R)), the function (u,z) —
f(z/u) is jointly measurable.

® (B2) For pa.e. z € R, the function u — f(z/u) is continuous and bounded from above,
and Yu € U, f(z/u)>0.

e (B3) Let q,(z) = sup,,f(z/u). For all 0 € O, Ey(log™(q,(Z)) < o0.

Assumptions (B) are not stringent and concern properties of a known family of distri-
butions, the conditional laws of Z; given U; = u, for u € %. They mean that these laws
considered as a statistical model with respect to the parameter u, satisfy the usual properties of
a dominated statistical experiment. Assumption (B3) is very weak as we shall see in the
examples.

2.2. Likelihood and related contrast processes

We now recall some classical formulae to derive the likelihood of HMMs and con-
sider some associated contrast processes under Assumptions (A)—(B). We denote by
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Q = U” x R” the canonical space endowed with the Borel o-field .«Z = #(Q), (U, Z,) are
the canonical coordinates on €, and [Py is the distribution of (U,, Z,),,. For n € Z, the
marginal distribution of (U, Z,) is

9(0,u)f (z/u) du p(dz). (7
The transition probability of the Markov chain (U,, Z,) is equal to
PO, u,)f (' /u') dud p(dZ). @®)

On (@, o7, Py), the process (Z,),7 is a HMM in the sense of Definition 2.1. We observe the
sequence (Z,...,Z,) for n=1, and study the problem of estimating the unknown
parameter 6 € ® of the hidden chain (U,). We denote by 6y the true value of the

parameter. Now, for u € %, the conditional distribution of (Zy,...,Z,) given U = u,
under Py, has a density such that, for n =1,
210,21 /u) = py(z1/u) = f(z1/u), ©)
and for n>2, setting u; = u in the integral below,
2.,0,z1,. ...z, 1) :f(zl/u)/ 1 H PO, w1, u)f (zi/u;) duy . . . duy,. (10)
iz
Under Py, (Z,...,Z,) has density (with respect to u(dz;) ® - -- ® u(dz,))
P.0,21,...,2,) = / g(0,wp,(0,z1,...,z,/u)du. (11)
w
Now, let g be a probability density w.r.t. du on % and set
IO, z1,. .., zp) = / gwp,0,z1,...,z,/u)du. (12)
w
Using these notations, the exact likelihood of (Z,,...,Z,) is equal to
pn(o)zpn(O’Zl""’Z”)' (13)
The likelihood of (Z,...,Z,) if U, had distribution g(u) du is
pi’,(e):p}Z(Q,Zlan-,Zn)- (14)

We will study for all 0 under Py, the exact likelihood p,(0) and the processes pJ(0), that we
shall call contrast processes.

Now, there is another expression for the exact likelihood p,,(0) which relies on non-linear
filtering theory. Let us denote by p,(0,z;/zi1,...,z1) the conditional density of Z; given
Zi1=2zi1,...,2Z; = z; under Py. We have

Pa0.z1,. . 2) = p1 0,20 [ [ PO 2i/zi1, .. 20), (15)
i=2

For i>=2, denote by
gi(ui) =gi(0,u[/2[_1,...,21) (16)

the conditional density under Py of U; given Z;,_| = z;_y,...,Z| = z;. Then,

pi0,zi/zi—1,...,21) = / 9:0,u;/zi—1, ..., z0)f (zi/u;) du;. (17)

U
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It is well known from filtering theory that the predictive conditional densities g; can be
obtained recursively. More precisely, let us set

S 9@)f (z/w)p(0,u,1) du '

(g = 18
g)) T, o oy du (18)
Then, (12) is equal to

PO, 21, z0) = pl0,2) [ ] 200 zi/zi 1. 20, (19)

=2

with

PO 2i) 21t 2) = / GO, 21, o 2 o) (20)

U

where

g0, ./zic1, ..., 0) =D o0 d! (g). (21)

For more details, see [3,8,9].

3. Extension of the Leroux method to a general HMM

In 1992, Leroux has introduced, for finite %, another useful contrast process. Our
Assumptions (B) together with the Feller property of the chain enable us to extend this
method to a general space %.

Let us define using (10) for all n>1

q,0,z1,...,z,) =sup p,(0,z1,...,2,/u). (22)

ueu
We consider the associated process
qn(g) = qn(ga Zla' . 'sZiI)' (23)

Forn=1, q,(0,z,) = ¢q,(z1) does not depend on 0. Since % is general, we must prove that
(22)-(23) are well defined (finite). We see below that the conditional densities
2,0,z1,...,z,/u) inherit the properties of f(z/u).

Proposition 3.1. Forn>=1,0 € 0, for pa.e. (zy,...,z,) € R", if (B2) and (A2) are verified, the
Sunction u — p,(0,z1,...,z,/u) belongs to Cp(U), and for all u € U, p,(0,z1,...,z,/u)>0.

Proof. For n = 1, this is (B2). For n = 2, using (10),

P20, 21,22 /u) = f(z1/u) /Wp(H, u,u)f (z2/u) dul = f(z1 /u) Po(f (z2/ )W)
Clearly, (B2) and (A2) imply that this function belongs to Cy(%) and is positive. The
conclusion is obtained for arbitrary »n by induction. [
Therefore, we can define the random variable with values in %
n(0) = 4,0, 21,...,2Z,) (24)
as any solution of ¢,(0) = ¢,(0,Z,,...,Z,) =p,(0,Z\,...,Z,/0,(0)) and study ¢, (0).
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Theorem 3.1. Under (A0)—(A3), (B1)(B3), the following holds:
(i) For all 0, Py,-a.s., as n tends to infinity,
Loz q,(0) > H(t,0),

where the limit H(0,,0) satisfies —oo < H(0,,0)< + oo.
(ii) Moreover H(0y,0) = lim, Ey, %log q,(0) = inf,, Ey, %log q,(0).

Proof. For n,m>1, we get using (10) that p, . .(0,z1,...,Z,m/u) is equal to

fefwx

Y= 1

du, .. .du, H PO, ui_y, u)f (zi/u;)
i=2

X |:/ P(B, Up, Un+1)[7m(9, Zntls .- - sZn+m/un+l) dun-H .
A

Therefore, bounding under the integral p,, by g,,, for all u, p,_,.(0,z1, ..., Zym/u) is now
lower than or equal to

f(Zl/l/l) X / ] duZ cee dun H P(B, uj—1, ui)f(zi/ui) X qm(es Zndlseees Zn+m)-

w i=2
This is exactly equal to p,(0, z1, . . ., 2, /u)q,,(6, Zus1s - - - » Znem)- Taking the supremum over u
leads to, for all zi, ...,z (a.e. u®"m),
qn+m(0; V4 P Zn+m) <qn(ea V4 PR Zn)Qm(ea Zmtls s Zl’hLm)' (25)

So, setting for n<m, W, = loggq,,_,(0, Z,+11,. .., Zy), we obtain that W, is a stationary
and ergodic sequence with respect to the shift transformation W,,, — W, |+ under
Py,, since, by (A3), (Z,) is a stationary and ergodic process under Py,. Moreover, using
(25), it is subadditive, i.e. for all n<p<m (Py,-a.s.)

Wn,m < Wn,p + Wp,m~

Therefore, we can apply Kingman’s theorem for subadditive processes [13]: By (B3), we
have [Ego(Wal) = Eq,(log™(¢,(Z1))) <oo. Hence, we get Theorem 3.1. [

Remark 1. Kingman’s theorem ensures the existence of the deterministic limit H (6, ) but
this value may be equal to —oo. Contrary to the classical ergodic theorem, it does not give
a representation of the limit as the expectation of some random variable. This is why it is
necessary to obtain such a representation by another proof.

4. Convergence of the loglikelihood

In this section, we study the convergence of the exact likelihood p,(0) and of pY(0)
defined in (13)—(14). Let us set, under (A2)—(B2), (see (10))

Su0,u) =1logp,0,.Z,,...,2Z,/u). (26)
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We now introduce some additional assumptions.

® (B4) For all 0 such that H(0y, 0)> — oo, the sequence defined in (24) satisfies Py, (¢1,(0) €
) — 1 as n tends to infinity and it is Py -tight in %.

e (BS) The function u — f,(0,u) is C? on %, Pg,-a.s.

e (B6) Let B(i1,(0),¢) = {u € U, |u — 0,(0)| <e}. There exists an & >0 such that

1
- sup |/, (0,u) - 0
M ye B(i1,(0),)

in Py, -probability. (f(0,u) is the second derivative with respect to u).

Assumptions (B4)—(B6) are new and replace the too stringent assumption that % is finite or
compact. In the Kalman filter example, the random variable #,(f) can be explicitly
computed and all assumptions hold for this model. Now, we prove that, under the above
additional assumptions, 1log pé(0), Llog p,(0) have the same limit as 1log ¢,(0) as n tends to
infinity.

Theorem 4.1. Assume (A0)-(A4) and (B1)-(B6). For any density g on U satisfying that
u — ¢(u) is continuous and positive on U, we have, in Py, -probability, as n tends to infinity

lim%log pY(0) = H(0o,0). 27)

In particular, the result holds for the exact likelihood.

Proof. Clearly, for all 0, and all g, P -a.s., p9(0)<q,(0) (see ((10)—(12), (22)). Therefore, by
Theorem 3.1,

1
lim sup . log p2(0) < H(0y, 0). (28)

The whole difficulty lies in getting the lower bound. If H(6y,0) = —oo, the result is
immediate. Now, fix 0 such that H(0y,0)> — co. From now on, 0 is omitted in the
notation (f,(u) = f,(0,u) and @, = @1,(0)). Using (B4), for any 5> 0, there is an integer 7o, a
compact set K C % and ¢; = &(K)>0 such that

Vnzng, Po(in € K)>1—n and Pg(Blis,e) C K)=1—n. (29)

We may choose & <g where ¢ is given by (B6). Using (26) and (10)—(12), we get

ﬁ@=/wmwmmwf 9(u0) exp(f (1) duc. (30)
w Bin1)
Define Z,(¢) as
Ze) = sup If1(w). 31)
u€B(i,,¢)

For u € B(ily, ¢1), since /' (i1,) = 0, we have

2
a

fn(u) >fn(1:ll’l) - 2

Z(&1)- (32)
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Thus, p(6)>¢,(0) expl— % Z,(eD)] [z, 9(u) due. On the event {B(dy, e1) C K}, infue, e
g(u)=inf,cxg(u) = c(K)>0. Hence,

2
€l

1 1 1

—log p(0) = —log ¢,(0) — 5 -Zu(e1) + —log 21 «(K).

n n 2n n
Since ¢ <&y, Z,(e1)<Z,(g), by Assumption (B6), %Zn(sl) tends to 0 in Py,-probability,
which leads to Theorem 4.1 using (29). Choosing g equal to the stationary density g(6,.),
we get the result for the exact likelihood. [

The next question is now to identify the limit H(6y, ). We only do it at 6 = 6. This
requires strengthening some of the previous assumptions.

e (B4') Assumption (B4) holds and there exist a positive integer k and a constant C such
that, for all 0, and all n, Eg, |#,(0)* < C.
® (B5') Assumption (B5) holds and there exists ¢>0 such that

— 0.

1 ”
- [E90 [ Sup lfn(gz u)'

n ueB(ii,(0),¢)

Proposition 4.1. Assume (A0)~(A4), (B1)~(B3), (B4)(B5). Let g be a positive, continuous
density satisfying

3C>0, Yue (L,r) |loggu)<C + |ul*).
Then, for all 0,

lim% Eo, log pd(0) = H(0y, 0). (33)
Proof. Since p9(0)<gq,(0), by Theorem 3.1(ii), we have

lim sup % Eo, log p9(0) < H (0o, 0). (34)

Using the r.v. Z,(¢) defined in (31), we have the following lower bound:
&2

1 1
~logp?(0)= ~1 0) —
. og pi(0) p 0g q,(0) o

1
Z,(e) + flog/ g(u)du. (35)
n Biin.2)
Now, using (B4')~(B5’), we get that lim sup 1 Eg logp9(0)=>H(6p,0). O
Let us note that Assumption (B4') and the condition on g are used to control the last
term in the lower bound (35). They are fitted to the case (/,r) = R. If [ or r is finite, these
conditions have to be adapted.

5. Entropy

This section is devoted to identifying the limit H(6y, 0y).
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5.1. The prediction algorithm and its domain

Set
Hy=1g I_ep2 (36)
9(0,) ™
where np(du) = g(0, u) du is the stationary distribution of Py and Lfm is the space of square-
integrable functions w.r.t. my. We consider, on #, the topology associated with the
following family of semi-norms: for all compact subsets K of %,

gP(u) 1z
91k = sup lg(w)] + /I a0, ndul

Hence, g, — g in ' if and only if g, — ¢ uniformly on each compact subset of # and
l’l n
% — q(() 5 in L2 Endowed with this topology, 5 is a Polish space. Now, we define

%={ge=7fo,g>0, /g(u)du=1}, (37)

which is the set of probability densities belonging to #. Clearly, g(0,.) belongs to %
Moreover, it is immediate to check that % is a closed subset of .
Now, let us recall the algorithm at 6 that computes recursively the predictive conditional

densities of U; given Z;, | =z;_y,...,Z; =z under Py, ie. g(0,u;/zi—1,...,21) (see
(16)—(18)). For g : %4 — R a probability density and z € R, let us set
A9
Pl(g) === (38)
h-g
with
o= [ Sefigdn, Al00) = [ Fe/u g0 p(O.u i) due (39)

To obtain the successive conditional distributions, we must compute the iterates 450
@’ o...0 @0 for zy,...,z, in R. It is therefore central to find a proper space on which

Zn—1

these iterates are well- deﬁned.

Proposition 5.1. Assume (A0)—(AS), (B1)~(B2). Then,

(1) For ge Fy and p-a.e. z, @f(g) € Fy. If g>0 and continuous, then ¢f(g)>0 and

continuous.

2) g— @0(g) is continuous on F g (in the topology of #y).

(3) For all g e ¢ and all n, (u,zy,...,2,) = (Df” o <I>fH 0---0 4521 (9)(u) is measurable on
U x R".

(4) Let (g,) be a sequence of functions belonging to ¥y and let g € Fy. Assume that the
sequence of probability measures v,(du) = g,(u) du weakly converges to the probability
measure v(du) = g(u) du, then, for all z, the sequence of probability measures @g(gn)(u) du
weakly converges to the probability measure df(g)(u) du.

Proof. (1). Let g € #y. Since g=0, g#0, using (B2), we get h.g>0. Therefore, dif(g)
is well-defined, non-negative and is a probability density. Now, we use reversibility
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to get

0 g(u)
Algtl) = 90,0 [ 1/ S0 p

This can be written as (see (B3) for ¢,(z))

Alg g
s = P16t i) <aom () “b
Since g/g(0,.) € L2 , we deduce that 4%g/¢(0,.) € L2 Moreover, from (40), (A4) and (A5),

we can obtain the ”contlnulty of the function A?g To complete the proof of (1), we use
(A2)(ii).

To get (2), we prove the continuity of the operators Ag and &, on & . Both are linear on
Hy. For g in Ay,

9
ol <a(z) [ 90 i

Now, suppose that, for functions g,, g in &, the sequence (g,,) converges to g uniformly on
each compact subset of %. Since g,, g are probability densities, the pointwise convergence
of g, to g implies that, as »n tends to infinity

p(0, 4, u)du. (40)

lg(u )I

(42)

L2
0

/” 19 (0) — g} dut — . 43)

(This is the Scheffé theorem). This in turn implies the weak convergence of g,(u)du to
g(u)du. Since u — f (z/ u) is continuous and bounded, we deduce that /.g, — h.g. Thus,
h. is continuous on % ¢ (in the topology of #). Now, using (41), we obtain

' Alg
g9(0,.)

(44)
LZ
0

Consider again functions g,, g in % such that the sequence (g,) converges to g uniformly
on each compact subset of %. Let K be a compact subset of . We have

, L pO,u u
sup [4%g, — )< sup  g(0,u)PH) / 19 (1) — 9] du gy (2). 45)
wek weKuel g(H, 7/1) u

Thus, using (43), (A5) and (44), we obtain that Ag is continuous on % . (This achieves (2)).
To prove (3), let us check that, for g € #y and z,...,z, € R (see (10)—(12))

A% 0 4° A’
djg o (13(,) 0--+0 @g (9) = 2 P O AI(Q) 46)
Zn Zn—1 Z1 (0 Zl, . Z”)

For n=1, it is the definition. For n =2, using the linearity A, and Af and h; g>0,
we get

Ag A,lg

@’ o !
5 0P (9) = haodlg

(47)
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The above denominator is equal to [, f(ZQ/u/)Af](g)(u/)du’. Changing the order of
integrations lead to

hy oAl g = /Zl Gps(0, 21, 22 /) dut.

The proof of (46) is achieved by induction. The denominator is measurable. Since (v, z) —
Ag(g)(u’) is measurable, the same holds for (i, zy,...,z,) — Agﬂ o Af,)nil 0--+0 Agl (9)(u) by
induction.

Let us prove (4). Suppose that, for g,,g in Fy, g,(u)du weakly converges to g(u)du.
Since u — f(z/u) is continuous and bounded, /g, tends to /.g. By (AS)(iii), for all v’ € %,
the function u — f(z/u)p(0,u',u)/g(0, u) is also continuous and bounded. Therefore, using
(40), for all o/, Aggn(u’) tends to Agg(u’), SO @g(g,,)(u’) tends to @g(g)(u’). Since these
functions are probability densities, by Scheffé’s theorem, we get the result. This completes
the proof of Proposition 5.1. [

5.2. Conditional distributions given the infinite past

For (z,,n € Z) € R%, we denote by z, = (zZn, Zy—1, . . .) the vector of R" defined by the
infinite past from n. Recall that, using (38)—(39),

9u100,./ Zn, ..., Z1) = DL 0 DY 000 (g(0o,.))- (48)
This is the conditional density, under [Py, of U,y given Z,,...,Z;. Similarly, the
conditional density of U, given Zy,Z_; ..., Z_,4; (under Py,)) is

G100,/ Z0, Z 1., Z py1) = BP0 @Y 00 @Y (g(0,.). (49)

This sequence converges in a sense precised in Proposition 5.3 to a function §(0y,./Z,) that
we first characterize.

Proposition 5.2. Assume (A0)-(A6). There exists a regular version of the conditional
distribution of U given the infinite past Z,, under Py, having density (6o, u/Z,)du satisfying

(1) Yu e %, [E()O(p(()o, U(),u)/ZO) = g}(é)o,u/zo), P()U-CZ.S.,
(2) (u, Zy(w)) — §(0o,u/Zy(w)) is measurable,
(3) Py,-a.s., §(0o,./Zy) belongs to Fy,.

Proof. Let 9(0y, duy; Z,(w)) be a regular version of the conditional distribution under Py,
of Uy given Z,, defined for all w € Q. Now, set

(0o, u/ Zo()) = /7/ (0o, uo,1)V(0o, duo; Zo()) (50)

so that (1) holds. With our assumptions, (2) also holds and the above function is a
probability density on %. Using reversibility, we get

(0o, u, up)

§(00,u/ Zo(@) = 900, 1) | = 5=

(0o, dug; Zy(w)). (1)
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By (A5)(iii), we deduce the continuity in u. It remains to prove that

u— / M V(0o, dug; Zo(w)) € L721 : 2
4 9(0071"0) "

By the Cauchy-Schwarz inequality, this is satisfied if

2
/g(@o,u)du/p (0o, u, uo)
u g

W0y, duy; Zy(w)) < oo. 53
T (0o, dug; Zo(w)) (53)
Changing the order of integrations, the above quantity is equal to

2
P~ (0o, u, Uy) >
E 0, 1) "2 20 417 V(). 54
([ o005 2 a2, ) (54
This r.v. is finite Pg,-a.s. as soon as
2
p (0071’{, UO) )
E 0o, u)—————— du | <oo. 55
o (/WQ( 0, ) 700 Uo) (55)

This is exactly our assumption (A6).

It remains to prove that the conditional distribution of U; given Z, is exactly
§(60,u/Zy)du. Hence, let us compute, for all ¢ : % — [0, 1] Borel, Ey,(¢(U)/Z,). Using
the Markov property of (U,,Z,) and the special form of its transition probability (8)
leads to

[EHO((p(Ul)/QO’ ZO) = [EGO((P(UI)/U(LZO) = [Ef)o((P(Ul)/ UO) (56)

Hence, the result is obtained since

Eo(o(U1)/Zo) = / (0, duto: Zo()) / opOs w0y du. O (57)

5.3. Convergence of the log-likelihood ratio at the true value of the parameter

Now, we are able to give a meaning for the entropy of the stationary process (Z,,n € Z)
at 0p. Let

P(00,2/2Zy) = /7 1 (z/w)i(00,u/Zy) du = ho(§(00, ./ Zy)) >0  (Pg,-a.s.) (58)
and define
Py,(dz/Z,) = p(0o, 2/ Zo)u(d2). (59)

Relation (59) defines a random probability measure which is a regular version of the
conditional distribution, under Py,, of Z; given Z,. Since p(0y,z/Z,)<q,(z), we have,
by (B3),

Eg,log™p(00, Z1/Zy) < + o0. (60)
Hence, we can set
—E(0p) = Eg, logp(00, Z1/Z,), (61)
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where —oo< — E(0y) < + oo. Taking the conditional expectation given Z, yields

—E(0y) = Ey, (/R logﬁ(go,Z/Zo)Poo(dZ/Zo)>- (62)

Thus, E(0p) is the expectation of the usual entropy of the distribution Py (dz/Z,). Before
studying the likelihood, we need some preliminary results.

Proposition 5.3. The sequence of probability measures

(gn+1(00, U/ZO, Z—la ey Z—}’H-l) du)
(see (49)) weakly converges, Py,-a.s., to the probability measure §(0y,u/Z,)du.

Proof. Set gn+1(00, H/Zo, Z \y....Z _py1) duZZV(),_,H_](O(), du) and VO,—oo(OO, du):=g(0o, u/
Zy)du. For x e R and o € Q, set

X

Folx,0) = /  Vonni(Oo,dizw) and F(x,o) = / Yo—oo(B0, di; ), 63)

oo —00

which are continuous in x and non-decreasing. For all x € R, Pg,-a.s., we have
Fu(x,.) = Ep,(1 oo q(U1)/ Zo, ... Zny1),  F(x,.) = Egy(1(—0(U1)/ Zp). (64)

By the martingale convergence theorem, we get that, as n — oo, Vx € R, Py -as.,
F,(x,.) > F(x,.). Therefore, there exists a set Ny, in ./ such that Py (Ng,) =0 and
Yo € Ny ,Vr € Q,F,(r,0) — F(r,w). Now, fix o € N;;O and x € R. For ¢>0, using the
continuity of F(.,w), there exist ,r” € Q such that

F<x<r' and F(x,0)—e<FF,0)<F(I', 0)<F(x,0)+e¢.

The inequality F,(r,w)<F,(x,0)<F,(",w) implies F(’,w)<lim inf,F,(x,»)<
lim sup, F,(x,w) < F(",w). Hence, F,(x,®w) — F(x,®) and we have shown that, for all
w € Ny, the weak convergence of v _,1(0p, du; ) to vy s (09, du; ) holds. [

Proposition 5.4. Let us set §,(00,u) = §,(00,u/Z,_;). Then, for all neZ, Py,-a.s.,
Gui1(00,.) = B (5,(05,.)).

Proof. Since (U,,Z,) is strictly stationary, the conditional distribution, under Py,, of U,
given Z, is §(6p,u/Z,)du and Proposition 5.3 leads to the weak convergence of

Gn2O0,u/Z1,Z0,Z_1, ..., Z_yy1)du to §(6o,u/Z,)du,Py,-a.s., where the densities are all
in F4,. We also have

G200, ./ 21, 20, Z_, ..., Z _y31) = 45%]1(9,”1(90, JZo,Z 1. . s Z_pi1)).
Using Propositions 5.1, (4) and 5.3, the sequence g,,,(00,u/Z\,Zo,Z_y,...,Z_,41)du

weakly converges, Pg,-a.s. to @%)1 (g(0y,./Zy)). Thus, we obtain

%, §(00, 1/ Zy)) du = (00, u/Z,) du.
Since the densities are continuous, we deduce (D%)l (§(60,./Zy)) = §(6o,./Z;). The result of
Proposition 5.4 follows. [

The two previous propositions are also proved in [9] in the context of a specific model.
An important consequence of these propositions is that, §,(0o,u)du is the conditional
distribution of U, given Z,_; under Py,. On (2, o7, Py,), the process (U, Z,, §,(00,.)),c7
with state space % x R x F, is strictly stationary and ergodic. So, by Proposition 5.4, we
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have obtained a stationary regime for the Markov process ((U,,,Z,1,(1§HZ(’”0¢%’H
o- -0 @ (g(0p,.),n=>1). Let us set

Xﬂ :logpn(GOaZI/Z()az—la'",Z—H-‘rz)' (65)
Then, X, = log(ff(Zl/u)gn(Go,u/Zo,Z_l, ..., Z_uy2)du), and we can state:

Theorem 5.1. Assume (A0)-(A6), (B1)~(B3) and that (B4)—~(B5') hold at 0 = 0y. Assume
moreover that the sequence of random variables (X, ) is uniformly integrable. Then,
H(90,90)> — oo and H(@o,@o) = —E(@o).

Proof. Using (58)—(60), an application of the ergodic theorem yields
1 .
> log (00, Zi/ Zi-1) — —E(0y).
i=1

Now, since u — f(Z;/u) is continuous and bounded, using Proposition 5.3, X, defined in
(65) tends to X =logp(0y, Z1/Z,), as n tends to infinity, Py,-a.s. Since, by (B3), the
sequence (X)) is uniformly integrable, the additional assumption ensures that the same
holds for (| X ). So, first, we get that Eg,| X| < oo which implies —E(0y) > — oo according to
Definition (61). Second, Ey,(X,) — Eg,(X). Now, by the strict stationarity, Ey (X,) =
Eo,(logp, (00, Z1/Zy—1, . .., Z1)). Taking Cesaro means, we obtain

1 <& 1
; Z |E0() logp[(003 Zl'/Zifls ey Zl) = Z [EO() Ingn(HO) g _E(GO)
i=1
Using Proposition 4.1 and (61) leads to the equality of the two limits H(6y, 0y) = —E(6y). [
6. Specifying the model entirely on the Kalman filter

The Kalman filter is a hidden Markov model for which the behaviour of the likelihood is
well known. Since the hidden state space is # = R, it is interesting to check the
assumptions on this model, especially (B4)—(B6) and (B4)—(B5’). Consider the one
dimensional AR(1)-process U, =aU,_; +1,, and the observed process Z, = U, + ¢,
defined in (2)~(3). We are interested in the estimation of 0 = (@, #°) and we shall suppose
that 9> is known. The process (U,) is assumed in stationary regime: the marginal
distribution of (U,) is the Gaussian law

2
g = A(0,7%) with 1> = b . (66)
1 —a?
Let g(0, v) denote the density of ©y. The transition operator Py of (U,) has density equal to
1 (v — au)?
(0,u,v) = exp — . 67)
p ) )2 P (

Assumptions (A0)—(AS5) hold. As for (A5)(iii), note that, since
sup (0, u, v)/g(0, v) oc exp((1 — &> /28%),
velU

this quantity is not uniformly bounded on the whole state space R. Checking (A6) is also
simple since p(6,u,v)p(6,v,u) is up to a constant a two-dimensional Gaussian density.
Consider now the assumptions on the conditional distribution of Z, given U, = u. The
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density f(z/u) is here
E-w

5 (68)

. 1
flef) =~ e

In this case, ¢,(z) = l/y(27r)1/2 is constant. Assumptions (B1)—(B3) are satisfied, and
Theorem 3.1 holds. However, we will not use it to compute the limit. Instead, we use a

9(0) with a special g. To this end, we shall apply Theorem 4.1 and Proposition 4.1 after
having checked Assumptions (B4)—(B6) and (B4')—(B5).

Let us compute p¥(0,z1,...,z,) (see (12)). For this, we need to specify the operator ¢f
(see (18)). In the Kalman filter model, this operator has the following special property: if
V(no?) 18 the Gaussian density with mean m and variance o (with the convention that the
Dirac mass J,, is a Gaussian law with nul variance and mean m), then, dif(v(m,gz)) is also
Gaussian. Therefore, it is enough to specify its mean and its variance. The following result
is classically obtained by elementary computations

gbf (Vomen) = Vi) (69)
with
m = a(md(c®) + z(1 — 8(a?))), & = B + d*a>d(c?), (70)
and
3(0?) = 7 (71)
yz + 02 :

Note that the degenerate case v(,0) = J, is included in these formulae with the convention
0> = 0. The mean i depends on (m,c?), on 0 and on the new observation z. A special
feature of the Kalman filter is that the variance 6> only depends on ¢* and 6 and neither on
m nor on z. The function ¢2 — 62 = F%(¢?) is
vy?
P+
This functior21 is convex increasing and has a unique stable fixed point v(0) satisfying
B <u(0)< £
Starting the iterations with g = v,, 2), the density g%(0,./zi-1,...,z1) defined in (21) is
Gaussian. We denote its mean and variance by

mi(0,(m,a%),zi-1,...,21) and  67(0,0%). (73)

Floy=p+d°

(72)

We replace from now on the superscript g by (m, ¢%). Density (19) is now obtained as

2
pgﬂﬁ )(99213' .. 9Zn)

n 2 2
200 2\ 4 2172 (2 =mi(0,(m,0%), zi—1, . .., 1))
«[[wr0. ) exp e (74)

1

with the convention that m; = m, o} = 2.

6.1. Checking the additional assumptions

Let us check (B4)—(B6), the assumptions that lead to Theorem 4.1. For this, we compute
explicitly @,(0,Z\,...,Z,) defined in (24). Consider first the equation defining (0, o?).
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Using notation (72) and starting iterations with the initial density v(,, ,2), we get a3(0,0°) =
o2 and for i>2,

02(0,0%) = Fyo--- 0 Fy(d?) (75)

is the (i — 1)th iterate of Fy starting from . By the properties of Fy, 67(0, %) converges as
i goes to infinity to the unique fixed point v(0) of Fy. To simplify some notations below,
whenever o2 = 0, we shall set

a7(0) = a7(0,0). (76)

Consider now the recurrence equation defining n1;(0, (,0),Z;_1,...Z;), i.e. the mean
obtained when starting the iterations with the Dirac mass at u, after (i — 1) iterations
corresponding to successive observations Zi,Z,,...,Z;_1 (see (70)—(73)). We shall also
simplify the notations and set, for i>2,

mi(0,u) = mi(0,(w,0),Z;_1,...Zy) and m(0,u) =u, my(0,u)= au. (77)
For i>1, denote, using (71),
2 i—1
5; = (a0 =V7, ap=1 and fori=2, o =a"" Oi_j. 78
(07(0)) e R 1 ]11 j (78)

We obtain that

mi(ga l/l) = oj—1U + mi(Hn O)a mi (95 0) = m2(93 0) =0. (79)
Fori=3
i—1
mi(0,0)=ay_ ol =6 Zir. (80)
k=1

Therefore, the random function f,(0,u) = logp,(0,Z\,...,Z,/u) (see (26)) is equal to, C
denoting a given constant,

_ 1 e oy (Zi— giou— mi(0,0)°

Sa0.0) = =5 (c - izzllog(ai O +77) + 0T : (81)
Clearly, u — f,(0,u) is a parabola, whose maximum is attained at point

X X A4(0)

uy(0) = (0, 21, ..., Zy) = ms (82)
with

n n 2
%i-1 %
A(0) = ————(Z; — m;i(0,0)), D,0)= —_—. 83
O=2 Gy @ mOO, DO =3, e (83)

By (78), it follows that |o;_1|<|a|™' with [|a|<1. Since 6?(0) converges to v(0), D,(0)
converges to a positive constant D(0), as n tends to infinity. The numerator A4,(0) is a
random variable defined on (£, .27, Py,), which is centred and Gaussian. Let us check that
A,(0) converges in L2(Pg,) to a limiting Gaussian random variable. Let ||.||, denote the L>-
norm in L?(Py,). First note that, if C(0p) = [ Zi|,

i—1
”Z"‘mf("’(’)”z<c(90><l+ |ak|><cwo)(l _l|a|>.

k=1

Thus, for a constant C, ||A4,4,(0) — A,,(0)||2<C2gﬁ1 gzlgé;ﬂ . Since this upper bound

tends to 0 as n,m tend to infinity, the sequence A,(0) converges in L*(Py,) to a limiting
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random variable, say A(6), and we obtain that, as n tends to infinity

ﬁn((?)—)% and  [Ey,i,(0)° < C. (84)

Hence, we have (B4) and (B4') with k = 2. As for (B5), we see that 7 f (0, u), the second
derivative of f,(0,u) w.r.t. u, has here a simple expression, 1ndependent of u,

62
@f)n(ga U) = _DH(O)

Therefore, (B5') holds. Thus, Theorem 4.1 holds and Proposition 4.1 can be applied for
any Gaussian density.

6.2. Computing the entropy H(0y,0) and the limit H(6,,0)

Accordlng to Theorem 4.1, in Py -probability, for all 6 and for all g = v, ),
Llog plme )(6) and L llogq,(0) have the same limit H (0o, 0). The exact likelihood corresponds
to g = V.2 (see (66)) The interest of Theorem 4.1 is that we can choose g to obtain this
common limit. Our choice leads to simpler computations.

For ¢, let us consider the Gaussian density with m = 0 and ¢> = v(0) the fixed point of
(72) and set

Py O(0) = py(0). (85)

Then, for all i, 6;(0, v(0)) = v(0) and
_

(a0, v(0))) = 6(v(0)) = TW) =0(0). (86)

The iterations on the means simplify into m; = 0, my = a(1 — 6(0))Z, and,
i—1

mi(0,(0,v(0), Zi_y..... Z1) = a(l — 5(0)) Y _ (ad(0)* ' Zi_y. (87)
Let us set

H(m) = a(md(0) + z(1 — 5(0))). (88)
Then, the algorithm defined in (70) is simply given by m — m = Hg(m), and, for i>2,

mi(0,(0,0(0)), Zi—1,...,Z1) = HY _ o-- 0 HY (0). (89)

Therefore, the function p}(0) now satisfies (up to a constant)

—mi(0,0,00)), Zi-1,- .., Z1))°
Ty 00 ) . (90)

1 oo 1 5 1 N (Z;
—logp;(0) = —5 (log(v oo+

We proceed now following the method of Section 5 and introduce successive iterations
starting from the past. Let us consider

mi(0,(0,000)), Zo, ... Z_i2) = Hy o0 Hy  (0) OD

—i+2

i—2
=a(1—5(0)> (s Z . 92)
k=0



V. Genon-Catalot, C. Laredo | Stochastic Processes and their Applications 116 (2006) 222-243 241

Since the process (Z,,n € Z) is, under Py, strictly stationary and Gaussian, and since
ad(0)< 1, we have as i tends to infinity, in LZ(PGO), (and a.s.)

HY oo HY (0)— m(0,Z), 93)
where
+0o
m(@,ZO) = H920 0--+0 H927i+2(0) O v = a(l _ 5(0)) Z (aé(e))kz_k. (94)
k=0

In this model, Assumptions (B4)—(B5’) hold for all 0. Moreover, the random variables
Xﬂ(()) = logpn(07 Zl/Z()’ ey an+2)

satisfy | X, (0)] <C(Z% + n22(0,(0,v(0)), Zo, . .., Z_n12)). So, they are uniformly integrable.

Theorem 5.1 (applied for all 6) yields that the limit of expression (90) is, up to a constant,

H000.0) = =5 (108G? + €0 + - E0(Z1 = 0. Zo)P) ) ©9)

1
72+ v(6)
We can now relate the above result to the one obtained in a previous paper. Let us
introduce the random Gaussian distribution, well defined under Pg,, with mean m(0, Z,)
and variance v(0) + y*:

Py = N (m(0, Zy), v(0) + 7). (96)
Then, if K(P, Q) denotes the Kullback information of P with respect to Q,
H(6y,00) — H(00,0) = Eg,(K(Po,, Pp)). 97

Hence, we recover the identifiability assumption introduced in [8, pp. 306-308], where this
quantity is proved to be non-negative and equal to 0 if and only if 0 = 6.

Of course, in this model, the asymptotic properties of the exact MLE of 0 are well
known from the theory of Gaussian ARMA-processes. Our approach gives a new light
based on the point of view of HMM:s.

7. Other examples

It is possible to check several of our assumptions on other models. Each group of
assumptions implies a result which has its own interest, the more complete being obtained
under the whole set of assumptions.

Let us first look at Assumptions (A) which concern the hidden chain only. A special case
with particular interest is obtained when (U,) derives from a regular sampling of a
diffusion process (V) on (/,r) with —co</<r< + o0

dV;=0b00,Vy)di+a0,V)dW, U, =V, (98)

where 4>0 is fixed and W is a standard Brownian motion. Under classical regularity
assumptions on b(0,.) and a(0,.), Assumptions (A0)—(AS) may be easily checked and are
standard. Assumption (A6) may possibly be checked using explicit expressions of the
transition density.

Let us look at Assumptions (B).

Example 1. Consider an additive model Z,, = U,, + &, where the noises (g,) are .47(0, 1).
Assumptions (B1)—(B3) are automatically satisfied as we have seen in the previous section.
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Example 2. When the state space of (V) is (0, 00), setting Z, = U,ll/ 2¢, yields a class of
HMMs which are often called stochastic volatility models. If, moreover (g,) is a sequence
of 1.i.d. random variables with distribution .47(0, 1), then

2

fG/u) = m exp (— g—u) . (99)

We can compute ¢,(z) = (1/ Q2ne)' 2|z, Assumptions (B1)-(B2) are immediate.
Assumption (B3) is a weak moment assumption on the stationary distribution of (V).
Assumptions (B4)—(B6) remain unchecked but Theorem 3.1 holds.

Example 3. Another model is proposed in [6,9,10]. The hidden chain is a standard
Gaussian AR(1) process. The observation is given by Z, = U,s,, where the noise has a
non-Gaussian distribution. For all n, ¢, has the distribution of ¢I""'/2 where ¢ and I' are
independent random variables, ¢ is a symmetric Bernoulli variable taking values +1, —1
with probability % and I' has an exponential distribution with known parameter 2>0. The
exact likelihood is explicit and the checking of assumptions is on going work.

8. Concluding remarks and open problems

To complete the proof of consistency for the MLE, there remains to relate the limit
H (6, 0) to a Kullback information as we have done in the Kalman filter example. This is
really difficult. The difficulty comes from the fact that identifying this limit requires
proving stability of the stochastic algorithm, for (Z,) under Py, g,,; = ¢92n(gn)' The
stability property needed here may be in a very weak sense as in [15] and should be related
to Assumption (B4).

It is possible, up to very slight changes, to extend our results to the case where the hidden
chain (U,) has a state space equal to an open convex subset of R¥. Therefore, the case of
discrete observations of continuous time stochastic volatility models (as in [7]) may be
considered.

In the examples above, we focus on hidden chains which are discretisations of diffusion
processes. However, other classes of ergodic Markov chains may be considered. For
instance, Barndorff-Nielsen and Shephard [1] consider stochastic volatility models where
the volatility is given by a non-Gaussian Ornstein—Uhlenbeck process (O—U Lévy process).
The discretisation of such processes yields ergodic Markov chains on (0, +00).
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