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Abstract

In this paper we prove that two quantities relating to the length of permutations defined on trees are inde-
pendent of the structures of trees. We also find that these results are closely related to the results obtained
by Graham and Pollak [R.L. Graham, H.O. Pollak, On the addressing problem for loop switching, Bell
System Tech. J. 50 (1971) 2495–2519] and by Bapat, Kirkland, and Neumann [R. Bapat, S.J. Kirkland,
M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005) 193–209].
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let [n] denote the set {1,2, . . . , n} and let Sn be the set of permutations of [n]. Partition Sn

into Sn = En ∪On, where En (respectively On) is the set of even (respectively odd) permutations
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in Sn. It is well known that |En| = |On|. Let σ and π be two elements of Sn. Diaconis and
Graham [4] defined a metric called Spearman’s measure of disarray on the set Sn as follows:

D(σ,π) =
n∑

i=1

∣∣σ(i) − π(i)
∣∣.

They derived the mean, variance, and limiting normality of D(σ,π) when σ and π are cho-
sen independently and uniformly from Sn. In particular, the authors in [4] characterized those
permutations σ ∈ Sn for which D(σ) =: D(1, σ ) takes on its maximum value. Some related
work appears in [12,16]. The length |σ | of a permutation σ is defined to be D(1, σ ), that is,
|σ | = ∑n

i=1 |i − σ(i)|. For an arbitrary nonnegative integer k, let

An,k = {
σ ∈ Sn | |σ | = k

}
,

Nn,k =
∑

σ∈An,k

sgn(σ ) = |An,k ∩ En| − |An,k ∩On|.

Furthermore, we define φσ,k = 0 if σ has at least one fixed point, otherwise, let φσ,k be the
number of nonnegative integer solutions of the equation x1 + x2 + · · · + xn = k which satisfy
0 � xi < |i − σ(i)| for 1 � i � n. Let

Mn,k =
∑
σ∈Sn

sgn(σ )φσ,k. (1)

It is natural to pose the following problem:

Problem 1.1. Find closed expressions for Nn,k and Mn,k .

We may generalize the concept of the length of a permutation defined in Problem 1.1 as
follows. Let T be a weighted tree with the vertex set V (T ) = {v1, v2, . . . , vn}. For two vertices
u and v in T , there exists a unique path u = vi1 − vi2 − · · · − vil − vil+1 = v from u to v in T .
Define the distance d(u, v) between u and v as zero if u = v, otherwise, let d(u, v) be the sum
x1 + x2 + · · · + xl , where xk is the weight of edge vik vik+1 for k = 1,2, . . . , l. Let T be a simple
tree (i.e., the weight of each edge equals one) and let σ ∈ Sn. The length |σT | of σ on T is defined
as the sum of all d(vi, vσ(vi)), that is, |σT | = ∑n

i=1 d(vi, vσ(i)). Let

An,k(T ) = {
σ ∈ Sn | |σT | = k

}
,

Nn,k(T ) =
∑

σ∈An,k(T )

sgn(σ ) = ∣∣An,k(T ) ∩ En

∣∣ − ∣∣An,k(T ) ∩On

∣∣.
Furthermore, we define φσ,k(T ) = 0 if σ has at least one fixed point, otherwise, let φσ,k(T ) be
the number of nonnegative integer solutions of the equation x1 + x2 + · · ·+ xn = k which satisfy
0 � xi < d(vi, vσ(i)) for 1 � i � n. Let

Mn,k(T ) =
∑

sgn(σ )φσ,k(T ). (2)

σ∈Sn
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A more general problem than Problem 1.1 is the following:

Problem 1.2. Let T be a simple tree with vertex set {v1, v2, . . . , vn}. Find closed expressions for
Nn,k(T ) and Mn,k(T ).

Remark 1.1. If we take T = Pn (where Pn is a simple path with vertex set {v1, v2, . . . , vn}
and edge set {(vi, vi+1) | 1 � i � n − 1}) in Problem 1.2, then Problem 1.1 is a special case of
Problem 1.2. That is, Nn,k = Nn,k(Pn) and Mn,k = Mn,k(Pn).

The distance matrix D(T ) of the weighted tree T is an n×n matrix with its (i, j)-entry equal
to the distance between vertices vi and vj . If T is a simple tree, Graham and Pollak [9] obtained
the following result:

Theorem 1.1 (Graham and Pollak [9]). Let T be a simple tree with n vertices. Then

det
(
D(T )

) = −(n − 1)(−2)n−2, (3)

which is independent of the structure of T .

Other proofs of Theorem 1.1 can be found in [1–3,6–8,19]. In particular, in [19] we gave
a simple method to prove (3). If T is a weighted tree, Bapat, Kirkland, and Neumann [3] gener-
alized the result in Theorem 1.1 as follows.

Theorem 1.2 (Bapat, Kirkland, and Neumann [3]). Let T be a weighted tree with n vertices and
with edge weights α1, α2, . . . , αn−1. Then, for any real number x,

det
(
D(T ) + xJ

) = (−1)n−12n−2

(
n−1∏
i=1

αi

)(
2x +

n−1∑
i=1

αi

)
, (4)

where J is an n × n matrix with all entries equal to one.

A direct consequence of Theorem 1.2 is the following:

Corollary 1.1 (Bapat, Kirkland, and Neumann [3]). Let D(T ) be as in Theorem 1.2. Then

det
(
D(T )

) = (−1)n−12n−2

(
n−1∏
i=1

αi

)(
n−1∑
i=1

αi

)
. (5)

Suppose T is a weighted tree with the vertex set V (T ) = {v1, v2, . . . , vn}, and suppose the
distance d(u, v) between two vertices u and v is α. Define two kinds of q-distances between u

and v, denoted by dq(u, v) and d∗
q (u, v), as [α] and qα respectively, where

[α] =
{

1−qα

1−q
if q �= 1,

α otherwise.

By definition, [0] = 0 and [α] = 1 + q + q2 + · · ·+ qα−1 if α is a positive integer. We define two
q-distance matrices on the weighted tree T , denoted by Dq(T ) and D∗

q(T ), as the n×n matrices
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with their (i, j)-entries equal to dq(vi, vj ) and d∗
q (vi, vj ), respectively. If q = 1 then Dq(T ) is

the distance matrix D(T ) of T . Hence the distance matrix is a special case of the q-distance
matrix Dq(T ).

In quantum chemistry, if T is a simple tree with vertex set V (T ) = {v1, v2, . . . , vn},

W(T,q) =
∑
i<j

d∗
q (vi, vj ) =

∑
{u,v}⊆V (T )

qd(u,v)

is called the Wiener polynomial of T [11], D1(T ) is called the Wiener matrix [10], and the
q-derivative W ′(T ,1) is defined as the Wiener index of T [17,18]. The study of the Wiener
index, one of the molecular-graph-based structure descriptors (so-called “topological indices”),
has been undergoing rapid expansion in the last few years (see for example [13–15,20,21]).

In the next section, we compute the determinants of D∗
q(T ) and Dq(T ), and show that they

are independent of the structure of T , and hence we generalize the results obtained by Graham
and Pollak [9] and by Bapat, Kirkland, and Neumann [3]. In Section 3, based on the results
of Section 2, we prove that the generating functions Fn(q) = ∑

k�0 Nn,k(T )qk and Gn(q) =∑
k�0 Mn,k(T )qk of {Nn,k(T )}k�0 and {Mn,k(T )}k�0, as defined in Problem 1.2, are exactly

det(D∗
q(T )) and det(Dq(T )), respectively. Hence, both Fn(q) and Gn(q) are independent of the

structure of T , and this leads to a resolution of Problem 1.2.

2. Determinants of D∗
q(T ) and Dq(T )

First we compute the determinant of D∗
q(T ).

Theorem 2.3. Let T be a weighted tree with n vertices and with edge weights α1, α2, . . . , αn−1.
Then, for any n � 2,

det
(
D∗

q(T )
) =

n−1∏
i=1

(
1 − q2αi

)
, (6)

which is independent of the structure of T .

Proof. We prove the theorem by induction on n. It is trivial to show that the theorem holds for
n = 2 or n = 3. Hence we assume that n � 4. Without loss of generality, we suppose that v1
is a pendant vertex and e = (v1, vs) is a pendant edge with weight α1 in T . Let di denote the
ith column of D∗

q(T ) for 1 � i � n. Note that each entry along the diagonal is one. Hence, by
the definition of D∗

q(T ), we have

(
d1 − qα1ds

)T = (
1 − q2α1,0, . . . ,0

)
.

Thus

det
(
D∗

q(T )
) = det

(
d1 − qα1ds, d2, d3, . . . , dn

) = (
1 − q2α1

)
det

(
D∗

q(T )1
1

)
, (7)

where D∗
q(T )1

1 equals D∗
q(T − v1). By induction, the theorem is immediate from (7). �
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Corollary 2.2. Let T be a simple tree with n vertices. Then

det
(
D∗

q(T )
) = (

1 − q2)n−1
,

which is independent of the structure of T .

To evaluate the determinant of Dq(T ) we must introduce some terminology and notation.
Let A = (aij )n×n be an n × n matrix, and let I = {i1, i2, . . . , il} and J = {j1, j2, . . . , jl} be two

subsets of {1,2, . . . , n}. We use A
i1i2...il
j1j2...jl

to denote the submatrix of A by deleting rows in I and
columns in J .

Zeilberger [22] gave an elegant combinatorial proof of Dodgson’s determinant-evaluation
rule [5] as follows:

det(A)det
(
A1n

1n

) = det
(
A1

1

)
det

(
An

n

) − det
(
An

1

)
det

(
A1

n

)
, (8)

where A is a matrix of order n > 2. Let

F(α1, α2, . . . , αn−1)

= [α1][α2][α1 + α2]
[2α1][2α2] + [αn−2][αn−1][αn−2 + αn−1]

[2αn−2][2αn−1] +
n−3∑
i=1

[αi][αi+2][αi + αi+2]
[2αi][2αi+2] .

It is not difficult to prove the following lemma.

Lemma 2.1. (a) If n � 3, F(α1, α2, . . . , αn−1) is a symmetric function on α1, α2, . . . , αn−1.
(b) If T is a weighted tree with two vertices and with edge weight α1, det(Dq(T )) = −[α1]2.
(c) If T is a weighted tree with three vertices and with edge weights α1, α2, det(Dq(T )) =

2[α1][α2][α1 + α2].

Theorem 2.4. Let T be a weighted tree with n vertices and with edge weights α1, α2, . . . , αn−1.
Then, for any n � 4,

det
(
Dq(T )

) = (−1)n−1

(
n−1∏
i=1

[2αi]
)

×
(

[α1][α2][α1 + α2]
[2α1][2α2] + [αn−2][αn−1][αn−2 + αn−1]

[2αn−2][2αn−1] +
n−3∑
i=1

[αi][αi+2][αi + αi+2]
[2αi][2αi+2]

)
, (9)

which is independent of the structure of T .

Proof. We prove the theorem by induction on n. Note that there exist two trees with four vertices:
the star K1,3 and the path P4. Let the edge weights of two weighted trees K1,3 and P4 with four
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◦ v2

α2

v1◦
α1

◦
v4 α3

◦v3 ◦v1

α1
◦v2

α2
◦
v3

α3
◦v4

(a) (b)

Fig. 1. (a) The weighted tree T1,3. (b) The weighted tree P4.

vertices be as shown in Fig. 1(a) and (b), respectively. The q-distance matrices Dq(T1,3) and
Dq(P4) of K1,3 and P4 are as follows:

Dq(T1,3) =
⎛
⎜⎝

0 [α1 + α2] [α1 + α3] [α1]
[α1 + α2] 0 [α2 + α3] [α2]
[α1 + α3] [α2 + α3] 0 [α3]

[α1] [α2] [α3] 0

⎞
⎟⎠

and

Dq(P4) =
⎛
⎜⎝

0 α1 [α1 + α2] [α1 + α2 + α3]
[α1] 0 [α2] [α2 + α3]

[α1 + α2] [α2] 0 [α3]
[α1 + α2 + α3] [α2 + α3] [α3] 0

⎞
⎟⎠ .

We calculate

det
(
Dq(K1,3)

) = det
(
Dq(P4)

) = −[2α1][2α2][2α3]

×
( [α1][α2][α1 + α2]

[2α1][2α2] + [α2][α3][α2 + α3]
[2α2][2α3] + [α1][α3][α1 + α3]

[2α1][2α3]
)

.

Hence the theorem holds for n = 4.
Now we assume that T is a weighted tree with n vertices and n � 5. We denote the q-distance

matrix Dq(T ) of T by D. Note that T has least two pendant vertices. Without loss of generality,
we assume both v1 and vn are pendant vertices of T . The unique neighbor of v1 (respec-
tively vn) is denoted by vs (respectively vt ). For convenience, we may suppose that the weights
of two edges v1vs and vnvt are β1 and βn−1, and the weights of the edges in T − v1 − vn are
β2, β3, . . . , βn−2. Obviously, {β1, β2, . . . , βn−1} = {α1, α2, . . . , αn−1} ({β1, β2, . . . , βn−1} may
be a multiset). Let di denote the ith column of Dq(T ). By the definition of v1, vs , vt , and vn, we
have

(
d1 − qβ1ds

)T = (−qβ1[β1], [β1], [β1], . . . , [β1]
)

and

(
dn − qβn−1dt

)T = ([βn−1], [βn−1], . . . , [βn−1],−qβn−1 [βn−1]
)
,

which imply the following:

d1
T = (

d1 − qβ1ds

)T + −[β1] (
dn − qβn−1dt

)T = (−[2β1],0,0, . . . ,0,
(
1 + qβn−1

)[β1]
)
,
[βn−1]
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where dT
1 denotes the transpose of d1. Hence

det(D) = det(d1, d2, . . . , dn) = det
(
d1, d2, d3, . . . , dn−1, dn

)
.

So we have

det(D) = −[2β1]det
(
D1

1

) + (−1)n+1(1 + qβn−1
)[β1]det

(
Dn

1

)
. (10)

Similarly, we have

det(D) = −[2βn−1]det
(
Dn

n

) + (−1)n+1(1 + qβ1
)[βn−1]det

(
D1

n

)
. (10′)

On the other hand, by Dodgson’s determinant-evaluation rule (6), we have

det(D)det
(
D1n

1n

) = det
(
D1

1

)
det

(
Dn

n

) − det
(
Dn

1

)
det

(
D1

n

)
. (11)

By the definition of the q-distance matrix D (= Dq(T )) of T , det(Dn
1 ) = det(D1

n). In particular,
D1

1 , Dn
n , and D1n

1n denote the q-distance matrices Dq(T −v1), Dq(T −vn), and Dq(T −v1 −vn)

of trees T − v1, T − vn, and T − v1 − vn, respectively. Note that T − v1 (respectively T − vn)
is a weighted tree with n − 1 vertices and with edge weights β2, β3, . . . , βn−1 (respectively
β1, β2, . . . , βn−2). Hence, by induction, we have

det
(
D1

1

) = (−1)n−2

(
n−1∏
i=2

[2βi]
)

×
(

[β2][β3][β2 + β3]
[2β2][2β3] + [βn−2][βn−1][βn−2 + βn−1]

[2βn−2][2βn−1]

+
n−3∑
i=2

[βi][βi+2][βi + βi+2]
[2βi][2βi+2]

)
(12)

and

det
(
Dn

n

) = (−1)n−2

(
n−2∏
i=1

[2βi]
)

×
(

[β1][β2][β1 + β2]
[2β1][2β2] + [βn−3][βn−2][βn−3 + βn−2]

[2βn−3][2βn−2]

+
n−4∑
i=1

[βi][βi+2][βi + βi+2]
[2βi][2βi+2]

)
. (13)

Similarly,
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det
(
D1n

1n

) = (−1)n−3

(
n−2∏
i=2

[2βi]
)

×
(

[β2][β3][β2 + β3]
[2β2][2β3] + [βn−3][βn−2][βn−3 + βn−2]

[2βn−3][2βn−2]

+
n−4∑
i=2

[βi][βi+2][βi + βi+2]
[2βi][2βi+2]

)
. (14)

From (10) and (10′),[
det(D)

]2 + [2β1]det(D)det
(
D1

1

) + [2βn−1]det(D)det
(
Dn

n

)
+ [2β1][2βn−1]det

(
D1

1

)
det

(
Dn

n

) = [2β1][2βn−1]det
(
D1

n

)
det

(
Dn

1

)
,

and hence by (11) we have[
det(D)

]2 + [2β1]det(D)det
(
D1

1

) + [2βn−1]det(D)det
(
Dn

n

)
+ [2β1][2βn−1]det(D)det

(
D1n

1n

) = 0. (15)

Note that, by Theorem 1.1, if q = 1 and βi = 1 for 1 � i � n − 1, then det(D) = −(n − 1) ×
(−2)n−1, which implies that det(D) �= 0. Then by (12) we have

det(D) + [2β1]det
(
D1

1

) + [2βn−1]det
(
Dn

n

) + [2β1][2βn−1]det
(
D1n

1n

) = 0. (16)

From (12), (13), (14) and (16), it is immediate that

det(D) = (−1)n−1

(
n−1∏
i=1

[2βi]
)

×
(

[β1][β2][β1 + β2]
[2β1][2β2] + [βn−2][βn−1][βn−2 + βn−1]

[2βn−2][2βn−1]

+
n−3∑
i=1

[βi][βi+2][βi + βi+2]
[2βi][2βi+2]

)
. (17)

Note that {α1, α2, . . . , αn−1} = {β1, β2, . . . , βn−1}. The theorem follows immediately from (a)
in Lemma 2.1 and (17). �

Let T be a weighted tree with the vertex set V (T ) = {v1, v2, . . . , vn} and with the edge weights
α1, α2, . . . , αn−1, and let v1 and vn be two pendant vertices of T . The unique neighbor of v1
(respectively vn) is denoted by vs (respectively vt ). The proof above also implies that

det
(
Dq(T )n1

) = [α1][αn−1]
n−2∏
i=2

[2αi],

where α1 and αn−1 are the weights of edges v1vs and vnvt , respectively.
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If we set q = 1 then the right-hand side of (9) in Theorem 2.4 equals

(−1)n−1
n−1∏
i=1

(2αi)

(
α1α2(α1 + α2)

(2α1)(2α2)
+ αn−2αn−1(αn−2 + αn−1)

(2αn−2)(2αn−1)
+

n−3∑
i=1

αiαi+2(αi + αi+2)

(2αi)(2αi+2)

)

= (−1)n−12n−2

(
n−1∏
i=1

αi

)(
n−1∑
i=1

αi

)
,

which implies Corollary 1.1 is a special case of Theorem 2.4. Hence we generalize the results
obtained by Graham and Pollak [9], and by Bapat, Kirkland, and Neumann [3]. In particular, the
following corollary is immediate from Theorem 2.4.

Corollary 2.3. Let T be a simple tree with n vertices. Then

det
(
Dq(T )

) = (−1)n−1(n − 1)(1 + q)n−2,

which is independent of the structure of T .

3. The quantities Mn,k(T ) and Nn,k(T )

Let T be a simple tree and An,k(T ) = {σ ∈ Sn | |σT | = k}. Partition Sn into Sn = An,0(T ) ∪
An,1(T ) ∪ · · · ∪An,k(T ) ∪ · · ·.

Theorem 3.5. Let T be a simple tree with vertex set {v1, v2, . . . , vn}, and let Nn,k(T ) be defined
as in Problem 1.2. Then

Nn,k(T ) =
∑

σ∈An,k(T )

sgn(σ ) =
{

0 if k is odd,

(−1)
k
2
(n−1

k
2

)
if k is even,

which is independent of the structure of T .

Proof. Let Fn(q) = ∑
k�0 Nn,k(T )qk be the generating function of {Nn,k(T )}k�0. Hence

Fn(q) =
∑
k�0

( ∑
σ∈An,k(T )

sgn(σ )

)
qk =

∑
k�0

( ∑
σ∈An,k(T )

sgn(σ )

)
q |σT |

=
∑
k�0

( ∑
σ∈An,k(T )

sgn(σ )

)
q

∑n
i=1 d(vi ,vσ(i)) =

∑
σ∈Sn

(
sgn(σ )q

∑n
i=1 d(vi ,vσ(i))

)

=
∑ (

sgn(σ )

n∏
d∗
q (vi, vσ(i))

)
.

σ∈Sn i=1
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By the definition of D∗
q(T ), we have

det
(
D∗

q(T )
) =

∑
σ∈Sn

(
sgn(σ )

n∏
i=1

d∗
q (vi, vσ(i))

)
.

The theorem is immediate from Corollary 2.2. �
With notation as in the introduction, we state and prove our last result.

Theorem 3.6. Let T be a simple tree with vertex set {v1, v2, . . . , vn}, and let Mn,k(T ) and φσ,k(T )

be as in (2). Then

Mn,k(T ) =
∑
σ∈Sn

sgn(σ )φσ,k(T ) = (−1)n−1(n − 1)

(
n − 2

k

)
,

which is independent of the structure of T .

Proof. Let Gn(q) = ∑
k�0 Mn,k(T )qk be the generating function of {Mn,k(T )}k�0. Hence

Gn(q) =
∑
k�0

( ∑
σ∈Sn

sgn(σ )φσ,k(T )

)
qk =

∑
σ∈Sn

(
sgn(σ )

∑
k�0

φσ,k(T )qk

)

=
∑
σ∈Sn

sgn(σ )
(
1 + q + · · · + qd(v1,vσ(1))−1) · · · (1 + q + · · · + qd(vn,vσ(n))−1)

=
∑
σ∈Sn

sgn(σ )dq(v1, vσ(1))dq(v2, vσ(2)) · · ·dq(vn, vσ(n)).

By the definition of Dq(T ), we have

det
(
Dq(T )

) =
∑
σ∈Sn

sgn(σ )dq(v1, vσ(1))dq(v2, vσ(2)) · · ·dq(vn, vσ(n)).

The theorem follows immediately from Corollary 2.3. �
By Remark 1.1, Theorems 3.5 and 3.6, Mn,k = (−1)n−1(n − 1)

(
n−2
k

)
, while Nn,k = 0 if k is

odd and Nn,k = (−1)
k
2
(n−1

k
2

)
otherwise.

Our method to prove Theorems 3.5 and 3.6 is completely algebraic. Therefore it would be
interesting to consider the following problem.

Problem 3.3. Give combinatorial proofs of Theorems 3.5 and 3.6.
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