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1. Preliminaries and notations

In this paper, we follow the terminology and notation used in [1,3,4,6]. Let D = (V, E) denote a
digraph (directed graph) with vertex set V. = V(D), arc set E = E(D), and order n. Loops are permitted
but multiple arcs are not. A walk from x to y in a digraph D is a sequence of vertices x, v{, ..., v,y €
V(D) and a sequence of arcs (x, v1), (v1, v2), ..., (v¢, ¥) € E(D), where the vertices and arcs are not
necessarily distinct. A closed walk is a walk from x to y where x = y. A cycle is a closed walk from x to
y with distinct vertices except for x = y.
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The length of a walk W is the number of arcs in W. The notation x —k> yis used to indicate that there
exists a walk from x to y of length k. An I-cycle is a cycle of length I, denoted by C;. If the digraph D has
at least one cycle, the length of a shortest cycle in D is called the girth of D, and denote this by s(D).
The notation x — y indicates that there exists an arc (x, y). The distance from vertex x to vertex y in
D is the length of the shortest walk from x to y, and it is denoted by dp(x, y).

Adigraph D is called strongly connected if for each pair of vertices x and y in V(D), there exists a walk
from x to y. For a strongly connected digraph D, the index of imprimitivity of D is the greatest common
divisor of the lengths of the cycles in D, and it is denoted by I(D). If D is a trivial digraph of order 1, [(D)
is undefined. For a strongly connected digraph D, D is primitive if (D) = 1.

If D is a primitive digraph of order n, there exists some positive integer k such that there exists a
walk of length exactly k from each vertex x to each vertex y. The smallest such k is called the exponent of
D, and it is denoted by exp(D). For a positive integer m where 1 < m < n, we define the m-competition
index of a primitive digraph D, denoted by k, (D), as the smallest positive integer k such that for every

. . . c . . k k
pair of vertices x and y, there exist m distinct vertices v{, va, ..., V), suchthatx — vjandy — v;
for1 <i<minD.

Kim [7] introduced the m-competition index as a generalization of the competition index presented
in [5,6]. Akelbek and Kirkland [1,2] introduced the scrambling index of a primitive digraph D, denoted
by k(D). In the case of primitive digraphs, the definitions of the scrambling index and 1-competition
index are identical. We have k(D) = k(D).

For a positive integer k and a primitive digraph D, we define the k-step outneighborhood of a vertex
xas

NFOD*:x) = v e viD)jx =55 vl

We define the k-step common outneighborhood of vertices x and y as
N+(Dk X, y) = N+(Dk x)N N+(Dk 1y).
We define the local m-competition index of vertices x and y as
km(D : x,y) = min{k : |N+(Dt 1 X,y)| > mwheret > k}.
We also define the local m-competition index of x as

km(D : x) = max {kp(D : x,y)}.
yev(D)

Then, we have

knm(D) = max kn(D:x) = max kn(D:x,y).
xeV(D) x,yeV(D)

From the definitions of ky, (D), ky, (D : x),and ky, (D : x, y), we have ky, (D : x,y) < kpn(D : x) < k(D).
On the basis of the definitions of the m-competition index and the exponent of D of order n, we can write
km(D) < exp(D), where mis a positive integer with 1 < m < n. Furthermore, we have k(D) = exp(D)
and

k(D) = ki(D) < ka(D) < - -+ < kn(D) = exp(D).

This is a generalization of the scrambling index and exponent. There exist many researches about
exponents and their generalization; for example, [8,10].
Let Dy s = (V, E) be the digraph where n > 3 such as
VZ{VO’ V‘], LR aanl}7

E={(vi,viy1) | 0 <i<n—2}U{(vs_1,v0), Vo1, Vu—s)}.
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Proposition 1 [1,2]. Let D be a primitive digraph with n vertices and girth s. Then,

k(D)<[ —s—i—( )n when s is odd,
1 <

n—s+ ( )s when s is even.
If the equality holds and s > 2, then gcd(n, s) = 1 and D contains Dy, s as a subgraph.

Proposition 2 [7]. Let D be a primitive digraph of order n (> 3) and let s be the girth of D. For a positive
integer m such that 1 < m < n, we have
n—s-+ (’”zﬂ) s, when n + m is even,

k(D) <
" 'n—s—]—}—(""”;_])s, when n + mis odd.

When m = 1, the result of Proposition 2 does not coincide the result of Proposition 1. In this paper,
we provide a sharp upper bound for kp, (D).

2. Main results

Let L(D) denote the set of lengths of the cycles of D. Let n, s, and m be positive integers such that

s <nand 1 < m < n. For a nonnegative integer x such that {%—‘ <x< L"Jr—mj the remainder of

xs divided by n is denoted by r(x) and the minimum of r(x) is denoted by r. Let M(n, s) be the nearest
positive integer to % such that its parity differs from n and M(n, s) # % —1

Lemma 3. Let D be a primitive digraph of order n (> 3) and girth s. If s be odd, then we have
—1
km (D) <n—s+( 5 )n—i—(m—l)s

for a positive integer m such that 1 < m < n. If the equality holds and s > 2, then gcd(n,s) = 1 and D
contains Dy s as a subgraph.

Proof. Let Cs be a cycle of length s, and x and y be vertices in V(D).
According to the proof of Proposition 1 in [1], we can have vertices X" and y’ in V(Cs) such that

(%)” n—-s (%)"

xS X S w, y By 2w
for a vertex w. Because D and D® are primitive, we have [INT (D' : X', y')| > m where t = (ﬂ) n—+

2
(m — 1)s. Then we have k(D) < n—s+ ( )n+ (m—1)s.
Suppose gcd(n, s) # 1 or D does not contain Dy s as a subgraph where s > 2. According to the
proof of Proposition 1 in [1], for a vertex w there exist walks

W1 :x%w, WZ:yL>w,
wheret’ < n—s-+ %) n, and W; and W, contain a vertex in V(Cs). Then we have [N (Dt/‘Hm_l)S :
Xx,y)| = m. Therefore
—1
k(D) <t +(m—l)s<n—s+( 5 )n+(m—l)s

This establishes the result. [J
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Lemmad4. Letn,s, and m be positive integers such thats < nand1 < m < n.Ifsisoddandm < M(n, s),

then we have r = r(x), where x = {%—‘

Proof. Case 1.n + m is odd.
Let x; and x, be nonnegative integers such that 0 < x; < x, < m — 1. We have W > 0and

W < nbecause (m — 1)s = ms — s < n. Then, we have

n—m+41 s n—(m-—1)s
(B o5
fm =n, thenr(’—”zm-‘) = 0. Suppose m < n. Then, we haver([ 5 -‘—I—x]) =
2=(m=T)s 1)5 + x;5 and r({" m—‘ +x2) = "==1s 4 x)s. Therefore, we have r({Tm—‘ +x1)

r({ 5 —|+xz).

Case 2.n + mis even.
Let x; and x, be nonnegative integers such that 0 < x; < x < m. We have "5™ > 0 and

% < n because ms < nbym < M(n, s) — 1 because of the parity. Then, we have

(n—m+ ) _ (s—])+n—ms+
5 X)s=n 5 5 XS.

If@ =n, thenr(’_ 5 -l) = 0. Suppose ”+ms < n.Then, we have r (’_";m-‘ ~|—x1) =15 4 x5

andr (("_zm—l +x2) = 5% + x;5. Therefore we haver ({ —‘ +x1) <r (("_zm—l +x2) .
In all cases, we have 7 = r(x), where x = (%1 . This establishes the result. [

Theorem 5. Let D be a primitive digraph of order n (> 3) and girth s. Let m be a positive integer such that
m < M(n, s). If s is odd, then we have

n+m-— 4‘|

—|s.
2

If the equality holds and s > 2, then gcd(n, s) = 1 and D contains Dy, s as a subgraph.

km<D)§n—f+[

Proof. By Lemma 4, we have

n—ms

_ [ 7"_(”;_1)5, when n + mis odd,
-
2 9

when n 4+ m is even.

Therefore, we have

_ n+m-—4 s—1
n—r—|—[f—‘s:n—s—%(T)n—i—(m—l)s.

By Lemma 3, we have k;,(D) <n —r1 + { —‘ s, and the equality holds only if gcd(n, s) = 1 and
D contains Dy s as a subgraph. This establishes the result. [

n+m—4
2

Lemma 6. Letn, s, and m be positive integers such thats < nand1 < m < n.Ifsisevenorm > M(n, s),
then we have

r=<

N | »n

Proof. We show that there exists a nonnegative integer x such that r(x) < %
Case 1. s is even.
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Let

|

2
Then, we have [”*m—‘ <x< L”*mJ because m > 1, and we have

when n is even,

=S NS

9
nt1

, when n is odd.

2 2

0, whennis even,
r(x) =

, when n is odd.

N|w»

Therefore, we haver < r(x) <

Case 2. s is odd.

s
2

Case 2.1.n is even.
In this case, we have M(n, s) = 2 L%J + 1. Letxq = g — L”/—ZJ and x, = g + LMJ + 1. Then,

N N

we have (”_Zm-‘ <X <x3 < \_HTmJ.and
n n/2

——|— s (mod n),

2 S

n n/2
xzsz—g—i- — |s+s (mod n).
s

X1S

Therefore, we have r(x;) 4+ r(xy) = s; this implies that
s
r = min(r(x), r(x2)) < 3
Case 2.2. n is odd.

In this case, we have M(n,s) = 2 L%J + 2. Letx; = 1 — LWJ andx, = 1 +

L%J + 1. Then, we have {%—‘ <x1 <x < LHTmJ'and

(n—s) L(n —5)/2
X1S = —
2

S

Js (mod n),

X285 = _(n;s) + \‘(n _SS)/ZJS—I-S (mod n).

Therefore, we have r(x1) + r(xy) = s; this implies that
s
r < min(r(xg), r(x2)) < 3
This establishes the result. [

Denote

n—r7+ (”*’3’3)5, when n + mis odd,

K(n,s,m)={n—r+ (”'H;_

n—s+ ("+’;’_2) s, otherwise.

ES

)s, when n 4+ mis even, sis odd, and m < %,
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Lemma 7. Let D be a primitive digraph of order n and girth s such that n € L(D) and gcd(n, s) = 1. For
a positive integer m such that 1 < m < n, we have

km(D) < K(n, s, m).
If the equality holds and s > 2, then D contains Dy s as a subgraph.
Proof. If s is odd and m < M(n, s), then we have the result from Theorem 5. Suppose s is even or
m > M(n, s). Let Cs be an s-cycle. There exists a positive integer k such that 1 < k < n — 2, where
D= (V,E)is

V: {V0$V17 R ,Vn—l}v

E D {(vl'a VH—]) | 0 S l S n— 2} U {(Vn—]a Vo)a (vﬂ—la vk)}a

and (vy—1, Vi) € E(Cs). There exists an n-cycle in D* because gcd(n, s) = 1. In this proof, we assume
that all subscripts are taken by modulo n. Consider two vertices v; and v;, where i < j.

Case 1.n + m is odd.

If dps (vi, vj) < ”_2& or dps (vj, vj) > , the number of vertices that can be reached from

n+m—1
2
. . — . . n—s
Vitn—s and Vj s within (%)—steps is greater than or equal to m in D, Because each of v; —>
n—s . .

Viyn—s and vj —> vj;,_, contains a vertex in V(Cs), we have INT(DI : vy, vj)| > m, where t; =
n—s+ (’”zﬁ) s. Therefore, we have

kin(D : vi, vj) < t1 < K(n,s, m), (1

because r < s by Lemma 6.

Suppose "_';'H <dps(vi, vj) < % Then, we have the following walks of length (n — 7):

Wi tVi=>Vigr— - = Vi,
Wa i vj—=Vjip1— - > Vi,
W3 i Vj—=Vjp1— - = V1> V= - s > V-7,

where v;_71j # Viij—7. Wi contains a vertex in V(Cs) because 1 < s. W, and W3 also contain
vh—1 € V(G). Then, we have
n+m-—1 n+m+41
INF(DZ, v > — INF (D2 : vp)| = -

wherety =n—7+ (%) s.Then, [N+ (D2, : vi, vj)| > m. Therefore, we have

kin(Dn,s) < to = K(n, s, m). (2)

If D does not contain Dy 5 as a subgraph, then there exists another arc (v, vq) in the s-cycle, where
0<p<n-—2and0 < g < n — 1. We have the following two walks of length (n — 7 — 1):

/.
Wi ivi—>Vig1—> - > Vp—F—14i;
! . . . - .
Wy i vi— Vi1 — - >V fo 1y
In addition, we havej —i < n—rorn—j+4 i < n— r.Then, there exists a walk among these walks
of length (n — 7 — 1):
! . - .
W3 iVj—=>Vjip1—> - > Vp—>Vg—> - >V f14jtq—p—1,
!/ . —
Wy i vi—=>Vjp1— - > V> V> s > V- 17,

/.
W5 i vi—=>Vip1— - - > Vp—=>Vg—> - >V F1difgp—1-
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W} and WY contain a vertex in the s-cycle because ¥ < s. One among W}, Wy, and WY also contains a
vertex in the s-cycle. If there exists a walk W} or W}, we have

_ n4+m-—1 n+m+1
INTORST vl = ————. INTOR w2 ———
If there exists a walk W£, we have
_ n+m+1 n+m-—1
INFORST vl = ————,  INFORS )l = ———
In all cases, we have [N (D‘2 Ly, vj)| = m. Therefore, we have
km(Dpns) <t —1 < K(n,s, m). (3)

By (1), (2), and (3), we have the result when n 4+ m is odd.

Case 2. Otherwise.
We have k(D) < K(n, s, m) by Proposition 2. Suppose k(D) = K(n,s, m).If k # n — s, then
—s—1 . . —s—1 . .
v N Viyn—s—1 CONtains a vertex in an s-cycle and v; N Vjtn—s—1 CONtains a vertex in an s-cycle.
In D?, the number of vertices that can be reached from vi;,_s_1 and vj,_s4q within ('”zﬂ)—steps
is greater than or equal to m. We have [N* (D : v;, vj)| > m,wheret; =n—s— 1+ (’%ﬂ) s.
This is contradictory. Therefore, we have k = n — s. Therefore, D contains D, s as a subgraph.
This establishes the result. [J

Lemma 8. Let gcd(n, s) = 1. For a positive integer m such that 1 < m < n, we have

km(Dn,s) =K(n,s, m).
Proof. If s = 1, then we have k(D) = n+ m — 2 = K(n,s, m). Suppose s > 2.LetS =
{Vn—s, Va—s+1, - . ., Va—1}. There exists an n-cycle in D;,s because gcd(n, s) = 1. By Lemma 7, we have

km(Dps) < K(n, s, m). We show ky, (D s) > K(n, s, m). In this proof, we assume that all subscripts
are taken by modulo n.

Case 1.n + m s odd. ]
Lleti=0,j=r,andty =n—T7+ (%) s. Then, we have N* (Dy ¥’

NTOpS!

“Hiv) = {vaj1)and

:vj) = {vu—1}. We also have

n+m 3
N* (D?,; DV, V) = NT (DS s *Vn—j—1, Vn—]) .

Because "= < dps (v;, vj) < "F2=1 by the definition of j = 7, we have

INFDR v, vp)| < m.
Therefore, we have
km(Dns) > t1 = K(n, s, m).
Case 2.n + mis even, sisodd,and m < %
We have 7 = "5 . Leti = 0,j =7 = "5, andt = n—T + (”+m 4) s. Then, we have

NTOES v = (v _j—1} and N* (Dns J1 2 vj) = {vn_1}. We also have

n+m—a) ¢
NTDE vi ) :N+(Dr(1,s ) :Vn—j—l»Vn—1)~
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n—m

Because 5+~ < dps (vi, vj) < "+Tm by the definition of j = r, we have

th—1 .
INFD2T v, v < m.

Therefore, we have

km(Dns) > to = K(n, s, m).

Case 3. Otherwise.
Letts =n—s+ (%)s

Case31l.m < % and s is even.

Leti = Oandj = 3. Then, we have NT(Dp 57" @ vj) = {vosq} and NF(DJ°7! @ vp) =
{Vj4n—s—1} because j +n —s —1 < n — 1. We also have dps (Vn—s—1, Vin—s—1) = ”zil because
n+1 s

“5-s = 5 (mod n). Therefore, we have

kin(Dn,s @ vi, vj) > t3 = K(n, s, m)

because [INT (DB 1 vp)| < M=% and NF (D41 2 vy)| < 2

Case3.2.m > 1.
Leti = 0 andj = r. Because n 4+ m is even, we have m > M(n, s). We have r < s by Lemma
6. Then, we also have N"’(Dﬁ;s_l 1 Vi) = {vp_s_1} and N"‘(Dz’_ss_1 : Vj) = {Vryn—s—1} because

f+n—s—1<n-—1.Wealsohave 5™ < dps (Vn—s—1, Vitn—s—1) < ”+Tm Therefore, we have

kin(Dps @ vi, vj) = t3 = K(n, s, m)

because [Nt (D21 2 vy)| < ’HZL_Z and [NT (DS : v < M1,

In all cases, we have ky, (D s) > K(n, s, m). This establishes the result. O

Remark 9. If m = n — 1, then we have r = 1. By Lemma 8, we have

kn—1(Dps) =n—1+ (n—2)s = ky(Dps) — 1.
Example 10 [7]. Let D be a primitive digraph whose adjacency matrix A is given as

[01000]
00100

A=110010

00001

110000 |
The order of D is 5 and the girth of D is 3. Thus, we can check
ki(D) = 7 =K(5,3,1),
ky(D) =10 =K(5, 3, 2),
k3(D) =11 =K(5, 3, 3),
ks(D) =13 =K (5, 3, 4),
ks(D) =14 =K(5, 3, 5).
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Lemma 11. Let D be a primitive digraph of order n and girth s(> 2), and suppose p € L(D) such that
s < p < nand gcd(p, s) = 1. For a positive integer m such that 1 < m < n, we have

-2
km(D) <n—s+(n+#>s.

Proof. Let Cs and C,, be an s-cycle and a p-cycle, respectively. Consider two vertices x and y.
Casel.m <pands > 2.

Case 1.1.p + m is even.
There exist walks
n—s n—p n—s n—p
X —>Xs —> Xp, Y —>Ys —> Yp,

where x5, ys € V(Cs) and xp,yp € V(Cp). Lett; = n—s+n—p+ (%) s. Then, we have

IN*(D" : x, y)NV(Cp)| = mbecause [N* (D" : x)NV(Cp)| = EE™ and [NT (D" : y)NV(Gp)| = 2E™.
Therefore, we have
p+m— 2)
— " )s
2

n+m-—2
<n—s+(f)s.

Case 1.2.p 4+ mis odd.

Icm(D:x,y)Sn—s+n—p+(

Case 1.21.p <n—2.

There exists x "—>' xs € V(G ory nssl ys € V(Cs). Without loss of generality, we may assume
that x "= xs € V(Cs). Then, we can find a vertex y; in V(C) such that there exists y i ys. There
exist walks such that x; i 4 xp € V(Cy) and ys i 4 Yp € V(Gp).Lett, = n—s+n—p—1+(%) S.
Then, we have [NT (D : x, y) N V(Cp)| > m because [NT (D% : x) N V(Cp)| > % and |[NT (D :
N NV(G)| = B
p+m-—1
7) 5

km(D:x,y)Sn—s+n—p—1+< 5

n+m-—2
<n—s+(f)s.

Case1.22.p=n— 1.
We have x € V(C,) ory € V(C,). Without loss of generality, we assume that x € V(C,). We

also have |V(Gs) N V(G| > s — 1. If [V(G) N V(CGy)| = s, we have x sl xs € V(Gp) and
y -t ¥s € V(Cp), which contains a vertex in V(Cs). If [V(C;) NV(Cp)| = s — Tandy ¢ V((Cy), we
have x nl xs € V(Cy)andy sl ¥s € V(Cp), which containsavertexin V(Cs),becausen—s—1 > 1.
If[V(C) NV(Gy)| = s — Tandy € V(Cy), we have x "= x; € V(Cp) ory "= ys € V(Cp), which
contains a vertex in V(Cs). In all cases, we may assume that

"5 e VG, ¥ Dy e vy,

which contains a vertex in V(C). Letty =n —s — 1+ (%)s. Then, we have [INT(D2 : x,y) N

V(Cp)| = mbecause [INT(D? : x) NV(Cp)| = B2 and [NT(D2 : y) NV(Gp)| = EXI=1. Therefore,
we have
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+m-—1
km(D:x,y)fn—s—l+(p7)s

n+m—3

<n—s+( S.

Case2.m < pands = 2.
If m = 1, then we have k1 (D) < n — 2+ n — 1 by Proposition 1. Suppose m > 2. We have p is odd.
Let V(Cs) = {v1, v2}. Let Iy and I, be the smallest numbers such that there exist walks

I I
X =5 x5, y—> s, (4)

where x, yx € V(C;). We may assume that [, < n — 3.
If each walk of (4) contains a vertex in V(Cp), then we have V(Cs) C N1t (D"2*P : x, y). Therefore,

we have [NT(D"2+P+i . x y)| > 2 + i for a nonnegative integer i such thati < n — 2. Form > 2, we
have
km(D:x,y)<n+p—2+m—2
n+m-—2
<n—s+(—————)&
2
This holds even thoughm > p

I . .
If a walk of (4), x — X, does not contain a vertex in V(Cp), then we have [y < n — p — 2. There
exist walks

n—p n—p
Xs —> Xp, Ys — Vp;

where xp, yp € V(Gp).Letts =n—2+n—p+ (%)s.Then,n—p—Z—l—n—p—l— (‘H'Tm)s < t.
We have [INT(D" : x,y) N V(Cp)| > m because [INT (D" : x) N V(Cp)| > LWJ and [INT(DB :
Y NV(Cy)| > L%J. Therefore, we have

+m-—3
km(D:x,y)fn—2+n—p+(pf)s

n+m-—2
<n—s+(f)s.

Case3.m > p.
IfV(G,) C NT (DX : x, y) for a positive integer k, then we have

INFO x )l = p+i
for each nonnegative integer i such thati < n — p. Therefore, we have

n -2
km(D:x,y)<n—s+(+%)s+(m—p)

n4+m-—2
§n—s+(f)s.

This establishes the result. O

Lemma 12. Let D be a primitive digraph of order n and girth s(> 2), and suppose L(D) = {s, a1, . . ., ap}
such that ged(s, a;)) # 1 foreachi = 1,2,...,h, where h > 2. For a positive integer m such that
1 < m < n, we have

n+m-— 2)

——)s.

I<m(D)<n—S+( 5
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Proof. Because gcd(s, a;) # 1foreachi=1,2, ..., h,sisnot prime ands > 6.

First, suppose s > 8. Then, there exists a cycle of length p such that gcd(s, p) < i. Otherwise,
gcd(s, a;) is equal to one among s, % and % Then, we have gcd(s, aq, ..., ap) > %. This contradicts
the fact that D is primitive. Let gcd(s, p) =t < %. We know that D¢ is primitive because D is primitive.
We also know that D¢ contains t cycles of length % and t cycles of length %

Let C(1), C(2), ..., C(t) be t disjoint cycles of length £ in D', that is, V(C(i)) N V(C(j)) = ¢ for
i#j.Lets' = 2andp’ = B; then, gcd(s’, p') = 1. Consider two vertices x and y in D. In D, there exist
walks

n—s / n—s /
X—>X, y—™Y,

where X’ € V(C) andy’ € V(G;).
In Dt, for each C(i), wherei = 1, 2, . . ., t, there exist vertices x; and y; in C(i) such that there exist
walks
; n—=p' ; n—=p’
X — X, ¥y — Vi

Case1.m < p.
Then, we have

P4 T -1
km(Dt:X/’y/)fn_p/‘l‘(’V[—‘ )s’

rqm
Sn—P/-I-(p —; [)s’.

Because k(D : x,y) <n—s+t-kn(D' : X', y"), we have

km<D:x,y)sn—s—p+nt+(pj—t"’)s. (5)

Letf(t) =n—s—p-+nt+ (p%m) s. Then, f(t) is concave up on the interval [2, %], and therefore, it
attains its maximum at one of the end points.

f(2)=3n—s—p+(p+Tm)s§2n—s+(

n—+m
<n—25+(T)s.

n+m)
S

f(s) n +ns+2 > _i_ns_i_2
—-)=n-s —+2m<2n—s+ — +2m
4 Ty - 4

n+m
<n—25+(T)s.

Therefore, we have k(D) < n — s + (’H'ZL_Z) s.
Case 2. m > p.

IfV(Cp) C NT(D* : x,y) for a positive integer k, then we have [NT(D¥*! : x, y)| > p + i for each
nonnegative integer i such thati < n — p. Therefore, we have

-2
km(D:x,y)<n—s+(%)s+(m—p). (6)

Therefore, we have k(D : x,y) <n —s + (%) 5.
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There is only remaining case, namely, s = 6. If s = 6, then there also exists a cycle of length p such
that ged(s, p) = 2. Otherwise, gcd(s, aj)) = 3 or6 foralli = 1,2, ..., h. This is contradictory. We

alsohaven > 9.1f s = 6 and n = 9, there exists a cycle of length p = 8. Then, we have k(D) <
n—s+ (""”;17_2) sby(5)and (6).Ifs = 6 and n > 9, then we also have k,;;(D) <n —s+ (%) s
by (5) and (6) because p < n.

This establishes the result. [

Theorem 13. Let D be a primitive digraph of order n(> 3) and girth s. For a positive integer m such that
1 < m < n, we have

km(D) < K(n, s, m).

If the equality holds and s > 2, then gcd(n, s) = 1 and D contains Dy, s as a subgraph. If D = Dy s, then
the equality holds.

Proof. Let L(D) = {s, ay, ..., ay}.Ifsisodd and m < M(n, s), then we have the result by Theorem 5.
Suppose sis even orm > M(n, s). Then, we have K(n, s, m) > n—s-+ (’H'zﬁ) sbecauser < J by

Lemma6.Ifh > 2andgcd(s, a;) # 1foreachi =1, 2, ..., h,thenwehave kp, (D) < n—s+(”+2¢_2) s
by Lemma 12. If there exists p € L(D) such thats < p < n and gcd(p,s) = 1, then we have
km(D) <n—s+ (%’H) sby Lemma 11.If n € L(D) and gcd(n, s) = 1, then we have the result by

Lemma 7.
If D = Dy g, then the equality holds by Lemma 8. This establishes the result. O

Corollary 14. Let D be a primitive digraph of order n (> 3) and girth s. Let m be a positive integer such
that 1 < m < n.Ifn + m s odd, then we have

n+m-—1
km(D)Sn—s—1+(f)s.

Proof. If s = 1, then we have k(D) <n+m—-2<n—-s—1+ (’”Zﬁ)sbecausen >m+ 1.
Supposes > 2,and letL(D) = {s, ay, ..., ay}.Ifh > 2and gcd(s, a;) # 1foreachi =1,2,...,h,
then we have k,(D) < n—s— 1+ (%) s by Lemma 12. If there exists p € L(D) such that

s <p <nandgcd(p,s) = 1,thenwe have ky,(D) <n—s—1+ ("'Hgi_])sbyLemma 11.1fn € L(D)

and gcd(n, s) = 1, then we haver > 1. Therefore, we have k(D) < n—s—1+ (%) sby Lemma
7. This establishes the result. [

Remark 15. In Theorem 13, the equality holds only if D contains D, s as a subgraph. In addition, if
m = 1, Theorem 13 and Proposition 1 give us the same bound because m < g Corollary 14 is the
same result as Proposition 2.

3. Closing remark

Akelbek and Kirkland [1] introduced the concept of the scrambling index of a primitive digraph.
Kim [7] introduced a generalized competition index k(D) as another generalization of the exponent
exp(D) and scrambling index k(D) for a primitive digraph D. Sim and Kim [9] studied the generalized
competition index k;;(T,) of a primitive n-tournament T,. In this paper, we study an upper bound of
kim (D), where D is a primitive digraph. Akelbek and Kirkland [2] characterized a primitive digraph D
where k1 (D) = K(n, s, 1). It is also necessary to study the characterization of a primitive digraph D
where k;, (D) = K(n,s,m) for1 <m < n.
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