# On a Set of Lattice Points not Containing the Vertices of a Square 

H. L. Abbott and M. Katchalski

Let $S_{n}=\{(x, y): x, y$ integers, $0 \leqslant x, y \leqslant n-1\}$, so that $S_{n}$ is an $n \times n$ square array of lattice points in the plane. Denote by $g(n)$ the size of a smallest subset $X$ of $S_{n}$ which does not contain the vertices of a square with its sides parallel to the sides of $S_{n}$ but which is such that the addition of any new point to $\boldsymbol{X}$ forces the appearance of such a square. In [1] it was shown that

$$
\begin{equation*}
g\left(2^{k}\right) \leqslant 3^{k} \text { for } k=1,2,3, \ldots \tag{1}
\end{equation*}
$$

and it was pointed out that the construction which leads to (1) implies

$$
\begin{equation*}
g(n) \leqslant 3 n^{\alpha} \quad \text { where } \quad \alpha=\log 3 / \log 2=1.58 \ldots \tag{2}
\end{equation*}
$$

For further background information on this and related problems, see [1-3].
In this note we obtain a lower bound for $g(n)$ by proving the following theorem.
THEOREM. For every $\varepsilon>0, g(n)>n^{4 / 3-\varepsilon}$, provided $n \geqslant n_{0}(\varepsilon)$.
Proof. Let $X$ be a minimal subset of $S_{n}$ with the desired property. Color the points of $\boldsymbol{X}$ red and the points of $S_{n}-X$ blue. With each blue point $b$ we may associate a square $Q_{b}$, one of whose vertices is $b$ and whose remaining three vertices are red. There may be several choices for $Q_{b}$; it does not matter which one is selected. The set of squares $Q_{b}, b \in S_{n}-X$, may be split into four classes according to the location of $b$. One of these classes must contain at least $\frac{1}{4}\left(n^{2}-|X|\right)$ members. Denote this class by $C$ and observe that we may, without loss of generality, suppose that if $Q_{b} \in C$ then $b$ is the upper left corner of $Q_{b}$. The points in the upper left and lower right corners of a member of $C$ will be called a special pair. The red and blue points which are members of special pairs will also be called special.

Let $k \geqslant 2$ be a positive integer and let the numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ be defined by

$$
\begin{gather*}
\alpha_{1}=\frac{2^{k}-1}{3.2^{k-1}-2}  \tag{3}\\
\alpha_{2}=3 \alpha_{1}-2  \tag{4}\\
\alpha_{i}=2^{i-2} \alpha_{2} \text { for } i=3,4, \cdots, k \tag{5}
\end{gather*}
$$

It is easy to check that

$$
\begin{equation*}
\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}=1 \tag{6}
\end{equation*}
$$

and we note also that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \alpha_{1}=\frac{2}{3} . \tag{7}
\end{equation*}
$$

Let

$$
\begin{equation*}
\beta_{i}=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{i}, i=1,2, \cdot \ldots, k \tag{8}
\end{equation*}
$$

Split the special red points into $k$ classes $R_{1}, R_{2}, \ldots, R_{k}$ where

$$
R_{1}=\left\{r: r \text { belongs to } d \text { special pairs, } d<n^{\alpha_{1}}\right\}
$$

and for $i=2, \ldots, k$

$$
R_{i}=\left\{r: r \text { belongs to } d \text { special pairs, } n^{\beta_{i-1}} \leqslant d<n^{\beta_{i}}\right\} .
$$

Let $B_{i}$ be the set of special blue points which are paired with points in $R_{i}$. Then for some $i, 1 \leqslant i \leqslant k$,

$$
\begin{equation*}
\left|B_{i}\right| \geqslant \frac{n^{2}-|X|}{4 k} \tag{9}
\end{equation*}
$$

If (9) holds for $i=1$ we have

$$
\left|R_{1}\right| n^{\alpha_{1}} \geqslant\left|B_{1}\right| \geqslant \frac{n^{2}-|X|}{4 k}
$$

so that, by (2), for all sufficiently large $n$

$$
\begin{equation*}
\left|R_{1}\right| \geqslant \frac{n^{2-\alpha_{1}}}{5 k} \tag{10}
\end{equation*}
$$

and the desired conclusion follows from (7) and (10).
We may therefore suppose that (9) holds for some $i \geqslant 2$. Since each $r \in R_{i}$ belongs to fewer than $n^{\boldsymbol{\beta}_{i}}$ special pairs, we have

$$
\left|R_{i}\right| n^{\beta_{i}} \geqslant\left|B_{i}\right| \geqslant \frac{n^{2}-|X|}{4 k}
$$

so that, for large enough $n$,

$$
\begin{equation*}
\left|R_{i}\right| \geqslant \frac{n^{2-\beta_{i}}}{5 k} \tag{11}
\end{equation*}
$$

If at least $\left|R_{i}\right|^{\frac{1}{2}}$ of the points in $R_{i}$ lie one some horizontal line $L$, then, since each vertical line containing a member of $R_{i} \cap \mathcal{L}$ must contain at least $n^{\beta_{i-1}}$ red points, it follows that the number $q$ of red points exceeds $\left|R_{i}\right|^{\frac{1}{2}} n^{\beta_{i-1}}$.

Thus

$$
\begin{aligned}
q & >\frac{1}{\sqrt{5 k}} n^{1+\beta_{i-1}-\frac{1}{2} \beta_{i}} \text { by (11), } \\
& =\frac{1}{\sqrt{5 k}} n^{1+\frac{1}{2}\left(\alpha_{1}+\cdots+\alpha_{i-1}\right)-\frac{1}{2} \alpha_{i}} \text { by }(8) \\
& =\frac{1}{\sqrt{5 k}} n^{\frac{3}{2}-\frac{1}{2}\left(2 \alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{k}\right)} \text { by (6), } \\
& =\frac{1}{\sqrt{5 k}} n^{\frac{3}{2-2 k-2 \alpha_{2}}} \text { by (5), } \\
& =\frac{1}{\sqrt{5 k}} n^{\frac{3}{2-2 k-2\left(3 \alpha_{1}-2\right)} \text { by (4) }} \\
& =\frac{1}{\sqrt{5 k}} n^{2-\alpha_{1}} \text { by }(3)
\end{aligned}
$$

The desired conclusion now follows from (7).

Finally, if every horizontal line contains fewer than $\left|\boldsymbol{R}_{i}\right|^{\frac{1}{2}}$ members of $\boldsymbol{R}_{i}$ then there must be at least $\left|\boldsymbol{R}_{i}\right|^{\frac{1}{2}}$ horizontal lines each of which contains at least one member of $\boldsymbol{R}_{i}$. Each of these lines must therefore contain at least $n^{B_{i-1}}$ red points and the same conclusion holds. This completes the proof of the theorem.

The question, posed in [1], as to whether there exists a number $\beta$ such that $g(n)=$ $n^{\beta+o(1)}$, as $n \rightarrow \infty$, remains unanswered. In this regard it may be useful to have some functional equation of inequality for $g$. However, we do not even know whether $g(n+1) \geqslant$ $g(n)$ for all $n \geqslant 2$.

One may raise a similar question in higher dimensions. For example, let $\boldsymbol{A}_{\boldsymbol{n}}$ denote an $n \times n \times n$ cubical array of lattice points in three dimensions. Denote by $f(n)$ the size of a smallest subset $Z$ of $A_{n}$ which does not contain the vertices of a cube with its faces parallel to the faces of $A_{n}$ but which is such that the addition of any new point to $Z$ forces the appearance of such a cube. It is easy to see that $f(n)>n^{\frac{7}{3}-\varepsilon}$ for every $\varepsilon>0$, $n$ sufficiently large. In fact, the proof of our theorem makes no use of the condition that $\boldsymbol{X}$ does not contain the vertices of a square. It uses only the condition that adding a point to $X$ forces the appearance of a new square. Thus if we let $g^{*}(n)$ denote the size of a smallest such $X$, then $g^{*}(n)>n^{\frac{4}{3}-\varepsilon}$. Now if $f(n)<n g^{*}(n)$ then one of the horizontal planes of $A_{n}$ would contain fewer than $g^{*}(n)$ points of $Z$. We could then add a new point $y$ to this layer without forcing the appearance of a new square and thus also without forcing the appearance of a cube in $Z \cup\{y\}$. Thus $f(n) \geqslant n g^{*}(n)$ and hence $f(n)>n^{\frac{7}{3}-\varepsilon}$, if $n$ is large enough. The method of proof of our theorem, unfortunately, gives a weaker result when directly applied in this situation.

We remark also that a variant of the argument used in [1] to prove (1) may be used to prove that for some constant $c$

$$
\begin{equation*}
f(n)<c n^{\alpha}, \alpha=\log 7 / \log 2 \tag{12}
\end{equation*}
$$

The construction may be described as follows:
Write the numbers $0,1, \ldots, 2^{k}-1$ in base 2 , so that if $0 \leqslant a \leqslant 2^{k}-1$ then $a=\Sigma_{i \in A} 2^{i}$ where $A \subseteq\{0,1, \ldots, k-1\}$. Then put $(a, b, c)$ in $Z$ if $A \cup B \cup C=\{0,1, \ldots, k-1\}$ where $B$ and $C$ are defined for $b$ and $c$ in the same manner that $A$ is defined for $a$. An argument which is only slightly more complicated in detail than the one used in [1] may be used to show that $Z$ has the desired property. Thus $f\left(2^{k}\right) \leqslant 7^{k}$ and (12) follows.

## References

1. H. L. Abbott and D. Hanson, On a combinatorial problem in geometry, Discrete Math. 12 (1975) 389-392.
2. P. Erdös, Problems and results in combinatorial number Theory, in A Survey of Combinatorial Theory (J. N. Srivastava et al., eds.), North Holland, Amsterdam, 1973, pp. 117-138, especially p. 120.
3. J. Hammer, Unsolved problems concerning lattice points, in Research Notes in Mathematics, Pitman, London, 1977.

Received 24 August 1981 and in revised form 17 May 1982
H. L. Аbbott

Department of Mathematics, University of Alberta, Edmonton, T6G 2G1, Canada
M. KAtchalski

Department of Mathematics, The Technion, Haifa, Israel

