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On a Set of Lattice Points not Containing the Vertices of a Square

H. L. ABBOTI' AND M. KATCHALSKI

Let S; = {(x, y): x, y integers, 0,;:;; x, y ,;:;; n -1}, so that S; is an n x n square array of
lattice points in the plane. Denote by g(n) the size of a smallest subset X of S; which
does not contain the vertices of a square with its sides parallel to the sides of S; but
which is such that the addition of any new point to X forces the appearance of such a
square. In [1] it was shown that

g(2 k
) ,;:;; 3 k for k = 1, 2, 3, . . . (1)

and it was pointed out that the construction which leads to (1) implies

g(n),;:;;3n'" where a=10g3/10g2=1.58 ....

For further background information on this and related problems, see [1-3].
In this note we obtain a lower bound for g(n) by proving the following theorem.

THEOREM. For every E>0, g(n) >n 4
/

3
- . , provided n ~no(E).

(2)

(3)

PROOF. Let X be a minimal subset of S; with the desired property. Color the points
of X red and the points of S; - X blue. With each blue point b we may associate a
square Qb, one of whose vertices is b and whose remaining three vertices are red. There
may be several choices for O«; it does not matter which one is selected. The set of
squares Qb, b E Sn - X, may be split into four classes according to the location of b. One
of these classes must contain at least t(n z -IXi) members. Denote this class by C and
observe that we may, without loss of generality, suppose that if Qb E C then b is the
upper left corner of Qb. The points in the upper left and lower right corners of a member
of C will be called a special pair. The red and blue points which are members of special
pairs will also be called special.

Let k ~2 be a positive integer and let the numbers al, az, . . . , ak be defined by

2k-1

a l = 3.2k 1_ 2,

It is easy to check that

and we note also that

Let

a, = i-zaz for i = 3, 4, ... .k.

lim al =~.
k-+oo

{3j=al +az +... +aj, i = 1, 2, ... , k,
191

(4)

(5)

(6)

(7)

(8)
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Split the special red points into k classes R h R 2 , • • • , R k where

R 1 = {r: r belongs to d special pairs, d < n a
,}

and for i =2, ... , k

R, ={r: r belongs to d special pairs, n 13,_1"';;; d < n fJ,}.

Let B, be the set of special blue points which are paired with points in R; Then for some
i, l",;;;i ",;;;k,

If (9) holds for i =1 we have

a n
2 - IXIIR 11n 1~IB11~ 4k

so that, by (2), for all sufficiently large n

n 2- a,
IR11~5k

(9)

(10)

and the desired conclusion follows from (7) and (10).
We may therefore suppose that (9) holds for some i~2. Since each r e R, belongs to

fewer than n fJ, special pairs, we have

so that, for large enough n,

(11)

1

If at least IR i 12 of the points in R, lie one some horizontal line L, then, since each vertical
line containing a member of R, n L-must contain at least n fJ'_1 red points, it follows that
the number q of red points exceeds IRd~n fJi-l.

Thus

1 1+" _1"q > ill n '""-1 2'"" by (11),

1 ~-2k-2a b (5)=--n2 2 y
ill '

=_l_n~ 2k-2(3a,-2)b (4)ill y ,

1 2-a ()=--n 'by 3.
ill

The desired conclusion now follows from (7).
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Finally, if every horizontal line contains fewer than IRdl members of R, then there
J

must be at least IRd2 horizontal lines each of which contains at least one member of R;
Each of these lines must therefore contain at least n tl ' -l red points and the same conclusion
holds. This completes the proof of the theorem.

The question, posed in [1], as to whether there exists a number p such that g(n) =
n tl +0(1\ as n ~ 00, remains unanswered. In this regard it may be useful to have some
functional equation of inequality for g. However, we do not even know whether g(n + 1);;:.
g(n) for all n ;;:.2.

One may raise a similar question in higher dimensions. For example, let An denote
an n x n x n cubical array of lattice points in three dimensions. Denote by f(n) the size
of a smallest subset Z of An which'does not contain the vertices of a cube with its faces
parallel to the faces of An but which is such that the addition of a"ny new point to Z
forces the appearance of such a cube. It is easy to see that f(n) > n 3-

S for every E > 0,
n sufficiently large. In fact, the proof of our theorem makes no use of the condition that
X does not contain the vertices of a square. It uses only the condition that adding a
point to X forces the appearance of

4a
new square. Thus if we let g*(n) denote the size

of a smallest such X, then g*(n) > n 3-
s

• Now if f(n) < ng*(n) then one of the horizontal
planes of An would contain fewer than g*(n) points of Z. We could then add a new
point y to this layer without forcing the appearance of a new square and thus also without

7

forcing the appearance of a cube in Zu{y}. Thusf(n);;:.ng*(n) and hencef(n»n J s ,

if n is large enough. The method of proof of our theorem, unfortunately, gives a weaker
result when directly applied in this situation.

We remark also that a variant of the argument used in [1] to prove (1) may be used
to prove that for some constant c

f(n)<cn a
, a =log 7jlog2. (12)

The construction may be described as follows:
Write the numbers 0, 1, .. . , 2k -1 in base 2, so that if °~ a ~ 2k -1 then a =~jEA z'
where A S;;; {O, 1, ... , k -I}. Then put (a, b, c) inZ if A uB uC ={O, 1, ... , k -I} where
Band C are defined for band c in the same manner that A is defined for a. An argument
which is only slightly more complicated in detail than the one used in [1] may be used
to show that Z has the desired property. Thus f(2 k

) ~ 7 k and (12) follows.
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