
Discrete Applied Mathematics 36 (1992) 57-65

North-Holland
57

Generating permutations with
given ups and downs

D. Roelants van Baronaigien and Frank Ruskey*
Depurtment of Computer Science, University of Victoria, Victoriu, B.C., Canada V8W 2Y2

Received 7 February 1989

Revised 6 December 1989

A bstracl

Roeiants van Baronaigien, D. and F. Ruskey, Generating permutations with given ups and

downs, Discrete Applied Mathematics 36 (1992) 57-65.

A permutation with a signature Q=(qt,qz, q,,- 1) where qi is either 1 or - 1, is a permutation,
P= 711, n,, . ..) 71,,, of the integers 1 to n such that q;(rr;+ I - nj) is positive for ail 1 li5 n - 1.
Alternating permutations are an example of permutations with the signature (1, -1, 1, -1, . ..). A

constant average time algorithm is developed for generating ail permutations with a given

signature. Permutations are represented by a variant of their inversion tables. Ranking and

unranking algorithms are also dijcuJsed.

1. htroductisn

Let Q=@,42, qn _ 1) be a sequence such that 4; = + 1 or 4; = - 1. A petmutu-
tion with signature Q is a permutation P= q, 7r2, IC,, of the integers 1,2, n
such that zi< zi+ 1 if qi= +1 and 7ti>7ti+, if qi= -1 for all i= 1,2,n- 1. Alternating
permutations are permutations with signature Q = (+ 1, - 1, + 1, - 1, . . . , (- l)i’ ‘, . . .).
Some work has been done on the problem of enumerating permutations with a given
signature. See for example Niven [ll], Foulkes [6], Abramson [l], and De Bruijn
[3]. There are constant average time algorithms by Bauslaugh and Ruskey [2],
Pruesse and Ruskey [121 and Ruskey [151 for generating alternating permutations.
The problem of generating all permutations with a given signature is equivalent to
the problem of generating all topological sortings of a poset whose Hasse diagram
(regarded as an undirected graph) is a path. Kalvin and Varol [7] give a linear
average time algorithm for generating all topological sortings. This paper presents
the first constant average time algorithm for generating all permutations with a
given signature.

* Research supported by the Natural Sciences and Engineering Research Council of Canada under

grant A3379.

0166-218X/92/$05.00 ‘?J 1992 - Eisevier Science Publishers B.V. Ail rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82178424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

58 D. Roeianrs van Baronaigien, F. Ruskey

Consider a class of permutations that we wish to generate. Let N be the number
of permutations of 1,2,. . . , n being generated. An algorithm for generating that class
of permutations is said to run in constant average time if the total amount of com-
putation (excluding output) is O(N). Up to a constant factor no algorithm for
generating those permutations is faster. An algorithm is said to run in linear average
time if the total amount of computation is O(nN).

Our motivation in studying this problem is to further extend the class of com-
binatorial objects that can be generated in constant average time. Furthermore, our
algorithm can be used to generate other classes of permutations. A run in a permuta-
tion 7r1, 7r2, . . . , n,, is a maximal length subsequence 7tis Zi+ I I l . . s Zj. AS noted in
[8] the problem of generating all permutations with r runs can be solved by listing
all permutations with signatures having r- 1 negative ones. Thus our algorithm
could be used to generate all permutations with a given number of runs in constant
average time. There are a number of existing algorithms for generating all combina-
tions of r-- 1 out of n - 1 in constant average time [131.

The generation algorithm of [2] lists alternating permutations in lexicographic
order. Many other generation algorithms list objects in lexicographic order. See
Williamson [20], Reingold, Nievergelt and Deo [131 and Nijenhuis and Wilf [lo] for
many examples. Colexicographic (colex) order is a variant of lexicographic order in
which the sequences are scanned from right-to-left, instead of left-to-right. Colex
order (or reverse colex order) has been used by Nijenhuis and Wilf [lo] to generate
compositions, permutations, and Young Tableau with a specific shape (see also Wilf

t 181).
The generating algorithm presented here lists a natural representation of the per-

mutations in colex order.
Any generation algorithm imposes an order on the objects being generated. For

lexicographic generation, the order is quite natural. The rank of an object with
respect to some ordering is the number of objects that come before it in the order-
ing. An unranking algorithm determines the object having a particular rank.
Unranking algorithms are often used as a method of generating a random object.
Ranking and unranking algorithms are normally quite straightforward for lexico-
graphic order. Examples may be found in [10,19,13,21].

An algorithm for generating all permutations with a given signature is given in
the second section. An analysis of the generation algorithm is given in the third sec-
tion, and in the fourth section algorithms are discussed for ranking and unranking.
Some open problems are mentioned in the final section.

2. The generation algorithm

In this section, we give an algorithm for the colex generation of a representation
of permutations with a given signature. The representation that we use is related to
the inversion table of the permutation (Knuth [9]).

Generating permutations with given ups and downs 59

Given a permutation II of 1,2, . . . , n, we define the P-sequence associated with it,
ml =P1#2 , . . . ,pn as follows: pk is the number of elements in the sequence
nk, nk+ 1, l .*V it,, that are less than or equal to nk. For example P[314652] = 312321.
P-sequences are useful for ranking permutations lexicographically [131. Here, P-
sequences are used to obtain the constant average time property of the generation
algorithm.

Bauslaugh and Ruskey [2] uoted that if P[n’] > P[Iz] in lexicographic order, then
or’> it in lexicographic order. The same conclusion is not true for colex order; colex
order of P-sequences does not correspond to colex order of permutations. The
following lemma characterizes the P-sequences that represent permutations with a
given signature.

Lemma 2.1. Let Q=(q:,qz ,..., q,, _ 1) be a signature. The following conditions are
necessary and sufficient for a P-sequence p1,p2 , . . . ,pn to represent a permutation
with signature Q:

(a) Pk>Pk+l ifqk=-h

W PksPk+l if qk=l*

Proof. If qk=-l, then ~k>~k+r, so clearly pk>&+t. Also, if qk=l, then
nk < nk+ 1, and so pk (pk+ 1. The other direction of the proof is equally straight-
forward. 0

We note that the largest value g can have is n - k + 1, the smallest is 1, and, by
definition, pn = 1. Lemma 2.1 can be used to determine the extreme values that pk
can have. The minima can be computed as follows:

ik =
1, if k=n or qk= 1,

[k+l+ l* otherwise,
(1)

Procedure gen l(k, O: integer);

var i, lb, ub: integer;

begin

P[k] := 0;

if k= 1 then PrintIt

else begin

if Q[k- l] = 1 then begin

Ib:=l; ub:=v;
end else begin

lb:=v+l; ub:=n-k+2;
end;

for i :=lb to ub do genl(k- 1,i);
end;

end {of genl};

Fig. 1. Pascal procedure to generate P-sequences in colex order.

60 D. Roelants van Baronaigien. F. Ruskey

and maxima can be computed as follows:

n-k+l, if k=n or qk=-1,
lik =

Uk+l, otherwise.
(2)

These minima and maxima are used for initialization in the constant average time
generation algorithm and in the ranking and unranking algorithms.

The generation algorithm presented here is recursive and depends on Lemma 2.1.
It is given as a Pascal procedure gen l(k, u) in Fig. 1. Array P holds the P-sequence
and Q holds the signature. If pk+ls p,, is a valid suffix of a P-sequence then
gen l(k, u) prints all P-sequences with suffix pk,pk+ l, . . . ,pn where pk = v. The call
gen i(n, 1) produces all valid P-sequences. It should be clear that algorithm gen 1 will
only generate valid P-sequences and that the generation is in colex order.

The problem with the algorithm presented in Fig. 1 is that its time complexity is
dependent on the signature Q. If there are long runs where successive elements of
Q are equal, then the algorithm is not constant average time. The easiest example
is the signature Q = (1, 1, 1, . . . , 1, - 1) for which the number of procedure calls is
Q(n2) and there are only n - 1 valid P-sequences. The problem arises because when
t&=/b the algorithm degenerates into a search for the next value of k where qk is
different from qk + 1 . If we can some how speed up the search for k so that it takes
0(1) time, then the algorithm given in Fig. 1 would become constant average time.

The algorithm gen2, presented in Fig. 2, eliminates the search for k. Because the
elimination of the search also eliminates the initialization of part of the P-sequence,

Procedure gerl2(h-, lb, ub: integer);

var tenlp, u : integer :

begin

if k< 1 then PrintIt

else if lb = rrb then

if Q[clz[k]] = 1
then gen2(ch[k], 1, P[ch[k] + 11)

else gen2(ch[k],P[clz[k] + I] + 1,n -ch[k] + 1)

else begin

ternp := P[k];

for u := lb to ub do begin

P[k] := o;

if Q[k-l]=l

then gen2(k - 1, I, u)

else gen2(k - 1, u + 1, n - k + 2);

end;

P[k] := temp;

end;

end {of gen2);

Fig. 2. Pascal procedure to generate P-sequences in colex order.

Generating permutations with given ups and downs 61

the P-sequence must be initialized to the values that it would contain when 16 = ub
before the procedure gen2 is called. If lb = ub, then from (I) and (2) it follows
that pk=l if qk=+l and pk=n-k+l if qk= - 1. These are the values we use
to initialize p. Given that pk+ 1 , . . . ,p,] is a valid suffix of a P-sequence, the
call gen2(k, Ib, ub) generates all P-sequences with suffix pk,pk + 1, l -* ,P,~ where
/brp,r ub. The call gen2(n, I, 1) produces all valid P-sequences. An analysis of
algorithm gen2 is given in the next section. The local variable femp is used to
preserve the initialization. The array element ch[k] is the greatest index t < k such
that q, # qk.

An example of the permutations a,ld P-sequences for the signature Q =
(1, 1, - 1, 1, -1) is given in Table 1. For this signature Q, the array ch = (0,0,2,3,4).

3. Analysis

The proof that gen2 runs in constant average time uses the term call of degree
n. By a call of degree n we mean that the procedure directly calls itself n times. As
an example, the degree of a call to gen2(k, Ib, ub) is ub - lb + 1 unless k< 1. The
analysis of the generation algorithm given in Fig. 2 is based on the results given in
Ruskey and Roelants van Baronaigien [161 where they state that if (i) every call leads
to the output of at feast one object, (ii) all of the computation of a call not including
additional recursive calls can be done in constant time, and (iii) the number of calls
of the generation procedure that have degree one is on the order of the number of

Table 1. The P-sequences and permutations for Q=(l, 1, -I, 1, -1).

Rank P-sequence Permutation Rank P-sequence Permutation

0 112121 124365

1 122121 134265

2 222121 234165

3 113121 125364

4 123121 135264

5 223121 235164

6 133121 145263

7 233 121 245163

8 333121 345162

9 114121 126354

10 124121 136254

11 224121 236154

12 134121 146253

13 234121 246153

14 334121 346152

15 144121 156243

16 244121 256143

17 344121 356142

18 444121 456132

19 113221 125463

20 123221 135462

21 22322 1 23546 1

22 133221 145261

23 23322 1 245361

24 333221 34526 1

25 114221 126453

26 12422 1 136452

27 22422 1 23645 1

28 134221 146251

29 23422 1 24635 1

30 334221 34625 1

31 144221 156342

32 24422 1 25634 1

33 344221 356241

34 44422 1 45623 1

62 D. Roe/ants van Baronaigien, F. Ruskey

calls of higher degree, then the generation algorithm works in constant average time.
Therefore, all we need to show is that the algorithm gen2 meets the conditions (i),
(ii), (iii). All of the criteria except for (iii) are obvious from the algorithm. Note that
in procedures gen 1 and gen2 each call of degree zero causes the output of one P-
sequence.

Lemma 3.1. The number of calls of gen2 of degree one is less than the number of
calls of degree zero or degree greater than one.

Proof, Clearly, if lb f ub, then the degree of thr call is greater than 1. Let lb = ub.
We must consider the cases Q[k] = 1 and Q [k] = - 1. Let Q[k] = - 1. There are
two subcases to consider; either there is a sign change between positions 1 and k or
there is not. If there is no change, then the string is output by a call of degree zero.
If there is a change, then the next call is gen2(ch[k], 1, P[ch[k] + I]) which has
degree P[ch[k] t 11. Since Q[ch [k] + I] = Q[k] = - 1, it follows that P[ch[k] + I] =
n - (ch[k] + 1) + 1 = n - ch[k) > 1. A similar argument can be given for the case
where Q[k] = 1. Cl

4. Ranking and unranking

In this section, an algorithm is presented for ranking of the P-sequences of per-
mutations with a given signature. Unranking is also discussed. The method for rank-
ing combinatorial objects in lexicographic order is well known. See Wilf [171,
Bauslaugh and Ruskey [2], Zaks and Richards [21], and Williamson [191.

Because we list P-sequences in colex order, the ranking algorithm requires that
we compute the number of P-sequences that end with a given subsequence instead
of computing the number of P-sequences that start with a given subsequenct:. These
numbers can ue easily computed but they are dependent on the signature Q.
Throughout this section we assume tl???t Q IE Exe&

Definition 4.1. For lhr vzs uk we define C(k, v) to be the number of different se-

quences P~,PZ, . . . 9 pX__ 1, v that are a prefix of a P-sequence of a permutation with
signature Q.

Lemma 4.2. The numbers C(k, v) satisfy the boundary conditions C(k, v) =O if
v < lk or v > uk, C(k, v) = 1 if k = 1, and the following recurrence relc%!- :

i C(k- l,j), if&-l =+1,

C(k, v) =
j-1

n-k+ 1
(3)

1 C(k-l,j), if&-,=-l.
j=o+l

Generating permutations with given ups and downs 63

Table 2. The numbers C(k,o) for
Q=(l, 1,-l, 1,-l).

1 2 3 4 5 6

1111100

212340

3 0 3 6 10
4 19 16 0

5 0 35

6 35

Proof. The proof follows directly
sequence, r,, zfk and C(k, 0). cl

Considering the definition of the
P-sequence pl , p2, . . . , pn is given by

from Lemma 2.1 and the definitions of P-

C@, v) numbers, it is clear that the rank of a
the following equation:

n-l

rank(p15p2, l S* ,pn) = 1 r(k),
k=l

where r(k) is defined to be

I
Ph - 1
C CWd9 if &=+l,

r(k) =
j=l

Px - 1
c C(k,j), if &=-I.

j=ph+i+l

If we consider the recurrence relation (3) for the Cik, v) numbers the formula for
r(k) can be rewritten as follows:

C(k+l,pk+,)-C(k+l,pk-I), if &=-I, p,+kln
r(k) =

anUtwk+l+L

W+ I,& - 11, if qk=l andp,+>l,

0, otherwise.

As an example, we compute the rank of the P-sequence P= 344121 where Q =

(1, 1, - 1, 1, -1) (see Table 2). The values for r(k) are as follows: r(1) = C(2,2) = 2,
r(2) = C(3,3)=6, r(3) = C(4,1)- C(3,4)=9, r(4)=0 and r(5)=0 so the rank of P
with signature Q is 17.

I
C(k+ Id%+ ,) - c(kPk), if &=--I, pk+k>n

andp+pk+l+L

Using the second formula for r(k) we have an O(n) algorithm for computing the
rank of the P-sequence of a permutation with a given signature (given that the
numbers C[k, v) !MVP been prerGmputed). The a!gorithm for unranking is similar

64 D. Roeiurtrs van Baronaigien, F. Rtrskey

to unranking algorithms given for other combinatorial objects [14,171. For this
reason the unranking algorithm is left to the reader.

5. Final remarks

We have given a constant average time algorithm for generating permutations
with a given signature Q. Unlike most generation algorithms, this one skips across
parts of the sequence that have been initialized to the values that would be put there
during a scanning phase. The idea of skipping over redundant processing is a natural
one and has been used before in connection with algorithms for generating com-
binatorial objects. An example may be found in Dershowitz [4]. In our case the
algorithm is improved from having a time complexity that is dependent on the
signature Q to being a constant average time algorithm.

Some open problems remain. It is not known whether the permutations, as
opposed to the P-sequences, with a given signature can be generated in constant
average time or, if either the P-sequences or the permutations can be generated by
a loopless algorithm. Loopless algorithms for permutations, combinations and par-
titions are presented in Ehrlich [5].

References

111

121

[31
[41

[-cl

bl

[71

Bl

[91

[lOI

IllI

il.21

[I31

M. Abramson, A simple solution of Simon Newcomb’s problem, J. Combin. Theory Ser. A 18

(1975) 223-225.

B. Bauslaugh and F. Ruskey, Generatin g alternating permutations lenicographically, BIT, to

appear -

N.G. De Bruijn, Permutations with given ups and downs, Nieuw Arch. Wisk. 18 (1970) 61-65.

N. Dershowitz, A simplified loop-free algorithm for generating permutations, BIT 15 (1975)

158-164.

G. Ehrlich, Loop!ess algorithms for generating permutations, combinations, and other com-
binatorial configurations, J. ACM 20 (1973) 500-5 13.

H.O. Foulkes, Enumeration of permutations with prescribed up-down and inversion sequences,

Discrete Math. 15 (1976) 235-252.

A.D. Kalvin and Y.L. Varol, On the generation of all topological sortings, J. Algorithms 4 (1983)
150-162.

A.D. Calvin and Y.L. I’arol, On two problems reducible to topological sorting, Comput. J. 27
(1984) 176-177.

D.E. Knuth, Sorting and Searching (Addison-Wesley, Reading, MA, 1973).

A. Nijenhuis and H.S. Wilf, Combinatorial Algorithms (Academic Press, New York, 2nd ed.,

1978).

1. Niven, A combinatorial problem on finite sequences, Nieuw Arch. Wisk 16 (1968) 116-123.

G. Pruesse and F. Ruskey, Generating the linear extensions of certain posets by transpositions,

SIAM J. Discrete Math. 4 (1991) 413-422.

E.M. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms: Theory and Practice
(Prentice-Hall, Englewood Cliffs, NJ, 1977).

Generating pertnutations with given ups and downs 65

[14] D. Roelants van Baronaigien and F. Ruskey, Generating f-ary trees in A-order, inform. Process.
Lett. 27 (1988) 205-213.

[IS] F. Ruskey, Transposition generation of alternating permutations, Order 6 (1989) 227-233.
[161 F. Ruskey and D. Roelants van Baronaigien, Fast recursive algorithms for generating combinatorial

objects, Congr. Numer. 41 (1984) 53-62.
[171 H.S. Wilf, A unified setting for sequencing, ranking and selection algorithms for combinatorial ob-

jects, Adv. in Math. 24 (1977) 281-291.
[18] H.S. Wilf, A unified setting for selection algorithms (ii), in: Annals of Discrete Mathematics 2

(North-Holland, Amsterdam, 1978) 135-148.
[I91 S.G. Williamson, On the ordering, ranking and random generation of basic combinatorial sets, in:

Lecture Notes in Mathematics 579 (Springer, Berlin, 1976) 311-339.
[20] S.G. Williamson, Combinatorics for Computer Science (Computer Science Press, Rockville, MD,

1985).
[21] S. Zaks and D. Richards, Generating trees and other combinatorial objects lexicographically, SIAM

J. Comput. 8 (1979) 73-81.

