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Abstract

This paper is devoted to the periodic problem for quasilinear parabolic hemivariational inequalities at
resonance as well as at nonresonance. By use of the theory of multi-valued pseudomonotone operators, the
notion of generalized gradient of Clarke and the property of the first eigenfunction, we build a Landesman–
Lazer theory in the nonsmooth framework of quasilinear parabolic hemivariational inequalities.
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1. Introduction

Let Ω be an open bounded subset of RN , Q = Ω × (0, T ), 0 < T < +∞, X = L2(0, T ;
H 1

0 (Ω)).
The aim of this paper is to study the existence of periodic solutions of parabolic hemivaria-

tional inequality:
Find u ∈ X, ∂u

∂t
∈ X∗ (the dual of X) such that u(x,0) = u(x,T ) and

〈
∂u

∂t
+ Au,v

〉
X

+
∫
Q

j0(x, t;u;v)dx dt �
∫
Q

g(x,u)v dx dt, ∀v ∈ X. (1)
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The operator A :X → X∗ is assumed to be a second order quasilinear differential operator in
divergence form of Leray–Lions type

Au(x, t) = −
N∑

i=1

∂

∂xi

ai

(
x,∇u(x, t)

)
, (2)

where ∇ = (D1,D2, . . . ,DN),Di = ∂
∂xi

; j (x, t, ·) is a locally Lipschitz function. The notation

j0(x, t;u(x, t);v(x, t)) stands for the generalized Clarke derivative of j (x, t, ·) at u(x, t) in the
direction v(x, t) (see [4]).

Extensive attention has been paid to the existence results for evolution hemivariational in-
equalities by many authors in recent years, see, for example, Aizicovici, Papageorgiou and
Staicu [2], Carl and Motreanu [3], Denkowski and Migorski [6], Liu [12,13], Migorski and
Ochal [17].

A method of super-subsolutions has been established recently in [3] for quasilinear parabolic
differential inclusion problems in the form

∂u

∂t
+ Au + ∂j (u) � f in Q, u = 0 on Γ, u(·,0) = 0 in Ω. (3)

One can show that any solution of (3) is a solution of the hemivariational inequality (1) with
zero initial value. The reverse is true only if the function j is regular in the sense of Clarke
which means that the one-sided directional derivative and the generalized directional derivative
coincide, cf. [5, Chapter 2.3].

However, little information is known for this kind of resonance parabolic problems with a
nonsmooth potential (hemivariational inequality) like (1). Using the notion of the generalized
gradient of Clarke and the property of the first eigenfunction, we shall study solvability of the
parabolic hemivariational inequalities like (1) involving resonance.

2. Notation and hypotheses

Let H 1
0 (Ω) denote the usual Sobolev space and (H 1

0 (Ω))∗ its dual space. Then H 1
0 (Ω) ⊂

L2(Ω) ⊂ (H 1
0 (Ω))∗ forms an evolution triple with all the embeddings being continuous, dense

and compact. It is well known that [19] the L2-norm of the gradient, defined by ‖∇u‖L2(Ω) :=
(
∫
Ω

|∇u|2 dx)1/2 is equivalent to the norm of the Sobolev space H 1
0 (Ω).

We set X = L2(0, T ;H 1
0 (Ω)), whose dual space is X∗ = L2(0, T ; (H 1

0 (Ω))∗), and define a
function space

W = {
u ∈ X: ut ∈ X∗},

where the derivative u′ := ut = ∂u/∂t is understood in the sense of vector-valued distributions,
cf. [19], which is characterized by

T∫
u′(t)φ(t) dt = −

T∫
u(t)φ′(t) dt, ∀φ ∈ C∞

0 (0, T ).
0 0
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The space W endowed with the graph norm

‖u‖W = ‖u‖X + ‖ut‖X∗

is a Banach space which is separable and reflexive due to the separability and reflexivity of X

and X∗, respectively. Furthermore it is well known that the embedding W ⊂ C([0, T ],L2(Ω))

is continuous, cf. [19]. Finally, because H 1
0 (Ω) is compactly embedded in L2(Ω), we have by

Aubin’s lemma a compact embedding of W ⊂ L2(Q), cf. [19]. Let ‖ · ‖X be the usual norm
defined on X (and similarly on X∗):

‖u‖X =
( T∫

0

∥∥u(t)
∥∥2

H 1
0 (Ω)

dt

)1/2

.

The norm convergence in any Banach space B and its dual B∗ is denoted by →, and the weak
convergence by ⇀. We also use the notation 〈·,·〉B for any of the dual pairings between B and B∗.
For example, with f ∈ X∗, u ∈ X,

〈f,u〉X =
T∫

0

〈
f (t), u(t)

〉
H 1

0 (Ω)
dt.

Let L := ∂/∂t and its domain of definition D(L) given by

D(L) = {
u ∈ X: ut ∈ X∗ and u(0) = u(T )

}
.

The linear operator L,D(L) ⊂ X → X∗ can be shown to be closed, densely defined and maximal
monotone, e.g., cf. [19, Chapter 32].

For a locally Lipschitzian functional h : B → R, we denote by h0(u, v) the Clarke generalized
directional derivative of h at u in the direction v, that is

h0(u, v) := lim sup
λ→0+,w→u

h(w + λv) − h(w)

λ
.

Recall also at this point that

∂h(u) := {
u∗ ∈ B∗ ∣∣ h0(u, v) �

〈
u∗, v

〉
B
, ∀v ∈ B

}
(4)

denotes the generalized Clarke subdifferential and the following assertion holds:

h0(u, v) = max
{〈

u∗, v
〉
B

: u∗ ∈ ∂h(u)
}
, ∀v ∈ B. (5)

In the following we assume that the coefficients ai (i = 1, . . . ,N) in (2) are functions of x ∈ Ω

and of ξ ∈ RN where ξ = (ξ1, . . . , ξN ) ∈ RN. We assume that each ai(x, ξ) is a Carathéodory
function, i.e., it is measurable in x for fixed ξ ∈ RN and continuous in ξ for almost all x ∈ Ω .
We suppose that ai(x, ξ) (i = 1, . . . ,N) satisfy:
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(A1) There exist c1 > 0 and b1 ∈ L2(Ω) such that∣∣ai(x, ξ)
∣∣ � c1|ξ | + b1(x)

for a.e. x ∈ Ω , for all ξ ∈ RN .
(A2)

∑N
i=1[ai(x, ξ) − ai(x, ξ ′)](ξi − ξ ′

i ) > 0 for a.e. x ∈ Ω , for all ξ, ξ ′ ∈ RN with ξ �= ξ ′.
(A3) There exists a positive c2 and a nonnegative function b2 ∈ L1(Ω) such that

n∑
i=1

ai(x, ξ)ξi � c2

N∑
i=1

|ξi |2 − b2(x)

for a.e. x ∈ Ω , for all ξ, ξ ′ ∈ RN .

Concerning problem (1) we deal with the functional J :X(⊆ L2(Q)) → R of type

J (u) =
∫
Q

j
(
x, t;u(x, t)

)
dx dt, u ∈ X. (6)

We assume that j :Q × R → R satisfies the following (H1):

(a) j (·, ·, s) :Q → R is measurable, ∀s ∈ R;
(b) j (x, t, ·) :R → R is locally Lipschitz, for almost all (x, t) ∈ Q;
(c) j (·, ·,0) ∈ L1(Q);
(d) |z| � b3(x, t) + c3|s|σ−1, ∀s ∈ R, a.e. (x, t) ∈ Q, ∀z ∈ ∂sj (x, t, s), with constants c3 > 0

and 1 � σ < 2 and b3 ∈ L2(Q).

The assumptions (a)–(d) on j ensure that J is locally Lipschitz on X and∫
Q

j0(x, t;u(x, t);v(x, t)
)
dx dt � J 0(u, v), ∀u,v ∈ X. (7)

In the following we also assume that (H2):

(i) g :Ω × R → R is a Carathéodory function (i.e. g(·, s) :Ω → R is measurable, ∀s ∈ R and
g(x, ·) :R → R is continuous, for almost all x ∈ Ω);

(ii) ∃c4 > 0, and b4 ∈ L2(Ω) with b4 � 0, a.e. in Ω such that |g(x, s)| � c4|s| + b4(x) for a.e.
x ∈ Ω , ∀s ∈ R;

(iii) ∃γ ∈ R, and b5 ∈ L2(Ω) with b5 � 0 a.e. in Ω such that g(x, s)s � γ |s|2 +b5(x)|s| for a.e.
x ∈ Ω , ∀s ∈ R.

We also define operators A,G :X → X∗ by

〈Au,v〉X :=
N∑

i=1

∫
Q

ai

(
x,∇u(x, t)

)
Div(x, t) dx dt, ∀u,v ∈ X, (8)

〈Gu,v〉X :=
∫

g(x,u)v dx dt, ∀u,v ∈ X. (9)
Q
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Then the hemivariational inequality (1) is equivalent to the following:
Find u ∈ D(L) such that

〈Lu,v〉X + 〈Au,v〉X +
∫
Q

j0(x, t, u, v) dx dt � 〈Gu,v〉X, ∀v ∈ X. (10)

We define the 1st eigenvalue of the operator A as

λ1 = lim inf‖u‖
L2 →∞

〈Au,u〉X
‖u‖2

L2(Q)

, u ∈ X. (11)

We say that M :X → 2X∗
is “L-pseudomonotone,” if the following conditions hold:

(1) for every v ∈ X,M(v) is a nonempty, weakly compact and convex subset of X∗;
(2) M(·) is usc from each finite-dimensional subspace of X into X∗ furnished with the weak

topology;
(3) if {vn}n�1 ⊆ D(L), vn ⇀ v in X,Lvn ⇀ Lv in X∗, v∗

n ∈ M(vn), n � 1, v∗
n ⇀ v∗ ∈ X∗ and

lim supn→∞〈v∗
n, vn − v〉 � 0, then v∗ ∈ M(v) and 〈v∗

n, vn〉X → 〈v∗, v〉X.

The following lemma will be useful (cf. [16], [7, p. 71]).

Lemma 1. If X is a reflexive Banach space which is strictly convex, L :D(L) ⊆ X → X∗ is a
linear, closed, densely defined and maximal monotone operator and M :X → 2X∗

is bounded,
coercive, L-pseudomonotone operator, then L + M is surjective, i.e., R(L + M) = X∗.

In order to establish the existence results of the problem (1), we also need the following (see,
for instance, [14,15], [7, p. 75]):

Lemma 2. Suppose that the assumptions (A1)–(A3) and (H1)–(H2) hold. Then the sum operator
A − G + ∂J :X → 2X∗

is bounded and L-pseudomonotone.

3. Main results

Theorem 1. Let assumptions (A1)–(A3) and (H1)–(H2) hold. Suppose furthermore γ < λ1,
where γ and λ1 are defined in (H2) and (11), respectively. Then problem (1) has at least one
solution.

Proof. We first prove that the sum operator A − G + ∂J :X → 2X∗
is coercive. To this end,

∀un ∈ X such that ‖un‖X → ∞ as n → ∞, ∀u∗
n ∈ ∂J (un), we have

〈
Aun − Gun + u∗

n,un

〉
X

=
∫
Q

N∑
i=1

ai(x,∇un)Diun dx dt −
∫
Q

g(x,un)un dx dt + 〈
u∗

n,un

〉
X
. (12)

In the case of ‖un‖L2(Q) → ∞: By γ < λ1, we may choose ε > 0 such that γ < λ1 − ελ1. In
virtue of (H2), (A3), the definition of the least eigenvalue λ1 and Hölder inequality, there exists
C1 > 0 such that
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∫
Q

N∑
i=1

ai(x,∇un)Diun dx dt −
∫
Q

g(x,un)un dx dt

� ε

∫
Q

N∑
i=1

ai(x,∇un)Diun dx dt + (λ1 − ελ1 − γ )‖un‖2
L2 − C1‖un‖L2

� εc2

∫
Q

|∇un|2 dx dt − ε

∫
Q

b2(x) dx dt + (λ1 − ελ1 − γ )‖un‖2
L2 − C1‖un‖L2, (13)

as n is large enough.
In virtue of (5), (7), (H1)(d) and Hölder inequality, there exists a positive constant C2 such

that

〈
u∗

n,un

〉
X

� −J 0(un,−un)

� −
∫
Q

j0(x, t, un,−un)dx dt

� −
∫
Q

∣∣j0(x, t, un,−un)
∣∣dx dt

� −
∫
Q

max
{∣∣z(x, t)un(x, t)

∣∣: z(x, t) ∈ ∂j (x, t, un)
}
dx dt

� −
∫
Q

(
b3(x, t) + c3|un|σ−1)|un|dx dt

� −C2
(‖un‖L2 + ‖un‖σ

L2

)
. (14)

It follows from (12)–(14) and 1 � σ < 2 and Poincaré’s inequality ‖u‖L2(Q) � Const · ‖u‖X that

inf
u∗

n∈∂J (un)

〈Aun − Gun + u∗
n,u〉X

‖un‖X

→ ∞, as ‖un‖X → ∞. (15)

In the case of {‖un‖L2(Q)}∞n=1 being bounded: By (A3), (H2), (14) and the Hölder inequality,
we get

〈
Aun − Gun + u∗

n,u
〉
X

� c2

∫
Q

|∇un|2 dx dt −
∫
Q

b2(x) dx dt − γ ‖un‖2
L2 − C2‖un‖L2 + 〈

u∗
n,un

〉
X

� c2

∫
Q

|∇un|2 dx dt −
∫
Q

b2(x) dx dt − γ ‖un‖2
L2 − C1‖un‖L2 − C2

(‖un‖L2 + ‖un‖σ
L2

)
,

which implies that (15) holds for the case of {‖un‖L2(Q)}∞ being bounded, too.
n=1
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Therefore, from the discussion of the two cases above, we have shown that the sum operator
A−G+∂J :X → 2X∗

is coercive. In virtue of Lemmas 1 and 2, we get that there exists u ∈ D(L)

such that

0 ∈ Lu + Au − Gu + ∂J (u), (16)

i.e., there exist u ∈ X and u∗ ∈ ∂J (u) such that

Lu + Au − Gu + u∗ = 0.

So we have

〈
Lu + Au − Gu + u∗, v

〉
X

= 0, ∀v ∈ X.

By (5) and (7) we have

〈
u∗, v

〉
X

� J 0(u, v) �
∫
Q

j0(x, t, u, v) dx dt, ∀v ∈ X,

which implies that u ∈ D(L) and

〈Lu,v〉X + 〈Au,v〉X +
∫
Q

j0(x, t, u, v) dx dt �
∫
Q

g(x,u)v dx dt, ∀v ∈ X. (17)

This ends the proof of the theorem. �
Now we turn to the solvability of the problem (HVI) involving resonance. It is an easy matter

in this case to give examples that show that Theorem 1 is false if γ = λ1, since this is already well
known if A given in (1) is linear. Consequently, a further condition is necessary to ensure that the
conclusion of Theorem 1 holds for the situation γ = λ1. Results of this nature are referred to in
the literature as resonance results (see [1,8–11]). We shall present one such result here that will
hold for the Hilbert space V (= H 1

0 (Ω)). In order to do this, we first recall some facts concerning
linear elliptic theory.

Let a :V × V → R be a continuous, symmetric, bilinear form which is coercive

a(u,u) � α‖u‖2
H 1

0 (Ω)
, ∀u ∈ V = H 1

0 (Ω),

with a constant α > 0. Thus

‖ · ‖V := a(·,·)1/2

is an equivalent norm on V = H 1
0 (Ω), i.e., there exist two positive constants c5 and c6 such that

c5‖u‖2
1 � a(u,u) � c6‖u‖2

1 . (18)

H0 (Ω) H0 (Ω)
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Similarly, we can define an equivalent norm on X by ‖u‖2
X = ∫ T

0 ‖u‖2
V dt . Denote by

μ1 < μ2 � · · · � μn · · · → +∞ (19)

the sequence of eigenvalues of the linear problem

a(u, v) = μ〈u,v〉L2, ∀v ∈ V. (20)

We also consider a basis {ϕn}∞n=1 for V consisting of eigenfunctions, where ϕn corresponds
to μn, i.e., u = ϕn and μ = μn in (20), which is normalized in the following sense

a(ϕi, ϕj ) = δij , (21)

where δii = 1 and δij = 0 if i �= j .
In this statement we use essentially the compactness of the embedding V ⊂ L2(Ω). The fact

that μ1 is simple and the corresponding eigenfunction not changing sign (say ϕ1 > 0) in Ω

follows from Krein–Rutman Theorem (see [18], for example).
Now it is well known that

μ1 = inf
u �=0

a(u,u)

‖u‖2
L2(Ω)

, u ∈ V = (
H 1

0 (Ω)
)
. (22)

We extend the bilinear form a(·,·) defined above from H 1
0 (Ω) to X by

ã(u, v) =
T∫

0

a(u, v) dt, ∀u,v ∈ X,

and observe from (22) that

μ1 = inf
u �=0

ã(u,u)

‖u‖2
L2(Q)

, u ∈ W. (23)

In the following theorem, we need the assumptions:

(A4) Suppose that there exists a smooth function T :Ω × RN → R, such that (Tξ1(x, ξ), . . . ,

TξN
(x, ξ)) = (a1(x, ξ), . . . , aN(x, ξ)) for ξ ∈ RN,x ∈ Ω , here Tξi

= ∂T
∂ξi

(1 � i � N).
(A5) λ1 = μ1 where λ1 is given by (11), and

lim inf‖u‖
L2 →∞

〈Au,u〉X − ã(u,u)

‖u‖L2
� 0, u ∈ X.

Also in Theorem 2, we shall set the following assumption:
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(H3) The functions j+∞− (x, t), j−∞+ (x, t) ∈ L2(Q) satisfy the following inequalities:

min

{
1

T

∫
Q

j+∞− (x, t)ϕ1(x) dx dt,− 1

T

∫
Q

j−∞+ (x, t)ϕ1(x) dx dt

}

>

∫
Ω

b5(x)ϕ1(x) dx, (24)

where j+∞− (x, t) := inf(zn){lim infn→∞ zn, ∀zn ∈ ∂sj (x, t, sn) ∈ R with sn → +∞};
j−∞+ (x, t) := sup(zn){lim supn→∞ zn, ∀zn ∈ ∂sj (x, t, sn) ∈ R with sn → −∞}; b5(x) ap-
pears in (H2).

Remark. (H3) is a condition of Landsman–Lazer type considered by many authors in connec-
tion with solvability of equations involving resonance, see, for example, [1,8–11] and references
therein.

Theorem 2. Let assumptions (A1)–(A5) and (H1)–(H3) hold and γ = λ1, where γ and λ1 are
defined in (H2) and (11), respectively. Then problem (1) has at least one solution.

Proof. Set gn(x, s) = g(x, s) − n−1s. It then follows gn(x, s) meets condition (H2)(iii) with
γ = λ1 − n−1. Hence γ < λ1 and the conditions of Theorem 1 are met. Therefore, there exists
un ∈ D(L) such that ∀v ∈ X

∫
Q

untv dx dt + 〈Aun, v〉X +
∫
Q

j0(x, t, un, v) dx dt �
∫
Q

[
g(x,un) − n−1un

]
v dx dt. (25)

Claim 1. ∃C3 > 0 such that

‖un‖L2 � C3, ∀n = 1,2, . . . . (26)

Suppose to the contrary that (26) is false. Then there exists a subsequence (which for ease of
notation we take to be the full sequence) such that

lim
n→∞‖un‖L2 = ∞. (27)

We shall show (27) leads to a contradiction. Taking v = −un in (25) and using the fact

∫
Q

uut dx dt = 1

2

T∫
0

∂

∂t

∫
Ω

|u|2 dx dt = 0, ∀u ∈ D(L),

we obtain

〈Aun,un〉 + ‖un‖2
L2/n �

∫
j0(x, t, un,−un)dx dt +

∫
g(x,un)un dx dt. (28)
Q Q
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Let ε > 0 be given. Then it follows from (A5) that ∃n0 such that

〈Aun,un〉 − ã(un,un) � −ε‖un‖L2, ∀n � n0.

Using the last inequality, we see from (28) that ∀n � n0

ã(un,un) + ‖un‖2
L2/n �

∫
Q

j0(x, t, un,−un)dx dt +
∫
Q

g(x,un)un dx dt + ε‖un‖L2, (29)

which implies that

ã(un,un)

‖un‖2
L2

+ n−1 �
∫
Q

j0(x, t, un,−un)

‖un‖2
L2

dx dt +
∫
Q

g(x,un)un

‖un‖2
L2

dx dt + ε

‖un‖L2
. (30)

Similar to (14), there exists a positive constant C2 such that

∫
Q

|j0(x, t, un,−un)|
‖un‖2

L2

dx dt �
C2(‖un‖L2 + ‖un‖σ

L2)

‖un‖2
L2

,

which implies from 1 � σ < 2 that

∫
Q

|j0(x, t, un,−un)|
‖un‖2

L2

dx dt → 0, as ‖un‖L2 → ∞. (31)

By (H2) and γ = λ1 it is clear that∫
Q

g(x,un)un

‖un‖2
L2

dx dt � λ1 +
∫
Q

b5(x)|un|
‖un‖2

L2

dx dt. (32)

From (30)–(32), we obtain

μ1 � lim inf
n→∞

ã(un,un)

‖un‖2
L2

� lim sup
n→∞

ã(un,un)

‖un‖2
L2

� μ1.

On relabeling if necessary, we can assume that wn := un/‖un‖L2 ⇀ w in X.
In virtue of the definition of μ1, the weak lower semi-continuity of the norm, we have

μ1 � ‖w‖2
X � lim inf

n→∞ ‖wn‖2
X � lim sup

n→∞
‖wn‖2

X � μ1, (33)

which implies that

‖w‖2
X = μ1, ‖w‖L2 = 1. (34)

Since un(x,0) = un(x,T ), it is easy to get from (A4) that
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〈
Aun,

∂un

∂t

〉
X

=
N∑

i=1

∫
Q

ai

(
x,∇un(x, t)

)∂Diun(x, t)

∂t
dx dt

=
T∫

0

∂

∂t

∫
Ω

T (x,∇un)dx dt

= 0, (35)

∫
Q

[
g(x,un) − n−1un

]∂un

∂t
dx dt =

T∫
0

∫
Ω

∂

∂t

un∫
0

[
g(x, s) − n−1s

]
ds dx dt = 0. (36)

Taking v = −unt in (25), we observe from (H1), (35), (36) and Hölder inequality, ∃C4 > 0

∫
Q

∣∣∣∣∂un

∂t

∣∣∣∣
2

dx dt � −
〈
Aun,

∂un

∂t

〉
X

+
∫
Q

j0
(

x, t, un,−∂un

∂t

)
dx dt

+
∫
Q

[
g(x,un) − n−1un

]∂un

∂t
dx dt

=
∫
Q

j0
(

x, t, un,−∂un

∂t

)
dx dt

�
∫
Q

max

{∣∣∣∣z(x, t)
∂un

∂t

∣∣∣∣: z(x, t) ∈ ∂j (x, t, un)

}
dx dt

�
∫
Q

(
b3(x, t) + c3|un|σ−1)∣∣∣∣∂un

∂t

∣∣∣∣dx dt

� C4
(
1 + ‖un‖σ−1

L2

)∥∥∥∥∂un

∂t

∥∥∥∥
L2

. (37)

Dividing both sides of the above inequality by ‖un‖L2‖ ∂un

∂t
‖L2 , we easily conclude from

1 � σ < 2 that

lim
n→∞

∥∥∥∥∂wn

∂t

∥∥∥∥
L2

= 0. (38)

We thus conclude from (33), (38) that {wn}∞n=1 is a bounded sequence in W . Therefore, we may
assume that ∂wn

∂t
⇀ ∂w

∂t
in X∗ and

∂w = 0 a.e. in Q, (39)

∂t
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which implies that w is independent of variable t , i.e., w = w(x). Furthermore, we obtain from
the compact embedding theorem that there is a subsequence (which for ease of notation we take
to be the full sequence) such that

lim
n→∞‖wn − w‖L2 = 0, (40)

lim
n→∞wn(x, t) = w(x) a.e. in Q, (41)

which implies from the property of the eigenfunction and (33) that w ≡ ± 1√
T

ϕ1. By (H2), (A5)
and γ = λ1, ∀ε > 0, ∃n0 > 0, such that ∀n � n0, we get that

〈Aun,un〉X −
∫
Q

[
g(x,un) − n−1un

]
un dx dt � −

∫
Q

b5(x)|un|dx dt − ε‖un‖L2 .

It follows from (28) that ∀n � n0

∫
Q

j0(x, t, un,−un)

‖un‖L2
dx dt +

∫
Q

b5(x)|un|
‖un‖L2

dx dt + ε � 0. (42)

Then a well-known property of the generalized gradient (cf. [4]) implies for each n � n0, there
exists zn ∈ ∂j (x, t, un) such that

∫
Q

j0(x, t, un,−un)

‖un‖L2
dx dt =

∫
Q

−znun

‖un‖L2
dx dt = −

∫
Q

znwn dx dt. (43)

If w = 1√
T

ϕ1, i.e., wn = un/‖un‖L2 → 1√
T

ϕ1 as n → ∞, then un(x, t) → +∞ for a.e.

(x, t) ∈ Q as n → ∞. Due to (H3) we arrive at the conclusion that

j+∞− (x, t) � lim inf
n→∞ zn(x, t). (44)

Therefore we conclude by Fatou’s lemma and (42)–(44) that

∫
Q

j+∞− (x, t)w dx dt � lim inf
n→∞

∫
Q

zn(x, t)wn(x, t) dx dt

� lim sup
n→∞

∫
Q

zn(x, t)wn(x, t) dx dt

= − lim inf
n→∞

∫
Q

j0(x, t, un,−un)

‖un‖L2
dx dt

�
∫

b5(x)w dx dt + ε,
Q
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which implies that

1

T

∫
Q

j+∞− (x, t)ϕ1 dx dt �
∫
Ω

b5(x)ϕ1(x) dx.

This contradicts (H3). Analogously, if w = − 1√
T

ϕ1, then un(x, t) → −∞. The same argument
above implies that

− 1

T

∫
Q

j−∞+ (x, t)ϕ1 dx dt �
∫
Ω

b5(x)ϕ1(x) dx,

which contradicts (H3) too. Therefore we have shown that the inequality (26) holds true.
By (26), (28) and the assumptions (A3), (H1), (H2), we easily obtain that the sequence

{‖un‖X}∞n=1 is bounded. Furthermore, it follows from (26), (37) that {‖ ∂un

∂t
‖L2}∞n=1 is bounded,

i.e., {‖Lun‖X}∞n=1 is bounded. Therefore, ∃C5 such that

{‖un‖W

}∞
n=1 � C5, ∀n = 1,2, . . . .

From this last inequality we observe as before that there exists a subsequence (which for ease of
notation we take to be the full sequence) and u ∈ W such that un ⇀ u in W :

Lun ⇀ Lu in X∗, un ⇀ u in X. (45)

Furthermore, from the compact embedding theorem for Sobolev spaces, the following facts
prevail:

lim
n→∞un(x, t) = u(x, t) for a.e. (x, t) ∈ Q, (46)

lim
n→∞‖un − u‖L2 = 0. (47)

Claim 2. u solves problem (1).

Taking v = u − un in (25), we obtain

〈Aun,un − u〉X �
∫
Q

unt (u − un)dx dt +
∫
Q

j0(x, t, un,u − un)dx dt

+
∫
Q

[
g(x,un) − n−1un

]
(un − u)dx dt. (48)

By (45) and (47) it is easy to get

lim
n→∞

∫
unt (u − un)dx dt = 0. (49)
Q
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Applying the upper semicontinuity of the generalized directional derivative of the locally Lip-
schitz functions, it follows from (46) and Fatou’s lemma that

lim sup
n→∞

∫
Q

j0(x, t, un,u − un)dx dt �
∫
Q

lim sup
n→∞

j0(x, t, un,u − un)dx dt

�
∫
Q

j0(x, t, u,0) dx dt = 0. (50)

In virtue of (H2) and the continuity of the Nemytskii operators, we observe from (47) that

lim
n→∞

∫
Q

g(x,un)(u − un)dx dt = 0. (51)

Therefore, using (49)–(51) in (48) we have

lim sup
n→∞

〈Aun,un − u〉X � 0. (52)

By the pseudomonotonicity of A, cf. [14], it follows from (45) and (52)

Aun ⇀ Au in X∗, 〈Aun,un〉X → 〈Au,u〉X. (53)

Using the same arguments in (50) and (51), we easily obtain

lim
n→∞

∫
Q

g(x,un)v dx dt =
∫
Q

g(x,u)v dx dt, ∀v ∈ X, (54)

lim sup
n→∞

∫
Q

j0(x, t, un, v) dx dt �
∫
Q

lim sup
n→∞

j0(x, t, un, v) dx dt

�
∫
Q

j0(x, t, u, v) dx dt, ∀v ∈ X. (55)

Passing to the limit as n → ∞ on both sides of (25) and using (45)–(55), we obtain

〈Lu,v〉X + 〈Au,v〉X +
∫
Q

j0(x, t, u, v) dx dt �
∫
Q

g(x,u)v dx dt.

This completes the proof. �
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