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Abstract

We give a simple proof of a classical result of MacMillan and Bartky (Trans. Amer. Math.

Soc. 34 (1932) 838) which states that, for any four positive masses and any assigned order,

there is a convex planar central configuration. Moreover, we show that the central

configurations we find correspond to local minima of the potential function with fixed

moment of inertia. This allows us to show that there are at least six local minimum central

configurations for the planar four-body problem. We also show that for any assigned order of

five masses, there is at least one convex spatial central configuration of local minimum type.

Our method also applies to some other cases.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Central configurations play an important role in the study of the Newtonian

n-body problem (cf. [8,9]). Let m1;y;mn be n point masses moving in R3 and

let q1; y; qn in R3 be their positions. We say that the n bodies form a central
configuration if there exists a constant l such that

lmiqi ¼
X

1pjpn

mimj

jqi � qjj3
ðqj � qiÞ

for all 1pipn: One can easily verify that a central configurations remains a central

configuration after a rotation in R3 and a scalar multiplication. More precisely,
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let AASO3 and a40; if q ¼ ðq1;y; qnÞ is a central configuration, then so are Aq ¼
ðAq1;y;AqnÞ and aq ¼ ðaq1;y; aqnÞ:

Two central configurations are said to be equivalent if one can be transformed to
the other by a scalar multiplication and a rotation. In this paper, when we say a
central configuration, we mean a class of central configurations as defined by the
above equivalence relation.

The study of central configurations goes back to Euler and Lagrange. For n ¼ 3; it
is a classical result that there are three collinear, called Euler, central configurations
and one equilateral triangular, called Lagrange, central configurations. For nX4;
Moulton [6] proved that there are exactly one collinear central configuration for each
arrangement of the particles on the line. As for the planar case with given arbitrary n

masses, little is known as far as the exact numbers and positions of the central
configurations. Only very recently, we know the exact number and positions of the
central configurations for four equal masses [1]. Moeckel [5] showed that for generic
four masses, the number of central configurations is finite. On the other hand, for
any given n; Xia [10] found the exact number of central configurations for some open
sets of n positive masses.

One can reformulate the central configurations as critical points of certain
functions. Let

I ¼
Xn

i¼1

mijqij2

be the moment of inertia of the n-body system and let

U ¼
X

1piojpn

mimj

jqi � qj j

be the potential function. Then the central configurations are the critical points of
the function U on the ellipsoid

S ¼ fq ¼ ðq1;y; qnÞAR3n j I ¼ 1g:

The group SO3 acts on the ellipsoid I and this action is free on all non-collinear
configurations. The potential function U is invariant under this action. We say that a
(non-collinear) central configuration is non-degenerate if it is a non-degenerate
critical point of U on S=SO3: Using Morse theory, one can obtain a lower bound on
the number of central configurations when all central configurations are non-
degenerate. See [3,7].

In this paper, we will use an equivalent definition of central configurations.

One easily verifies that central configurations are critical points of the function IU2

on R3n:
We first consider the planar central configurations. A planar configuration for the

n bodies is said to be (strictly) convex if the n masses form a (strictly) convex

configuration in R2: Each convex configuration defines a cyclic order of the n bodies

on S1: Let s be any such cyclic order and let Rs be the set of all convex configuration

with this cyclic order s: Obviously, if s1as2; then intðRs1Þ-intðRs2Þ ¼ |: For any
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fixed s; the boundary of Rs consists of configurations where three or more bodies are
collinear. The number of distinct cyclic orders for n bodies is ðn � 1Þ!:

For the four body problem, MacMillan and Bartly [2] proved that for any cyclic
order of the four bodies, there exist a convex central configuration with that order.
Their proof is quite long and involved. In this note, we give a simple proof of this
result and moreover, the convex central configurations we found are local minima of

the function IU2: We also expect our method to work for the problem with more
than four bodies, at least for some open set of masses.

Theorem 1. Fix four positive masses m1; m2; m3 and m4: For any fixed cyclic order s of

four bodies, the minimum of IU2 over Rs is always attained in the interior of Rs: Thus

there are at least 3! ¼ 6 local minimum central configurations for the planar four-body

problem.

Using the topology of the space I=SO2; Palmore [7] obtained a lower bound on the
number of planar, non-collinear central configurations when all central configura-
tions are non-degenerate. McCord [3] further improved this lower bound. For the
four body problem, this lower bound is 14. Note that we count the reflection of a

planar, non-collinear central configuration as a distinct central configuration in R2:
By Morse inequality, each extra local minimum central configuration we found here
increases the lower bound estimate by two. The following theorem is a corollary of
Theorem 1.

Theorem 2. For any set of four positive masses, if all the central configurations are

non-degenerate, then there are at least 22 planar, non-collinear central configurations.

Similar results can be proved for the spatial central configurations. For the four-
body problem, there are exactly two spatial (non-planar) central configurations
where four bodies form a regular tetrahedron, with two different orientations. The
first non-trivial case for the spatial central configurations is for the five body
problem. Each convex arrangement defines an ordering for the five bodies. There are
total of eight such distinct orderings of the spatial convex central configurations.

Theorem 3. For any given five positive masses m1;y;m5 and for any ordering of

strictly convex configurations for the five bodies, there is a central configuration of

local minimum type with that ordering.

2. Proof of the theorems and other results

Our proof of the theorems is quite simple. Fix four positive masses m1;y;m4 and
a cyclic order s: We may assume that the cyclic order is (1234). Suppose that the

minimum of IU2 is not attained in the interior of Rs: Since IU2 is invariant under

dilation and Rs with fixed I is contained in a compact set, the infimum of IU2 must
be attained at some point q� ¼ ðq�

1;y; q�
4Þ in the boundary of Rs: At least three of
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points in q�
1; y; q�

4 must be collinear. Since collinear central configurations are not

local minimizers (cf. [4]), this implies exactly three points, say, q�
1; q�

2 and q�
3; are

collinear. It is easy to see that such minimizer can not take place at a collision. By
rotating the configuration, we may assume that the line formed by q�

1; q�
2 and q�

3 are

parallel to and on the right side of the y-axis. The fourth body will be on the left of
y-axis. More precisely, we have x�

1 ¼ x�
2 ¼ x�

34x�
4 and y�

1oy�
2oy�

3:

We claim that @ðIU2Þ=@x2o0 at q ¼ q�: Suppose this is not true and

@ðIU2Þ=@x2X0 at q ¼ q�: We must have

2m2x
�
2U2 þ 2IU

m2m4ðx�
4 � x�

2Þ
jq�

2 � q�
4j
3

X0:

Now, we have either y�
4Xy�

2 or y�
4py�

2: We may assume that y�
4Xy�

2: The other case

can be dealt in the similar way. Thus jq�
1 � q�

4j4jq�
2 � q�

4j and

2m1x
�
1U

2 þ 2IU
m1m4ðx�

4 � x�
1Þ

jq�
1 � q�

4j
3

40;

because x�
4 � x�

1o0: This implies that @ðIU2Þ=@x140 at q ¼ q�: This implies that by

reducing x1; one can actually reduce IU2: But reducing x1 pushes q� to the interior of
Rs: This contradicts to our choice of q�: This contradiction proves our claim.

We therefore must have @ðIU2Þ=@x2o0 at q ¼ q�: This implies that by increasing

x2 from q�; one can actual reduce IU2: But increasing x2 pushes q� into the interior
of Rs; this again contradicts to our choice of q�: This contradiction implies that no
such q� exists.

This proves Theorem 1.

The proof Theorem 3 is similar. For any set of five positive masses m1;y;m5; let
Rs be the set all convex configurations which correspond to an arrangement s of the
five masses. The boundary of Rs consists of the configurations with four bodies in

the same plan. We claim that the infimum of IU2 over Rs is attained in the interior of
Rs: Suppose that this is not true and the infimum is attained at q�AclosureðRsÞ:
Since co-planar configurations are not minimizers, without loss of generality, we
may assume that x�

1 ¼ x�
2 ¼ x�

3 ¼ x�
44x�

5; and m4 is in the closed triangle formed by

m1;m2 and m3:

Let’s suppose that @ðIU2Þ=@x4X0 at q ¼ q�: Since there exists at least one i;

iAf1; 2; 3g such that jq�
i � q�

5j4jq�
4 � q�

5j; we must have @ðIU2Þ=@xi40 at q ¼ q�:

This implies that at q ¼ q� either @ðIU2Þ=@x4o0 or @ðIU2Þ=@xi40: Therefore we

can decrease the value of IU2 by either decreasing xi or increasing x4: In either case,

one obtains a smaller value for IU2 by moving to the interior of Rs: This contradicts

to the assumption that IU2ðq�Þ is the infimum of IU2 over Rs:

This proves Theorem 3.
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We believe that our method also works for the planar five-body problem, or even
planar and spatial n-body problem in general. However, this would requires careful
estimates which we have not been able to carry out.

As an example, we consider four equal masses mi ¼ 1 for 1pip4 and a very small
mass m5 ¼ m: For any cyclic order s; say ð15234Þ; on five bodies, the minimizer of

IU2 over the closure of Rs must have four big masses close to a square. How close it
is to a square depends on the size of m: As m-0; the shape of the first four bodies

approaches to a square. Now, suppose that the infimum of IU2 over Rs is attained
on the boundary, say at q�: Then m5 must be close to the middle of m1 and m2: For
the limit case as m-0; we may choose the coordinates such that q�

1 ¼ ð1;�1Þ; q�
2 ¼

ð1; 1Þ; q�
3 ¼ ð�1; 1Þ; q�

4 ¼ ð�1;�1Þ and q�
5 ¼ ð1; 0Þ: Now, we can easily verify that

ðx�
4 � x�

1Þ
jq�

1 � q�
4j
3
þ ðx�

3 � x�
1Þ

jq�
1 � q�

3j
3

 2

23
þ 2

ð2
ffiffiffi
3

p
Þ3

¼ 0:3384

is smaller than

ðx�
4 � x�

5Þ
jq�

5 � q�
4j
3
þ ðx�

3 � x�
5Þ

jq�
5 � q�

3j
3

 2

2

ð
ffiffiffi
5

p
Þ3

¼ 0:3578:

This implies that either @ðIU2Þ=@x5o0 at q� or @ðIU2Þ=@x140 at q�: In either case,

q� cannot attain the infimum of IU2 over Rs:
This shows that for the five body problem, there exists e1; e240 such that if

jmi � 1jpe1; for 1pip4 and m5pe2; then for any cyclic order s0 of the five bodies,

the minimum of IU2 over Rs is always attained in the interior of Rs0 : Therefore, for
these masses, there are at least 4! ¼ 24 local minimum planar convex central
configurations.

We give the above example to show that certain careful estimates are required for
the five-body problem in general. If for example, instead of Newtonian inverse
square force, we consider inverse k-power force with kX4; then with four equal mass
and one small mass, there is no convex central configurations.

We end the paper by stating the following conjecture.

Conjecture 4. For any positive n masses, nX5; and any cyclic order of n points on S1;
there is a convex planar central configuration of minimum type with the cyclic order.

For nX6; for any ordering of convex configurations of n points in the space, there is at

least one spatial convex central configuration of local minimum type with that ordering.
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