Linear Algebra and its Applications 436 (2012) 86-98

A bound of generalized competition index of a primitive digraph

Hwa Kyung Kim^{a,*}, Sung Gi Park^b

^a Dept. of Mathematics Education, Sangmyung University, Seoul 110-743, South Korea
 ^b Seoul Science High School, Seoul 110-530, South Korea

ARTICLEINFO

Article history: Received 5 April 2010 Accepted 16 June 2011 Available online 18 July 2011

Submitted by R.A. Brualdi

AMS classification: 05C50 15A48 05C20

Keywords: Competition index m-Competition index Scrambling index Generalized competition index

ABSTRACT

For a positive integer *m*, where $1 \le m \le n$, the *m*-competition index (generalized competition index) of a primitive digraph *D* is the smallest positive integer *k* such that for every pair of vertices *x* and *y*, there exist *m* distinct vertices v_1, v_2, \ldots, v_m such that there exist directed walks of length *k* from *x* to v_i and from *y* to v_i for $1 \le i \le m$. The *m*-competition index is a generalization of the scrambling index and the exponent of a primitive digraph. In this paper, we study the upper bound of the *m*-competition index of a primitive digraph using its order and girth.

© 2011 Elsevier Inc. All rights reserved.

1. Preliminaries and notations

In this paper, we follow the terminology and notation used in [1,3,4,6]. Let D = (V, E) denote a *digraph* (directed graph) with vertex set V = V(D), arc set E = E(D), and order *n*. Loops are permitted but multiple arcs are not. A *walk* from *x* to *y* in a digraph *D* is a sequence of vertices *x*, $v_1, \ldots, v_t, y \in V(D)$ and a sequence of arcs $(x, v_1), (v_1, v_2), \ldots, (v_t, y) \in E(D)$, where the vertices and arcs are not necessarily distinct. A *closed walk* is a walk from *x* to *y* where x = y. A *cycle* is a closed walk from *x* to *y* with distinct vertices except for x = y.

* Corresponding author.

0024-3795/\$ - see front matter © 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2011.06.040

E-mail addresses: indices@smu.ac.kr (H.K. Kim), jums318@naver.com (S.G. Park).

The *length of a walk W* is the number of arcs in *W*. The notation $x \xrightarrow{k} y$ is used to indicate that there exists a walk from *x* to *y* of length *k*. An *l*-cycle is a cycle of length *l*, denoted by *C_l*. If the digraph *D* has at least one cycle, the length of a shortest cycle in *D* is called the *girth* of *D*, and denote this by *s*(*D*). The notation $x \rightarrow y$ indicates that there exists an arc (x, y). The *distance* from vertex *x* to vertex *y* in *D* is the length of the shortest walk from *x* to *y*, and it is denoted by *d_D*(*x*, *y*).

A digraph *D* is called *strongly connected* if for each pair of vertices *x* and *y* in V(D), there exists a walk from *x* to *y*. For a strongly connected digraph *D*, the *index of imprimitivity* of *D* is the greatest common divisor of the lengths of the cycles in *D*, and it is denoted by l(D). If *D* is a trivial digraph of order 1, l(D) is undefined. For a strongly connected digraph *D*, *D* is *primitive* if l(D) = 1.

If *D* is a primitive digraph of order *n*, there exists some positive integer *k* such that there exists a walk of length exactly *k* from each vertex *x* to each vertex *y*. The smallest such *k* is called the *exponent* of *D*, and it is denoted by exp(D). For a positive integer *m* where $1 \le m \le n$, we define the *m*-competition index of a primitive digraph *D*, denoted by $k_m(D)$, as the smallest positive integer *k* such that for every

pair of vertices *x* and *y*, there exist *m* distinct vertices v_1, v_2, \ldots, v_m such that $x \xrightarrow{k} v_i$ and $y \xrightarrow{k} v_i$ for $1 \le i \le m$ in *D*.

Kim [7] introduced the *m*-competition index as a generalization of the competition index presented in [5,6]. Akelbek and Kirkland [1,2] introduced the scrambling index of a primitive digraph *D*, denoted by k(D). In the case of primitive digraphs, the definitions of the scrambling index and 1-competition index are identical. We have $k(D) = k_1(D)$.

For a positive integer *k* and a primitive digraph *D*, we define the *k*-step outneighborhood of a vertex *x* as

$$N^+(D^k:x) = \left\{ v \in V(D) | x \stackrel{k}{\longrightarrow} v \right\}.$$

We define the *k*-step common outneighborhood of vertices *x* and *y* as

 $N^+(D^k:x,y) = N^+(D^k:x) \cap N^+(D^k:y).$

We define the *local m-competition index* of vertices *x* and *y* as

$$k_m(D:x, y) = \min\{k : |N^+(D^t:x, y)| \ge m \text{ where } t \ge k\}.$$

We also define the *local m-competition index* of *x* as

$$k_m(D:x) = \max_{y \in V(D)} \{k_m(D:x,y)\}.$$

Then, we have

$$k_m(D) = \max_{x \in V(D)} k_m(D:x) = \max_{x,y \in V(D)} k_m(D:x,y).$$

From the definitions of $k_m(D)$, $k_m(D:x)$, and $k_m(D:x, y)$, we have $k_m(D:x, y) \le k_m(D:x) \le k_m(D)$. On the basis of the definitions of the *m*-competition index and the exponent of *D* of order *n*, we can write $k_m(D) \le \exp(D)$, where *m* is a positive integer with $1 \le m \le n$. Furthermore, we have $k_n(D) = \exp(D)$ and

$$k(D) = k_1(D) \le k_2(D) \le \dots \le k_n(D) = \exp(D).$$

This is a generalization of the scrambling index and exponent. There exist many researches about exponents and their generalization; for example, [8,10].

Let $D_{n,s} = (V, E)$ be the digraph where $n \ge 3$ such as

$$V = \{v_0, v_1, \dots, v_{n-1}\},\$$

$$E = \{(v_i, v_{i+1}) \mid 0 \le i \le n-2\} \cup \{(v_{n-1}, v_0), (v_{n-1}, v_{n-s})\}.$$

Proposition 1 [1,2]. Let D be a primitive digraph with n vertices and girth s. Then,

$$k_1(D) \le \begin{cases} n-s + \left(\frac{s-1}{2}\right)n, \text{ when s is odd,} \\ n-s + \left(\frac{n-1}{2}\right)s, \text{ when s is even.} \end{cases}$$

If the equality holds and $s \ge 2$, then gcd(n, s) = 1 and D contains $D_{n,s}$ as a subgraph.

Proposition 2 [7]. Let *D* be a primitive digraph of order $n \ge 3$ and let *s* be the girth of *D*. For a positive integer *m* such that $1 \le m \le n$, we have

$$k_m(D) \leq \begin{cases} n-s+\left(\frac{n+m-2}{2}\right)s, & \text{when } n+m \text{ is even,} \\ n-s-1+\left(\frac{n+m-1}{2}\right)s, & \text{when } n+m \text{ is odd.} \end{cases}$$

When m = 1, the result of Proposition 2 does not coincide the result of Proposition 1. In this paper, we provide a sharp upper bound for $k_m(D)$.

2. Main results

Let L(D) denote the set of lengths of the cycles of D. Let n, s, and m be positive integers such that s < n and $1 \le m \le n$. For a nonnegative integer x such that $\left\lceil \frac{n-m}{2} \right\rceil \le x \le \left\lfloor \frac{n+m}{2} \right\rfloor$, the remainder of xs divided by n is denoted by r(x) and the minimum of r(x) is denoted by \overline{r} . Let M(n, s) be the nearest positive integer to $\frac{n}{s}$ such that its parity differs from n and $M(n, s) \ne \frac{n}{s} - 1$.

Lemma 3. Let D be a primitive digraph of order $n (\geq 3)$ and girth s. If s be odd, then we have

$$k_m(D) \le n - s + \left(\frac{s-1}{2}\right)n + (m-1)s$$

for a positive integer m such that $1 \le m \le n$. If the equality holds and $s \ge 2$, then gcd(n, s) = 1 and D contains $D_{n,s}$ as a subgraph.

Proof. Let C_s be a cycle of length *s*, and *x* and *y* be vertices in V(D).

According to the proof of Proposition 1 in [1], we can have vertices x' and y' in $V(C_s)$ such that

$$x \xrightarrow{n-s} x' \xrightarrow{\left(\frac{s-1}{2}\right)^n} w, \quad y \xrightarrow{n-s} y' \xrightarrow{\left(\frac{s-1}{2}\right)^n} w$$

for a vertex *w*. Because *D* and *D*^s are primitive, we have $|N^+(D^t : x', y')| \ge m$ where $t = \left(\frac{s-1}{2}\right)n + (m-1)s$. Then we have $k_m(D) \le n - s + \left(\frac{s-1}{2}\right)n + (m-1)s$.

Suppose $gcd(n, s) \neq 1$ or *D* does not contain $D_{n,s}$ as a subgraph where $s \geq 2$. According to the proof of Proposition 1 in [1], for a vertex *w* there exist walks

$$W_1: x \stackrel{t'}{\longrightarrow} w, \quad W_2: y \stackrel{t'}{\longrightarrow} w,$$

where $t' < n - s + \left(\frac{s-1}{2}\right)n$, and W_1 and W_2 contain a vertex in $V(C_s)$. Then we have $|N^+(D^{t'+(m-1)s}: x, y)| \ge m$. Therefore

$$k_m(D) \le t' + (m-1)s < n-s + \left(\frac{s-1}{2}\right)n + (m-1)s.$$

This establishes the result. \Box

Lemma 4. Let n, s, and m be positive integers such that s < n and $1 \le m \le n$. If s is odd and $m \le M(n, s)$, then we have $\overline{r} = r(x)$, where $x = \left\lceil \frac{n-m}{2} \right\rceil$.

Proof. Case 1. n + m is odd.

Let x_1 and x_2 be nonnegative integers such that $0 \le x_1 < x_2 \le m - 1$. We have $\frac{n - (m-1)s}{2} \ge 0$ and $\frac{n + (m-1)s}{2} \le n$ because $(m-1)s = ms - s \le n$. Then, we have

$$\left(\frac{n-m+1}{2}+x\right)s = n\left(\frac{s-1}{2}\right) + \frac{n-(m-1)s}{2} + xs$$

If $\frac{n+(m-1)s}{2} = n$, then $r\left(\left\lceil \frac{n-m}{2}\right\rceil\right) = 0$. Suppose $\frac{n+(m-1)s}{2} < n$. Then, we have $r\left(\left\lceil \frac{n-m}{2}\right\rceil + x_1\right) = \frac{n-(m-1)s}{2} + x_1s$ and $r\left(\left\lceil \frac{n-m}{2}\right\rceil + x_2\right) = \frac{n-(m-1)s}{2} + x_2s$. Therefore, we have $r\left(\left\lceil \frac{n-m}{2}\right\rceil + x_1\right) < r\left(\left\lceil \frac{n-m}{2}\right\rceil + x_2\right)$.

Case 2. n + m is even.

Let x_1 and x_2 be nonnegative integers such that $0 \le x_1 < x_2 \le m$. We have $\frac{n-ms}{2} \ge 0$ and $\frac{n+ms}{2} \le n$ because $ms \le n$ by $m \le M(n, s) - 1$ because of the parity. Then, we have

$$\left(\frac{n-m}{2}+x\right)s = n\left(\frac{s-1}{2}\right) + \frac{n-ms}{2} + xs.$$

If $\frac{n+ms}{2} = n$, then $r\left(\left\lceil \frac{n-m}{2}\right\rceil\right) = 0$. Suppose $\frac{n+ms}{2} < n$. Then, we have $r\left(\left\lceil \frac{n-m}{2}\right\rceil + x_1\right) = \frac{n-ms}{2} + x_1s$ and $r\left(\left\lceil \frac{n-m}{2}\right\rceil + x_2\right) = \frac{n-ms}{2} + x_2s$. Therefore, we have $r\left(\left\lceil \frac{n-m}{2}\right\rceil + x_1\right) < r\left(\left\lceil \frac{n-m}{2}\right\rceil + x_2\right)$. In all cases, we have $\bar{r} = r(x)$, where $x = \lceil \frac{n-m}{2} \rceil$. This establishes the result. \Box

Theorem 5. Let *D* be a primitive digraph of order $n (\geq 3)$ and girth *s*. Let *m* be a positive integer such that $m \leq M(n, s)$. If *s* is odd, then we have

$$k_m(D) \le n - \bar{r} + \left\lceil \frac{n+m-4}{2} \right\rceil s.$$

If the equality holds and $s \ge 2$, then gcd(n, s) = 1 and D contains $D_{n,s}$ as a subgraph.

Proof. By Lemma 4, we have

$$\bar{r} = \begin{cases} \frac{n - (m-1)s}{2}, & \text{when } n + m \text{ is odd,} \\ \frac{n - ms}{2}, & \text{when } n + m \text{ is even.} \end{cases}$$

Therefore, we have

$$n - \bar{r} + \left\lceil \frac{n+m-4}{2} \right\rceil s = n - s + \left(\frac{s-1}{2}\right)n + (m-1)s.$$

By Lemma 3, we have $k_m(D) \le n - \bar{r} + \left\lceil \frac{n+m-4}{2} \right\rceil s$, and the equality holds only if gcd(n, s) = 1 and D contains $D_{n,s}$ as a subgraph. This establishes the result. \Box

Lemma 6. Let *n*, *s*, and *m* be positive integers such that s < n and $1 \le m \le n$. If *s* is even or m > M(n, s), then we have

$$\bar{r} \leq \frac{s}{2}.$$

Proof. We show that there exists a nonnegative integer *x* such that $r(x) \le \frac{s}{2}$. *Case* 1. *s* is even.

Let

$$x = \begin{cases} \frac{n}{2}, & \text{when } n \text{ is even,} \\ \frac{n+1}{2}, & \text{when } n \text{ is odd.} \end{cases}$$

Then, we have $\left\lceil \frac{n-m}{2} \right\rceil \le x \le \left\lfloor \frac{n+m}{2} \right\rfloor$ because $m \ge 1$, and we have

$$r(x) = \begin{cases} 0, & \text{when } n \text{ is even,} \\ \frac{s}{2}, & \text{when } n \text{ is odd.} \end{cases}$$

Therefore, we have $\bar{r} \leq r(x) \leq \frac{s}{2}$.

Case 2. s is odd.

Case 2.1. n is even.

In this case, we have $M(n, s) = 2 \lfloor \frac{n/2}{s} \rfloor + 1$. Let $x_1 = \frac{n}{2} - \lfloor \frac{n/2}{s} \rfloor$ and $x_2 = \frac{n}{2} + \lfloor \frac{n/2}{s} \rfloor + 1$. Then, we have $\lceil \frac{n-m}{2} \rceil \le x_1 < x_2 \le \lfloor \frac{n+m}{2} \rfloor$, and

$$x_1 s \equiv \frac{n}{2} - \left\lfloor \frac{n/2}{s} \right\rfloor s \pmod{n},$$
$$x_2 s \equiv -\frac{n}{2} + \left\lfloor \frac{n/2}{s} \right\rfloor s + s \pmod{n}.$$

Therefore, we have $r(x_1) + r(x_2) = s$; this implies that

$$\bar{r} \leq \min(r(x_1), r(x_2)) \leq \frac{s}{2}.$$

Case 2.2. *n* is odd.

In this case, we have $M(n, s) = 2\left\lfloor \frac{(n-s)/2}{s} \right\rfloor + 2$. Let $x_1 = \frac{n-1}{2} - \left\lfloor \frac{(n-s)/2}{s} \right\rfloor$ and $x_2 = \frac{n+1}{2} + \left\lfloor \frac{(n-s)/2}{s} \right\rfloor + 1$. Then, we have $\left\lceil \frac{n-m}{2} \right\rceil \le x_1 < x_2 \le \lfloor \frac{n+m}{2} \rfloor$, and $x_1 s \equiv \frac{(n-s)}{2} - \left| \frac{(n-s)/2}{s} \right| s \pmod{n},$

$$x_2 s \equiv -\frac{(n-s)}{2} + \left\lfloor \frac{(n-s)/2}{s} \right\rfloor s + s \pmod{n}.$$

Therefore, we have $r(x_1) + r(x_2) = s$; this implies that

$$\bar{r} \leq \min(r(x_1), r(x_2)) \leq \frac{s}{2}.$$

This establishes the result. \Box

Denote

$$K(n, s, m) = \begin{cases} n - \bar{r} + \left(\frac{n+m-3}{2}\right)s, \text{ when } n + m \text{ is odd,} \\ n - \bar{r} + \left(\frac{n+m-4}{2}\right)s, \text{ when } n + m \text{ is even, } s \text{ is odd, and } m < \frac{n}{s}, \\ n - s + \left(\frac{n+m-2}{2}\right)s, \text{ otherwise.} \end{cases}$$

90

Lemma 7. Let D be a primitive digraph of order n and girth s such that $n \in L(D)$ and gcd(n, s) = 1. For a positive integer m such that 1 < m < n, we have

$$k_m(D) \leq K(n, s, m).$$

If the equality holds and $s \ge 2$, then D contains $D_{n,s}$ as a subgraph.

Proof. If s is odd and m < M(n, s), then we have the result from Theorem 5. Suppose s is even or m > M(n, s). Let C_s be an s-cycle. There exists a positive integer k such that $1 \le k \le n - 2$, where D = (V, E) is

$$V = \{v_0, v_1, \dots, v_{n-1}\},\$$

$$E \supset \{(v_i, v_{i+1}) \mid 0 \le i \le n-2\} \cup \{(v_{n-1}, v_0), (v_{n-1}, v_k)\}\$$

and $(v_{n-1}, v_k) \in E(C_s)$. There exists an *n*-cycle in D^s because gcd(n, s) = 1. In this proof, we assume that all subscripts are taken by modulo *n*. Consider two vertices v_i and v_i , where i < j.

Case 1.
$$n + m$$
 is odd.

If $d_{D^{s}}(v_{i}, v_{j}) < \frac{n-m+1}{2}$ or $d_{D^{s}}(v_{i}, v_{j}) > \frac{n+m-1}{2}$, the number of vertices that can be reached from v_{i+n-s} and v_{i+n-s} within $\binom{n+m-3}{2}$ -steps is greater than or equal to *m* in *D*^s. Because each of $v_i \xrightarrow{n-s}$ v_{i+n-s} and $v_j \xrightarrow{n-s} v_{j+n-s}$ contains a vertex in $V(C_s)$, we have $|N^+(D^{t_1}:v_i,v_j)| \ge m$, where $t_1 = v_j$ $n - s + \left(\frac{n+m-3}{2}\right)s$. Therefore, we have

$$k_m(D:v_i, v_j) \le t_1 < K(n, s, m), \tag{1}$$

because $\bar{r} < s$ by Lemma 6. Suppose $\frac{n-m+1}{2} \le d_{D^s}(v_i, v_j) \le \frac{n+m-1}{2}$. Then, we have the following walks of length $(n - \bar{r})$:

$$W_1: v_i \rightarrow v_{i+1} \rightarrow \cdots \rightarrow v_{n-\bar{r}+i},$$

$$W_2: v_j \rightarrow v_{j+1} \rightarrow \cdots \rightarrow v_{n-\bar{r}+j},$$

 $W_3: v_i \rightarrow v_{i+1} \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_k \rightarrow \cdots \rightarrow v_{k+j-\bar{r}},$

where $v_{n-\bar{r}+j} \neq v_{k+j-\bar{r}}$. W_1 contains a vertex in $V(C_s)$ because $\bar{r} < s$. W_2 and W_3 also contain $v_{n-1} \in V(C_s)$. Then, we have

$$|N^+(D_{n,s}^{t_2}:v_i)| \ge \frac{n+m-1}{2}, \quad |N^+(D_{n,s}^{t_2}:v_j)| \ge \frac{n+m+1}{2},$$

where $t_2 = n - \overline{r} + \left(\frac{n+m-3}{2}\right)s$. Then, $|N^+(D_{n,s}^{t_2}:v_i,v_j)| \ge m$. Therefore, we have

$$\alpha_m(D_{n,s}) \le t_2 = K(n, s, m).$$
⁽²⁾

If D does not contain $D_{n,s}$ as a subgraph, then there exists another arc (v_p, v_q) in the s-cycle, where $0 \le p \le n-2$ and $0 \le q \le n-1$. We have the following two walks of length $(n-\bar{r}-1)$:

$$W'_1: v_i \to v_{i+1} \to \cdots \to v_{n-\bar{r}-1+i},$$

$$W'_2: v_j \to v_{j+1} \to \cdots \to v_{n-\bar{r}-1+j}.$$

In addition, we have $j - i < n - \overline{r}$ or $n - j + i < n - \overline{r}$. Then, there exists a walk among these walks of length $(n - \overline{r} - 1)$:

$$W'_{3}: v_{j} \rightarrow v_{j+1} \rightarrow \cdots \rightarrow v_{p} \rightarrow v_{q} \rightarrow \cdots \rightarrow v_{n-\bar{r}-1+j+q-p-1},$$

$$W'_{4}: v_{j} \rightarrow v_{j+1} \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_{k} \rightarrow \cdots \rightarrow v_{k+j-1-\bar{r}},$$

$$W'_{5}: v_{i} \rightarrow v_{i+1} \rightarrow \cdots \rightarrow v_{p} \rightarrow v_{q} \rightarrow \cdots \rightarrow v_{n-\bar{r}-1+i+q-p-1}.$$

 W'_1 and W'_2 contain a vertex in the *s*-cycle because $\bar{r} < s$. One among W'_3 , W'_4 , and W'_5 also contains a vertex in the *s*-cycle. If there exists a walk W'_3 or W'_4 , we have

$$|N^{+}(D_{n,s}^{t_{2}-1}:v_{i})| \geq \frac{n+m-1}{2}, \quad |N^{+}(D_{n,s}^{t_{2}-1}:v_{j})| \geq \frac{n+m+1}{2}.$$

If there exists a walk W'_5 , we have

$$|N^+(D_{n,s}^{t_2-1}:v_i)| \ge \frac{n+m+1}{2}, \quad |N^+(D_{n,s}^{t_2-1}:v_j)| \ge \frac{n+m-1}{2}.$$

In all cases, we have $|N^+(D_{n,s}^{t_2-1}:v_i,v_j)| \ge m$. Therefore, we have

$$k_m(D_{n,s}) \le t_2 - 1 < K(n, s, m).$$
(3)

By (1), (2), and (3), we have the result when n + m is odd.

Case 2. Otherwise.

We have $k_m(D) \leq K(n, s, m)$ by Proposition 2. Suppose $k_m(D) = K(n, s, m)$. If $k \neq n - s$, then $v_i \xrightarrow{n-s-1} v_{i+n-s-1}$ contains a vertex in an *s*-cycle and $v_j \xrightarrow{n-s-1} v_{j+n-s-1}$ contains a vertex in an *s*-cycle. In D^s , the number of vertices that can be reached from $v_{i+n-s-1}$ and $v_{j+n-s+1}$ within $(\frac{n+m-2}{2})$ -steps is greater than or equal to *m*. We have $|N^+(D^{t_3} : v_i, v_j)| \geq m$, where $t_3 = n - s - 1 + (\frac{n+m-2}{2})s$. This is contradictory. Therefore, we have k = n - s. Therefore, *D* contains $D_{n,s}$ as a subgraph.

This establishes the result. \Box

Lemma 8. Let gcd(n, s) = 1. For a positive integer m such that $1 \le m \le n$, we have

$$k_m(D_{n,s}) = K(n, s, m).$$

Proof. If s = 1, then we have $k_m(D_{n,s}) = n + m - 2 = K(n, s, m)$. Suppose $s \ge 2$. Let $S = \{v_{n-s}, v_{n-s+1}, \ldots, v_{n-1}\}$. There exists an *n*-cycle in $D_{n,s}^s$ because gcd(n, s) = 1. By Lemma 7, we have $k_m(D_{n,s}) \le K(n, s, m)$. We show $k_m(D_{n,s}) \ge K(n, s, m)$. In this proof, we assume that all subscripts are taken by modulo *n*.

Case 1. n + m is odd.

Let $i = 0, j = \bar{r}$, and $t_1 = n - \bar{r} + \left(\frac{n+m-3}{2}\right)s$. Then, we have $N^+(D_{n,s}^{n-j-1}:v_i) = \{v_{n-j-1}\}$ and $N^+(D_{n,s}^{n-j-1}:v_j) = \{v_{n-1}\}$. We also have

$$N^{+}(D_{n,s}^{t_{1}-1}:v_{i},v_{j})=N^{+}\left(D_{n,s}^{\left(\frac{n+m-3}{2}\right)s}:v_{n-j-1},v_{n-1}\right).$$

Because $\frac{n-m+1}{2} \le d_{D^s_{n,s}}(v_i, v_j) \le \frac{n+m-1}{2}$ by the definition of $j = \bar{r}$, we have

$$|N^+(D_{n,s}^{t_1-1}:v_i,v_j)| < m.$$

Therefore, we have

 $k_m(D_{n,s}) \ge t_1 = K(n, s, m).$

Case 2. n + m is even, s is odd, and $m < \frac{n}{s}$.

We have $\bar{r} = \frac{n-ms}{2}$. Let $i = 0, j = \bar{r} = \frac{n-ms}{2}$, and $t_2 = n - \bar{r} + \left(\frac{n+m-4}{2}\right)s$. Then, we have $N^+(D_{n,s}^{n-j-1}:v_i) = \{v_{n-j-1}\}$ and $N^+(D_{n,s}^{n-j-1}:v_j) = \{v_{n-1}\}$. We also have

$$N^{+}(D_{n,s}^{t_{2}-1}:v_{i},v_{j})=N^{+}\left(D_{n,s}^{\left(\frac{n+m-4}{2}\right)s}:v_{n-j-1},v_{n-1}\right).$$

Because $\frac{n-m}{2} \le d_{D_{n,s}^s}(v_i, v_j) \le \frac{n+m}{2}$ by the definition of $j = \bar{r}$, we have

$$|N^+(D_{n,s}^{t_2-1}:v_i,v_j)| < m.$$

Therefore, we have

 $k_m(D_{n,s}) \ge t_2 = K(n, s, m).$

Case 3. Otherwise.

Let $t_3 = n - s + \left(\frac{n + m - 2}{2}\right)s$.

Case 3.1. $m < \frac{n}{s}$ and s is even.

Let i = 0 and $j = \frac{s}{2}$. Then, we have $N^+(D_{n,s}^{n-s-1} : v_i) = \{v_{n-s-1}\}$ and $N^+(D_{n,s}^{n-s-1} : v_j) = \{v_{j+n-s-1}\}$ because $j + n - s - 1 \le n - 1$. We also have $d_{D_{n,s}^s}(v_{n-s-1}, v_{j+n-s-1}) = \frac{n+1}{2}$ because $\frac{n+1}{2}s \equiv \frac{s}{2} \pmod{n}$. Therefore, we have

 $k_m(D_{n,s}:v_i,v_j) \ge t_3 = K(n,s,m)$

because $|N^+(D_{n,s}^{t_3-1}:v_i)| \le \frac{n+m-2}{2}$ and $|N^+(D_{n,s}^{t_3-1}:v_j)| \le \frac{n+m}{2}$.

Case 3.2. $m > \frac{n}{s}$.

Let i = 0 and $j = \bar{r}$. Because n + m is even, we have m > M(n, s). We have $\bar{r} < s$ by Lemma 6. Then, we also have $N^+(D_{n,s}^{n-s-1}:v_i) = \{v_{n-s-1}\}$ and $N^+(D_{n,s}^{n-s-1}:v_j) = \{v_{\bar{r}+n-s-1}\}$ because $\bar{r} + n - s - 1 \le n - 1$. We also have $\frac{n-m}{2} \le d_{D_{n,s}^s}(v_{n-s-1}, v_{\bar{r}+n-s-1}) \le \frac{n+m}{2}$. Therefore, we have

 $k_m(D_{n,s}:v_i,v_j) \ge t_3 = K(n,s,m)$

because $|N^+(D_{n,s}^{t_3-1}:v_i)| \leq \frac{n+m-2}{2}$ and $|N^+(D_{n,s}^{t_3-1}:v_j)| \leq \frac{n+m}{2}$. In all cases, we have $k_m(D_{n,s}) \geq K(n, s, m)$. This establishes the result. \Box

Remark 9. If m = n - 1, then we have $\bar{r} = 1$. By Lemma 8, we have

 $k_{n-1}(D_{n,s}) = n - 1 + (n - 2)s = k_n(D_{n,s}) - 1.$

Example 10 [7]. Let D be a primitive digraph whose adjacency matrix A is given as

 $A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}.$

The order of D is 5 and the girth of D is 3. Thus, we can check

$$k_1(D) = 7 = K(5, 3, 1),$$

$$k_2(D) = 10 = K(5, 3, 2),$$

$$k_3(D) = 11 = K(5, 3, 3),$$

$$k_4(D) = 13 = K(5, 3, 4),$$

$$k_5(D) = 14 = K(5, 3, 5).$$

Lemma 11. Let *D* be a primitive digraph of order *n* and girth $s(\ge 2)$, and suppose $p \in L(D)$ such that s and <math>gcd(p, s) = 1. For a positive integer *m* such that $1 \le m \le n$, we have

$$k_m(D) < n-s + \left(\frac{n+m-2}{2}\right)s.$$

Proof. Let C_s and C_p be an *s*-cycle and a *p*-cycle, respectively. Consider two vertices *x* and *y*.

Case 1. $m \leq p$ and s > 2.

Case 1.1. p + m is even.

There exist walks

$$x \xrightarrow{n-s} x_s \xrightarrow{n-p} x_p, y \xrightarrow{n-s} y_s \xrightarrow{n-p} y_p,$$

where $x_s, y_s \in V(C_s)$ and $x_p, y_p \in V(C_p)$. Let $t_1 = n - s + n - p + \left(\frac{p+m-2}{2}\right)s$. Then, we have $|N^+(D^{t_1}:x,y) \cap V(C_p)| \ge m$ because $|N^+(D^{t_1}:x) \cap V(C_p)| \ge \frac{p+m}{2}$ and $|N^+(D^{t_1}:y) \cap V(C_p)| \ge \frac{p+m}{2}$. Therefore, we have

$$k_m(D:x,y) \le n-s+n-p+\left(\frac{p+m-2}{2}\right)s$$
$$< n-s+\left(\frac{n+m-2}{2}\right)s.$$

Case 1.2. p + m is odd.

Case 1.2.1. $p \le n - 2$.

There exists $x \xrightarrow{n-s-1} x_s \in V(C_s)$ or $y \xrightarrow{n-s-1} y_s \in V(C_s)$. Without loss of generality, we may assume that $x \xrightarrow{n-s-1} x_s \in V(C_s)$. Then, we can find a vertex y_s in $V(C_s)$ such that there exists $y \xrightarrow{n-1} y_s$. There exist walks such that $x_s \xrightarrow{n-p} x_p \in V(C_p)$ and $y_s \xrightarrow{n-p} y_p \in V(C_p)$. Let $t_2 = n-s+n-p-1+\left(\frac{p+m-1}{2}\right)s$. Then, we have $|N^+(D^{t_2}:x,y) \cap V(C_p)| \ge m$ because $|N^+(D^{t_2}:x) \cap V(C_p)| \ge \frac{p+m+1}{2}$ and $|N^+(D^{t_2}:y) \cap V(C_p)| \ge \frac{p+m-1}{2}$.

$$k_m(D:x,y) \le n-s+n-p-1+\left(\frac{p+m-1}{2}\right)s$$
$$< n-s+\left(\frac{n+m-2}{2}\right)s.$$

Case 1.2.2. p = n - 1.

We have $x \in V(C_p)$ or $y \in V(C_p)$. Without loss of generality, we assume that $x \in V(C_p)$. We also have $|V(C_s) \cap V(C_p)| \ge s - 1$. If $|V(C_s) \cap V(C_p)| = s$, we have $x \xrightarrow{n-s-1} x_s \in V(C_p)$ and $y \xrightarrow{n-1} y_s \in V(C_p)$, which contains a vertex in $V(C_s)$. If $|V(C_s) \cap V(C_p)| = s - 1$ and $y \notin V(C_p)$, we have $x \xrightarrow{n-1} x_s \in V(C_p)$ and $y \xrightarrow{n-s-1} y_s \in V(C_p)$, which contains a vertex in $V(C_s)$, because $n-s-1 \ge 1$. If $|V(C_s) \cap V(C_p)| = s - 1$ and $y \notin V(C_p)$, we have $x \xrightarrow{n-1} x_s \in V(C_p)$ and $y \xrightarrow{n-s-1} y_s \in V(C_p)$, we have $x \xrightarrow{n-s-1} x_s \in V(C_p)$ or $y \xrightarrow{n-s-1} y_s \in V(C_p)$, which contains a vertex in $V(C_s)$. In all cases, we may assume that

$$x \xrightarrow{n-s-1} x_s \in V(C_p), \ y \xrightarrow{n-1} y_s \in V(C_p),$$

which contains a vertex in $V(C_s)$. Let $t_2 = n - s - 1 + (\frac{p+m-1}{2})s$. Then, we have $|N^+(D^{t_2} : x, y) \cap V(C_p)| \ge m$ because $|N^+(D^{t_2} : x) \cap V(C_p)| \ge \frac{p+m+1}{2}$ and $|N^+(D^{t_2} : y) \cap V(C_p)| \ge \frac{p+m-1}{2}$. Therefore, we have

$$k_m(D:x,y) \le n-s-1 + \left(\frac{p+m-1}{2}\right)s$$
$$< n-s + \left(\frac{n+m-2}{2}\right)s.$$

Case 2. $m \leq p$ and s = 2.

If m = 1, then we have $k_1(D) < n - 2 + n - 1$ by Proposition 1. Suppose $m \ge 2$. We have p is odd. Let $V(C_s) = \{v_1, v_2\}$. Let l_x and l_y be the smallest numbers such that there exist walks

$$x \xrightarrow{l_x} x_s, \quad y \xrightarrow{l_y} y_s,$$
 (4)

where $x_s, y_x \in V(C_s)$. We may assume that $l_x \leq n - 3$.

If each walk of (4) contains a vertex in $V(C_p)$, then we have $V(C_s) \subset N^+(D^{n-2+p} : x, y)$. Therefore, we have $|N^+(D^{n-2+p+i} : x, y)| \ge 2 + i$ for a nonnegative integer *i* such that $i \le n-2$. For $m \ge 2$, we have

$$k_m(D:x,y) \le n+p-2+m-2$$

< $n-s+\left(\frac{n+m-2}{2}\right)s.$

This holds even though m > p.

If a walk of (4), $x \xrightarrow{l_x} x_s$, does not contain a vertex in $V(C_p)$, then we have $l_x \le n - p - 2$. There exist walks

 $x_s \xrightarrow{n-p} x_p, y_s \xrightarrow{n-p} y_p,$

where $x_p, y_p \in V(C_p)$. Let $t_3 = n - 2 + n - p + \left(\frac{p+m-3}{2}\right)s$. Then, $n - p - 2 + n - p + \left(\frac{p+m}{2}\right)s \le t_3$. We have $|N^+(D^{t_3} : x, y) \cap V(C_p)| \ge m$ because $|N^+(D^{t_3} : x) \cap V(C_p)| \ge \lfloor \frac{p+m+2}{2} \rfloor$ and $|N^+(D^{t_3} : y) \cap V(C_p)| \ge \lfloor \frac{p+m-1}{2} \rfloor$. Therefore, we have

$$k_m(D:x,y) \le n-2+n-p+\left(\frac{p+m-3}{2}\right)s$$
$$< n-s+\left(\frac{n+m-2}{2}\right)s.$$

Case 3. m > p.

If $V(C_p) \subset N^+(D^k : x, y)$ for a positive integer *k*, then we have

$$|N^+(D^{k+i}:x,y)| \ge p+i$$

for each nonnegative integer *i* such that $i \leq n - p$. Therefore, we have

$$k_m(D:x,y) < n-s + \left(\frac{n+p-2}{2}\right)s + (m-p)$$
$$\leq n-s + \left(\frac{n+m-2}{2}\right)s.$$

This establishes the result. \Box

Lemma 12. Let D be a primitive digraph of order n and girth $s(\ge 2)$, and suppose $L(D) = \{s, a_1, ..., a_h\}$ such that $gcd(s, a_i) \ne 1$ for each i = 1, 2, ..., h, where $h \ge 2$. For a positive integer m such that $1 \le m \le n$, we have

$$k_m(D) < n-s + \left(\frac{n+m-2}{2}\right)s.$$

Proof. Because $gcd(s, a_i) \neq 1$ for each i = 1, 2, ..., h, *s* is not prime and $s \geq 6$.

First, suppose $s \ge 8$. Then, there exists a cycle of length p such that $gcd(s, p) \le \frac{s}{4}$. Otherwise, $gcd(s, a_i)$ is equal to one among s, $\frac{s}{2}$, and $\frac{s}{3}$. Then, we have $gcd(s, a_1, \ldots, a_h) \ge \frac{s}{6}$. This contradicts the fact that D is primitive. Let $gcd(s, p) = t \le \frac{s}{4}$. We know that D^t is primitive because D is primitive. We also know that D^t contains t cycles of length $\frac{s}{t}$ and t cycles of length $\frac{p}{t}$.

Let $C(1), C(2), \ldots, C(t)$ be t disjoint cycles of length $\frac{p}{t}$ in D^t , that is, $V(C(i)) \cap V(C(j)) = \phi$ for $i \neq j$. Let $s' = \frac{s}{t}$ and $p' = \frac{p}{t}$; then, gcd(s', p') = 1. Consider two vertices x and y in D. In D, there exist walks

$$x \xrightarrow{n-s} x', y \xrightarrow{n-s} y',$$

where $x' \in V(C_s)$ and $y' \in V(C_s)$.

In D^t , for each C(i), where i = 1, 2, ..., t, there exist vertices x_i and y_i in C(i) such that there exist walks

$$x' \xrightarrow{n-p'} x_i, \quad y' \xrightarrow{n-p'} y_i.$$

Case 1. $m \leq p$.

Then, we have

$$k_m(D^t:x',y') \le n - p' + \left(\frac{p' + \left\lceil \frac{m}{t} \right\rceil - 1}{2}\right)s'$$
$$\le n - p' + \left(\frac{p' + \frac{m}{t}}{2}\right)s'.$$

Because $k_m(D:x, y) \le n - s + t \cdot k_m(D^t:x', y')$, we have

$$k_m(D:x,y) \le n-s-p+nt + \left(\frac{p+m}{2t}\right)s.$$
(5)

S

Let $f(t) = n - s - p + nt + \left(\frac{p+m}{2t}\right)s$. Then, f(t) is concave up on the interval $[2, \frac{s}{4}]$, and therefore, it attains its maximum at one of the end points.

$$f(2) = 3n - s - p + \left(\frac{p+m}{4}\right)s \le 2n - s + \left(\frac{n+m}{4}\right)$$
$$< n - 2s + \left(\frac{n+m}{2}\right)s.$$
$$f\left(\frac{s}{4}\right) = n - s + p + \frac{ns}{4} + 2m \le 2n - s + \frac{ns}{4} + 2m$$
$$< n - 2s + \left(\frac{n+m}{2}\right)s.$$

Therefore, we have $k_m(D) < n - s + \left(\frac{n+m-2}{2}\right)s$.

Case 2. m > p.

If $V(C_p) \subset N^+(D^k : x, y)$ for a positive integer k, then we have $|N^+(D^{k+i} : x, y)| \ge p + i$ for each nonnegative integer i such that $i \le n - p$. Therefore, we have

$$k_m(D:x,y) < n-s + \left(\frac{n+p-2}{2}\right)s + (m-p).$$
 (6)

Therefore, we have $k_m(D:x, y) < n - s + \left(\frac{n+m-2}{2}\right)s$.

97

There is only remaining case, namely, s = 6. If s = 6, then there also exists a cycle of length p such that gcd(s, p) = 2. Otherwise, $gcd(s, a_i) = 3$ or 6 for all i = 1, 2, ..., h. This is contradictory. We also have $n \ge 9$. If s = 6 and n = 9, there exists a cycle of length p = 8. Then, we have $k_m(D) < n - s + \left(\frac{n+m-2}{2}\right)s$ by (5) and (6). If s = 6 and n > 9, then we also have $k_m(D) < n - s + \left(\frac{n+m-2}{2}\right)s$ by (5) and (6) because p < n.

This establishes the result. \Box

Theorem 13. Let D be a primitive digraph of order $n \ge 3$ and girth s. For a positive integer m such that 1 < m < n, we have

 $k_m(D) \leq K(n, s, m).$

If the equality holds and $s \ge 2$, then gcd(n, s) = 1 and D contains $D_{n,s}$ as a subgraph. If $D = D_{n,s}$, then the equality holds.

Proof. Let $L(D) = \{s, a_1, \ldots, a_h\}$. If *s* is odd and $m \leq M(n, s)$, then we have the result by Theorem 5. Suppose *s* is even or m > M(n, s). Then, we have $K(n, s, m) \ge n - s + \left(\frac{n+m-2}{2}\right)s$ because $\overline{r} \le \frac{s}{2}$ by

Lemma 6. If $h \ge 2$ and $gcd(s, a_i) \ne 1$ for each i = 1, 2, ..., h, then we have $k_m(D) < n-s + \left(\frac{n+m-2}{2}\right)s$ by Lemma 12. If there exists $p \in L(D)$ such that s and <math>gcd(p, s) = 1, then we have $k_m(D) < n - s + \left(\frac{n+m-2}{2}\right)s$ by Lemma 11. If $n \in L(D)$ and gcd(n, s) = 1, then we have the result by Lemma 7.

If $D = D_{n,s}$, then the equality holds by Lemma 8. This establishes the result. \Box

Corollary 14. Let D be a primitive digraph of order $n (\geq 3)$ and girth s. Let m be a positive integer such that $1 \le m \le n$. If n + m is odd, then we have

 $k_m(D) \leq n-s-1+\left(\frac{n+m-1}{2}\right)s.$

Proof. If s = 1, then we have $k_m(D) \le n + m - 2 \le n - s - 1 + \left(\frac{n+m-1}{2}\right)s$ because $n \ge m + 1$. Suppose $s \ge 2$, and let $L(D) = \{s, a_1, \dots, a_h\}$. If $h \ge 2$ and gcd $(s, a_i) \ne 1$ for each $i = 1, 2, \dots, h$, then we have $k_m(D) < n - s - 1 + \left(\frac{n+m-1}{2}\right)s$ by Lemma 12. If there exists $p \in L(D)$ such that s and <math>gcd(p, s) = 1, then we have $k_m(D) \le n - s - 1 + \left(\frac{n+m-1}{2}\right)s$ by Lemma 11. If $n \in L(D)$ and gcd(n, s) = 1, then we have $\bar{r} \ge 1$. Therefore, we have $k_m(D) \le n - s - 1 + \left(\frac{n+m-1}{2}\right)s$ by Lemma 7. This establishes the result. \Box

Remark 15. In Theorem 13, the equality holds only if *D* contains $D_{n,s}$ as a subgraph. In addition, if m = 1, Theorem 13 and Proposition 1 give us the same bound because $m < \frac{n}{s}$. Corollary 14 is the same result as Proposition 2.

3. Closing remark

Akelbek and Kirkland [1] introduced the concept of the scrambling index of a primitive digraph. Kim [7] introduced a generalized competition index $k_m(D)$ as another generalization of the exponent exp(D) and scrambling index k(D) for a primitive digraph D. Sim and Kim [9] studied the generalized competition index $k_m(T_n)$ of a primitive *n*-tournament T_n . In this paper, we study an upper bound of $k_m(D)$, where D is a primitive digraph. Akelbek and Kirkland [2] characterized a primitive digraph D where $k_1(D) = K(n, s, 1)$. It is also necessary to study the characterization of a primitive digraph D where $k_m(D) = K(n, s, m)$ for 1 < m < n.

Acknowledgements

The authors would like to thank an anonymous referee for his or her outstanding job of suggesting changes.

References

- [1] M. Akelbek, S. Kirkland, Coefficients of ergodicity and the scrambling index, Linear Algebra Appl. 430 (2009) 1111–1130.
- [2] M. Akelbek, S. Kirkland, Primitive digraphs with the largest scrambling index, Linear Algebra Appl. 430 (2009) 1099–1110.
- [3] R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991.
- [4] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
- [5] H.H. Cho, H.K. Kim, Competition indices of strongly connected digraphs, Bull. Korean Math. Soc. 48 (2011) 637-646.
- [6] H.K. Kim, Competition indices of tournaments, Bull. Korean Math. Soc. 45 (2008) 385-396.
- [7] H.K. Kim, Generalized competition index of a primitive digraph, Linear Algebra Appl. 433 (2010) 72-79.
- [8] B. Liu, H.-J. Lai, Matrices in Combinatorics and Graph Theory, Kluwer Academic Publishers, 2000.
- [9] M.S. Sim, H.K. Kim, On generalized competition index of a primitive tournament, Discrete Math., submitted for publication.
- [10] B. Zhou, J. Shen, On generalized exponents of tournaments, Taiwanese J. Math. 6 (2002) 565–572.