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1. Introduction

There are two ways to quantize a polynomial Poisson structure π on the dual V ∗ of a finite-
dimensional complex vector space V , using Kontsevich’s formality as a starting point.

The first (obvious) way is to consider the image U (πh̄) of πh̄ = h̄π through Kontsevich’s L∞-quasi-
isomorphism

U : Tpoly
(

V ∗) −→ Dpoly
(

V ∗),
and to take m� := m + U (πh̄) as a �-product quantizing π , m being the standard product on S(V ) =
OV ∗ .

The main idea, due to B. Shoikhet [8], behind the second (less obvious) way is to deform the
relations of S(V ) instead of the product m itself.

Consider for example a constant Poisson structure π on V ∗: the deformation quantization of S(V )

w.r.t. h̄π is the Moyal–Weyl algebra S(V )[[h̄]] with the Moyal product � given by
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f1 � f2 = m

(
exp

h̄π

2
( f1 ⊗ f2)

)
,

where π is understood here as a bidifferential endomorphism of S(V )⊗ S(V ). On the other hand, it is
well known that the Moyal–Weyl algebra associated to π is isomorphic to the free associative algebra
over C[[h̄]] with generators xi (for {xi} a basis of V ) by the relations

xi � x j − x j � xi = h̄πi j.

The construction we are interested in generalizes to any polynomial Poisson structure π on V ∗ the
two ways of characterizing the Moyal–Weyl algebra associated to π .

More conceptually, S(V ) is a quadratic Koszul algebra of the form T (V )/〈R〉, where R is the sub-
space of V ⊗2 spanned by vectors of the form xi ⊗ x j − x j ⊗ xi , {xi} as in the previous paragraph. The
right-hand side of the identity S(V ) = T(V )/〈R〉 can be viewed as the 0-th cohomology of the free
associative dg (short for differential graded from now on) algebra T(∧−(V )) over C, where ∧−(V )

is the graded vector space ∧−(V ) = ⊕0
p=−d+1 ∧−(V )p = ⊕0

p=−d+1 ∧−p+1(V ) and differential δ on
generators {xi1 , xi1,i2 , . . .} of ∧−(V ) specified by

δ(xi1) = 0, δ(xi1,i2) = xi1 ⊗ xi2 − xi2 ⊗ xi1 , etc.

Observe that the differential δ dualizes the product of the graded commutative algebra ∧(V ∗):
in fact, ∧(V ∗) is the Koszul dual of S(V ), and the above complex comes from the identification
S(V ) = Ext∧(V ∗)(C,C) by explicitly computing the cohomology on the right-hand side w.r.t. the bar
resolution of C as a (left) ∧(V ∗)-module (the above dg, short for differential graded, algebra is the
cobar construction of S(V ), and δ is the cobar differential). The above dg algebra is acyclic except
in degree 0; the 0-th cohomology is readily computed from the above formulæ and equals precisely
T(V )/〈R〉.

Therefore, the idea is to prove that the property of being Koszul and the Koszul duality between
S(V ) and ∧(V ∗) is preserved (in a suitable sense, which will be clarified later on) by deformation
quantization.

Namely, one makes use of the graded version [3] of Kontsevich’s formality theorem, applied to the
Fourier dual space V [1]. We then have an L∞-quasi-isomorphism

V : Tpoly
(

V ∗) ∼= Tpoly
(

V [1]) −→ Dpoly
(

V [1]),
and the image V (π̂h̄) of π̂h̄ , where •̂ is the isomorphism Tpoly(V ∗) ∼= Tpoly(V [1]) of dg Lie algebras
(graded Fourier transform), defines a deformation quantization of the graded commutative algebra
∧(V ∗) as a (possibly curved) A∞-algebra.

In the context of the formality theorem with two branes [2], the deformation quantization of
∧(V ∗) is the Koszul dual (in a suitable sense) w.r.t. the first deformation quantization of S(V ), and
the (possibly curved) A∞-structure on the deformation quantization of ∧(V ∗) induces a deformation
δh̄ of the cobar differential δ, which in turn produces a deformation I� of the two-sided ideal I = 〈R〉
in T(V ) of defining relations of S(V ).

We are then able to prove the following result, first conjectured by Shoikhet in [7, Conjecture 2.6]:

Theorem 1.1. (See Theorem 2.7.) Given a polynomial Poisson structure π on V ∗ as above, the algebra Ah̄ :=
(S(V )[[h̄]],m�) is isomorphic to the quotient of T(V )[[h̄]] by the two-sided ideal I�; the isomorphism is an
h̄-deformation of the standard symmetrization map from S(V ) to T(V ).

Remark 1.2. We mainly consider here a formal polynomial Poisson structure of the form h̄π , but
all the arguments presented here apply as well to any formal polynomial Poisson structure πh̄ =
h̄π1 + h̄2π2 + · · · , where πi is a polynomial bivector field.



D. Calaque et al. / Journal of Algebra 337 (2011) 1–12 3
The paper is organized as follows. In Section 2 we start with a recollection on A∞-algebras and
bimodules. We then formulate the formality theorem with two branes of [2] in a form suitable for
the application at hand. After this we describe the deformation of the cobar complex obtained from
V (π̂h̄) and prove Theorem 1.1. We conclude the paper with three examples, see Section 3: the cases
of constant, linear, and quadratic Poisson structures.

2. A deformation of the cobar construction of the exterior coalgebra

2.1. A∞-algebras and (bi)modules of finite type

We first recall the basic notions of the theory of A∞-algebras and modules, see [2,5] to fix the con-
ventions and settle some finiteness issues. Note that we allow non-flat A∞-algebras in our definition.
Let T(V ) = C⊕ V ⊕ V ⊗2 ⊕· · · be the tensor coalgebra of a Z-graded complex vector space V with co-
product �(v1, . . . , vn) = ∑n

i=0(v1, . . . , vi) ⊗ (vi+1, . . . , vn) and counit η(1) = 1, η(v1, . . . , vn) = 0 for
n � 1. Here we write (v1, . . . , vn) as a more transparent notation for v1 ⊗· · ·⊗ vn ∈ T(V ) and set ( ) =
1 ∈ C. Let V [1] be the graded vector space with V [1]i = V i+1 and let the suspension s : V → V [1]
be the map a �→ a of degree −1. Then an A∞-algebra over C is a Z-graded vector space B together
with a codifferential dB : T(B[1]) → T(B[1]), namely a linear map of degree 1 which is a coderiva-
tion of the coalgebra and such that dB ◦ dB = 0. A coderivation is uniquely given by its components
dk

B : B[1]⊗k → B[1], k � 0 and any set of maps : B[1]⊗k → B[1] of degree 1 uniquely extends to

a coderivation. This coderivation is a codifferential if and only if
∑

j+k+l=n dn
B ◦ (id⊗ j ⊗ dk

B ⊗ id⊗l) = 0

for all n � 0. The maps dk
B are called the Taylor components of the codifferential dB . If d0

B = 0, the
A∞-algebra is called flat. Instead of dk

B it is convenient to describe A∞-algebras through the product
maps mk

B = s−1 ◦ dk
B ◦ s⊗k of degree 2 − k. If mk

B = 0 for all k �= 1,2 then B with differential m1
B and

product m2
B is a differential graded algebra. A unital A∞-algebra is an A∞-algebra B with an element

1 ∈ B0 such that

m2
B(1,b) = m2

B(b,1) = b, ∀b ∈ B,

m j
B(b1, . . . ,b j) = 0, if bi = 1 for some 1 � i � j and j �= 2.

The first condition translates to d2
B(s1,b) = b = (−1)|b|−1d2

B(b, s1), if b ∈ B[1] has degree |b|. A right
A∞-module M over an A∞-algebra B is a graded vector space M together with a degree one codiffer-
ential dM on the cofree right T(B[1])-comodule M[1] ⊗ T(B[1]) cogenerated by M . The Taylor compo-
nents are d j

M : M[1] ⊗ B[1]⊗ j → M[1] and in the unital case we require that d1
M(m, s1) = (−1)|m|−1m

and d j
M(m,b1, . . . ,b j) = 0 if some b j is s1. Left modules are defined similarly. An A∞-A-B-bimodule

M over A∞-algebras A, B is the datum of a codifferential on the T(A[1])-T(B[1])-bicomodule
T(A[1]) ⊗ M[1] ⊗ T(B[1]), given by its Taylor components d j,k

M : A[1]⊗ j ⊗ M[1] ⊗ B[1]k → M[1]. The
following is a simple but important observation.

Lemma 2.1. If M is an A∞-A-B-bimodule and A is a flat A∞-algebra then M with the Taylor components
d0,k

M is a right A∞-module over B.

Morphisms of A∞-algebras (A∞-(bi)modules) are (degree 0) morphisms of graded counital coal-
gebras (respectively, (bi)comodules) commuting with the codifferentials. Morphisms of tensor coal-
gebras and of free comodules are again uniquely determined by their Taylor components. For in-
stance a morphism of right A∞-modules M → N over B is uniquely determined by the components
f j : M[1] ⊗ B[1]⊗ j → N[1].

Definition 2.2. A morphism between cofree (left-, right-, bi-) comodules over the cofree tensor coal-
gebra is said to be of finite type if all but finitely many of its Taylor components vanish. Therefore,
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by abuse of terminology, we may speak of a morphism of finite type between (left-, right-, bi-) A∞-
modules over an A∞-algebra.

The identity morphism is of finite type and the composition of morphisms of finite type is again
of finite type.

The unital algebra of endomorphisms of finite type of a right A∞-module M over an A∞-algebra B
is the 0-th cohomology of a differential graded algebra End−B(M) = ⊕

j∈Z
End j

−B(M). The component
of degree j is the space of endomorphisms of degree j of finite type of the comodule M[1]⊗ T(B[1]).
The differential is the graded commutator δ f = [dM , f ] = dM ◦ f − (−1) j f ◦ dM for f ∈ End j

−B(M). If
M is an A∞-A-B-bimodule and A is flat, then End−B(M) is defined and the left A-module structure
induces a left action LA , which is a morphism of A∞-algebras A → End−B(M): its Taylor components

are L j
A(a)k(m ⊗ b) = d j,k

M (a ⊗ m ⊗ b), a ∈ A[1]⊗ j , m ∈ M[1], b ∈ B[1]⊗k .

Lemma 2.3. Let M be a right A∞-module over a unital A∞-algebra B. Then the subspace End−B+ (M) of
endomorphisms f such that f j(m,b1, . . . ,b j) = 0 whenever bi = s1 for some i, is a differential graded subal-
gebra.

We call this differential graded subalgebra the subalgebra of normalized endomorphisms.

Proof. It is clear from the formula for the Taylor components of the composition that normalized
endomorphisms form a graded subalgebra: ( f ◦ g)k = ∑

i+ j=k f j ◦ (gi ⊗ id⊗ j
B[1]). The formula for the

Taylor components of the differential of an endomorphism f is

(δ f )k =
∑

i+ j=k

(
d j

M ◦ (
f i ⊗ id⊗ j

B[1]
) − (−1)| f | f i ◦ (

d j
M ⊗ id⊗i

B[1]
)

− (−1)| f | f k− j+1 ◦ (
idM[1] ⊗ id⊗i

B[1] ⊗ d j
B ⊗ id⊗(k−i− j)

B[1]
))

.

If f is normalized and bi = s1 for some i, then only two terms contribute non-trivially to (δ f )k(m,b1,

. . . ,bk), namely f k−1(m,b1, . . . ,d2
B(s1,bi+1), . . .) (or d1

M( f k−1(m,b1, . . . ,bk−1), s1) if i = k) and
f k−1(m,b1, . . . ,d2

B(bi−1, s1), . . .) (or f k−1(d1
M(m, s1),b2, . . .) if i = 1). Due to the unital condition

these two terms are equal up to the sign, hence cancel together. �
The same definitions apply to A∞-algebras and A∞-bimodules over C[[h̄]] with completed tensor

products and continuous homomorphisms for the h̄-adic topology, so that for vector spaces V , W
we have V [[h̄]] ⊗C[[h̄]] W [[h̄]] = (V ⊗C W )[[h̄]] and HomC[[h̄]](V [[h̄]], W [[h̄]]) = HomC(V , W )[[h̄]]. A flat
deformation of an A∞-algebra B is an A∞-algebra Bh̄ over C[[h̄]] which, as a C[[h̄]]-module, is iso-
morphic to B[[h̄]] and such that Bh̄/h̄Bh̄ � B . Similarly we have flat deformations of (bi)modules.
A right A∞-module Mh̄ over Bh̄ which is a flat deformation of M over B is given by the Taylor
coefficients d j

Mh̄
∈ HomC(M[1] ⊗ B[1]⊗ j, M[1])[[h̄]]. The differential graded algebra End−Bh̄ (Mh̄) of en-

domorphism of finite type is then defined as the direct sum of the homogeneous components of
Endfinite

comod-T(B[1])(M[1]⊗ T(B[1]))[[h̄]] with differential δh̄ = [dMh̄ , ]. Thus its degree j part is the C[[h̄]]-
module

End j
Bh̄

(Mh̄) =
(⊕

k�0

Hom j(M[1] ⊗ B[1]⊗k, M[1]))[[h̄]],

where Hom j is the space of homomorphisms of degree j between graded vector spaces over C.
Finally, the following notation will be used: if φ : V 1[1] ⊗ · · · ⊗ Vn[1] → W [1] is a linear map and

V i, W are graded vector spaces or free C[[h̄]]-modules, we set

φ
(

v1| · · · |vn
) = s−1φ(sv1 ⊗ · · · ⊗ svn), vi ∈ V i .
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2.2. Formality theorem for two branes and deformation of bimodules

Let A = S(V ) be the symmetric algebra of a finite-dimensional vector space V , viewed as a graded
algebra concentrated in degree 0. Let B = ∧(V ∗) = S(V ∗[−1]) be the exterior algebra of the dual
space with ∧i(V ∗) of degree i.1 For any graded vector space W , the augmentation module over S(W )

is the unique one-dimensional module on which W acts by 0. Let Ah̄ = (A[[h̄]], �) be the Kontsevich
deformation quantization of A associated with a polynomial Poisson bivector field h̄π . It is an asso-
ciative algebra over C[[h̄]] with unit 1. The graded version of the formality theorem, applied to the
same Poisson bracket (more precisely, to the image of h̄π w.r.t. the isomorphism of dg Lie algebras
Tpoly(A) ∼= Tpoly(B)), also defines a deformation quantization Bh̄ of the graded commutative alge-
bra B . However Bh̄ is in general a unital A∞-algebra with non-trivial Taylor components dk

Bh̄
for all k

including k = 0. Still, the differential graded algebra End−Bh̄ (Mh̄) is defined since Ah̄ is an associative
algebra and thus a flat A∞-algebra. The following result is a consequence of the formality theorem
for two branes (= submanifolds) in an affine space, in the special case where one brane is the whole
space and the other a point, and is proved in [2]. It is a version of the Koszul duality between Ah̄
and Bh̄ .

Proposition 2.4. Let A = S(V ), B = ∧(V ∗) for some finite-dimensional vector space V and let Ah̄ , Bh̄ be their
deformation quantizations corresponding to a polynomial Poisson bracket bivector.

(i) There exists a one-dimensional A∞-A-B-bimodule K , which, as a left A-module and as a right B-module,
is the augmentation module, and such that LA : A → End−B(K ) is an A∞-quasi-isomorphism.

(ii) The bimodule K admits a flat deformation Kh̄ as an A∞-Ah̄-Bh̄-bimodule such that LAh̄ : Ah̄ →
End−Bh̄ (Kh̄) is an A∞-quasi-isomorphism.

(iii) The A∞-Ah̄-Bh̄-bimodule Kh̄ is in particular a right A∞-module over the unital A∞-algebra Bh̄ . The
first Taylor component L1

Ah̄
sends Ah̄ to the differential graded subalgebra End−B+

h̄
(Kh̄) of normalized

endomorphisms.

The proof of (i) and (ii) is contained in [2]. The claim (iii) follows from the explicit form of the
Taylor components d1, j

Kh̄
, given in [2], appearing in the definition of L1

A :

L1
Ah̄

(a) j(1|b1| · · · |b j
) = d1, j

Kh̄

(
a|1|b1| · · · |b j

)
.

Namely d1, j
Kh̄

is a power series in h̄ whose term of degree m is a sum over certain directed graphs
with m vertices in the complex upper half-plane (vertices of the first type) and j + 2 ordered vertices
on the real axis (vertices of the second type). To each vertex of the first type is associated a copy of
h̄π ; to the first vertex of the second type is associated a, to the second 1, and to the remaining j
vertices the elements bi . An example of such a graph is depicted in Fig. 4, Section 3.2.

Each graph contributes a multidifferential operator acting on a,b1, . . . ,b j times a weight, which is
an integral of a differential form on a compactified configuration space of m points in the complex
upper half-plane and j + 2 ordered points on the real axis modulo dilations and real translations.
The convention is that to each directed edge of such a graph is associated a derivative acting on the
element associated to the final point of the said edge and a 1-form on the corresponding compactified
configuration space.

Therefore, since each bi may be regarded as a constant polyvector field on V ∗ , there is no edge
with final point at a vertex of the second type where a bi sits (and obviously also where the constant

1 In the case at hand, V is a graded vector space concentrated in degree 0 and the identification ∧(V ∗) = S(V ∗[−1]) as graded
algebras is canonical. For a more general graded vector space V , S(V ∗[−1]) and ∧(V ∗) are different objects; still, Sn(V ∗[−1]) is
canonically isomorphic to ∧n(V ∗)[−n] as a graded vector space for every n by the décalage isomorphism, which is simply the
identity when V is concentrated in degree 0.
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function 1 sits). If j � 1 and bi belongs to C for some 1 � i � j, the vertex of the second type where
bi sits is neither the starting nor the final point of any directed edge: since j � 1, the dimension
of the corresponding compactified configuration space is strictly positive. We may use dilations and
real translations to fix vertices (of the first and/or second type) distinct from the one where bi sits:
thus, there would be a one-dimensional submanifold (corresponding to the interval, where the vertex
corresponding to bi sits), over which there is nothing to integrate, hence the corresponding weight
vanishes.

We turn to the description of the differential graded algebra End j
−B+

h̄
(Kh̄). Let B+ = ⊕

j�1 ∧ j(V ∗) =
∧(V ∗)/C. We have

End j
−B+

h̄
(Kh̄) =

(⊕
k�0

Hom j(K [1] ⊗ B+[1]⊗k, K [1]))[[h̄]],

with product

(φ · ψ)
(
1|b1| · · · |bn

) =
∑

k

ψ
(
1|b1| · · · |bk

)
φ
(
1|bk+1| · · · |bn

)
.

It follows that the algebra End j
−B+

h̄
(Kh̄) is isomorphic to the tensor algebra T(B+[1]∗)[[h̄]] generated

by Hom(K [1] ⊗ B+[1], K [1]) � B+[1]∗ . In particular it is concentrated in non-positive degrees.

Lemma 2.5. The restriction δh̄ : B+[1]∗ → T(B+[1]∗)[[h̄]] of the differential of End−B+
h̄
(Kh̄) � T(B+[1]∗)[[h̄]]

to the generators is dual to the A∞-structure dBh̄ in the sense that

(δh̄ f )k(z ⊗ b) = (−1)| f | f
(
z ⊗ dk

Bh̄
(b)

)
, z ∈ K [1], b ∈ B[1]⊗k,

for any f ∈ Hom(K [1] ⊗ B+[1], K [1]) � B+[1]∗ .

Proof. The A∞-structure of Bh̄ is given by the Taylor components dk
Bh̄

: B[1]⊗k → B[1]. By defini-

tion the differential on End j
−B+

h̄
(Kh̄) is the graded commutator δh̄ f = [dKh̄ , f ]. In terms of the Taylor

components,

(δh̄ f )k(z ⊗ b1 ⊗ · · · ⊗ bk) = dk−1
Kh̄

(
f (z ⊗ b1) ⊗ b2 ⊗ · · · ⊗ bk

)
− (−1)| f | f

(
dk−1

Kh̄
(z ⊗ b1 ⊗ · · · ⊗ bk−1) ⊗ bk

)
+ (−1)| f | f

(
z ⊗ dk

Bh̄
(b1 ⊗ · · · ⊗ bk)

)
.

The first two terms vanish if bi ∈ B+[1] for degree reasons. �
Thus LAh̄ induces an isomorphism from Ah̄ to the cohomology in degree 0 of End−B+

h̄
(Kh̄) �

T(B+[1]∗)[[h̄]].

Remark 2.6. For h̄ = 0 this complex is Adam’s cobar construction of the graded coalgebra B∗ , which
is a free resolution of S(V ).
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Fig. 1. The only admissible graph contributing to dm
Bh̄

at order 1 in h̄.

Theorem 2.7. The composition

L1
Ah̄

: Ah̄ → End−B+
h̄
(Kh̄)

�→ T
(

B+[1]∗)[[h̄]],

induces on cohomology an algebra isomorphism

L1
Ah̄

: Ah̄ → T(V )/
(
T(V ) ⊗ δh̄

((∧2 V ∗)∗) ⊗ T(V )
)
,

where δh̄ : (∧2 V ∗)∗ → T(V )[[h̄]] is dual to
⊕

k�0 dk
Bh̄

: (B+[1]0)⊗k = V ⊗k → B+[1]1 = ∧2 V ∗ .

Proof. The fact that the map is an isomorphism follows from the fact that it is so for h̄ = 0, by the
classical Koszul duality. As the cohomology is concentrated in degree 0 it remains so for the deformed
differential δh̄ over C[[h̄]].

As a graded vector space, B+[1]∗ = V ⊕ (∧2 V ∗)∗ ⊕ · · · , with (∧i V ∗)∗ in degree 1 − i. Therefore the
complex T(B+[1]∗)[[h̄]] is concentrated in non-positive degrees and begins with

· · · → (
T(V ) ⊗ (∧2 V ∗)∗ ⊗ T(V )

)[[h̄]] → T(V )[[h̄]] → 0.

Thus to compute the degree 0 cohomology we only need the restriction of the Taylor components dk
Bh̄

on T(V ∗) = T(B+[1])0, whose image is in B[1]1 = ∧2 V ∗ . �
This theorem gives a presentation of the algebra Ah̄ by generators and relations. Let x1, . . . , xd ∈ V

be a system of linear coordinates on V ∗ dual to a basis e1, . . . , ed . Let for I = {i1 < · · · < ik} ⊂
{1, . . . ,d}, xI ∈ (∧k V ∗)∗ be dual to the basis ei1 ∧ · · · ∧ eik . Then Ah̄ is isomorphic to the algebra gen-
erated by x1, . . . , xd subject to the relations δh̄(xij) = 0. Up to order 1 in h̄ the relations are obtained
from the cobar differential and the graph of Fig. 1.

δh̄(xij) = xi ⊗ x j − x j ⊗ xi − h̄ Sym(πi j) + O
(
h̄2).

Here Sym is the symmetrization map S(V ) → T(V ).
The lowest order of the isomorphism induced by L1

A on generators xi ∈ V of Ah̄ = S(V )[[h̄]] was
computed in [2]:

L1
A(xi) = xi + O (h̄).

The higher order terms O (h̄) are in general non-trivial (for example in the case of the dual of a Lie
algebra, see below).
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By comparing our construction with the arguments in [7], we see that δh̄ corresponds to the
image of V (π̂h̄), where the notations are as in the introduction, by the quasi-isomorphism Φ1 in [7,
Subsection 1.4]. Hence, Theorem 2.7 provides a proof of [7, Conjecture 2.6] with the amendment that
the isomorphism Ah̄ → T(V )/I� is not just given by the symmetrization map but has non-trivial
corrections.

3. Examples

We now want to examine more closely certain special cases of interest. We assume here that the
reader has some familiarity with the graphical techniques of [2,3,6]. To obtain the relations δh̄(xij) we
need dm

Bh̄
(b1| · · · |bm) ∈ ∧2 V ∗[[h̄]], for bi ∈ V ∗ ⊂ B+ . The contribution at order n in h̄ to this is given by

a sum over the set Gn,m of admissible graphs with n vertices of the first type and m of the second
type.

3.1. The Moyal–Weyl product on V

Let πh̄ = h̄π be a constant Poisson bivector on V ∗ , which is uniquely characterized by a complex,
skew-symmetric matrix d × d-matrix πi j .

In this case, Kontsevich’s deformed algebra Ah̄ has an explicit description: the associative product
on Ah̄ is the Moyal–Weyl product

( f1 � f2) = m ◦ exp
1

2
πh̄,

where πh̄ is viewed here as a bidifferential operator, the exponential has to be understood as a power
series of bidifferential operators, and m denotes the (C[[h̄]]-linear) product on polynomial functions
on V ∗ . On the other hand, it is possible to compute explicitly the complete A∞-structure on Bh̄ .

Lemma 3.1. For a constant Poisson bivector πh̄ on V ∗ , the A∞-structure on Bh̄ has only two non-trivial Taylor
components, namely

d0
Bh̄

(1) = h̄π, d2
Bh̄

(b1|b2) = (−1)|b1|b1 ∧ b2, bi ∈ Bh̄, i = 1,2. (1)

Proof. We consider dm
Bh̄

first in the case m = 0. Admissible graphs contributing to d0
Bh̄

belong to Gn,0,
for n � 1. For n � 2, all graphs give contributions involving a derivative of πi j and thus vanish. There
remains the only graph in G1,0, whence the first identity in (1).

By the same reasons, dm
Bh̄

is trivial, if m � 1 and m �= 2: in the case m = 1, we have to consider
contributions coming from admissible graphs in Gn,1, with n � 1, which vanish for the same reasons
as in the case m = 0.

For m � 3, contributions coming from admissible graphs in Gn,m , n � 1, are trivial by a dimensional
argument.

Finally, once again, the only possibly non-trivial contribution comes from the unique admissible
graph in G0,2 which gives the product. �

As a consequence, the differential δh̄ can be explicitly computed, namely

δh̄(xij) = xi ⊗ x j − x j ⊗ xi − h̄πi j.

This provides the description of the Moyal–Weyl algebra as the algebra generated by xi with relations
[xi, x j] = h̄πi j .

We finally observe that the quasi-isomorphism L1
Ah̄

coincides, by a direct computation, with the
usual symmetrization morphism.



D. Calaque et al. / Journal of Algebra 337 (2011) 1–12 9
Fig. 2. The only admissible graphs in G1,0 and G2,0 respectively in the curvature of Bh̄ .

3.2. The universal enveloping algebra of a finite-dimensional Lie algebra g

We now consider a finite-dimensional complex Lie algebra V = g: its dual space g∗ with the
Kirillov–Kostant–Souriau Poisson structure. With respect to a basis {xi} of g, we have

π = f k
i jxk∂i ∧ ∂ j,

where f k
i j denote the structure constant of g for the chosen basis.

It has been proved in [6, Subsubsection 8.3.1] that Kontsevich’s deformed algebra Ah̄ is isomorphic
to the universal enveloping algebra Uh̄(g) of g[[h̄]] for the h̄-shifted Lie bracket h̄[ , ].

On the other hand, we may, once again, compute explicitly the A∞-structure on Bh̄ .

Lemma 3.2. The A∞-algebra Bh̄ determined by πh̄ , where π is the Kirillov–Kostant–Souriau Poisson structure
on g∗ , has only two non-trivial Taylor components, namely

d1
Bh̄

(b1) = dCE(b1), d2
Bh̄

(b1|b2) = (−1)|b1|b1 ∧ b2, bi ∈ Bh̄, i = 1,2, (2)

where dCE denotes the Chevalley–Eilenberg differential of g, endowed with the rescaled Poisson bracket h̄[•,•].

Proof. By dimensional arguments and because of the linearity of πh̄ , there are only two admissible
graphs in G1,0 and G2,0, which may contribute non-trivially to the curvature of Bh̄ , see Fig. 2 for a
pictorial description of these two graphs.

The operator O B
Γ for the graph in G1,0 vanishes, when setting x = 0. On the other hand, O B

Γ

vanishes in virtue of [6, Lemma 7.3.1.1].
We now consider the case m � 1. We consider an admissible graph Γ in Gn,m and the correspond-

ing operator O B
Γ : the degree of the operator-valued form ωB

Γ equals the number of derivations acting
on the different entries associated to vertices either of the first or second type. Thus, the operator O B

Γ

has a polynomial part (since all the structures involved are polynomial on g∗): since the polynomial
part of any of its arguments in Bh̄ has degree 0, the polynomial degree of O B

Γ must be also 0. A direct
computation shows that this condition is satisfied if and only if n + m = 2, because πh̄ is linear.

Obviously, the previous identity is never satisfied if m � 3, which implies immediately that the
only non-trivial Taylor components appear when m = 1 and m = 2. When m = 1, the previous equality
forces n = 1: there is only one admissible graph Γ in G1,1, whose corresponding operator is non-
trivial, in Fig. 3 is depicted the said graph.

The weight is readily computed, and the identification with the Chevalley–Eilenberg differential is
then obvious.

Finally, when m = 2, the result is clear by the previous computations. �
Thus δh̄ is given by

δh̄(xij) = xi ⊗ x j − x j ⊗ xi − h̄
∑

f k
i jxk.
k
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Fig. 3. The only admissible graph in G1,1 contributing to d1
Bh̄

.

Hence we reproduce the result that Ah̄ is isomorphic to Uh̄(g). We now want to give an explicit
expression for the isomorphism L1

Ah̄
.

We consider the expression L1
Ah̄

(a)m(1|b1| · · · |bm) = d1,m
Kh̄

(a|1|b1| · · · |bm). Degree reasons imply that
the sum of the degrees of the elements bi equals m; furthermore, if the degree of some bi is strictly
bigger than 1, the previous equality forces a different b j to have degree 0, whence the correspond-
ing expression vanishes by Proposition 2.4(iii). Hence, the degree of each bi is precisely 1. We now
consider a general graph Γ with n vertices of the first type and m + 2 ordered vertices of the second
type; to each vertex of the first type is associated a copy of h̄π , while to the ordered vertices of the
second type are associated a, 1 and the bi ’s in lexicographical order. We denote by p the number of
edges departing from the n vertices of the first type and hitting the first vertex of the second type
(observe that in this situation edges departing from vertices of the first type can only hit vertices
of the first type or the first vertex of the second type): in the present framework, edges have only
one color (we refer to [2, Section 7] and [4, Subsection 3.2] for more details on the 4-colored prop-
agators and corresponding superpropagators entering the formality theorem with two branes), thus
there can be at most one edge hitting the first vertex of the second type, whence p � n. We now
compute the polynomial degree of the multidifferential operator associated to the graph Γ : it equals
n − j − (2n − p) = p − j − n, where 0 � j � m is the number of edges from the last m vertices of the
second type hitting vertices of the first type. The first n come from the fact that π is a linear bivector
field. As p − j −n � 0 and p � n, it follows immediately p = n and j = 0, i.e. the edges departing from
the last m vertices of the second type all hit the first vertex of the second type, and from each vertex
of the first type departs exactly one edge hitting the first vertex of the second type; the remaining n
edges must hit a vertex of the first type.

In summary, a general graph Γ appearing in L1
Ah̄

(a)(1|b1| · · · |bm) is the disjoint union of wheel-like
graphs Wn , n � 1, and of the graph βm , m � 0; such graphs are depicted in Fig. 4.

Observe that the 1-wheel W1 appears here explicitly because of the presence of short loops in the
formality theorem with two branes [2]: the integral weight of the 1-wheel has been computed in [4]
and equals −1/4, while the corresponding translation invariant differential operator is the trace of the
adjoint representation of g. Any multiple of c1 = trg ◦ ad defines a constant vector field on g∗: either
as an easy consequence of the formality theorem of Kontsevich2 or by an explicit computation using
Stokes’ Theorem, c1 is a derivation of (Ah̄, �), where � is the deformed product on Ah̄ via Kontsevich’s
deformation quantization.

The integral weight of the graph βm is 1/m! and the corresponding multidifferential operator is
simply the symmetrization morphism; the integral weight of the wheel-like graph Wn , n � 2, has
been computed in [9,10] (observe that, except the case n = 1, the integral weights of Wn for n odd
vanish) and equals the modified Bernoulli number of said index, and the corresponding translation
invariant differential operators are cn = trg(adn(•)).

2 Here, the formality morphism from [6] is applied to the MC element π + εc1 of the twisted DG algebra Tpoly(g
∗)[ε], where

ε2 = 0 and has degree 1; observe that c1 is annihilated by [π,•] in view of its g-invariance, and the infinitesimal parameter ε
makes π + εc1 of total degree 1, it also selects exactly one copy of c1 is all relevant formulæ.
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Fig. 4. The wheel-like graph W5 and the graph βm .

Therefore, the isomorphism L1
Ah̄

(for h̄ = 1) equals the composition of the PBW isomorphism from
S(g) to U(g) with Duflo’s strange automorphism; the derivation −1/4 c1 of the deformed algebra
(A, �) is exponentiated to an automorphism of the same algebra. (The fact that π is linear permits to
set h̄ = 1, see also [6, Subsubsection 8.3.1] for an explanation.)

3.3. Quadratic algebras

Here we briefly discuss the case where V ∗ is endowed with a quadratic Poisson bivector field π :
this case has been already considered in detail in [2, Section 8], see also [8], where the property of
the deformation associated πh̄ of preserving the property of being Koszul has been proved.

The main feature of the quadratic case is the degree 0 homogeneity of the Poisson bivector field,
which reflects itself in the homogeneity of all structure maps. In particular the Kontsevich star-product
on a basis of linear functions has the form

xi � x j = xi x j +
∑
k,l

Skl
i j (h̄)xkxl,

for some Skl
i j ∈ h̄C[[h̄]]. Our results imply that this algebra is isomorphic to the quotient of the tensor

algebra in generators xi by relations

xi ⊗ x j − x j ⊗ xi =
∑
k,l

Rkl
i j(h̄)xk ⊗ xl,

for some Rkl
i j (h̄) ∈ h̄C[[h̄]]. The isomorphism sends xi to

LAh̄ (xi) = xi +
∑

j

L j
i (h̄)x j,

for some L j
i (h̄) ∈ h̄C[[h̄]].

3.4. A final remark

We point out that, in [1], the authors construct a flat h̄-deformation between a so-called non-
homogeneous quadratic algebra and the associated quadratic algebra: the characterization of the non-
homogeneous quadratic algebra at hand is in terms of two linear maps α, β , from R onto V and C

respectively, which satisfy certain cohomological conditions. In the case at hand, it is not difficult to
prove that the conditions on α and β imply that their sum defines an affine Poisson bivector on V ∗:
hence, instead of considering α and β separately, as in [1], we treat them together. Both deformations
are equivalent, in view of the uniqueness of flat deformations yielding the PBW property, see [1].
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