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Abstract

In this paper, theC® interior of the set of vector fields whose integrated flows are expansive
is characterized as the set of vector fields without singularities satisfying both Axiom A and
the quasi-transversality condition, and it is proved that the above vector fields possessing the
shadowing property must be structurally stable. As a corollary, there exists a non-éﬂﬂpty
open set of vector fields whose integrated flows do not have the shadowing property.
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1. Introduction

We are interested in characterizing the geometrical structure of dynamical systems
possessing a topological property of Anosov systems such as topological stability under
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the ! open condition (seg9]). The C! open condition signifies that the topological
property under consideration is preserved with respe@temall perturbations of the
system.

In this paper, we consider the set of expansive flows (vector fields), and investigate its
geometric structure from the above point of view. More precisely,(hénterior of the
set of vector fields whose integrated flows are expansive is characterized as the set of
vector fields without singularities satisfying both Axiom A and the quasi-transversality
condition. Furthermore, we prove that such vector fields possessing the shadowing
property must be structurally stable. As a corollary, it follows from Robinson’s example
(see[14]) that there exists a non-empty* open set of vector fields whose integrated
flows do not have the shadowing property.

Let M be a C™® closed manifold, and denote by{l(M) the set of C! vector
fields onM endowed with theC! topology. Denote by (M) the set ofX € X1(M)
whose integrated flow is expansive, and by o) the C! interior of (M)
in xX1(m).

The following result is obtained.

Theorem A. For X € X1(M), the following conditions are mutually equivalent:
(i) X €int&M),
(i) X is quasi-Anosov,
(iii) X has no singularities, and satisfies both Axiom A and the quasi-transversality
condition.

A similar result is obtained by Mafié ifi7,8] for diffeomorphisms onM. When
dim M = 3, it is easy to see that every quasi-Anosov vector fieldvbris Anosov.
Thus, everyX e int £(M) is Anosov when dimM = 3. However, in higher dimensions
that is not true by Robinson’s example (4a4]).

In the present paper, we also prove the following.

Theorem B. For X € X1(M), the following conditions are mutually equivalent:
(i) X eint&(M) and has the shadowing property,

(i) X eint&(M) and is structurally stable,

(ili) X is Anosov.

In [15] the second author showed an analogue of the above theorem for diffeomor-
phisms by making use of a result proved[8].

Let X € X1(M11) be Robinson’s example of a quasi-Anosov vector field that is not
Anosov on an 11-dimensional manifold! (for diffeomorphisms, se§]). Since the
set of quasi-Anosov vector fields €1 open in X1(M) (see Remark 1), it is easy
to see that everyC! nearby systen¥ € X1(M11) of X is also quasi-Anosov but not
Anosov by construction. Thus, combining these facts with Theorem B we have the
following.

Corollary. There exists a non-empty! open set/ ¢ X1(M*') whose any element
does not have the shadowing property.

Thus the set of vector fields having the shadowing propertyois not C! dense
in X1(M) in general.
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2. Preliminaries

Let M and X1(M) be as before, and lad be the distance oM induced from a
Riemannian metrid| - || on the tangent bundl&M. Every X € X1(M) generates &'t
flow X, : M x R — M; that is aC! map such thatt; : M — M is a diffeomorphism
satisfying Xo(x) = x and X,1(x) = X;(X,(x)) for all s,7 € R, andx € M.

We say that a (continuous) flow, is expansivdf for any ¢ > 0 there iso > 0 with
the property that it (X, (x), Xui) (y)) <0 for all s € R, for a pair of pointsx, y € M,
and for a continuous map : R — R with «(0) = 0, theny = X(x) where|s|<e
(see[1,16,17). In this case, the abow is called anexpansive constargorresponding
to ¢ (with respect toX,).

An orientation preserving (increasing) homeomorphismR — R with «(0) =0 is
called areparametrizationof R. Denote by RefR) the set of reparametrizations &
Given ¢ > 0 anda > 0, a pair of sequences

((xi )72 oor {372 00)
is called a(o, a)-pseudo-orbitof X, if
t;i>a and d(Xt,' (xi), Xi+1) < 0

forall i ¢ Z. Let sg = 0, s, = Z?;Olti, ands_, = le t; for any sequence

l=—n

{ti}72 _ C R. Givene > 0, a (9, a)-pseudo-orbit({x; }7° {;}2°__ ) is e-shadowed

i=—00" i=—00

by an orbitXr(z) = {X;(2) : t € R} (z € M) if there existsz € RepgR) such that
d(Xot(t) (2), Xr—s,l (xp)) <&

whenever: >0 ands, <t < s,4+1 for all n>0, and

d(Xo(r)(2), Xigs_, (x-n)) <&

whenever: <0 and —s_, <t < —s_,41 for all n>1.
We say that a flonX, has theshadowing propertyf for all ¢ > O there exists) > 0
such that everyd, 1)-pseudo-orbit is-shadowed by some orbit of, (see[10,16,17).
Let X € X1(M) have no singularities, and lé&¢ ¢ TM be the subbundle such that
the fiber N, at x € M is the orthogonal linear subspace @ (x)) in T, M; that is,
N, = (X (x))*. Here (X (x)) is the linear subspace spanned ¥yx) for x € M. Let
n:TM — N be the projection along, and let

F{(v) = n(Dx X;(v))

for v € N, and x € M. It is well known that F’ : N' — N is a one-parameter
transformation group (cf[6]).
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We say thatX € X1(M) is quasi-Anosovf X has no singularities and far € A,
if sup,cp IF'(v)|| < oo, thenv = 0 (see[14]).

Let X; be the flow of X € XY(M), and letA be aX;-invariant compact set. The
A is called hyperbolic for X, if there are constant€ > 0, 2 > 0 and a splitting
M = E; & (X(x)) ®@ E¥ (x € A) such that the tangent flowdX; : TM — TM
leaves invariant the continuous splitting and

IDX, I<Ce™ and DXy, [ <Ce™

for r > 0 andx € A (see[3,12]). The set of non-wandering points &fis denoted by
Q(X;). Clearly,

Sing(X)U PO(X,) C Q(X,).

Here Sing(X) is the set of singularities ok and P O (X;) is the set of periodic orbits
of X,.

We say thatX € X1(M) satisfiesAxiom Aif PO(X,) is dense inQ(X,) \ Sing(X)
and Q(X;) is hyperbolic. We say thak e X1(M) is Anosovif M is hyperbolic
for X;.

Let X € X1(M) satisfy Axiom A. In the present paper, we say tiasatisfies the
quasi-transversality conditioif

T W x)NT,W"(x) ={0,} foranyxe M.

Here W*(x) is the stable manifold andV“(x) is the unstable manifold ok defined
as usual (cf[12]).

As before, denote by (M) the set of X € X1(M) whose integrated flowX; is
expansive. Remark that each singular pointXok £(M) is an isolated point irM by
definition (se€[1l, Lemma 1} so thatSing(X) =@ for X € E(M).

Other authors do give the definition of expansive for flows slightly differently. For
example, in[5] the author introduced the notion & *-expansive for flows which is
weaker than our definition, and proved therein that the geometric Lorenz flow possesses
this property on its attractor, while in our definition it is not. In the present paper, a
change in definition (from our definition to weaker one) would not invalidate the
theorems, but would mean that they have to be slightly reworded. Indeed, to prove the
same results in such weaker definition, we need to assume that the vector field under
consideration has no singularities.

Let X*(M) be the set ofX € XL(M) with the property that there exists @'
neighborhood/ c X1(M) of X such that every singularity and every periodic orbit of
Y € U are hyperbolic. Write

L(M) ={X € X*(M) : X has no singularitigs
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A proof of Theorem Ai) = (ii) is based on the following remarkable result obtained
by Gan and Wen if3]. The assertion will be proved by showing &tM) c L(M).

Theorem. Every X € L(M) satisfies both Axiom A and the no-cycle condition.

Denote by QA(M) c X1(M) the set of quasi-Anosov vector fields. It is easy to
see that ifX € X1(M) has no singularities and satisfies both Axiom A and the quasi-
transversality condition, thei € QA(M) by definition. Thus, the proof of Theorem
A is divided into the following two propositions.

Proposition 1. Every X € int£(M) satisfies both Axiom A and the quasi-transversality
condition.

Proposition 2. Let X € QA(M). Then there exists @' neighborhood/ ¢ X1(M)

of X such that for every e U, the integrated flowy; is expansiveMore strongly for

any ¢ > 0, there exists a common expansive consi@nt é(i, ¢) > 0 corresponding
to ¢ with respect toY, for everyY € U.

We say thaty € X1(M) is semiconjugateo X € X1(M) if Y, is semiconjugate
to X,; that is, there are a continuous surjection M — M and a continuous map
7: M x R — R such that

o forall x e M, 1, € RepR),
e forallx e M andr e R, h(Y;(x)) = X, 1) (h(x)),

where X, and Y, are the flows induced fronX andY, respectively. The paith, 1) is
called asemiconjugacyrom Y to X. If the maph can be taken as a homeomorphism,
then we say thaY is conjugateto X.

We say thatX € X1(M) is structurally stableif there is aC! neighborhoodi/
of X in X1(M) such that every¥ e U/ is conjugate toX. It is proved by Robinson
[12] that if X satisfies both Axiom A and the strong transversality condition, tken
is structurally stable (remark that the converse is also true, see Hgydstnd Wen
[18]).

A continuous flowX; on M is said to betopologically stablef for any ¢ > 0, there
existsd > 0 such that for every perturbation flo¥y on M with d-o(X;, ¥;) < 9, there
exists a continuous map: M — M such thatd(h(x),x) < ¢ (x € M) and

h(orbit of Y;) C orbit of X,.
Here

deo(Xy, Yr) = sup  d(X;(x), Y:(x)).
te[0,1], xeM

Notice that the may is surjection sinceM is connected and (k(x), x) < ¢ (x € M).
Some stability properties including topological stability of continuous flows on a
compact metric space are systematically studied by Thomas (see [16,17]).
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Now, suppose that the abobds a homeomorphism mapping orbits ¥f onto orbits
of ¥;. If X, has no fixed points, then for everye M, there is a unique, € Rep(R)
such thath o X, (x) = Y4 (1) o h(x) (see [17, p. 107]). Thus, if the integrated fla¥y
of X € X1(M) is topologically stable, and fo€® nearby systen¥ (e X1(M)) of X
if the maph of the topological stability is injective, thevi is conjugate toX.

It is proved in [16, Theorems 3 and 4] that every expansive flgwpossessing the
shadowing property is topologically stable, and if, in addition, a perturbation fiow
of X, is also expansive, then the mépis injective. In the proof of latter result, to
prove thath is one-to-one, we have to check the relationship between the expansive
constant ofX, and that ofY,. Unfortunately, in the original proof, the way of choice
of the expansive constant for the perturbation flgwis not so clear for the authors.

In this paper, following the proof of the original paper closely we give a proof for
the above result for completeness. More precisely, we prove the following.

Proposition 3. Let X, be an expansive flow on M possessing the shadowing property.
ThenX, is topologically stableand for any continuous flow, C° nearby X,, if both

X, and Y, have a common expansive constdhen the continuous map h between the
orbits of X, and the orbits ofY; is injective.

Let X € int&(M) have the shadowing property. Then, by Theorem A it will follow
from Proposition 3 thak is structurally stable. Since every structurally stable vector
field satisfies the strong transversality condition, the abéwaust be Anosov, so that
Theorem B will be obtained.

3. Proof of Theorem A

Hereafter, for simplicity we assume that the exponential map
exp, : TyM1) - M

is well defined for allx € M, whereT\M () ={ve T, M : ||v| < r} for r > 0.
Let X € X1(M) have no singularities, and l&f; be the flow. For every € M, let

Hx,r = expx(Nx,r) and I, = Hx,l»

where N, = (X (x))*, and Ny, =Ny NT M (r) for 0 < r<1. Then, it is well known
that for givenx’ = X,,(x) (o > 0), there arerp > 0 and aCl mapr: I ,, > R
such thatX .,y (y) € II,» (y € Il ;) with 7(x) = t9. The flow X; uniquely defines the
Poincaré mapf : I1, ,, — I, by f(y) = X (y) for all y € I, ,,. The map isCt
embedding whose image is interior I,/ if rg is small.
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If X,(x) # x for 0 < t<to and ro is sufficiently small, then(, y) — X,(y) C?!
embeds

{(t,y) e R x I, : 0<t <1(y)}
for 0 < r <rp. The image
{(X;(y):yell,, and O<r<t(y)}

is denoted byF,(X,,r, o). For e > 0, let Ny(Il,,) be the set of diffeomorphisms
&I, — I, such that sup@d) C Il 2 anddqi(E, id) < e. Hered1 is the usual
c! metric,id : I, — I, , is the identity map, and supp) is the closure of the set
where it differs fromid.

Lemma 1. Let X € XY(M) have no singularities. Suppose, (x) # x for 0 < 1 <1,
and let f : I, ,, — Il (x' = X, (x)) be the Poincaré maffro > 0 is sufficiently
small. Then for every C! neighborhood/ ¢ X1(M) of X and0 < r <ro, there is
¢ > 0 with the property that for every € N;(Il, ), there existsY € U satisfying

{Y(Y)ZX()’) If x¢Fx(lerstO)
fr(y)=fodlly) if yell,.

Here fy : Il , — II,, is the Poincaré map defined 13y.
Proof. See [11, p. 296, Remark 2]. (J

Let X € X1(M), and supposg € y € PO(X,) (X7(p) = p, whereT > 0 is the
minimum period). If f : I, ,, — II, is the Poincaré magpro > 0), then f(p) = p.
In this case,y is hyperbolic if and only ifp is a hyperbolic fixed point of.

The following lemma plays an essential role in the proof of the hyperbolicity of the
periodic orbits ofX, (X € int&(M)).

Lemma 2. Let X € XY(M) have no singularitiesp € y € PO(X,) (Xr(p) = p),
and let f : II,,, — II, be the Poincaré map for somg > 0. Let U/ C xX(m)
be a C! neighborhood of Xand let0O < r<rg be given. Then there aréy > 0 and
0 < &y < r/2 such that for a linear isomorphisi? : N, — N, with |[O—D, f| < do,
there isY € U satisfying
() Y(x)=X)if x ¢ Fp(X,,r,T/2),

(i) peyepPO),
(i) o) = { exp, o0 o exp,(x) ?f x € Byya(p) NI,

f(x) if x ¢ By(p)NIlp,,
where B;(x) (x € M) is a closed ball in M center at x with radius > 0, and
g:1,,— II, is the Poincaré map defined .
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Proof. cf. [9, p. 3395, Lemma 1.3]. O

Proof of Proposition 1. Let X € int&(M). We show thatX satisfies both Axiom A
and the quasi-transversality condition.

Let 4 ¢ £(M) be aC? neighborhood ofX and pickp € y € PO(X,) (X7(p) =
p, T > 0). The flow X, defines the Poincaré map: I, ,, — 11, (for somerg > 0).
Assuming that there is an eigenvaligeof D, f with |[i| = 1, we shall derive a
contradiction.

Let 90 > 0 and O< g < ro be given by Lemma 2 fot/{ and ro. Then, for the
linear isomorphism® = D, f : N, — N, there existsV € I/ such that

o Y(x)=X(x) if x ¢ Fp(X;,r0,T/2),
. o(x) = { exp, oD f o exp,t(x) if x € Big/a(p) N 1y,
f ) if x & Beo(p) N 1T 1.

SinceY € £(M), for a sufficiently small O< ¢ < min{eg/16, T/2}, there is 0< § <
min{do, &} with the property that ifd (Y, (x), Yy (»)) <0 for all s € R, for a pair of
points x, y € M, and for a continuous map : R — R (x(0) = 0), theny = Y,(x)
where |s| <e.

Let 0 < ¢’ < & be a number such that(x, y) < & (x,y € M) implies

d(Yi(x), Y (y) <0

for 0<t < T. For simplicity, we supposeé = 1 (other case is similar). If we take an
eigenvecton # 0 corresponding td. with |v| < &, then, by construction

d(x,p)=d(g(x), p) <7

Herex = exp,(v) € I, », \ {p}. Hence we see that there is a continuous mayit —

R (2(0) = 0) such thatd(Y;(p), Yuu)(x)) < ¢ for all r € R. Thusx = Y;(p) for some
|t|<e. This is a contradiction, becausee II, ,, \ {p}. Hence, by Theorem of Gan
and Wen everyX € int&(M) satisfies both Axiom A and the no-cycle condition since
X is singular points free.

A proof of the quasi-transversality condition f&f follows readily. Indeed, suppose
that T, W* (x) N T, W (x) # {O} for somex € M. Then making use of Lemma 1, we
can perturbX to C* nearbyY such that for anyy > 0, there existy ¢ Yr(x) satisfying
d(Ys(x), Yo () <0 for all s € R for some continuous map : R — R («(0) = 0).
This is a contradiction. [J

To prove Proposition 2, we prepare more two lemmas that we need.

Lemma 3. Let X € QA(M), and let F' : N — N be the transformation group
induced by the flowx,. Then there exists an integét > 0 such that for anyw € N,

IFT )| =3llvll or [IF~T@)|=3|v].
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Proof. There exists an integd > 0 such that for any € N, we have|| F' (v)| > 3||v||
for some—Tp < r < Tp. Indeed, if this is not true, then, for any integer> O there
arex, € M andv, € Ny, (lv,|l = 1) such that|| F’ (v,)|l < 3|lv.|| for all —n <t < n.
If we letx, — x € M andv, — v, € Ny (JJug] =1) asn — oo, then || F'(v,)|| <3
for t € R. Thus,v, = 0 sinceX is quasi-Anosov. This is a contradiction.

Fix any v € M (Jlv]| # 0), and take a real number = #1(v) such that

sup [|[F' )l = |F™*()]l.
[t|<To

We suppose that > 0 (other case is similar). ThugF™ (v)|| > 3||v||. Since—Tp <11 —
To<t1<Tp, there exists a real number = r»(v) with 0 < 11 < tp<t1 + Tp such that

sup IF )| = IF2)].
n—To<t<n+To

Thus we havel| F’2(v)|| >3] F2(v)|| >3?||v|. Continuing this manner, we can choose
an increasing sequencg = #(v) /' oo of real numbers such that,; — # < Tp and
IF% @) =3 v].

Let L > 0 be a constant such th&#’(v)|| > L|v| for all v € N and —To <t < Tp.
Then for anyt>0 andv € N, we see||F'(v)| > L| F*(v)| where 0< t <t <tg11,
and sol|| F'(v)|| > L3*||v||. Finally, pick an integefl’ > 0 such that.3!7/7! >3, O

Let X € X1(M) have no singularities. Then, for ary € X1(M), C%nearbyX,
we can definer), : NV — N the transformation group induced from the flaw as
in the same wayX does not have singularities, neither does @fynearbyY). Here
NY = Uyem N, and NY is the orthogonal linear subspace @f(x)) in T, M.

Remark 1. QA(M) is open inX1(M).

Indeed, letX € QA(M). Then, by Lemma 3 it is not hard to show that there exists
v > 0 such thatd1(X,Y) < v (Y € XY(M)) implies

IFy )l =2[v] or IIFY_T(v)||>2||vII-
for any v e NV
Suppose thafv|| # 0 and sup.g I| F}, (v)| < oco. In case||FYT(v)|| >2||v]|| (other case
is similar), we sed|F27 ()| =2||F] (v)||. For, if [F, T o FL ()|=2|Ff (v, then
vl =21 Fy )|=2%]v]|.
This is a contradiction, and spF2” (v)|>22||v|. Continuing this manner, we have

||F$T(v)||22"||v|| for all integern > 0, which is a contradiction. Thu® A(M) is
open.
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Now, suppose thak e X1(M) has no singularities, and leX; be the flow. Let
N¥ =Uiey NY, and letFi : N¥ — NX be the transformation group induced from
X;. Here Nf is the orthogonal linear subspace @ (x)) in T, M. As before, we set
NX, =NXNT.M@) (r > 0) for x € M, and putll}, = exp (NX,).

For anyY (e X1(M)) C! nearbyX, we construct a Poincaré map with respect to
Hfér (for somer) in the whole spaceVl modifying the technique used in [12, pp.
269-270]. The map will play an essential role in the proof of Proposition 2.

Lemma 4. Under the above notatigrthere are a constanp > 0, a C! neighborhood
V C XY(M) of X such that for any¥ e V, there exists ac! Poincaré mapgy . :
I, — I, (x € M) satisfying

(1) @y, (x) =Y1(x),

) Digx, = Fy.

(3) @y, — ¢x, (x € M) asY — X with respect to thec! topology

Here Y; is the integrated flow of.Y

Proof. Suppose thatX € X1(M) has no singularities, and let; be the integrated
flow. Fix d1 > 0, r1 > 0, and aC! neighborhoodyg c X1(M) of X small enough.
For anyY € Uy, —1<s<2, and—01+s <t < 01 + s, we define

D(x,v;s,1,Y) = exp;sl(x) oY;oexp, v for (x,v) e TM(ry).

Here Y; is the integrated flow of.

Hereafter, we fixs = 1, and modify the flow®(x, v;¢,Y) = @(x,v; 1, ¢t,Y) on TM
to preserveN* = U,y NX.

Fix any x € M and let

plx,vi 1, Y) = (@(x, v; 1, Y), X(Y1(x))),
where (-, -) is the Riemannian inner product aiM. Then u is C* such that
wix,0;1,X)=0

and
0
Eu(x, 0; 1, X)=1 = (X (X1(x)), X (X1(x))) #0.

Therefore, by Implicit Function Theorem there exist a numbet 8<r; and acC?
neighborhood/ c Uy of X and aC? function

T: TU,(x)M(r) xU — R
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such thatu(y, v; T(y,v; Y),¥Y) = 0 for any (y,v) € Ty,yM(r) andY € U. Here
U,(x) is an open ball inM center atx with radiusr. By construction

Dy, v;T(y,v;Y),Y) € Né(y)

for v e Ny’fr andy € U,(x).

SinceM is compact, we can pick a finite number of poir{li:ﬁ}le C M and positive
numbers{p;}:_;, and C* neighborhoodst4}!_; such that = |J;_, Uy, (x;) and the
above functionst(x;, v; Y) are defined for

v Y) € Ty, M (p;) x Ui.

If we set

p= min p, and V= ﬂ U,

1<i <!
SIS 1<i<l

then the functiort(x, v; Y) is well defined on the local tangent bundle

TM(p) = T:M(p)
xeM

forany Y € V.
Define

(pY,x(y) = Y%(x,exp;ly;y)(}’)
for y e IIY , (x € M). Thengy  is C* and ¢y  (ITY ) C 1T}, for x € M. Clearly,
Py = ¢Px, (x € M) asY — X with respect to theC! topology.

Now we show that the derivative apy , at the zero vector Oc T:M (x € M)

coincides withFy  : NY — N¥ . That is

DX(pX,x = F)}’,x

for all x € M. Indeed, we see
dt
Dy o (w) = DeXa(w) + X (Xa(x)) - —=(w)

for w € N¥ by definition. On the other hand, sind@, ¢y ,(N) = N}, ), we have

o
n(D: X1(w)) = Dy Xa(w) + X (X1(0) - T-(w) € N0,
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wheren : TM — NX is the projection alongX. Thus Doy (w) = F)%,x(w) for
weNX¥andxeM. O

Remark 2. Suppose thak € X1(M) has no singularities, and let> 0, V, and Py.x
(x e M, Y €V) be given by Lemma 4.
(1) For simplicity, denote bypy . the composition map

Dy Y,_1(x) © Py,y,_o(x) © """ ° Py x

for n>1. Clearly, we can proceed in the same way for negative powets, Qf
for x e M.

(2) ReducingV if necessary, we can see the following property; for any 0 and
¢ > 0 there existsd = 6(V,c,e) > 0 such that ifY € V, a continuous map
o:R— R (2(0) =0), and a pair of points, y € M satisfy

d(Y;(x), Yy (y)) <o forall teR,

then there isy’ € ITY , with
(i) ¥ = Y(y) for somels|<e,
(i) d(@} . (x), @} (V) <c forallneZ.

Proof of Proposition 2. Let X € QA(M), and letp > 0, V ¢ X¥(M) and Py.x
(x € M, Y € V) be given by Lemma 4. We show that there exist & neighborhood
Vo (C V) of Xand a constant > 0 such that for any € ), if d(q)')',x(x) q)';x(y))<c
xeM,ye HX o) for all n € Z, thenx = y. If this is established, then for ariy € 1,
the flow Y; must be expansive with a common expansive constant.

Indeed, for anye > 0, let 6 = 0(V,c,&) > 0 be the number given by Remark
2(2). Fix anyY € Vo (C V), and letY; be the flow. Then, for any continuous map
o: R — R («(0) = 0) and any pair of pointst, y € M, if d(¥;(x), Yy () <0 for
all € R, then there isy’ = Y,(y) € [T}’ , with |s|<¢ such that

d(py (x), q)'{/’x(y/))gc forall nez

by Remark 2(2)(i) and (ii). Thus we have = y’. Sincex = Y;(y) with |s|<g, the
aboved is a common expansive constant correspondingwith respect taY; (Y € Vo),
and hence Proposition 2 is proved.

Now, let F : N¥ — NX be the transformation group induced from the flaiy,
and letT > 0 be the integer given by Lemma 3. Then, for ang N'¥X,

IFx @ =3lv] or [Fyx" @)I=3lv].
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Thus
IDx %) I1=3lvl or IDxey” (w)II=3|vl

for anyv € N¥ sincepy = Fi (see Remark 2(1)). By Lemma 4(3), there exists’a
neighborhoodVy (C V) of X such that for anyy € My,

IDcpy I =2]vll or [Dxgy" )] =2l
for any v € NX andx € M. Set

K= sup |[[Dxoyl.
xeM,YeVy

Fix ¢ > 0 with
fA+K+K>+K3+---+KTYH <1/2
Then, reducingVy if necessary, we can take©c¢ = c(¢’, Vo) < p such that

I exp;g(x) 0% oexp, v — Dy @f ()| < [lvlle (x € M)

if Jv|<c (veNX, g==1) for any Y € Vo. We show that for any e Vy, if
d(@y (x), oy (y)<c forall ne”Z

xeM,ye Hi{p), thenx = y.

Hereafter, for simplicity, we denotey, N;fp, and Hﬁp by @, Nx,, and I, p,
respectively. If the above assertion is false, then there are distinct poiatsl y €
II, , such thatd(¢" (x), ¢"(y))<c for all n € Z. Let

¢ =supd(¢”(x), ¢"(y)) <c

neZ

and taked’ with 0 < ¢’ <c’/4. Obviously, we see’ — ¢ < d(¢'(x), ¢'(y)) <c' for
somei € /. _ '
Putz = ¢'(x), w = ¢'(y), andv = exp;lw € N; . Then

=98 <|v| =d(z, w)
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and | D,¢" (v)|| =2||v|| for some|n| = T. We treat the cas¢D.o” (v)| =>2|v| (other
case is similar). Sincélv|| = d(z, w) <c’ we have

lexp, i) op o exp v — Do) < |lvl¢,

and so ||D;e()|| < (1 + ¢) since | exp;(lz) op o exp.v| = d(@(z), p(w)) <.
Moreover

=1

lexp ;. 00”0 exp. v — D:¢* ()]

<l exp;zl(z) op®oexp v — Dq,(z)go(exp;(lz) o o exp v)|
+ Dy 9 (€XP, () 0 0 €XR, v) — D;¢* (V)|

<cd + Kc'e

=cd(1+K)

and hence,
lexpz., 09?0 exp vl = d(9? (), p?(w) <’
implies || D.@?(v) || <c'{1+ ¢ (1 + K)}. By induction we have
201D I <{1+e A+ K+ K2+ K3+ + KT},

Thusc — ' < |v]|<3c'/4 so thatc’/4 < §'. This is a contradiction. [J

4. Proof of Theorem B

Before starting a proof, we prove the following result which has been already stated
in [16] for a continuous expansive flok,; possessing the shadowing property.

As stated before, to show that the mhapbetween the orbits o, and the orbits
of a perturbation flowy; is injective, we have to clarify the relationship between the
expansive constant ok, and that ofY,. However, in the original proof, the way of
choice of the expansive constant for the perturbation flgwseems not so clear for
the authors.

In this paper, following[16] closely we show that the mabp is injective in case
both X, and ¥; have a common expansive constant.

Proposition 3. Let X, be an expansive flow on M possessing the shadowing property.
ThenX; is topologically stableand for any continuous flow, C° nearbyX;, if both
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X, and Y, have a common expansive constdhen the continuous map h between the
orbits of X; and the orbits ofY; is injective.

Proof. Let X; be a continuous expansive flow d and assume thak; has the
shadowing property. TherX, has no fixed points so that there exigts> 0 as in the
assertion of [16, Lemma 3.4].

Fix 0 < ¢ < Tp/2. Since X, is expansive, for this, there ise > 0 such that
if d(Xuyn(x), X;(y))<4e for all t € R, for a pair of pointsx,y € M, and for a
continuous mapx : R — R with «(0) = 0, theny = X,(x) where |t|<&. Thus 4 is
an expansive constant corresponding: twvith respect toX;.

Now, for ¢, let { > 0 be a number such thdi(X.(y), y) >2{ for all y € M (see [16,
Lemma 3.4]). Fore, let 0 < r < min{e, e} be the number given by [16, Lemma 3.3]
such that ifx = X;(y) (x,y € M) and|t| < r, thend(x, y)<e. Since O< r < Tp/2,
by [16, Lemma 3.4] there is > 0 such thatd(X,(y), y)>7y for all y € M.

Again, sinceX, is expansive, for the above there is 0< ¢ < min{(, r,y} such
that if d(Xy(x), X:(y))<¢ for all r € R, for a pair of pointsx, y € M, and for a
continuous mapx : R — R with «(0) = 0, theny = X;(x) where |t|<r. Hence¢' is
an expansive constant corresponding twith respect toX;,.

Choosed > 0 with 0 < 6 < min{{, ¢/12} such that

(@) every(9, 1)-pseudo-orbit iss/12-shadowed by an orbit of,,
(b) for everyx,y € M, d(x,y) < o0 implies d(X,(x), X;(y)) < ¢&/12 for all ¢ €
[0, 1].
Let Y; be a given perturbation flow oNl with d-o(X;, ¥;) < 6. Then it is proved in
[16, Proof of Theorem 3, pp. 491-496] that there exists a continuousimap — M
so thatd(h(x),x) <& (x € M) and

h(orbit of ¥;) C orbit of X,.
Thus X; is topologically stable. Furthermore, by the choicedofve see that
d(Ye(x), x) Z2d(Xe(x), x) — d(X(x), Ye(x)) =

for all x e M.

Notice thatY; has a common expansive constantfasdy assumption. Thusedis also
an expansive constant corresponding teith respect tay;, so that ifd (Y (y1), Y: (y2))
<4de for all t € R, for a pair of pointsy;, y» € M, and a continuous map: R — R
with (0) = 0, theny, = Y;(y1) for somet where |¢|<e¢. Therefore, by following the
proof of Theorem 4 [16, pp. 497-499] we can see that the semiconjugaetween
X, and Y, is injective. O

Proof of Theorem B. It is well known that every Anosov vector field has the shadowing
property, and in [13] Robinson proved thatXfe X1(M) satisfies both Axiom A and
structural stability, therX satisfies the strong transversality condition. Thus, to prove
Theorem B, it only remains to show that X € int £(M) has the shadowing property,
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then X is structurally stable. However, this fact quickly follows combining Propositions
2 with 3 sinceQA(M) = intE(M) by Theorem A. [J
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