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For a positive integer m, where 1 ≤ m ≤ n, the m-competition

index (generalized competition index) of a primitive digraph D is

the smallest positive integer k such that for every pair of vertices x

and y, there exist m distinct vertices v1, v2, . . . , vm such that there

exist directed walks of length k from x to vi and from y to vi for

1 ≤ i ≤ m. The m-competition index is a generalization of the

scrambling index and the exponent of a primitive digraph. In this

paper, we study the upper bound of the m-competition index of a

primitive digraph using its order and girth.

© 2011 Elsevier Inc. All rights reserved.

1. Preliminaries and notations

In this paper, we follow the terminology and notation used in [1,3,4,6]. Let D = (V, E) denote a

digraph (directed graph) with vertex set V = V(D), arc set E = E(D), and order n. Loops are permitted

but multiple arcs are not. A walk from x to y in a digraph D is a sequence of vertices x, v1, . . . , vt, y ∈
V(D) and a sequence of arcs (x, v1), (v1, v2), . . . , (vt, y) ∈ E(D), where the vertices and arcs are not

necessarily distinct. A closed walk is a walk from x to y where x = y. A cycle is a closed walk from x to

y with distinct vertices except for x = y.
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The length of a walkW is the number of arcs inW . The notation x
k→ y is used to indicate that there

exists a walk from x to y of length k. An l-cycle is a cycle of length l, denoted by Cl . If the digraph D has

at least one cycle, the length of a shortest cycle in D is called the girth of D, and denote this by s(D).
The notation x → y indicates that there exists an arc (x, y). The distance from vertex x to vertex y in

D is the length of the shortest walk from x to y, and it is denoted by dD(x, y).
A digraphD is called strongly connected if for each pair of vertices x and y in V(D), there exists awalk

from x to y. For a strongly connected digraph D, the index of imprimitivity of D is the greatest common

divisor of the lengths of the cycles in D, and it is denoted by l(D). If D is a trivial digraph of order 1, l(D)
is undefined. For a strongly connected digraph D, D is primitive if l(D) = 1.

If D is a primitive digraph of order n, there exists some positive integer k such that there exists a

walk of length exactly k fromeach vertex x to each vertex y. The smallest such k is called the exponent of

D, and it is denoted by exp(D). For a positive integermwhere 1 ≤ m ≤ n, we define them-competition

index of a primitive digraph D, denoted by km(D), as the smallest positive integer k such that for every

pair of vertices x and y, there existm distinct vertices v1, v2, . . . , vm such that x
k−→ vi and y

k−→ vi
for 1 ≤ i ≤ m in D.

Kim [7] introduced them-competition index as a generalization of the competition index presented

in [5,6]. Akelbek and Kirkland [1,2] introduced the scrambling index of a primitive digraph D, denoted

by k(D). In the case of primitive digraphs, the definitions of the scrambling index and 1-competition

index are identical. We have k(D) = k1(D).
For a positive integer k and a primitive digraph D, we define the k-step outneighborhood of a vertex

x as

N+(Dk : x) =
{
v ∈ V(D)|x k−→ v

}
.

We define the k-step common outneighborhood of vertices x and y as

N+(Dk : x, y) = N+(Dk : x) ∩ N+(Dk : y).
We define the local m-competition index of vertices x and y as

km(D : x, y) = min{k : |N+(Dt : x, y)| ≥ m where t ≥ k}.
We also define the local m-competition index of x as

km(D : x) = max
y∈V(D)

{km(D : x, y)}.

Then, we have

km(D) = max
x∈V(D)

km(D : x) = max
x,y∈V(D)

km(D : x, y).

From the definitions of km(D), km(D : x), and km(D : x, y), we have km(D : x, y) ≤ km(D : x) ≤ km(D).
Onthebasis of thedefinitionsof them-competition indexand theexponentofDof ordern,we canwrite

km(D) ≤ exp(D),wherem is a positive integerwith 1≤m≤ n. Furthermore,we have kn(D)= exp(D)
and

k(D) = k1(D) ≤ k2(D) ≤ · · · ≤ kn(D) = exp(D).

This is a generalization of the scrambling index and exponent. There exist many researches about

exponents and their generalization; for example, [8,10].

Let Dn,s = (V, E) be the digraph where n ≥ 3 such as

V = {v0, v1, , . . . , vn−1},
E = {(vi, vi+1) | 0 ≤ i ≤ n − 2} ∪ {(vn−1, v0), (vn−1, vn−s)}.
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Proposition 1 [1,2]. Let D be a primitive digraph with n vertices and girth s. Then,

k1(D) ≤
⎧⎨
⎩ n − s +

(
s−1
2

)
n, when s is odd,

n − s +
(
n−1
2

)
s, when s is even.

If the equality holds and s ≥ 2, then gcd(n, s) = 1 and D contains Dn,s as a subgraph.

Proposition 2 [7]. Let D be a primitive digraph of order n (≥ 3) and let s be the girth of D. For a positive

integer m such that 1 ≤ m ≤ n, we have

km(D) ≤
⎧⎨
⎩ n − s +

(
n+m−2

2

)
s, when n + m is even,

n − s − 1 +
(
n+m−1

2

)
s, when n + m is odd.

Whenm = 1, the result of Proposition 2 does not coincide the result of Proposition 1. In this paper,

we provide a sharp upper bound for km(D).

2. Main results

Let L(D) denote the set of lengths of the cycles of D. Let n, s, and m be positive integers such that

s < n and 1 ≤ m ≤ n. For a nonnegative integer x such that
⌈
n−m
2

⌉
≤ x ≤

⌊
n+m
2

⌋
, the remainder of

xs divided by n is denoted by r(x) and the minimum of r(x) is denoted by r̄. LetM(n, s) be the nearest

positive integer to n
s
such that its parity differs from n andM(n, s) �= n

s
− 1.

Lemma 3. Let D be a primitive digraph of order n (≥ 3) and girth s. If s be odd, then we have

km(D) ≤ n − s +
(
s − 1

2

)
n + (m − 1)s,

for a positive integer m such that 1 ≤ m ≤ n. If the equality holds and s ≥ 2, then gcd(n, s) = 1 and D

contains Dn,s as a subgraph.

Proof. Let Cs be a cycle of length s, and x and y be vertices in V(D).
According to the proof of Proposition 1 in [1], we can have vertices x′ and y′ in V(Cs) such that

x
n−s−→ x′

(
s−1
2

)
n−→ w, y

n−s−→ y′
(
s−1
2

)
n−→ w.

for a vertex w. Because D and Ds are primitive, we have |N+(Dt : x′, y′)| ≥ m where t =
(
s−1
2

)
n +

(m − 1)s. Then we have km(D) ≤ n − s +
(
s−1
2

)
n + (m − 1)s.

Suppose gcd(n, s) �= 1 or D does not contain Dn,s as a subgraph where s ≥ 2. According to the

proof of Proposition 1 in [1], for a vertex w there exist walks

W1 : x t′−→ w, W2 : y t′−→ w,

where t′ < n− s+
(
s−1
2

)
n, andW1 andW2 contain a vertex in V(Cs). Thenwe have |N+(Dt′+(m−1)s :

x, y)| ≥ m. Therefore

km(D) ≤ t′ + (m − 1)s < n − s +
(
s − 1

2

)
n + (m − 1)s.

This establishes the result. �
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Lemma 4. Let n, s, andmbe positive integers such that s < n and 1 ≤ m ≤ n. If s is odd andm ≤ M(n, s),

then we have r̄ = r(x), where x =
⌈
n−m
2

⌉
.

Proof. Case 1. n + m is odd.

Let x1 and x2 be nonnegative integers such that 0 ≤ x1 < x2 ≤ m− 1. We have
n−(m−1)s

2
≥ 0 and

n+(m−1)s
2

≤ n because (m − 1)s = ms − s ≤ n. Then, we have

(
n − m + 1

2
+ x

)
s = n

(
s − 1

2

)
+ n − (m − 1)s

2
+ xs.

If
n+(m−1)s

2
= n, then r

(⌈
n−m
2

⌉)
= 0. Suppose

n+(m−1)s
2

< n. Then, we have r
(⌈

n−m
2

⌉
+ x1

)
=

n−(m−1)s
2

+ x1s and r
(⌈

n−m
2

⌉
+ x2

)
= n−(m−1)s

2
+ x2s. Therefore, we have r

(⌈
n−m
2

⌉
+ x1

)
<

r
(⌈

n−m
2

⌉
+ x2

)
.

Case 2. n + m is even.

Let x1 and x2 be nonnegative integers such that 0 ≤ x1 < x2 ≤ m. We have n−ms
2

≥ 0 and
n+ms

2
≤ n because ms ≤ n by m ≤ M(n, s) − 1 because of the parity. Then, we have(
n − m

2
+ x

)
s = n

(
s − 1

2

)
+ n − ms

2
+ xs.

If n+ms
2

= n, then r
(⌈

n−m
2

⌉)
= 0. Suppose n+ms

2
< n. Then, we have r

(⌈
n−m
2

⌉
+ x1

)
= n−ms

2
+ x1s

and r
(⌈

n−m
2

⌉
+ x2

)
= n−ms

2
+ x2s. Therefore, we have r

(⌈
n−m
2

⌉
+ x1

)
< r

(⌈
n−m
2

⌉
+ x2

)
.

In all cases, we have r̄ = r(x), where x = 
 n−m
2

�. This establishes the result. �

Theorem 5. Let D be a primitive digraph of order n (≥ 3) and girth s. Let m be a positive integer such that

m ≤ M(n, s). If s is odd, then we have

km(D) ≤ n − r̄ +
⌈
n + m − 4

2

⌉
s.

If the equality holds and s ≥ 2, then gcd(n, s) = 1 and D contains Dn,s as a subgraph.

Proof. By Lemma 4, we have

r̄ =
⎧⎨
⎩

n−(m−1)s
2

, when n + m is odd,

n−ms
2

, when n + m is even.

Therefore, we have

n − r̄ +
⌈
n + m − 4

2

⌉
s = n − s +

(
s − 1

2

)
n + (m − 1)s.

By Lemma 3, we have km(D) ≤ n − r̄ +
⌈
n+m−4

2

⌉
s, and the equality holds only if gcd(n, s) = 1 and

D contains Dn,s as a subgraph. This establishes the result. �

Lemma 6. Let n, s, andm be positive integers such that s < n and 1 ≤ m ≤ n. If s is even orm > M(n, s),
then we have

r̄ ≤ s

2
.

Proof. We show that there exists a nonnegative integer x such that r(x) ≤ s
2
.

Case 1. s is even.
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Let

x =
⎧⎨
⎩

n
2
, when n is even,

n+1
2

, when n is odd.

Then, we have
⌈
n−m
2

⌉
≤ x ≤

⌊
n+m
2

⌋
becausem ≥ 1, and we have

r(x) =
⎧⎨
⎩ 0, when n is even,

s
2
, when n is odd.

Therefore, we have r̄ ≤ r(x) ≤ s
2
.

Case 2. s is odd.

Case 2.1. n is even.

In this case, we have M(n, s) = 2
⌊
n/2
s

⌋
+ 1. Let x1 = n

2
−

⌊
n/2
s

⌋
and x2 = n

2
+

⌊
n/2
s

⌋
+ 1. Then,

we have
⌈
n−m
2

⌉
≤ x1 < x2 ≤

⌊
n+m
2

⌋
, and

x1s ≡ n

2
−

⌊
n/2

s

⌋
s (mod n),

x2s ≡ −n

2
+

⌊
n/2

s

⌋
s + s (mod n).

Therefore, we have r(x1) + r(x2) = s; this implies that

r̄ ≤ min(r(x1), r(x2)) ≤ s

2
.

Case 2.2. n is odd.

In this case, we have M(n, s) = 2
⌊

(n−s)/2
s

⌋
+ 2. Let x1 = n−1

2
−

⌊
(n−s)/2

s

⌋
and x2 = n+1

2
+⌊

(n−s)/2
s

⌋
+ 1. Then, we have

⌈
n−m
2

⌉
≤ x1 < x2 ≤

⌊
n+m
2

⌋
, and

x1s ≡ (n − s)

2
−

⌊
(n − s)/2

s

⌋
s (mod n),

x2s ≡ − (n − s)

2
+

⌊
(n − s)/2

s

⌋
s + s (mod n).

Therefore, we have r(x1) + r(x2) = s; this implies that

r̄ ≤ min(r(x1), r(x2)) ≤ s

2
.

This establishes the result. �

Denote

K(n, s,m) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n − r̄ +
(
n+m−3

2

)
s, when n + m is odd,

n − r̄ +
(
n+m−4

2

)
s, when n + m is even, s is odd, and m < n

s
,

n − s +
(
n+m−2

2

)
s, otherwise.
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Lemma 7. Let D be a primitive digraph of order n and girth s such that n ∈ L(D) and gcd(n, s) = 1. For

a positive integer m such that 1 ≤ m ≤ n, we have

km(D) ≤ K(n, s,m).

If the equality holds and s ≥ 2, then D contains Dn,s as a subgraph.

Proof. If s is odd and m ≤ M(n, s), then we have the result from Theorem 5. Suppose s is even or

m > M(n, s). Let Cs be an s-cycle. There exists a positive integer k such that 1 ≤ k ≤ n − 2, where

D = (V, E) is

V = {v0, v1, , . . . , vn−1},
E ⊃ {(vi, vi+1) | 0 ≤ i ≤ n − 2} ∪ {(vn−1, v0), (vn−1, vk)},

and (vn−1, vk) ∈ E(Cs). There exists an n-cycle in Ds because gcd(n, s) = 1. In this proof, we assume

that all subscripts are taken by modulo n. Consider two vertices vi and vj , where i < j.

Case 1. n + m is odd.

If dDs(vi, vj) < n−m+1
2

or dDs(vi, vj) > n+m−1
2

, the number of vertices that can be reached from

vi+n−s and vj+n−s within
(
n+m−3

2

)
-steps is greater than or equal to m in Ds. Because each of vi

n−s−→
vi+n−s and vj

n−s−→ vj+n−s contains a vertex in V(Cs), we have |N+(Dt1 : vi, vj)| ≥ m, where t1 =
n − s +

(
n+m−3

2

)
s. Therefore, we have

km(D : vi, vj) ≤ t1 < K(n, s,m), (1)

because r̄ < s by Lemma 6.

Suppose n−m+1
2

≤ dDs(vi, vj) ≤ n+m−1
2

. Then, we have the following walks of length (n − r̄):

W1 : vi→vi+1→ · · · →vn−r̄+i,

W2 : vj→vj+1→ · · · →vn−r̄+j,

W3 : vj→vj+1→ · · · →vn−1→vk→ · · · →vk+j−r̄,

where vn−r̄+j �= vk+j−r̄ . W1 contains a vertex in V(Cs) because r̄ < s. W2 and W3 also contain

vn−1 ∈ V(Cs). Then, we have

|N+(Dt2
n,s : vi)| ≥ n + m − 1

2
, |N+(Dt2

n,s : vj)| ≥ n + m + 1

2
,

where t2 = n − r̄ +
(
n+m−3

2

)
s. Then, |N+(Dt2

n,s : vi, vj)| ≥ m. Therefore, we have

km(Dn,s) ≤ t2 = K(n, s,m). (2)

If D does not contain Dn,s as a subgraph, then there exists another arc (vp, vq) in the s-cycle, where

0 ≤ p ≤ n − 2 and 0 ≤ q ≤ n − 1. We have the following two walks of length (n − r̄ − 1):

W ′
1 : vi→vi+1→ · · · →vn−r̄−1+i,

W ′
2 : vj→vj+1→ · · · →vn−r̄−1+j.

In addition, we have j − i < n − r̄ or n − j + i < n − r̄. Then, there exists a walk among these walks

of length (n − r̄ − 1):

W ′
3 : vj→vj+1→ · · · →vp→vq→ · · · →vn−r̄−1+j+q−p−1,

W ′
4 : vj→vj+1→ · · · →vn−1→vk→ · · · →vk+j−1−r̄,

W ′
5 : vi→vi+1→ · · · →vp→vq→ · · · →vn−r̄−1+i+q−p−1.
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W ′
1 and W ′

2 contain a vertex in the s-cycle because r̄ < s. One among W ′
3, W

′
4, and W ′

5 also contains a

vertex in the s-cycle. If there exists a walk W ′
3 or W ′

4, we have

|N+(Dt2−1
n,s : vi)| ≥ n + m − 1

2
, |N+(Dt2−1

n,s : vj)| ≥ n + m + 1

2
.

If there exists a walk W ′
5, we have

|N+(Dt2−1
n,s : vi)| ≥ n + m + 1

2
, |N+(Dt2−1

n,s : vj)| ≥ n + m − 1

2
.

In all cases, we have |N+(Dt2−1
n,s : vi, vj)| ≥ m. Therefore, we have

km(Dn,s) ≤ t2 − 1 < K(n, s,m). (3)

By (1), (2), and (3), we have the result when n + m is odd.

Case 2. Otherwise.

We have km(D) ≤ K(n, s,m) by Proposition 2. Suppose km(D) = K(n, s,m). If k �= n − s, then

vi
n−s−1−→ vi+n−s−1 contains a vertex in an s-cycle and vj

n−s−1−→ vj+n−s−1 contains a vertex in an s-cycle.

In Ds, the number of vertices that can be reached from vi+n−s−1 and vj+n−s+1 within ( n+m−2
2

)-steps

is greater than or equal to m. We have |N+(Dt3 : vi, vj)| ≥ m, where t3 = n − s − 1 +
(
n+m−2

2

)
s.

This is contradictory. Therefore, we have k = n − s. Therefore, D contains Dn,s as a subgraph.

This establishes the result. �

Lemma 8. Let gcd(n, s) = 1. For a positive integer m such that 1 ≤ m ≤ n, we have

km(Dn,s) = K(n, s,m).

Proof. If s = 1, then we have km(Dn,s) = n + m − 2 = K(n, s,m). Suppose s ≥ 2. Let S =
{vn−s, vn−s+1, . . . , vn−1}. There exists an n-cycle in Ds

n,s because gcd(n, s) = 1. By Lemma 7, we have

km(Dn,s) ≤ K(n, s,m). We show km(Dn,s) ≥ K(n, s,m). In this proof, we assume that all subscripts

are taken by modulo n.

Case 1. n + m is odd.

Let i = 0, j = r̄, and t1 = n − r̄ +
(
n+m−3

2

)
s. Then, we have N+(D

n−j−1
n,s : vi) = {vn−j−1} and

N+(D
n−j−1
n,s : vj) = {vn−1}. We also have

N+(Dt1−1
n,s : vi, vj) = N+

(
D

(
n+m−3

2

)
s

n,s : vn−j−1, vn−1

)
.

Because n−m+1
2

≤ dDs
n,s

(vi, vj) ≤ n+m−1
2

by the definition of j = r̄, we have

|N+(Dt1−1
n,s : vi, vj)| < m.

Therefore, we have

km(Dn,s) ≥ t1 = K(n, s,m).

Case 2. n + m is even, s is odd, andm < n
s
.

We have r̄ = n−ms
2

. Let i = 0, j = r̄ = n−ms
2

, and t2 = n − r̄ +
(
n+m−4

2

)
s. Then, we have

N+(D
n−j−1
n,s : vi) = {vn−j−1} and N+(D

n−j−1
n,s : vj) = {vn−1}. We also have

N+(Dt2−1
n,s : vi, vj) = N+

(
D

(
n+m−4

2

)
s

n,s : vn−j−1, vn−1

)
.



H.K. Kim, S.G. Park / Linear Algebra and its Applications 436 (2012) 86–98 93

Because n−m
2

≤ dDs
n,s

(vi, vj) ≤ n+m
2

by the definition of j = r̄, we have

|N+(Dt2−1
n,s : vi, vj)| < m.

Therefore, we have

km(Dn,s) ≥ t2 = K(n, s,m).

Case 3. Otherwise.

Let t3 = n − s +
(
n+m−2

2

)
s.

Case 3.1. m < n
s
and s is even.

Let i = 0 and j = s
2
. Then, we have N+(Dn−s−1

n,s : vi) = {vn−s−1} and N+(Dn−s−1
n,s : vj) =

{vj+n−s−1} because j + n − s − 1 ≤ n − 1. We also have dDs
n,s

(vn−s−1, vj+n−s−1) = n+1
2

because
n+1
2

s ≡ s
2

(mod n). Therefore, we have

km(Dn,s : vi, vj) ≥ t3 = K(n, s,m)

because |N+(Dt3−1
n,s : vi)| ≤ n+m−2

2
and |N+(Dt3−1

n,s : vj)| ≤ n+m
2

.

Case 3.2. m > n
s
.

Let i = 0 and j = r̄. Because n + m is even, we have m > M(n, s). We have r̄ < s by Lemma

6. Then, we also have N+(Dn−s−1
n,s : vi) = {vn−s−1} and N+(Dn−s−1

n,s : vj) = {vr̄+n−s−1} because

r̄ + n − s − 1 ≤ n − 1. We also have n−m
2

≤ dDs
n,s

(vn−s−1, vr̄+n−s−1) ≤ n+m
2

. Therefore, we have

km(Dn,s : vi, vj) ≥ t3 = K(n, s,m)

because |N+(Dt3−1
n,s : vi)| ≤ n+m−2

2
and |N+(Dt3−1

n,s : vj)| ≤ n+m
2

.

In all cases, we have km(Dn,s) ≥ K(n, s,m). This establishes the result. �

Remark 9. If m = n − 1, then we have r̄ = 1. By Lemma 8, we have

kn−1(Dn,s) = n − 1 + (n − 2)s = kn(Dn,s) − 1.

Example 10 [7]. Let D be a primitive digraph whose adjacency matrix A is given as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

1 0 0 1 0

0 0 0 0 1

1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The order of D is 5 and the girth of D is 3. Thus, we can check

k1(D) = 7 = K(5, 3, 1),

k2(D) = 10 = K(5, 3, 2),

k3(D) = 11 = K(5, 3, 3),

k4(D) = 13 = K(5, 3, 4),

k5(D) = 14 = K(5, 3, 5).
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Lemma 11. Let D be a primitive digraph of order n and girth s(≥ 2), and suppose p ∈ L(D) such that

s < p < n and gcd(p, s) = 1. For a positive integer m such that 1 ≤ m ≤ n, we have

km(D) < n − s +
(
n + m − 2

2

)
s.

Proof. Let Cs and Cp be an s-cycle and a p-cycle, respectively. Consider two vertices x and y.

Case 1. m ≤ p and s > 2.

Case 1.1. p + m is even.

There exist walks

x
n−s−→ xs

n−p−→ xp, y
n−s−→ ys

n−p−→ yp,

where xs, ys ∈ V(Cs) and xp, yp ∈ V(Cp). Let t1 = n − s + n − p +
(
p+m−2

2

)
s. Then, we have

|N+(Dt1 : x, y)∩V(Cp)| ≥ mbecause |N+(Dt1 : x)∩V(Cp)| ≥ p+m

2
and |N+(Dt1 : y)∩V(Cp)| ≥ p+m

2
.

Therefore, we have

km(D : x, y) ≤ n − s + n − p +
(
p + m − 2

2

)
s

< n − s +
(
n + m − 2

2

)
s.

Case 1.2. p + m is odd.

Case 1.2.1. p ≤ n − 2.

There exists x
n−s−1−→ xs ∈ V(Cs) or y

n−s−1−→ ys ∈ V(Cs). Without loss of generality, we may assume

that x
n−s−1−→ xs ∈ V(Cs). Then, we can find a vertex ys in V(Cs) such that there exists y

n−1−→ ys. There

existwalks such that xs
n−p−→ xp ∈ V(Cp)andys

n−p−→ yp ∈ V(Cp). Let t2 = n−s+n−p−1+
(
p+m−1

2

)
s.

Then, we have |N+(Dt2 : x, y) ∩ V(Cp)| ≥ m because |N+(Dt2 : x) ∩ V(Cp)| ≥ p+m+1

2
and |N+(Dt2 :

y) ∩ V(Cp)| ≥ p+m−1

2
.

km(D : x, y) ≤ n − s + n − p − 1 +
(
p + m − 1

2

)
s

< n − s +
(
n + m − 2

2

)
s.

Case 1.2.2. p = n − 1.

We have x ∈ V(Cp) or y ∈ V(Cp). Without loss of generality, we assume that x ∈ V(Cp). We

also have |V(Cs) ∩ V(Cp)| ≥ s − 1. If |V(Cs) ∩ V(Cp)| = s, we have x
n−s−1−→ xs ∈ V(Cp) and

y
n−1−→ ys ∈ V(Cp), which contains a vertex in V(Cs). If |V(Cs) ∩ V(Cp)| = s − 1 and y /∈ V(Cp), we

have x
n−1−→ xs ∈ V(Cp)andy

n−s−1−→ ys ∈ V(Cp),whichcontains avertex inV(Cs), becausen−s−1 ≥ 1.

If |V(Cs) ∩ V(Cp)| = s − 1 and y ∈ V(Cp), we have x
n−s−1−→ xs ∈ V(Cp) or y

n−s−1−→ ys ∈ V(Cp), which

contains a vertex in V(Cs). In all cases, we may assume that

x
n−s−1−→ xs ∈ V(Cp), y

n−1−→ ys ∈ V(Cp),

which contains a vertex in V(Cs). Let t2 = n − s − 1 + ( p+m−1

2
)s. Then, we have |N+(Dt2 : x, y) ∩

V(Cp)| ≥ m because |N+(Dt2 : x)∩V(Cp)| ≥ p+m+1

2
and |N+(Dt2 : y)∩V(Cp)| ≥ p+m−1

2
. Therefore,

we have
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km(D : x, y) ≤ n − s − 1 +
(
p + m − 1

2

)
s

< n − s +
(
n + m − 2

2

)
s.

Case 2. m ≤ p and s = 2.

Ifm = 1, then we have k1(D) < n− 2+ n− 1 by Proposition 1. Supposem ≥ 2. We have p is odd.

Let V(Cs) = {v1, v2}. Let lx and ly be the smallest numbers such that there exist walks

x
lx−→ xs, y

ly−→ ys, (4)

where xs, yx ∈ V(Cs). We may assume that lx ≤ n − 3.

If each walk of (4) contains a vertex in V(Cp), then we have V(Cs) ⊂ N+(Dn−2+p : x, y). Therefore,
we have |N+(Dn−2+p+i : x, y)| ≥ 2+ i for a nonnegative integer i such that i ≤ n− 2. Form ≥ 2, we

have

km(D : x, y) ≤ n + p − 2 + m − 2

< n − s +
(
n + m − 2

2

)
s.

This holds even thoughm > p.

If a walk of (4), x
lx−→ xs, does not contain a vertex in V(Cp), then we have lx ≤ n − p − 2. There

exist walks

xs
n−p−→ xp, ys

n−p−→ yp,

where xp, yp ∈ V(Cp). Let t3 = n− 2+ n− p+
(
p+m−3

2

)
s. Then, n− p− 2+ n− p+

(
p+m

2

)
s ≤ t3.

We have |N+(Dt3 : x, y) ∩ V(Cp)| ≥ m because |N+(Dt3 : x) ∩ V(Cp)| ≥ � p+m+2

2
� and |N+(Dt3 :

y) ∩ V(Cp)| ≥ � p+m−1

2
�. Therefore, we have

km(D : x, y) ≤ n − 2 + n − p +
(
p + m − 3

2

)
s

< n − s +
(
n + m − 2

2

)
s.

Case 3. m > p.

If V(Cp) ⊂ N+(Dk : x, y) for a positive integer k, then we have

|N+(Dk+i : x, y)| ≥ p + i

for each nonnegative integer i such that i ≤ n − p. Therefore, we have

km(D : x, y) < n − s +
(
n + p − 2

2

)
s + (m − p)

≤ n − s +
(
n + m − 2

2

)
s.

This establishes the result. �

Lemma 12. Let D be a primitive digraph of order n and girth s(≥ 2), and suppose L(D) = {s, a1, . . . , ah}
such that gcd(s, ai) �= 1 for each i = 1, 2, . . . , h, where h ≥ 2. For a positive integer m such that

1 ≤ m ≤ n, we have

km(D) < n − s +
(
n + m − 2

2

)
s.
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Proof. Because gcd(s, ai) �= 1 for each i = 1, 2, . . . , h, s is not prime and s ≥ 6.

First, suppose s ≥ 8. Then, there exists a cycle of length p such that gcd(s, p) ≤ s
4
. Otherwise,

gcd(s, ai) is equal to one among s, s
2
, and s

3
. Then, we have gcd(s, a1, . . . , ah) ≥ s

6
. This contradicts

the fact thatD is primitive. Let gcd(s, p) = t ≤ s
4
. We know thatDt is primitive because D is primitive.

We also know that Dt contains t cycles of length s
t
and t cycles of length

p

t
.

Let C(1), C(2), . . . , C(t) be t disjoint cycles of length
p

t
in Dt , that is, V(C(i)) ∩ V(C(j)) = φ for

i �= j. Let s′ = s
t
and p′ = p

t
; then, gcd(s′, p′) = 1. Consider two vertices x and y in D. In D, there exist

walks

x
n−s−→ x′, y

n−s−→ y′,
where x′ ∈ V(Cs) and y′ ∈ V(Cs).

In Dt , for each C(i), where i = 1, 2, . . . , t, there exist vertices xi and yi in C(i) such that there exist

walks

x′ n−p′−→ xi, y′ n−p′−→ yi.

Case 1. m ≤ p.

Then, we have

km(Dt : x′, y′) ≤ n − p′ +
⎛
⎝p′ +

⌈
m
t

⌉
− 1

2

⎞
⎠ s′

≤ n − p′ +
(
p′ + m

t

2

)
s′.

Because km(D : x, y) ≤ n − s + t · km(Dt : x′, y′), we have

km(D : x, y) ≤ n − s − p + nt +
(
p + m

2t

)
s. (5)

Let f (t) = n − s − p + nt +
(
p+m

2t

)
s. Then, f (t) is concave up on the interval [2, s

4
], and therefore, it

attains its maximum at one of the end points.

f (2) = 3n − s − p +
(
p + m

4

)
s ≤ 2n − s +

(
n + m

4

)
s

< n − 2s +
(
n + m

2

)
s.

f

(
s

4

)
= n − s + p + ns

4
+ 2m ≤ 2n − s + ns

4
+ 2m

< n − 2s +
(
n + m

2

)
s.

Therefore, we have km(D) < n − s +
(
n+m−2

2

)
s.

Case 2. m > p.

If V(Cp) ⊂ N+(Dk : x, y) for a positive integer k, then we have |N+(Dk+i : x, y)| ≥ p + i for each

nonnegative integer i such that i ≤ n − p. Therefore, we have

km(D : x, y) < n − s +
(
n + p − 2

2

)
s + (m − p). (6)

Therefore, we have km(D : x, y) < n − s +
(
n+m−2

2

)
s.
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There is only remaining case, namely, s = 6. If s = 6, then there also exists a cycle of length p such

that gcd(s, p) = 2. Otherwise, gcd(s, ai) = 3 or 6 for all i = 1, 2, . . . , h. This is contradictory. We

also have n ≥ 9. If s = 6 and n = 9, there exists a cycle of length p = 8. Then, we have km(D) <

n − s +
(
n+m−2

2

)
s by (5) and (6). If s = 6 and n > 9, then we also have km(D) < n − s +

(
n+m−2

2

)
s

by (5) and (6) because p ≤ n.

This establishes the result. �

Theorem 13. Let D be a primitive digraph of order n(≥ 3) and girth s. For a positive integer m such that

1 ≤ m ≤ n, we have

km(D) ≤ K(n, s,m).

If the equality holds and s ≥ 2, then gcd(n, s) = 1 and D contains Dn,s as a subgraph. If D = Dn,s, then

the equality holds.

Proof. Let L(D) = {s, a1, . . . , ah}. If s is odd andm ≤ M(n, s), then we have the result by Theorem 5.

Suppose s is even orm > M(n, s). Then, we have K(n, s,m) ≥ n− s+
(
n+m−2

2

)
s because r̄ ≤ s

2
by

Lemma6. Ifh ≥ 2andgcd(s, ai) �= 1 foreach i = 1, 2, . . . , h, thenwehavekm(D) < n−s+
(
n+m−2

2

)
s

by Lemma 12. If there exists p ∈ L(D) such that s < p < n and gcd(p, s) = 1, then we have

km(D) < n − s +
(
n+m−2

2

)
s by Lemma 11. If n ∈ L(D) and gcd(n, s) = 1, then we have the result by

Lemma 7.

If D = Dn,s, then the equality holds by Lemma 8. This establishes the result. �

Corollary 14. Let D be a primitive digraph of order n (≥ 3) and girth s. Let m be a positive integer such

that 1 ≤ m ≤ n. If n + m is odd, then we have

km(D) ≤ n − s − 1 +
(
n + m − 1

2

)
s.

Proof. If s = 1, then we have km(D) ≤ n + m − 2 ≤ n − s − 1 +
(
n+m−1

2

)
s because n ≥ m + 1.

Suppose s ≥ 2, and let L(D) = {s, a1, . . . , ah}. If h ≥ 2 and gcd(s, ai) �= 1 for each i = 1, 2, . . . , h,

then we have km(D) < n − s − 1 +
(
n+m−1

2

)
s by Lemma 12. If there exists p ∈ L(D) such that

s < p < n and gcd(p, s) = 1, thenwe have km(D) ≤ n− s−1+
(
n+m−1

2

)
s by Lemma 11. If n ∈ L(D)

and gcd(n, s) = 1, thenwe have r̄ ≥ 1. Therefore, we have km(D) ≤ n− s−1+
(
n+m−1

2

)
s by Lemma

7. This establishes the result. �

Remark 15. In Theorem 13, the equality holds only if D contains Dn,s as a subgraph. In addition, if

m = 1, Theorem 13 and Proposition 1 give us the same bound because m < n
s
. Corollary 14 is the

same result as Proposition 2.

3. Closing remark

Akelbek and Kirkland [1] introduced the concept of the scrambling index of a primitive digraph.

Kim [7] introduced a generalized competition index km(D) as another generalization of the exponent

exp(D) and scrambling index k(D) for a primitive digraph D. Sim and Kim [9] studied the generalized

competition index km(Tn) of a primitive n-tournament Tn. In this paper, we study an upper bound of

km(D), where D is a primitive digraph. Akelbek and Kirkland [2] characterized a primitive digraph D

where k1(D) = K(n, s, 1). It is also necessary to study the characterization of a primitive digraph D

where km(D) = K(n, s,m) for 1 ≤ m ≤ n.
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