A bound of generalized competition index of a primitive digraph

Hwa Kyung Kim ${ }^{\text {a,* }}$, Sung Gi Park ${ }^{\text {b }}$
${ }^{\text {a }}$ Dept. of Mathematics Education, Sangmyung University, Seoul 110-743, South Korea
${ }^{\text {b }}$ Seoul Science High School, Seoul 110-530, South Korea

ARTICLEINFO

Article history:

Received 5 April 2010
Accepted 16 June 2011
Available online 18 July 2011
Submitted by R.A. Brualdi

AMS classification:

05C50
15A48
05 C 20

Keywords:

Competition index
m-Competition index
Scrambling index
Generalized competition index

Abstract

For a positive integer m, where $1 \leq m \leq n$, the m-competition index (generalized competition index) of a primitive digraph D is the smallest positive integer k such that for every pair of vertices x and y, there exist m distinct vertices $v_{1}, v_{2}, \ldots, v_{m}$ such that there exist directed walks of length k from x to v_{i} and from y to v_{i} for $1 \leq i \leq m$. The m-competition index is a generalization of the scrambling index and the exponent of a primitive digraph. In this paper, we study the upper bound of the m-competition index of a primitive digraph using its order and girth.

© 2011 Elsevier Inc. All rights reserved.

1. Preliminaries and notations

In this paper, we follow the terminology and notation used in $[1,3,4,6]$. Let $D=(V, E)$ denote a digraph (directed graph) with vertex set $V=V(D)$, arc set $E=E(D)$, and order n. Loops are permitted but multiple arcs are not. A walk from x to y in a digraph D is a sequence of vertices $x, v_{1}, \ldots, v_{t}, y \in$ $V(D)$ and a sequence of arcs $\left(x, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{t}, y\right) \in E(D)$, where the vertices and arcs are not necessarily distinct. A closed walk is a walk from x to y where $x=y$. A cycle is a closed walk from x to y with distinct vertices except for $x=y$.

[^0]0024-3795/\$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2011.06.040

The length of a walk W is the number of arcs in W. The notation $x \xrightarrow{k} y$ is used to indicate that there exists a walk from x to y of length k. An l-cycle is a cycle of length l, denoted by C_{l}. If the digraph D has at least one cycle, the length of a shortest cycle in D is called the girth of D, and denote this by $s(D)$. The notation $x \rightarrow y$ indicates that there exists an arc (x, y). The distance from vertex x to vertex y in D is the length of the shortest walk from x to y, and it is denoted by $d_{D}(x, y)$.

A digraph D is called strongly connected if for each pair of vertices x and y in $V(D)$, there exists a walk from x to y. For a strongly connected digraph D, the index of imprimitivity of D is the greatest common divisor of the lengths of the cycles in D, and it is denoted by $l(D)$. If D is a trivial digraph of order $1, l(D)$ is undefined. For a strongly connected digraph D, D is primitive if $l(D)=1$.

If D is a primitive digraph of order n, there exists some positive integer k such that there exists a walk of length exactly k from each vertex x to each vertex y. The smallest such k is called the exponent of D, and it is denoted by $\exp (\mathrm{D})$. For a positive integer m where $1 \leq m \leq n$, we define the m-competition index of a primitive digraph D, denoted by $k_{m}(D)$, as the smallest positive integer k such that for every pair of vertices x and y, there exist m distinct vertices $v_{1}, v_{2}, \ldots, v_{m}$ such that $x \xrightarrow{k} v_{i}$ and $y \xrightarrow{k} v_{i}$ for $1 \leq i \leq m$ in D.

Kim [7] introduced the m-competition index as a generalization of the competition index presented in [5,6]. Akelbek and Kirkland [1,2] introduced the scrambling index of a primitive digraph D, denoted by $k(D)$. In the case of primitive digraphs, the definitions of the scrambling index and 1-competition index are identical. We have $k(D)=k_{1}(D)$.

For a positive integer k and a primitive digraph D, we define the k-step outneighborhood of a vertex x as

$$
N^{+}\left(D^{k}: x\right)=\{v \in V(D) \mid x \xrightarrow{k} v\} .
$$

We define the k-step common outneighborhood of vertices x and y as

$$
N^{+}\left(D^{k}: x, y\right)=N^{+}\left(D^{k}: x\right) \cap N^{+}\left(D^{k}: y\right) .
$$

We define the local m-competition index of vertices x and y as

$$
k_{m}(D: x, y)=\min \left\{k:\left|N^{+}\left(D^{t}: x, y\right)\right| \geq m \text { where } t \geq k\right\} .
$$

We also define the local m-competition index of x as

$$
k_{m}(D: x)=\max _{y \in V(D)}\left\{k_{m}(D: x, y)\right\} .
$$

Then, we have

$$
k_{m}(D)=\max _{x \in V(D)} k_{m}(D: x)=\max _{x, y \in V(D)} k_{m}(D: x, y)
$$

From the definitions of $k_{m}(D), k_{m}(D: x)$, and $k_{m}(D: x, y)$, we have $k_{m}(D: x, y) \leq k_{m}(D: x) \leq k_{m}(D)$. On the basis of the definitions of the m-competition index and the exponent of D of order n, we can write $k_{m}(D) \leq \exp (D)$, where m is a positive integer with $1 \leq m \leq n$. Furthermore, we have $k_{n}(D)=\exp (D)$ and

$$
k(D)=k_{1}(D) \leq k_{2}(D) \leq \cdots \leq k_{n}(D)=\exp (D) .
$$

This is a generalization of the scrambling index and exponent. There exist many researches about exponents and their generalization; for example, $[8,10]$.

Let $D_{n, s}=(V, E)$ be the digraph where $n \geq 3$ such as

$$
\begin{aligned}
& V=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}, \\
& E=\left\{\left(v_{i}, v_{i+1}\right) \mid 0 \leq i \leq n-2\right\} \cup\left\{\left(v_{n-1}, v_{0}\right),\left(v_{n-1}, v_{n-s}\right)\right\} .
\end{aligned}
$$

Proposition 1 [1,2]. Let D be a primitive digraph with n vertices and girth s. Then,

$$
k_{1}(D) \leq\left\{\begin{array}{l}
n-s+\left(\frac{s-1}{2}\right) n, \text { when } s \text { is odd, } \\
n-s+\left(\frac{n-1}{2}\right) s, \text { when } s \text { is even. }
\end{array}\right.
$$

If the equality holds and $s \geq 2$, then $\operatorname{gcd}(n, s)=1$ and D contains $D_{n, s}$ as a subgraph.
Proposition 2 [7]. Let D be a primitive digraph of order $n(\geq 3)$ and let s be the girth of D. For a positive integer m such that $1 \leq m \leq n$, we have

$$
k_{m}(D) \leq \begin{cases}n-s+\left(\frac{n+m-2}{2}\right) s, & \text { when } n+m \text { is even, } \\ n-s-1+\left(\frac{n+m-1}{2}\right) s, & \text { when } n+m \text { is odd. }\end{cases}
$$

When $m=1$, the result of Proposition 2 does not coincide the result of Proposition 1. In this paper, we provide a sharp upper bound for $k_{m}(D)$.

2. Main results

Let $L(D)$ denote the set of lengths of the cycles of D. Let n, s, and m be positive integers such that $s<n$ and $1 \leq m \leq n$. For a nonnegative integer x such that $\left\lceil\frac{n-m}{2}\right\rceil \leq x \leq\left\lfloor\frac{n+m}{2}\right\rfloor$, the remainder of x divided by n is denoted by $r(x)$ and the minimum of $r(x)$ is denoted by \bar{r}. Let $M(n, s)$ be the nearest positive integer to $\frac{n}{s}$ such that its parity differs from n and $M(n, s) \neq \frac{n}{s}-1$.

Lemma 3. Let D be a primitive digraph of order $n(\geq 3)$ and girth s. If s be odd, then we have

$$
k_{m}(D) \leq n-s+\left(\frac{s-1}{2}\right) n+(m-1) s,
$$

for a positive integer m such that $1 \leq m \leq n$. If the equality holds and $s \geq 2$, then $\operatorname{gcd}(n, s)=1$ and D contains $D_{n, s}$ as a subgraph.

Proof. Let C_{s} be a cycle of length s, and x and y be vertices in $V(D)$.
According to the proof of Proposition 1 in [1], we can have vertices x^{\prime} and y^{\prime} in $V\left(C_{s}\right)$ such that

$$
x \xrightarrow{n-s} x^{\prime} \xrightarrow{\left(\frac{s-1}{2}\right) n} w, \quad y \xrightarrow{n-s} y^{\prime} \xrightarrow{\left(\frac{s-1}{2}\right) n} w .
$$

for a vertex w. Because D and D^{s} are primitive, we have $\left|N^{+}\left(D^{t}: x^{\prime}, y^{\prime}\right)\right| \geq m$ where $t=\left(\frac{s-1}{2}\right) n+$ $(m-1) s$. Then we have $k_{m}(D) \leq n-s+\left(\frac{s-1}{2}\right) n+(m-1) s$.

Suppose $\operatorname{gcd}(n, s) \neq 1$ or D does not contain $D_{n, s}$ as a subgraph where $s \geq 2$. According to the proof of Proposition 1 in [1], for a vertex w there exist walks

$$
W_{1}: x \xrightarrow{t^{\prime}} w, \quad W_{2}: y \xrightarrow{t^{\prime}} w,
$$

where $t^{\prime}<n-s+\left(\frac{s-1}{2}\right) n$, and W_{1} and W_{2} contain a vertex in $V\left(C_{s}\right)$. Then we have $\mid N^{+}\left(D^{t^{\prime}+(m-1) s}\right.$: $x, y) \mid \geq m$. Therefore

$$
k_{m}(D) \leq t^{\prime}+(m-1) s<n-s+\left(\frac{s-1}{2}\right) n+(m-1) s .
$$

This establishes the result.

Lemma 4. Let n, s, and m be positive integers such that $s<n$ and $1 \leq m \leq n$. Ifs is odd and $m \leq M(n, s)$, then we have $\bar{r}=r(x)$, where $x=\left\lceil\frac{n-m}{2}\right\rceil$.

Proof. Case 1. $n+m$ is odd.
Let x_{1} and x_{2} be nonnegative integers such that $0 \leq x_{1}<x_{2} \leq m-1$. We have $\frac{n-(m-1) s}{2} \geq 0$ and $\frac{n+(m-1) s}{2} \leq n$ because $(m-1) s=m s-s \leq n$. Then, we have

$$
\left(\frac{n-m+1}{2}+x\right) s=n\left(\frac{s-1}{2}\right)+\frac{n-(m-1) s}{2}+x s .
$$

If $\frac{n+(m-1) s}{2}=n$, then $r\left(\left\lceil\frac{n-m}{2}\right\rceil\right)=0$. Suppose $\frac{n+(m-1) s}{2}<n$. Then, we have $r\left(\left\lceil\frac{n-m}{2}\right\rceil+x_{1}\right)=$ $\frac{n-(m-1) s}{2}+x_{1} s$ and $r\left(\left\lceil\frac{n-m}{2}\right\rceil+x_{2}\right)=\frac{n-(m-1) s}{2}+x_{2} s$. Therefore, we have $r\left(\left\lceil\frac{n-m}{2}\right\rceil+x_{1}\right)<$ $r\left(\left\lceil\frac{n-m}{2}\right\rceil+x_{2}\right)$.
Case 2. $n+m$ is even.
Let x_{1} and x_{2} be nonnegative integers such that $0 \leq x_{1}<x_{2} \leq m$. We have $\frac{n-m s}{2} \geq 0$ and $\frac{n+m s}{2} \leq n$ because $m s \leq n$ by $m \leq M(n, s)-1$ because of the parity. Then, we have

$$
\left(\frac{n-m}{2}+x\right) s=n\left(\frac{s-1}{2}\right)+\frac{n-m s}{2}+x s .
$$

If $\frac{n+m s}{2}=n$, then $r\left(\left\lceil\frac{n-m}{2}\right\rceil\right)=0$. Suppose $\frac{n+m s}{2}<n$. Then, we have $r\left(\left\lceil\frac{n-m}{2}\right\rceil+x_{1}\right)=\frac{n-m s}{2}+x_{1} s$ and $r\left(\left\lceil\frac{n-m}{2}\right\rceil+x_{2}\right)=\frac{n-m s}{2}+x_{2}$ s. Therefore, we have $r\left(\left\lceil\frac{n-m}{2}\right\rceil+x_{1}\right)<r\left(\left\lceil\frac{n-m}{2}\right\rceil+x_{2}\right)$.

In all cases, we have $\bar{r}=r(x)$, where $x=\left\lceil\frac{n-m}{2}\right\rceil$. This establishes the result.
Theorem 5. Let D be a primitive digraph of order $n(\geq 3)$ and girth s. Let m be a positive integer such that $m \leq M(n, s)$. If s is odd, then we have

$$
k_{m}(D) \leq n-\bar{r}+\left\lceil\frac{n+m-4}{2}\right\rceil s .
$$

If the equality holds and $s \geq 2$, then $\operatorname{gcd}(n, s)=1$ and D contains $D_{n, s}$ as a subgraph.
Proof. By Lemma 4, we have

$$
\bar{r}= \begin{cases}\frac{n-(m-1) s}{2}, & \text { when } n+m \text { is odd, } \\ \frac{n-m s}{2}, & \text { when } n+m \text { is even. }\end{cases}
$$

Therefore, we have

$$
n-\bar{r}+\left\lceil\frac{n+m-4}{2}\right\rceil s=n-s+\left(\frac{s-1}{2}\right) n+(m-1) s .
$$

By Lemma 3, we have $k_{m}(D) \leq n-\bar{r}+\left\lceil\frac{n+m-4}{2}\right\rceil s$, and the equality holds only if $\operatorname{gcd}(n, s)=1$ and D contains $D_{n, s}$ as a subgraph. This establishes the result.

Lemma 6. Let n, s, and m be positive integers such that $s<n$ and $1 \leq m \leq n$. If s is even or $m>M(n, s)$, then we have

$$
\bar{r} \leq \frac{s}{2} .
$$

Proof. We show that there exists a nonnegative integer x such that $r(x) \leq \frac{s}{2}$.
Case 1. s is even.

Let

$$
x= \begin{cases}\frac{n}{2}, & \text { when } n \text { is even, } \\ \frac{n+1}{2}, & \text { when } n \text { is odd. }\end{cases}
$$

Then, we have $\left\lceil\frac{n-m}{2}\right\rceil \leq x \leq\left\lfloor\frac{n+m}{2}\right\rfloor$ because $m \geq 1$, and we have

$$
r(x)= \begin{cases}0, & \text { when } n \text { is even, } \\ \frac{s}{2}, & \text { when } n \text { is odd. }\end{cases}
$$

Therefore, we have $\bar{r} \leq r(x) \leq \frac{s}{2}$.
Case 2. s is odd.
Case 2.1. n is even.
In this case, we have $M(n, s)=2\left\lfloor\frac{n / 2}{s}\right\rfloor+1$. Let $x_{1}=\frac{n}{2}-\left\lfloor\frac{n / 2}{s}\right\rfloor$ and $x_{2}=\frac{n}{2}+\left\lfloor\frac{n / 2}{s}\right\rfloor+1$. Then, we have $\left\lceil\frac{n-m}{2}\right\rceil \leq x_{1}<x_{2} \leq\left\lfloor\frac{n+m}{2}\right\rfloor$, and

$$
\begin{aligned}
& x_{1} s \equiv \frac{n}{2}-\left\lfloor\frac{n / 2}{s}\right\rfloor s \quad(\bmod n) \\
& x_{2} s \equiv-\frac{n}{2}+\left\lfloor\frac{n / 2}{s}\right\rfloor s+s \quad(\bmod n)
\end{aligned}
$$

Therefore, we have $r\left(x_{1}\right)+r\left(x_{2}\right)=s$; this implies that

$$
\bar{r} \leq \min \left(r\left(x_{1}\right), r\left(x_{2}\right)\right) \leq \frac{s}{2}
$$

Case 2.2. n is odd.
In this case, we have $M(n, s)=2\left\lfloor\frac{(n-s) / 2}{s}\right\rfloor+2$. Let $x_{1}=\frac{n-1}{2}-\left\lfloor\frac{(n-s) / 2}{s}\right\rfloor$ and $x_{2}=\frac{n+1}{2}+$ $\left\lfloor\frac{(n-s) / 2}{s}\right\rfloor+1$. Then, we have $\left\lceil\frac{n-m}{2}\right\rceil \leq x_{1}<x_{2} \leq\left\lfloor\frac{n+m}{2}\right\rfloor$, and

$$
\begin{aligned}
& x_{1} s \equiv \frac{(n-s)}{2}-\left\lfloor\frac{(n-s) / 2}{s}\right\rfloor s \quad(\bmod n), \\
& x_{2} s \equiv-\frac{(n-s)}{2}+\left\lfloor\frac{(n-s) / 2}{s}\right\rfloor s+s \quad(\bmod n) .
\end{aligned}
$$

Therefore, we have $r\left(x_{1}\right)+r\left(x_{2}\right)=s$; this implies that

$$
\bar{r} \leq \min \left(r\left(x_{1}\right), r\left(x_{2}\right)\right) \leq \frac{s}{2} .
$$

This establishes the result.
Denote

$$
K(n, s, m)=\left\{\begin{array}{l}
n-\bar{r}+\left(\frac{n+m-3}{2}\right) s, \text { when } n+m \text { is odd, } \\
n-\bar{r}+\left(\frac{n+m-4}{2}\right) s, \text { when } n+m \text { is even, } s \text { is odd, and } m<\frac{n}{s}, \\
n-s+\left(\frac{n+m-2}{2}\right) s, \text { otherwise. }
\end{array}\right.
$$

Lemma 7. Let D be a primitive digraph of order n and girth s such that $n \in L(D)$ and $\operatorname{gcd}(n, s)=1$. For a positive integer m such that $1 \leq m \leq n$, we have

$$
k_{m}(D) \leq K(n, s, m) .
$$

If the equality holds and $s \geq 2$, then D contains $D_{n, s}$ as a subgraph.
Proof. If s is odd and $m \leq M(n, s)$, then we have the result from Theorem 5 . Suppose s is even or $m>M(n, s)$. Let C_{s} be an s-cycle. There exists a positive integer k such that $1 \leq k \leq n-2$, where $D=(V, E)$ is

$$
\begin{aligned}
& V=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}, \\
& E \supset\left\{\left(v_{i}, v_{i+1}\right) \mid 0 \leq i \leq n-2\right\} \cup\left\{\left(v_{n-1}, v_{0}\right),\left(v_{n-1}, v_{k}\right)\right\},
\end{aligned}
$$

and $\left(v_{n-1}, v_{k}\right) \in E\left(C_{s}\right)$. There exists an n-cycle in D^{s} because $\operatorname{gcd}(n, s)=1$. In this proof, we assume that all subscripts are taken by modulo n. Consider two vertices v_{i} and v_{j}, where $i<j$.

Case $1 . n+m$ is odd.
If $d_{D^{s}}\left(v_{i}, v_{j}\right)<\frac{n-m+1}{2}$ or $d_{D^{s}}\left(v_{i}, v_{j}\right)>\frac{n+m-1}{2}$, the number of vertices that can be reached from v_{i+n-s} and v_{j+n-s} within $\left(\frac{n+m-3}{2}\right)$-steps is greater than or equal to m in D^{s}. Because each of $v_{i} \xrightarrow{n-s}$ v_{i+n-s} and $v_{j} \xrightarrow{n-s} v_{j+n-s}$ contains a vertex in $V\left(C_{s}\right)$, we have $\left|N^{+}\left(D^{t_{1}}: v_{i}, v_{j}\right)\right| \geq m$, where $t_{1}=$ $n-s+\left(\frac{n+m-3}{2}\right) s$. Therefore, we have

$$
\begin{equation*}
k_{m}\left(D: v_{i}, v_{j}\right) \leq t_{1}<K(n, s, m) \tag{1}
\end{equation*}
$$

because $\bar{r}<s$ by Lemma 6 .
Suppose $\frac{n-m+1}{2} \leq d_{D^{s}}\left(v_{i}, v_{j}\right) \leq \frac{n+m-1}{2}$. Then, we have the following walks of length $(n-\bar{r})$:

$$
\begin{aligned}
& W_{1}: v_{i} \rightarrow v_{i+1} \rightarrow \cdots \rightarrow v_{n-\bar{r}+i}, \\
& W_{2}: v_{j} \rightarrow v_{j+1} \rightarrow \cdots \rightarrow v_{n-\bar{r}+j}, \\
& W_{3}: v_{j} \rightarrow v_{j+1} \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_{k} \rightarrow \cdots \rightarrow v_{k+j-\bar{r}},
\end{aligned}
$$

where $v_{n-\bar{r}+j} \neq v_{k+j-\bar{r}}$. W_{1} contains a vertex in $V\left(C_{s}\right)$ because $\bar{r}<s$. W_{2} and W_{3} also contain $v_{n-1} \in V\left(C_{s}\right)$. Then, we have

$$
\left|N^{+}\left(D_{n, s}^{t_{2}}: v_{i}\right)\right| \geq \frac{n+m-1}{2}, \quad\left|N^{+}\left(D_{n, s}^{t_{2}}: v_{j}\right)\right| \geq \frac{n+m+1}{2}
$$

where $t_{2}=n-\bar{r}+\left(\frac{n+m-3}{2}\right) s$. Then, $\left|N^{+}\left(D_{n, s}^{t_{2}}: v_{i}, v_{j}\right)\right| \geq m$. Therefore, we have

$$
\begin{equation*}
k_{m}\left(D_{n, s}\right) \leq t_{2}=K(n, s, m) \tag{2}
\end{equation*}
$$

If D does not contain $D_{n, s}$ as a subgraph, then there exists another arc (v_{p}, v_{q}) in the s-cycle, where $0 \leq p \leq n-2$ and $0 \leq q \leq n-1$. We have the following two walks of length $(n-\bar{r}-1)$:

$$
\begin{aligned}
& W_{1}^{\prime}: v_{i} \rightarrow v_{i+1} \rightarrow \cdots \rightarrow v_{n-\bar{r}-1+i}, \\
& W_{2}^{\prime}: v_{j} \rightarrow v_{j+1} \rightarrow \cdots \rightarrow v_{n-\bar{r}-1+j .} .
\end{aligned}
$$

In addition, we have $j-i<n-\bar{r}$ or $n-j+i<n-\bar{r}$. Then, there exists a walk among these walks of length $(n-\bar{r}-1)$:

$$
\begin{aligned}
& W_{3}^{\prime}: v_{j} \rightarrow v_{j+1} \rightarrow \cdots \rightarrow v_{p} \rightarrow v_{q} \rightarrow \cdots \rightarrow v_{n-\bar{r}-1+j+q-p-1}, \\
& W_{4}^{\prime}: v_{j} \rightarrow v_{j+1} \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_{k} \rightarrow \cdots \rightarrow v_{k+j-1-\bar{r}}, \\
& W_{5}^{\prime}: v_{i} \rightarrow v_{i+1} \rightarrow \cdots \rightarrow v_{p} \rightarrow v_{q} \rightarrow \cdots \rightarrow v_{n-\bar{r}-1+i+q-p-1} .
\end{aligned}
$$

W_{1}^{\prime} and W_{2}^{\prime} contain a vertex in the s-cycle because $\bar{r}<s$. One among $W_{3}^{\prime}, W_{4}^{\prime}$, and W_{5}^{\prime} also contains a vertex in the s-cycle. If there exists a walk W_{3}^{\prime} or W_{4}^{\prime}, we have

$$
\left|N^{+}\left(D_{n, s}^{t_{2}-1}: v_{i}\right)\right| \geq \frac{n+m-1}{2}, \quad\left|N^{+}\left(D_{n, s}^{t_{2}-1}: v_{j}\right)\right| \geq \frac{n+m+1}{2} .
$$

If there exists a walk W_{5}^{\prime}, we have

$$
\left|N^{+}\left(D_{n, s}^{t_{2}-1}: v_{i}\right)\right| \geq \frac{n+m+1}{2}, \quad\left|N^{+}\left(D_{n, s}^{t_{2}-1}: v_{j}\right)\right| \geq \frac{n+m-1}{2} .
$$

In all cases, we have $\left|N^{+}\left(D_{n, s}^{t_{2}-1}: v_{i}, v_{j}\right)\right| \geq m$. Therefore, we have

$$
\begin{equation*}
k_{m}\left(D_{n, s}\right) \leq t_{2}-1<K(n, s, m) . \tag{3}
\end{equation*}
$$

By (1), (2), and (3), we have the result when $n+m$ is odd.

Case 2. Otherwise.

We have $k_{m}(D) \leq K(n, s, m)$ by Proposition 2. Suppose $k_{m}(D)=K(n, s, m)$. If $k \neq n-s$, then $v_{i} \xrightarrow{n-s-1} v_{i+n-s-1}$ contains a vertex in an s-cycle and $v_{j} \xrightarrow{n-s-1} v_{j+n-s-1}$ contains a vertex in an s-cycle. In D^{s}, the number of vertices that can be reached from $v_{i+n-s-1}$ and $v_{j+n-s+1}$ within $\left(\frac{n+m-2}{2}\right)$-steps is greater than or equal to m. We have $\left|N^{+}\left(D^{t_{3}}: v_{i}, v_{j}\right)\right| \geq m$, where $t_{3}=n-s-1+\left(\frac{n+m-2}{2}\right) s$. This is contradictory. Therefore, we have $k=n-s$. Therefore, D contains $D_{n, s}$ as a subgraph.

This establishes the result.
Lemma 8. Let $\operatorname{gcd}(n, s)=1$. For a positive integer m such that $1 \leq m \leq n$, we have

$$
k_{m}\left(D_{n, s}\right)=K(n, s, m) .
$$

Proof. If $s=1$, then we have $k_{m}\left(D_{n, s}\right)=n+m-2=K(n, s, m)$. Suppose $s \geq 2$. Let $S=$ $\left\{v_{n-s}, v_{n-s+1}, \ldots, v_{n-1}\right\}$. There exists an n-cycle in $D_{n, s}^{s}$ because $\operatorname{gcd}(n, s)=1$. By Lemma 7 , we have $k_{m}\left(D_{n, s}\right) \leq K(n, s, m)$. We show $k_{m}\left(D_{n, s}\right) \geq K(n, s, m)$. In this proof, we assume that all subscripts are taken by modulo n.

Case $1 . n+m$ is odd.
Let $i=0, j=\bar{r}$, and $t_{1}=n-\bar{r}+\left(\frac{n+m-3}{2}\right) s$. Then, we have $N^{+}\left(D_{n, s}^{n-j-1}: v_{i}\right)=\left\{v_{n-j-1}\right\}$ and $N^{+}\left(D_{n, s}^{n-j-1}: v_{j}\right)=\left\{v_{n-1}\right\}$. We also have

$$
N^{+}\left(D_{n, s}^{t_{1}-1}: v_{i}, v_{j}\right)=N^{+}\left(D_{n, s}^{\left(\frac{n+m-3}{2}\right) s}: v_{n-j-1}, v_{n-1}\right) .
$$

Because $\frac{n-m+1}{2} \leq d_{D_{n, s}^{s}}\left(v_{i}, v_{j}\right) \leq \frac{n+m-1}{2}$ by the definition of $j=\bar{r}$, we have

$$
\left|N^{+}\left(D_{n, s}^{t_{1}-1}: v_{i}, v_{j}\right)\right|<m
$$

Therefore, we have

$$
k_{m}\left(D_{n, s}\right) \geq t_{1}=K(n, s, m) .
$$

Case 2. $n+m$ is even, s is odd, and $m<\frac{n}{s}$.
We have $\bar{r}=\frac{n-m s}{2}$. Let $i=0, j=\bar{r}=\frac{n-m s}{2}$, and $t_{2}=n-\bar{r}+\left(\frac{n+m-4}{2}\right) s$. Then, we have $N^{+}\left(D_{n, s}^{n-j-1}: v_{i}\right)=\left\{v_{n-j-1}\right\}$ and $N^{+}\left(D_{n, s}^{n-j-1}: v_{j}\right)=\left\{v_{n-1}\right\}$. We also have

$$
N^{+}\left(D_{n, s}^{t_{2}-1}: v_{i}, v_{j}\right)=N^{+}\left(D_{n, s}^{\left(\frac{n+m-4}{2}\right) s}: v_{n-j-1}, v_{n-1}\right)
$$

Because $\frac{n-m}{2} \leq d_{D_{n, s}^{s}}\left(v_{i}, v_{j}\right) \leq \frac{n+m}{2}$ by the definition of $j=\bar{r}$, we have

$$
\left|N^{+}\left(D_{n, s}^{t_{2}-1}: v_{i}, v_{j}\right)\right|<m
$$

Therefore, we have

$$
k_{m}\left(D_{n, s}\right) \geq t_{2}=K(n, s, m)
$$

Case 3. Otherwise.
Let $t_{3}=n-s+\left(\frac{n+m-2}{2}\right) s$.
Case 3.1. $m<\frac{n}{s}$ and s is even.
Let $i=0$ and $j=\frac{s}{2}$. Then, we have $N^{+}\left(D_{n, s}^{n-s-1}: v_{i}\right)=\left\{v_{n-s-1}\right\}$ and $N^{+}\left(D_{n, s}^{n-s-1}: v_{j}\right)=$ $\left\{v_{j+n-s-1}\right\}$ because $j+n-s-1 \leq n-1$. We also have $d_{D_{n, s}^{s}}\left(v_{n-s-1}, v_{j+n-s-1}\right)=\frac{n+1}{2}$ because $\frac{n+1}{2} s \equiv \frac{s}{2}(\bmod n)$. Therefore, we have

$$
k_{m}\left(D_{n, s}: v_{i}, v_{j}\right) \geq t_{3}=K(n, s, m)
$$

because $\left|N^{+}\left(D_{n, s}^{t_{3}-1}: v_{i}\right)\right| \leq \frac{n+m-2}{2}$ and $\left|N^{+}\left(D_{n, s}^{t_{3}-1}: v_{j}\right)\right| \leq \frac{n+m}{2}$.
Case 3.2. $m>\frac{n}{s}$.
Let $i=0$ and $j=\bar{r}$. Because $n+m$ is even, we have $m>M(n, s)$. We have $\bar{r}<s$ by Lemma
6. Then, we also have $N^{+}\left(D_{n, s}^{n-s-1}: v_{i}\right)=\left\{v_{n-s-1}\right\}$ and $N^{+}\left(D_{n, s}^{n-s-1}: v_{j}\right)=\left\{v_{\bar{r}+n-s-1}\right\}$ because $\bar{r}+n-s-1 \leq n-1$. We also have $\frac{n-m}{2} \leq d_{D_{n, s}^{s}}\left(v_{n-s-1}, v_{\bar{r}+n-s-1}\right) \leq \frac{n+m}{2}$. Therefore, we have

$$
k_{m}\left(D_{n, s}: v_{i}, v_{j}\right) \geq t_{3}=K(n, s, m)
$$

because $\left|N^{+}\left(D_{n, s}^{t_{3}-1}: v_{i}\right)\right| \leq \frac{n+m-2}{2}$ and $\left|N^{+}\left(D_{n, s}^{t_{3}-1}: v_{j}\right)\right| \leq \frac{n+m}{2}$.
In all cases, we have $k_{m}\left(D_{n, s}\right) \geq K(n, s, m)$. This establishes the result.
Remark 9. If $m=n-1$, then we have $\bar{r}=1$. By Lemma 8, we have

$$
k_{n-1}\left(D_{n, s}\right)=n-1+(n-2) s=k_{n}\left(D_{n, s}\right)-1 .
$$

Example $\mathbf{1 0}$ [7]. Let D be a primitive digraph whose adjacency matrix A is given as

$$
A=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

The order of D is 5 and the girth of D is 3 . Thus, we can check

$$
\begin{aligned}
& k_{1}(D)=7=K(5,3,1), \\
& k_{2}(D)=10=K(5,3,2), \\
& k_{3}(D)=11=K(5,3,3), \\
& k_{4}(D)=13=K(5,3,4), \\
& k_{5}(D)=14=K(5,3,5) .
\end{aligned}
$$

Lemma 11. Let D be a primitive digraph of order n and girth $s(\geq 2)$, and suppose $p \in L(D)$ such that $s<p<n$ and $\operatorname{gcd}(p, s)=1$. For a positive integer m such that $1 \leq m \leq n$, we have

$$
k_{m}(D)<n-s+\left(\frac{n+m-2}{2}\right) s .
$$

Proof. Let C_{s} and C_{p} be an s-cycle and a p-cycle, respectively. Consider two vertices x and y.
Case $1 . m \leq p$ and $s>2$.
Case 1.1. $p+m$ is even.
There exist walks

$$
x \xrightarrow{n-s} x_{s} \xrightarrow{n-p} x_{p}, \quad y \xrightarrow{n-s} y_{s} \xrightarrow{n-p} y_{p},
$$

where $x_{s}, y_{s} \in V\left(C_{s}\right)$ and $x_{p}, y_{p} \in V\left(C_{p}\right)$. Let $t_{1}=n-s+n-p+\left(\frac{p+m-2}{2}\right) s$. Then, we have $\left|N^{+}\left(D^{t_{1}}: x, y\right) \cap V\left(C_{p}\right)\right| \geq m$ because $\left|N^{+}\left(D^{t_{1}}: x\right) \cap V\left(C_{p}\right)\right| \geq \frac{p+m}{2}$ and $\left|N^{+}\left(D^{t_{1}}: y\right) \cap V\left(C_{p}\right)\right| \geq \frac{p+m}{2}$. Therefore, we have

$$
\begin{aligned}
k_{m}(D: x, y) & \leq n-s+n-p+\left(\frac{p+m-2}{2}\right) s \\
& <n-s+\left(\frac{n+m-2}{2}\right) s .
\end{aligned}
$$

Case 1.2. $p+m$ is odd.
Case 1.2.1. $p \leq n-2$.
There exists $x \xrightarrow{n-s-1} x_{s} \in V\left(C_{s}\right)$ or $y \xrightarrow{n-s-1} y_{s} \in V\left(C_{s}\right)$. Without loss of generality, we may assume that $x \xrightarrow{n-s-1} x_{s} \in V\left(C_{s}\right)$. Then, we can find a vertex y_{s} in $V\left(C_{s}\right)$ such that there exists $y \xrightarrow{n-1} y_{s}$. There exist walks such that $x_{s} \xrightarrow{n-p} x_{p} \in V\left(C_{p}\right)$ and $y_{s} \xrightarrow{n-p} y_{p} \in V\left(C_{p}\right)$. Let $t_{2}=n-s+n-p-1+\left(\frac{p+m-1}{2}\right) s$. Then, we have $\left|N^{+}\left(D^{t_{2}}: x, y\right) \cap V\left(C_{p}\right)\right| \geq m$ because $\left|N^{+}\left(D^{t_{2}}: x\right) \cap V\left(C_{p}\right)\right| \geq \frac{p+m+1}{2}$ and $\mid N^{+}\left(D^{t_{2}}:\right.$ y) $\cap V\left(C_{p}\right) \left\lvert\, \geq \frac{p+m-1}{2}\right.$.

$$
\begin{aligned}
k_{m}(D: x, y) & \leq n-s+n-p-1+\left(\frac{p+m-1}{2}\right) s \\
& <n-s+\left(\frac{n+m-2}{2}\right) s .
\end{aligned}
$$

Case 1.2.2. $p=n-1$.
We have $x \in V\left(C_{p}\right)$ or $y \in V\left(C_{p}\right)$. Without loss of generality, we assume that $x \in V\left(C_{p}\right)$. We also have $\left|V\left(C_{s}\right) \cap V\left(C_{p}\right)\right| \geq s-1$. If $\left|V\left(C_{s}\right) \cap V\left(C_{p}\right)\right|=s$, we have $x \xrightarrow{n-s-1} x_{s} \in V\left(C_{p}\right)$ and $y \xrightarrow{n-1} y_{s} \in V\left(C_{p}\right)$, which contains a vertex in $V\left(C_{s}\right)$. If $\left|V\left(C_{s}\right) \cap V\left(C_{p}\right)\right|=s-1$ and $y \notin V\left(C_{p}\right)$, we have $x \xrightarrow{n-1} x_{s} \in V\left(C_{p}\right)$ and $y \xrightarrow{n-s-1} y_{s} \in V\left(C_{p}\right)$, which contains a vertex in $V\left(C_{s}\right)$, because $n-s-1 \geq 1$. If $\left|V\left(C_{s}\right) \cap V\left(C_{p}\right)\right|=s-1$ and $y \in V\left(C_{p}\right)$, we have $x \xrightarrow{n-s-1} x_{s} \in V\left(C_{p}\right)$ or $y \xrightarrow{n-s-1} y_{s} \in V\left(C_{p}\right)$, which contains a vertex in $V\left(C_{s}\right)$. In all cases, we may assume that

$$
x \xrightarrow{n-s-1} x_{s} \in V\left(C_{p}\right), \quad y \xrightarrow{n-1} y_{s} \in V\left(C_{p}\right),
$$

which contains a vertex in $V\left(C_{s}\right)$. Let $t_{2}=n-s-1+\left(\frac{p+m-1}{2}\right) s$. Then, we have $\mid N^{+}\left(D^{t_{2}}: x, y\right) \cap$ $V\left(C_{p}\right) \mid \geq m$ because $\left|N^{+}\left(D^{t_{2}}: x\right) \cap V\left(C_{p}\right)\right| \geq \frac{p+m+1}{2}$ and $\left|N^{+}\left(D^{t_{2}}: y\right) \cap V\left(C_{p}\right)\right| \geq \frac{p+m-1}{2}$. Therefore, we have

$$
\begin{aligned}
k_{m}(D: x, y) & \leq n-s-1+\left(\frac{p+m-1}{2}\right) s \\
& <n-s+\left(\frac{n+m-2}{2}\right) s .
\end{aligned}
$$

Case 2. $m \leq p$ and $s=2$.
If $m=1$, then we have $k_{1}(D)<n-2+n-1$ by Proposition 1 . Suppose $m \geq 2$. We have p is odd. Let $V\left(C_{s}\right)=\left\{v_{1}, v_{2}\right\}$. Let l_{x} and l_{y} be the smallest numbers such that there exist walks

$$
\begin{equation*}
x \xrightarrow{l_{x}} x_{s}, \quad y \xrightarrow{l_{y}} y_{s}, \tag{4}
\end{equation*}
$$

where $x_{s}, y_{x} \in V\left(C_{s}\right)$. We may assume that $l_{x} \leq n-3$.
If each walk of (4) contains a vertex in $V\left(C_{p}\right)$, then we have $V\left(C_{s}\right) \subset N^{+}\left(D^{n-2+p}: x, y\right)$. Therefore, we have $\left|N^{+}\left(D^{n-2+p+i}: x, y\right)\right| \geq 2+i$ for a nonnegative integer i such that $i \leq n-2$. For $m \geq 2$, we have

$$
\begin{aligned}
k_{m}(D: x, y) & \leq n+p-2+m-2 \\
& <n-s+\left(\frac{n+m-2}{2}\right) s .
\end{aligned}
$$

This holds even though $m>p$.
If a walk of $(4), x \xrightarrow{l_{x}} x_{s}$, does not contain a vertex in $V\left(C_{p}\right)$, then we have $l_{x} \leq n-p-2$. There exist walks

$$
x_{s} \xrightarrow{n-p} x_{p}, \quad y_{s} \xrightarrow{n-p} y_{p},
$$

where $x_{p}, y_{p} \in V\left(C_{p}\right)$. Let $t_{3}=n-2+n-p+\left(\frac{p+m-3}{2}\right) s$. Then, $n-p-2+n-p+\left(\frac{p+m}{2}\right) s \leq t_{3}$. We have $\left|N^{+}\left(D^{t_{3}}: x, y\right) \cap V\left(C_{p}\right)\right| \geq m$ because $\left|N^{+}\left(D^{t_{3}}: x\right) \cap V\left(C_{p}\right)\right| \geq\left\lfloor\frac{p+m+2}{2}\right\rfloor$ and $\mid N^{+}\left(D^{t_{3}}:\right.$ $y) \cap V\left(C_{p}\right) \left\lvert\, \geq\left\lfloor\frac{p+m-1}{2}\right\rfloor\right.$. Therefore, we have

$$
\begin{aligned}
k_{m}(D: x, y) & \leq n-2+n-p+\left(\frac{p+m-3}{2}\right) s \\
& <n-s+\left(\frac{n+m-2}{2}\right) s .
\end{aligned}
$$

Case 3. $m>p$.
If $V\left(C_{p}\right) \subset N^{+}\left(D^{k}: x, y\right)$ for a positive integer k, then we have

$$
\left|N^{+}\left(D^{k+i}: x, y\right)\right| \geq p+i
$$

for each nonnegative integer i such that $i \leq n-p$. Therefore, we have

$$
\begin{aligned}
k_{m}(D: x, y) & <n-s+\left(\frac{n+p-2}{2}\right) s+(m-p) \\
& \leq n-s+\left(\frac{n+m-2}{2}\right) s .
\end{aligned}
$$

This establishes the result.
Lemma 12. Let D be a primitive digraph of order n and girth $s(\geq 2)$, and suppose $L(D)=\left\{s, a_{1}, \ldots, a_{h}\right\}$ such that $\operatorname{gcd}\left(s, a_{i}\right) \neq 1$ for each $i=1,2, \ldots, h$, where $h \geq 2$. For a positive integer m such that $1 \leq m \leq n$, we have

$$
k_{m}(D)<n-s+\left(\frac{n+m-2}{2}\right) s .
$$

Proof. Because $\operatorname{gcd}\left(s, a_{i}\right) \neq 1$ for each $i=1,2, \ldots, h, s$ is not prime and $s \geq 6$.
First, suppose $s \geq 8$. Then, there exists a cycle of length p such that $\operatorname{gcd}(s, p) \leq \frac{s}{4}$. Otherwise, $\operatorname{gcd}\left(s, a_{i}\right)$ is equal to one among $s, \frac{s}{2}$, and $\frac{s}{3}$. Then, we have $\operatorname{gcd}\left(s, a_{1}, \ldots, a_{h}\right) \geq \frac{s}{6}$. This contradicts the fact that D is primitive. Let $\operatorname{gcd}(s, p)=t \leq \frac{s}{4}$. We know that D^{t} is primitive because D is primitive. We also know that D^{t} contains t cycles of length $\frac{s}{t}$ and t cycles of length $\frac{p}{t}$.

Let $C(1), C(2), \ldots, C(t)$ be t disjoint cycles of length $\frac{p}{t}$ in D^{t}, that is, $V(C(i)) \cap V(C(j))=\phi$ for $i \neq j$. Let $s^{\prime}=\frac{s}{t}$ and $p^{\prime}=\frac{p}{t}$; then, $\operatorname{gcd}\left(s^{\prime}, p^{\prime}\right)=1$. Consider two vertices x and y in D. In D, there exist walks

$$
x \xrightarrow{n-s} x^{\prime}, \quad y \xrightarrow{n-s} y^{\prime},
$$

where $x^{\prime} \in V\left(C_{s}\right)$ and $y^{\prime} \in V\left(C_{s}\right)$.
In D^{t}, for each $C(i)$, where $i=1,2, \ldots, t$, there exist vertices x_{i} and y_{i} in $C(i)$ such that there exist walks

$$
x^{\prime} \xrightarrow{n-p^{\prime}} x_{i}, \quad y^{\prime} \xrightarrow{n-p^{\prime}} y_{i} .
$$

Case 1. $m \leq p$.
Then, we have

$$
\begin{aligned}
k_{m}\left(D^{t}: x^{\prime}, y^{\prime}\right) & \leq n-p^{\prime}+\left(\frac{p^{\prime}+\left\lceil\frac{m}{t}\right\rceil-1}{2}\right) s^{\prime} \\
& \leq n-p^{\prime}+\left(\frac{p^{\prime}+\frac{m}{t}}{2}\right) s^{\prime} .
\end{aligned}
$$

Because $k_{m}(D: x, y) \leq n-s+t \cdot k_{m}\left(D^{t}: x^{\prime}, y^{\prime}\right)$, we have

$$
\begin{equation*}
k_{m}(D: x, y) \leq n-s-p+n t+\left(\frac{p+m}{2 t}\right) s . \tag{5}
\end{equation*}
$$

Let $f(t)=n-s-p+n t+\left(\frac{p+m}{2 t}\right) s$. Then, $f(t)$ is concave up on the interval [$\left.2, \frac{s}{4}\right]$, and therefore, it attains its maximum at one of the end points.

$$
\begin{aligned}
f(2)= & 3 n-s-p+\left(\frac{p+m}{4}\right) s \leq 2 n-s+\left(\frac{n+m}{4}\right) s \\
& <n-2 s+\left(\frac{n+m}{2}\right) s . \\
f\left(\frac{s}{4}\right) & =n-s+p+\frac{n s}{4}+2 m \leq 2 n-s+\frac{n s}{4}+2 m \\
& <n-2 s+\left(\frac{n+m}{2}\right) s .
\end{aligned}
$$

Therefore, we have $k_{m}(D)<n-s+\left(\frac{n+m-2}{2}\right) s$.
Case 2. $m>p$.
If $V\left(C_{p}\right) \subset N^{+}\left(D^{k}: x, y\right)$ for a positive integer k, then we have $\left|N^{+}\left(D^{k+i}: x, y\right)\right| \geq p+i$ for each nonnegative integer i such that $i \leq n-p$. Therefore, we have

$$
\begin{equation*}
k_{m}(D: x, y)<n-s+\left(\frac{n+p-2}{2}\right) s+(m-p) . \tag{6}
\end{equation*}
$$

Therefore, we have $k_{m}(D: x, y)<n-s+\left(\frac{n+m-2}{2}\right) s$.

There is only remaining case, namely, $s=6$. If $s=6$, then there also exists a cycle of length p such that $\operatorname{gcd}(s, p)=2$. Otherwise, $\operatorname{gcd}\left(s, a_{i}\right)=3$ or 6 for all $i=1,2, \ldots, h$. This is contradictory. We also have $n \geq 9$. If $s=6$ and $n=9$, there exists a cycle of length $p=8$. Then, we have $k_{m}(D)<$ $n-s+\left(\frac{n+m-2}{2}\right) s$ by (5) and (6). If $s=6$ and $n>9$, then we also have $k_{m}(D)<n-s+\left(\frac{n+m-2}{2}\right) s$ by (5) and (6) because $p \leq n$.

This establishes the result.
Theorem 13. Let D be a primitive digraph of order $n(\geq 3)$ and girth s. For a positive integer m such that $1 \leq m \leq n$, we have

$$
k_{m}(D) \leq K(n, s, m) .
$$

If the equality holds and $s \geq 2$, then $\operatorname{gcd}(n, s)=1$ and D contains $D_{n, s}$ as a subgraph. If $D=D_{n, s}$, then the equality holds.

Proof. Let $L(D)=\left\{s, a_{1}, \ldots, a_{h}\right\}$. If s is odd and $m \leq M(n, s)$, then we have the result by Theorem 5 .
Suppose s is even or $m>M(n, s)$. Then, we have $K(n, s, m) \geq n-s+\left(\frac{n+m-2}{2}\right) s$ because $\bar{r} \leq \frac{s}{2}$ by Lemma 6. If $h \geq 2$ and $\operatorname{gcd}\left(s, a_{i}\right) \neq 1$ for each $i=1,2, \ldots, h$, then we have $k_{m}(D)<n-s+\left(\frac{n+m-2}{2}\right) s$ by Lemma 12. If there exists $p \in L(D)$ such that $s<p<n$ and $\operatorname{gcd}(p, s)=1$, then we have $k_{m}(D)<n-s+\left(\frac{n+m-2}{2}\right) s$ by Lemma 11. If $n \in L(D)$ and $\operatorname{gcd}(n, s)=1$, then we have the result by Lemma 7.

If $D=D_{n, s}$, then the equality holds by Lemma 8 . This establishes the result.
Corollary 14. Let D be a primitive digraph of order $n(\geq 3)$ and girth s. Let m be a positive integer such that $1 \leq m \leq n$. If $n+m$ is odd, then we have

$$
k_{m}(D) \leq n-s-1+\left(\frac{n+m-1}{2}\right) s .
$$

Proof. If $s=1$, then we have $k_{m}(D) \leq n+m-2 \leq n-s-1+\left(\frac{n+m-1}{2}\right) s$ because $n \geq m+1$.
Suppose $s \geq 2$, and let $L(D)=\left\{s, a_{1}, \ldots, a_{h}\right\}$. If $h \geq 2$ and $\operatorname{gcd}\left(s, a_{i}\right) \neq 1$ for each $i=1,2, \ldots, h$, then we have $k_{m}(D)<n-s-1+\left(\frac{n+m-1}{2}\right) s$ by Lemma 12. If there exists $p \in L(D)$ such that $s<p<n$ and $\operatorname{gcd}(p, s)=1$, then we have $k_{m}(D) \leq n-s-1+\left(\frac{n+m-1}{2}\right) s$ by Lemma 11. If $n \in L(D)$ and $\operatorname{gcd}(n, s)=1$, then we have $\bar{r} \geq 1$. Therefore, we have $k_{m}(D) \leq n-s-1+\left(\frac{n+m-1}{2}\right) s$ by Lemma 7. This establishes the result.

Remark 15. In Theorem 13, the equality holds only if D contains $D_{n, s}$ as a subgraph. In addition, if $m=1$, Theorem 13 and Proposition 1 give us the same bound because $m<\frac{n}{s}$. Corollary 14 is the same result as Proposition 2.

3. Closing remark

Akelbek and Kirkland [1] introduced the concept of the scrambling index of a primitive digraph. Kim [7] introduced a generalized competition index $k_{m}(D)$ as another generalization of the exponent $\exp (D)$ and scrambling index $k(D)$ for a primitive digraph D. Sim and Kim [9] studied the generalized competition index $k_{m}\left(T_{n}\right)$ of a primitive n-tournament T_{n}. In this paper, we study an upper bound of $k_{m}(D)$, where D is a primitive digraph. Akelbek and Kirkland [2] characterized a primitive digraph D where $k_{1}(D)=K(n, s, 1)$. It is also necessary to study the characterization of a primitive digraph D where $k_{m}(D)=K(n, s, m)$ for $1 \leq m \leq n$.

Acknowledgements

The authors would like to thank an anonymous referee for his or her outstanding job of suggesting changes.

References

[1] M. Akelbek, S. Kirkland, Coefficients of ergodicity and the scrambling index, Linear Algebra Appl. 430 (2009) 1111-1130.
[2] M. Akelbek, S. Kirkland, Primitive digraphs with the largest scrambling index, Linear Algebra Appl. 430 (2009) 1099-1110.
[3] R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991.
[4] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
[5] H.H. Cho, H.K. Kim, Competition indices of strongly connected digraphs, Bull. Korean Math. Soc. 48 (2011) 637-646.
[6] H.K. Kim, Competition indices of tournaments, Bull. Korean Math. Soc. 45 (2008) 385-396.
[7] H.K. Kim, Generalized competition index of a primitive digraph, Linear Algebra Appl. 433 (2010) 72-79.
[8] B. Liu, H.-J. Lai, Matrices in Combinatorics and Graph Theory, Kluwer Academic Publishers, 2000.
[9] M.S. Sim, H.K. Kim, On generalized competition index of a primitive tournament, Discrete Math., submitted for publication.
[10] B. Zhou, J. Shen, On generalized exponents of tournaments, Taiwanese J. Math. 6 (2002) 565-572.

[^0]: * Corresponding author.

 E-mail addresses: indices@smu.ac.kr (H.K. Kim), jums318@naver.com (S.G. Park).

