2-resonance of plane bipartite graphs and its applications to boron–nitrogen fullerenes

Heping Zhang*, Saihua Liu
School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, PR China

A R T I C L E I N F O

Article history:
Received 7 October 2009
Received in revised form 12 May 2010
Accepted 14 May 2010
Available online 12 June 2010

Keywords:
Plane bipartite graph
B–N fullerene graph
Perfect matching
2-extendability
k-resonance

A B S T R A C T

A set \(\mathcal{H} \) of disjoint faces of a plane bipartite graph \(G \) is a resonant pattern if \(G \) has a perfect matching \(M \) such that the boundary of each face in \(\mathcal{H} \) is an \(M \)-alternating cycle. An elementary result was obtained [Discrete Appl. Math. 105 (2000) 291–311]: a plane bipartite graph is 1-extendable if and only if every face forms a resonant pattern. In this paper we show that for a 2-extendable plane bipartite graph, any pair of disjoint faces form a resonant pattern, and the converse does not necessarily hold. As an application, we show that all boron–nitrogen (B–N) fullerene graphs are 2-resonant, and construct all the 3-resonant B–N fullerene graphs, which are all \(k \)-resonant for any positive integer \(k \). Here a B–N fullerene graph is a plane cubic graph with only square and hexagonal faces, and a B–N fullerene graph is \(k \)-resonant if any \(i \) (\(0 \leq i \leq k \)) disjoint faces form a resonant pattern. Finally, the cell polynomials of 3-resonant B–N fullerene graphs are computed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let \(G \) be a graph with vertex set \(V(G) \) and edge set \(E(G) \). A set of edges \(M \) of \(G \) is a matching if no two edges of \(M \) have a common vertex. Furthermore, a matching \(M \) is perfect if each vertex of \(G \) is incident with an edge of \(M \). A connected graph \(G \) is \(n \)-extendable (|\(V(G) \)| > \(2n + 2 \)) if any matching of \(n \) edges is contained in a perfect matching of \(G \). The concept for \(n \)-extendable graphs was introduced by Plummer [16,15]. It is well-known that an \(n \)-extendable graph is \((n + 1)\)-connected and \((n − 1)\)-extendable for \(n \geq 1 \).

For a plane graph \(G \) with a perfect matching \(M \), a cycle \(C \) of \(G \) is said to be \(M \)-alternating (or \(M \)-conjugated) if the edges of \(C \) appear alternately in and off \(M \). A face \(F \) of \(G \) is \(M \)-resonant if its boundary is an \(M \)-alternating cycle. We also say \(F \) is resonant in \(G \). A set \(\mathcal{H} \) of disjoint faces of \(G \) is a resonant pattern if \(G \) has a perfect matching \(M \) such that the faces in \(\mathcal{H} \) are all \(M \)-resonant.

The resonance of faces of a plane bipartite graph is closely related to 1-extendable property. It was revealed that [33] each face (including the infinite one) of a plane bipartite graph \(G \) is resonant if and only if \(G \) is 1-extendable. For the case of benzenoids and coronoids, please see [30,34]. In this paper we mainly obtain that if a plane bipartite graph \(G \) is 2-extendable, then any two disjoint faces of \(G \) form a resonant pattern. This main result will be proved in Section 2. However, the converse does not hold in general. For plane bipartite graphs, this result has no further generalizations since no planar graphs are 3-extendable [17]. By applying this result, we present a complete characterization for \(k \)-resonance of boron–nitrogen fullerenes (or B–N fullerene graphs). B–N fullerene graphs are cubic plane graphs with only square and hexagonal faces. By a simple calculation using Euler’s formula [28], we have that there are exactly 6 square faces and others hexagonal. A B–N fullerene graph \(B \) is \(k \)-resonant (\(k ≥ 1 \)) if any \(i \) (\(0 ≤ i ≤ k \)) disjoint faces of \(B \) form a resonant pattern.

* This work is supported by NSFC (grant no. 10831001).
* Corresponding author.

E-mail addresses: zhanghp@lzu.edu.cn (H. Zhang), liush2005@lzu.cn (S. Liu).

0166-218X/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2010.05.012
Ever since B–N nanotubes was first synthesized in 1995 [2], the structural properties and isomer stabilities of B–N nanotubes and B–N fullerenes were investigated from both chemical and mathematical points of view [5,14,23,24,27]. The concept of resonance originates from Clar’s aromatic sextet theory [3] and Randić’s conjugated circuit model. For interested readers, please see also [18–22]. The k-resonance was first proposed by Zheng [35] for benzenoid systems. Then the k-resonance of many other molecular graphs were investigated extensively [6,12,13,25,26,29,31,35]. But 2-resonance for benzenoid systems, open-ended nanotubes and carbon fullerenes remains open.

Here is a natural motivation for us to consider the k-resonance of B–N fullerene graphs. Doslić showed that the cyclic edge connectivity of a B–N fullerene graph is 3 or 4. In Section 3 of this paper we show that a B–N fullerene graph with the cyclic edge connectivity 3, a B–N nanotube, is k-resonant for any positive integer k. Then we show that a B–N fullerene graph with the cyclic edge connectivity 4 is 2-extendable, and thus it is 2-resonant by our previous main result. In short we have that every B–N fullerene graph is 2-resonant. This is an unexpected result. Furthermore, we construct all the five 3-resonant B–N fullerene graphs in addition to B–N nanotubes. Like benzenoid systems [35], coronoid systems [1], open-end nanotubes [31], toroidal polyhexes [25,32], Klein-bottle polyhexes [26] and fullerene graphs [29], we also show that the 3-resonant B–N fullerene graphs are also k-resonant for any k ≥ 3. Hence, any set of disjoint faces of them form a resonant pattern. In the fourth section, we compute the cell polynomials of 3-resonant B–N fullerene graphs.

2. Face resonance of 2-extendable plane bipartite graphs

The following theorem establishes a relation between 1-extendability and face resonance for plane bipartite graphs.

Theorem 2.1 ([33]). Let G be a plane bipartite graph. Then each face of G is resonant if and only if G is 1-extendable.

For n-extendable graphs, Plummer showed that

Theorem 2.2 ([16]). If G is an n-extendable graph, then G is also (n − 1)-extendable.

Let M1 and M2 be two matchings of a graph G. The symmetric difference of M1 and M2 is defined as M1 ⊕ M2 := (M1 ∪ M2) \ (M1 ∩ M2). If M1 and M2 are two perfect matchings of G, then M1 ⊕ M2 is the union of disjoint cycles. M1-edge means an edge that belongs to M1. Let P be a path of G and a, b be two vertices of P. We denote the subpath of P from a to b by aPb. The following lemma is implicated in the proof of Theorem 2.1 in [33]. We outline it again for convenience.

Lemma 2.3. Let G be a plane bipartite graph with a perfect matching M. Let F be any facial cycle of G with a perfect matching I. If e ∈ I \ M, then each M-alternating cycle containing e does not contain any edge of I ∩ M.

Proof. Label counterclockwise the vertices of F by v1, v2, ..., v2n. Color properly the vertices of G with white and black such that v2i+1 is black and v2(i+1) is white for 0 ≤ i ≤ n − 1. Suppose that I := {v1v2, v3v4, ..., v2n−1v2n} and e = v1v2 ∈ I \ M. Let C be an M-alternating cycle containing e. We assert that C does not pass through any edge of I ∩ M. Otherwise, let e′ = v2i−1v2i (i ≥ 2) be the first edge entering I ∩ M when traversing C from v1 to v2 through e. Since F bounds a face, along M-alternating cycle C we must first enter v2i−1 and then reach v2i through e′. Let P(v2, v2i−1) be a path of C from v2 to v2i−1. Then P(v2, v2i−1) is an M-alternating path starting at an edge in M and ending at an edge off M. Thus P is of even length, and its two ends v2 and v2i−1 should have the same color. That is impossible. □

Then we state our main result as follows, which gives a sufficient condition for 2-resonance of plane bipartite graphs.

Theorem 2.4. If G is a 2-extendable plane bipartite graph, then any pair of disjoint faces of G form a resonant pattern.

Proof. Let G be a 2-extendable plane bipartite graph. For any two disjoint faces f1 and f2 of G, we want to show that there is a perfect matching M in G such that both F1 and F2 are M-alternating cycles, where F1 and F2 denote the boundaries of f1 and f2 respectively.

Label counterclockwise the vertices of F1 by v1, v2, ..., v2n, where 2n = |V(F2)|. Color properly the vertices of G with white and black such that v2i+1 is black and v2(i+1) is white for 0 ≤ i ≤ n − 1. Then I := {v1v2, v3v4, ..., v2n−1v2n} is a perfect matching of F2. By Theorems 2.1 and 2.2, F1 is resonant. Choose a perfect matching M0 of G such that F1 is M0-alternating and M0 contains as many edges of I as possible. Let I1 = I ∩ M0. If I1 = I, then both F1 and F2 are M0-alternating, and we are done. Hence it suffices to show that I1 = I.

Without loss of generality, suppose both f1 and f2 are finite faces and F1 is improperly M0-alternating cycle, i.e. each M0-edge in F1 goes counterclockwise from white end-vertex to black end-vertex along F1.

Suppose on the contrary that I1 = I and e1 = v1v2 ∉ I1. For a cycle C of G passing through edge e1, let C(s, t) denote the path on C from s to t along the direction of C from v2 to v1 through e1, where s and t are two vertices of C. Then we have the following claim.

Claim 1. For any M0-alternating cycle C containing e1, E(C) ∩ E(F1) ≠ ∅.

Proof. Suppose to the contrary that E(C) ∩ E(F1) = ∅ for some M0-alternating cycle C containing e1. By Lemma 2.3, E(C) ∩ I1 = ∅. Then M0 ⊕ C, a perfect matching of G still alternating on F1, has at least one more edge in I than M0. This is a contradiction to the choice of M0. □
By Theorem 2.2, G is also 1-extendable. Then G has a perfect matching, say M_1, such that $e_1 \in M_1$. Since $e_1 \not\in M_0$, let C_1 be a cycle in the symmetric difference $M_0 \oplus M_1$ containing e_1. Then C_1 is an M_0 and M_1-alternating cycle. By Claim 1, $E(C_1) \cap E(F_1) \neq \emptyset$.

Let v be the first vertex entering F_1 when traversing C_1 from v_1 to v_2 through e_1 and u the one when traversing C_1 from v_1 in the opposite direction (see Fig. 1). Let $P_{v, v_2} := C_1(v, v_2)$ and $P_{v_1, u} := C_1(v_1, u)$. Since P_{v, v_2} is an M_1 and M_0-alternating path starting at an edge in M_1 and ending at an edge in M_0, P_{v, v_2} is of even length. Thus v is white (the same color with v_2). Similarly, u is black (the same color with v_1). Let $P_{u, v}$ be the path on F_1 from u to v along the clockwise direction of F_1. Then $C_1 \cap F_1 \subseteq P_{u, v}$.

Choose such a perfect matching M_1 of G containing e_1, such that $P_{u, v}$ is shortest. Without loss of generality, suppose that both f_1 and f_2 lie in the exterior of C_1 (see Fig. 1).

Let $e_2 = uv'$ be an end edge of $P_{u, v}$. Then $e_2 \in M_0$. Since G is 2-extendable, it has a perfect matching containing both e_1 and e_2. Then e_1 belongs to the symmetric difference of M_0 and any of such perfect matchings but e_2 does not. Let M_2 be a perfect matching containing e_1 and e_2, such that the cycle, denoted by C_2, in $M_0 \oplus M_2$ containing e_1 intersects F_1 in at least one edge as possible. By Claim 1, $E(C_2) \cap E(F_1) \neq \emptyset$.

Similarly, let w be the first vertex entering F_1 when traversing C_2 from v_1 to v_2 through e_1 and y the one when traversing C_2 from v_1 in the opposite direction. As before, y is black and w is white. Let $P_{y, w}$ be the path on F_1 from y to w along the clockwise direction. Then $C_2 \cap F_1 \subseteq P_{y, w}$. We have the following claim.

Claim 2. $y, w \in V(P_{u, v})$.

Proof. Suppose on the contrary that $y \not\in V(P_{u, v})$. We traverse C_2 from v_2 to v_1 through e_2, then let x be the last vertex leaving C_1 before reaching y. Note that in this direction, each M_0-edge on C_2 goes from the black end-vertex to the white one, and each component of $C_1 \cap C_2$ is an M_0-alternating path from black vertex to white one. Hence x is white. Since $y \not\in V(P_{u, v})$, we must go outside C_1 to reach y. Hence x lies either on $P_{v_1, u}$ or on $P_{v_2, v}$.

Case 1. $x \in V(P_{v_1, u})$ (see Fig. 1(a)).

Since y is black, the M_0-edge incident to y lies on the $y - u$ path on F_1 along the clockwise direction. On the other hand, M_0-alternating cycles cannot intersect themselves. Thus we must enter $xP_{v_1, u}u$ in order to reach v_2 from y. Hence, C_2 intersects C_1 at some other vertices on $xP_{v_1, u}u$ before reaching v_2. Let x' be such a vertex that is nearest to x on $xP_{v_1, u}u$. Then x' is black and thus is an entering vertex of C_1 while traversing. Then $xP_{v_1, u}x'$ and $C_2(x, x')$ form a cycle C_0, which does not contain e_1.

Let $M'_2 := M_0 \oplus E(C_2) \oplus E(C_0)$. Since C_2 is an M_0 and M_2-alternating cycle, $M_0 \oplus E(C_2)$ is a perfect matching of G and $C_2(x, x')$ is an $M_0 \oplus E(C_2)$-alternating path for which its end-edges belong to $M_0 \oplus E(C_2)$. Since $xP_{v_1, u}x'$ intersects C_2 only at its end-vertices, it is an $M_0 \oplus E(C_2)$-alternating path for which both of its end-edges are not in $M_0 \oplus E(C_2)$. Hence C_0 is an $M_0 \oplus E(C_2)$-alternating matching of G.

Then $\{e_1, e_2\} \subseteq M'_2$. Further $M'_2 \oplus M_0 = E(C_2) \oplus E(C_0)$ forms the edge set of a cycle C'_2, obtained from C_2 by replacing $C_2(x, x')$ with $xP_{v_1, u}x'$. Then $e_1 \in E(C'_2)$. Since $E(C_2(x, x')) \cap E(F_1) \neq \emptyset$ and $E(xP_{v_1, u}x') \cap E(F_1) = \emptyset$, C'_2 has at least one less edge of F_1 than C_2. This contradicts the choice of M_2.

Case 2. $x \in V(P_{v_2, v})$ (see Fig. 1(b)).

In this case, we must enter $xP_{v_2, v}v_2$ in order to reach v_2 from y while traversing C_2 in the specific direction. Like before, let x' (black) be the nearest entering vertex to x on $xP_{v_2, v}v_2$ before reaching v_2 from y. Then, by the same argument as in Case 1, $xP_{v_2, v}x'$ and $C_2(x, x')$ form a cycle C_0 and $M_0 \oplus E(C_2)$ is a perfect matching of G such that C_0 is $M_0 \oplus E(C_2)$-alternating. Then $M'_2 := M_0 \oplus E(C_2) \oplus E(C_0)$ is a perfect matching of G and $\{e_1, e_2\} \subseteq M'_2$. Hence $M'_2 \oplus M_0 = E(C_2) \oplus E(C_0)$ forms the edge set of a cycle C'_2, obtained from C_2 by replacing $C_2(x, x')$ with $xP_{v_2, v}x'$. Since $E(C_2(x, x')) \cap E(F_1) \neq \emptyset$ and $E(xP_{v_2, v}x') \cap E(F_1) = \emptyset$, C'_2 has at least one less edge of F_1 than C_2. This contradicts the choice of M_2. Thus $y \in V(P_{u, v})$. □
Every B–N fullerene graph is a 3-connected graph. Theorem 2.4 shows that P_6 is the cycle in bold and C_6 is obtained from C_4 by replacing $C_4(x, x')$ with $xP_{v_1,u}x'$. (Fig. 2)

Claim 3. $P_{y,w} \subset P_{u,v}$.

Proof. Since $y, w \in V(P_{u,v})$, either $P_{y,w} \subset P_{u,v}$ or $P'_{y,w} \subset P_{y,w}$, where $P'_{y,w}$ is the path on F_1 from u to v along the counterclockwise direction of F_1.

Suppose that $P'_{y,w} \subset P_{y,w}$. Then w lies on $uP_{v_1,u}y$; see Fig. 2. We still traverse C_2 from v_2 to v_1 through e_1. It follows that the last vertex, say x, leaving C_1 before reaching y must lie on $P_{v_1,u}$. Since $P'_{y,w} \subset P_{y,w}$, $C_2(y, w)$ must pass through $xP_{v_1,u}u$ in order to reach w from y. Thus C_2 intersects C_1 at some other vertices on $xP_{v_1,u}$ besides x before reaching v_2. Like before, let x' be the nearest such one to x on $xP_{v_1,u}$. Then $xP_{v_1,u}x'$ and $C_2(x, x')$ form a cycle C_0, and $M_0 \oplus E(C_2)$ is a perfect matching of G such that C_0 is an $M_0 \oplus E(C_2)$-alternating cycle. Then $M_2 := M_0 \oplus E(C_2) \oplus E(C_0)$ is a perfect matching of G and $\{e_1, e_2\} \subset M_2$. Hence $M' \oplus M_0 = E(C_2) \oplus E(C_0)$ forms the edge set of a cycle C_2 obtained from C_2 by replacing $C_2(x, x')$ with $xP_{v_1,u}x'$. Since $E(C_2(x, x')) \cap E(F_1) \neq \emptyset$ and $E(xP_{v_1,u}x') \cap E(F_1) = \emptyset$, C_2 has at least one less edge of F_1 than C_2. This contradicts the choice of M_2. Hence $P_{y,w} \subset P_{u,v}$. Since $e_2 \in E(P_{u,v})$ but $e_2 \notin E(P_{y,w})$, $P_{y,w} \subset P_{u,v}$. The proof of the Claim is finished.

Claim 3 shows that $P_{y,w} \subset P_{u,v}$ for a perfect matching M_2 of G containing e_1. This contradicts the choice of M_1. Hence $I_1 = I_2$.

Note that the converse of the theorem does not hold. For example, two 3-connected plane bipartite graphs displayed in Fig. 3 are not 2-extendable, but any at most two disjoint faces form a resonant pattern.

3. 2-resonance of B–N fullerenes

As an application of Theorem 2.4, we consider the 2-resonance of B–N fullerene graphs in this section. First, we present some further information on B–N fullerene graphs.

A $(k, 6)$-cage is a 3-regular, 3-connected plane graph whose faces are only k-gons and hexagons. Recall that B–N fullerene graphs are 3-regular plane graphs whose faces are only squares and hexagons. We have the following relation.

Lemma 3.1. Every B–N fullerene graph is a $(4, 6)$-cage.

Proof. It suffices to show that each B–N fullerene graph is 3-connected. Since every face of a B–N fullerene graph is bounded by a cycle, it is 2-edge connected. Suppose on the contrary that a B–N fullerene graph B is not 3-connected. Since each 3-regular graph has an equal vertex and edge-connectivity, B has an edge-cut of size 2, which always consists of two disjoint edges. We choose an edge-cut of size 2, say $C = \{e_1, e_2\}$, such that one of the two components of $B - C$ does not contain any edge-cut with size two of B. Let H_1 be this component and H_2 the other component.

Fig. 3. Non-2-extendable 3-connected plane bipartite graphs any two disjoint faces of which form a resonant pattern: $\{e_1, e_2\}$ cannot be extended to a perfect matching.
Fig. 4. A (4,6)-cage T_3.

Let C_1 and C_2 be the boundaries of the faces of H_1 and H_2 that are not faces of B, respectively. Then there are exactly two vertices of degree 2 on each of C_1 and C_2 and the others of degree 3. Let F_1 and F_2 be the two faces of B whose boundaries contain both e_1 and e_2, respectively. Then the total size of F_1 and F_2 equals $\|C_1\| + \|C_2\| + 4$, where $\|C_i\|$ denotes the length of C_i for $i = 1, 2$. Since the size of F_i $(i = 1, 2)$ is no more than 6, $\|C_1\| + \|C_2\| \leq 8$. Since B is simple and bipartite, both C_1 and C_2 are cycles of length 4. Hence $\|C_1\| = \|C_2\| = 4$. Then the two edges from the two 3-degree vertices on C_1 to the other vertices of H_1 form an edge-cut with size two of B. This contradicts the choice of C and H_1. Hence B is 3-connected. □

A graph G is cyclically k-edge connected if G cannot be separated into two components, each of which contains a cycle, by deleting fewer than k edges. Denote by $c\lambda_+(G)$ the largest integer k such that G is cyclically k-edge connected, and call this number the cyclical edge-connectivity of G.

Let T_n denote the $(4, 6)$-cage consisting of n concentric layers of hexagons, capped on each end by a cap formed by three squares (indicated in Fig. 4). Let $\mathcal{T} = \{T_n | n \geq 1\}$ be the family of all such $(4, 6)$-cages T_n.

Došlić [4] computed the cyclical edge-connectivity of $(4, 6)$-cages.

Lemma 3.2 ([4]). Let G be a $(4, 6)$-cage. If $G \in \mathcal{T}$, then $c\lambda_+(G) = 3$; otherwise, $c\lambda_+(G) = 4$.

The following theorem due to Holton and Plummer implies the 2-extendability of cyclically 4-edge connected B–N fullerene graphs.

Theorem 3.3 ([8]). If G is an $(n + 1)$-regular, $(n + 1)$-connected bipartite graph with cyclic connectivity at least n^2, then G must be n-extendable.

Corollary 3.4. Cyclically 4-edge connected B–N fullerene graphs are 2-extendable.

Combining Theorem 2.4 and the above corollary, we have the following result.

Corollary 3.5. Cyclically 4-edge connected B–N fullerene graphs are 2-resonant.

Now we turn to the k-resonance of B–N fullerene graphs in \mathcal{T}.

We define some notations for T_n $(n \geq 1)$ first. Let H_0, H_1, \ldots, H_{n+1} be all the layers of T_n, where H_0 and H_{n+1} are its two caps and hexagonal layer H_i is adjacent to H_{i-1} and H_{i+1} for $1 \leq i \leq n$. For $1 \leq i \leq n + 1$, we set $L_i := H_{i-1} \cap H_i$. Then L_0 and L_{n+2} denote the common vertices of the squares of H_0 and H_{n+1}, respectively; and L_1 is a cycle of length 6, $1 \leq i \leq n + 1$. Note that H_i $(0 \leq i \leq n + 1)$ has three pairwise adjacent faces, each of which is adjacent to two faces in every adjacent layer of H_i. Then we label the faces of T_n as follows: Give the labels h_0^1, h_0^2, h_0^3 to the three squares of H_0 arbitrarily. Suppose that the labels of the faces in $H_0, \ldots, H_i(i \geq 0)$ are given. Then label the only face of H_{i+1} not adjacent to h_j^i with h_{i+1}^j for $j = 1, 2, 3$.

Lemma 3.6. Every T_n $(n \geq 1)$ in \mathcal{T} is k-resonant for any $k \geq 1$.

Proof. It suffices to show that $T_n - F$ has a perfect matching for any given set of disjoint faces F of T_n. Then we claim that for each $0 \leq i \leq n$, there is a matching M_i of $T_n - F$ such that for each $0 \leq j \leq i$, each vertex of L_j is covered either by F or by M_i and either one of h_1^j, h_2^j and h_3^j belongs to F or a unique vertex of L_j matches to a vertex of L_{j+1} in M_i. We use induction on i to prove the claim. Note that at most one face of H_i belongs to F for $0 \leq i \leq n + 1$.

For the 0th step, if one of h_0^1, h_0^2 and h_0^3 belongs to F, then $M_0 := \emptyset$ satisfies the claim; see Fig. 5(a). Otherwise, at least one neighbor of L_0 on L_1 is not in $V(F)$. Let e be the edge connecting L_0 and this neighbor. Then $M_0 := \{e\}$ satisfies the claim.

Suppose the claim is true for i, $0 \leq i \leq n$ and M_i has been already constructed by the inductive procedure. We consider the case $i + 1$. By the induction hypothesis, two cases are distinguished.
Case 1. One of h_1^i, h_2^i, and h_3^i, say h_1^i, belongs to F (see Fig. 5).

Then the three vertices on L_{i+1} belong to h_1^i are covered by F and the other three vertices form a path $u s t$, which lie on h_1^i. If h_1^i belongs to F, then $M_{i+1} := M_i$ satisfies the claim; see Fig. 5(a). Otherwise, let e_1 denote the edge connecting u to its neighbor on L_{i+2} and $e_2 := st$ since one of the end-vertices u and t, say u, has the neighbor in L_{i+2} uncovered by F. Then $M_{i+1} := M_i \cup \{e_1, e_2\}$ satisfies the claim; see Fig. 5(b).

Case 2. h_1^i, h_2^i, and h_3^i are not in F and $v_i v_{i+1} \in M_n$, where $v_i \in V(L_i)$, $v_{i+1} \in V(L_{i+1})$ (see Fig. 6).

If one face of H_{i+1}, say h_1^i, whose boundary does not contain v_{i+1}, belongs to F, then there are two adjacent vertices on L_{i+1}, named w_1 and w_2, uncovered by F and M_i. Then $M_{i+1} := M_i \cup \{w_1 w_2\}$ satisfies the claim; see Fig. 6(a). Otherwise, $L_{i+1} - v_{i+1}$ is a 4-length path $w_1 - w_2 - \cdots - w_5$, each vertex of which is not covered by F and M_i. Let w_1' and w_5' be the neighbors of w_1 and w_5 on L_{i+2}, respectively. At least one of them, say w_1', does not belong to $V(F)$. Then $M_{i+1} := M_i \cup \{w_1 w_1', w_2 w_3, w_4 w_5\}$ satisfies the claim; see Fig. 6(b).

Hence the claim holds. Further the claim implies that M_{i+1} is a perfect matching of $T_n - F$. Hence, T_n is k-resonant for any $k \geq 1$. □

Combining Corollary 3.5 and Lemma 3.6, we have a main result as follows.

Theorem 3.7. Every B–N fullerene graph is 2-resonant.
Let G be a 2-connected 3-regular plane bipartite graph. If all the vertices of G are covered by a set of disjoint faces of size 4, then G is k-resonant for any $k \geq 1$.

Proof. It suffices to show that for any given set S of disjoint faces of G, $G - S$ has a perfect matching. Let R be a set of disjoint faces of size 4 of G that covers all the vertices of G. Let $S':=\{f \in R: \text{ either } f \in S \text{ or } f \text{ is adjacent to some faces of } S\}$. Then $S' \subseteq R$ and each face in $R \setminus S'$ is disjoint from every face in S. Hence $G - S'$ has a perfect matching M. Since each face of R adjacent to faces of S shares one or two disjoint edges with them, $S' - S$ is a set of disjoint edges, denoted by M'. Since $V(S) \subseteq V(S')$, $M \cup M'$ is a perfect matching of $G - S$. □

Lemma 4.2. Let G be a 3-regular plane graph. If G is cyclically 4-edge connected, then there are no three faces which are pairwise adjacent but do not share a common vertex, nor two faces which share more than one disjoint edges in G.

Proof. If the conditions of the lemma hold, G always has a cyclical edge cut with size less than 4 (for example, see Fig. 7). □

Example 4.3. Let B be a cyclically 4-edge connected $B-N$ fullerene graph. If B is k-resonant ($k \geq 3$), then each vertex of B lies on a square and thus $|V(B)| \leq 24$.

Proof. Let B be a cyclically 4-edge connected $B-N$ fullerene graph that is k-resonant for integer $k \geq 3$. Suppose on the contrary that there is a vertex v of B that does not lie on any square. Let v_1, v_2 and v_3 be the three neighbors of v. Let $e_i = v v_i$ and f_i, $i = 1, 2, 3$, denote the face of B whose boundary contains the edges in $\{e_1, e_2, e_3\} \setminus \{e_i\}$. By the hypothesis, f_1, f_2 and f_3 are hexagons.

Let h_1, h_2 and h_3 be other faces different from f_1, f_2 and f_3 such that v_1 lies on the boundary of h_i for $i = 1, 2, 3$ (see Fig. 8). Then by Lemma 4.2 (a) and (b), h_1, h_2 and h_3 are mutually disjoint and distinct.

Then $B - (h_1 \cup h_2 \cup h_3)$ leaves an isolated vertex v. This contradicts the 3-resonance of B. Hence, each vertex of B is covered by a square. There are six faces of size 4 in B. Hence, $|V(B)| \leq 24$. □

A fragment H of a $B-N$ fullerene graph B is a subgraph of B consisting of a cycle C together with its interiors (or exteriors). A fragment H of B is said to be a square fragment if every face inside C (or outside C) is a square. The size of a square fragment H is the number of squares of H inside C (or outside C). A face of B adjacent to H but not in H is called a neighboring face of H. Let H be a square fragment. We call H a maximal square fragment if all its neighboring faces are hexagonal.

Theorem 4.4. A cyclically 4-edge connected $B-N$ fullerene graph B is k-resonant ($k \geq 3$) if and only if B is one of B_1, B_2, B_3, B_4 and B_5 in Fig. 9.
Theorem 4.4

Let B be a k-resonant ($k \geq 3$) B–N fullerene graph. If B has three squares f_1, f_2 and f_3 that are pairwise adjacent and share a vertex (see Fig. 10), then we can show that B is isomorphic to the cube, B_3. Let H be a subgraph of B consisting of squares f_1, f_2 and f_3, and let e_1, e_2 and e_3 be the three edges going out H. Since B is 3-regular, $|V(B)|$ is even. Furthermore both H and $B - H$ have an odd number of vertices. Suppose that $|V(B - H)|$ is no less than three, then $|E(B - H)| = \frac{3|V(B - H)| - 3}{2} \geq |V(B - H)|$. Hence $B - H$ has a cycle. This implies that $\{e_1, e_2, e_3\}$ is a cyclical 3-edge cut, contradicting that B is cyclically 4-edge connected. Hence $B - H$ contains exactly one vertex and e_1, e_2 and e_3 are incident to the same vertex outside H. Thus B is the cube B_3 (see Fig. 9). If B has a closed square chain $H \cong C_{2n} \times K_2$, then n is 2 or 3. For the former, B is the cube; for the latter, B is isomorphic to B_5 (see Fig. 9). Conversely, since two disjoint squares of a cube cover all the vertices and three disjoint squares of B_5 cover all the vertices, by Lemma 4.1 B_3 and B_5 are k-resonant for any $k \geq 1$.

For all other cases, each square of B is contained in a maximal square fragment that is an open square chain $(P_n \times K_2)$. Let v_1, v_2, v_3, v_4 be the four 2-degree vertices on a maximal square fragment H. We distinguish five cases to consider.

Case 1. Each maximal square fragment of B has size 1. Then by Lemma 4.3 all the vertices of B are covered by a set of disjoint squares.

Let v_1, v_2, v_3 and v_4 be the four vertices of a square f_i of B and w_i be the neighbor of v_i out of f_i for $i = 1, 2, 3, 4$. Then the four faces h_1, h_2, h_3 and h_4 adjacent to f_i are all hexagons. By Lemma 4.2, h_1 and h_3 are disjoint and so do h_2 and h_4. Then w_1, w_2, w_3 and w_4 are covered by four other squares, say f_2, f_3, f_4 and f_5 (see Fig. 10). Then the four vertices on f_2, f_3, f_4 and f_5 but not on h_1, h_2, h_3 or h_4 have their third neighbors, say w'_2, w'_3, w'_4 and w'_5. Since h_5, h_6, h_7 and h_8 are hexagons, B is isomorphic to B_1 (see Fig. 11). Conversely, by Lemma 4.1, B_1 is k-resonant for all $k \geq 3$.

Case 2. H has size 2.

Let f_1 and f_2 be the two squares of H (see Fig. 12). Then for each $i (1 \leq i \leq 4)$, let w_i be the neighbor of v_i out of H. Then faces h_1, h_2, h_3 and h_4 around H are all hexagons since H is maximal. By Lemma 4.2, h_1 and h_3 are distinct and disjoint and so do h_2 and h_4.

Let u_1 be the common neighbor of w_1 and w_2 and u_2 the common neighbor of w_3 and w_4. Then w_1 and w_2 are covered by two other squares, respectively, say f_3 and f_4, which share an edge incident to u_1. Similarly, the two squares f_5 and f_6 covering w_3 and w_4, respectively, share an edge incident to u_2. Thus B is isomorphic to B_2. One can verify that B_2 is k-resonant for each $k \geq 3$.

Proof. Let B be a k-resonant ($k \geq 3$) B–N fullerene graph.
Case 3. H has size 3.

Let H have three squares f_1, f_2, f_3 such that f_i and f_j ($1 \leq i < j \leq 3$) are adjacent if and only if $j = i + 1$. Let w_i be the third neighbor of v_i for $i = 1, 2, 3, 4$ (see Fig. 13). Since the four neighboring faces of H are all hexagons, w_1 is adjacent to w_2 and w_3 to w_4. Since w_i ($i = 1, 2, 3, 4$) are covered by other squares, B is isomorphic to B_4. Conversely, B_4 has 4 disjoint squares covering all the vertices of B_4. Hence it is k-resonant for any $k \geq 3$.

Case 4. H has size four.

Let H be a square chain with four squares f_1, f_2, f_3 and f_4 (see Fig. 14). Then v_1 and v_2 have the same neighbor w_1, and v_3 and v_4 have the same neighbor w_2. Since the face with the path $w_1v_1v_4w_2$ in its boundary is a hexagon, w_1 is not adjacent to w_2. Hence $\{w_1, w_2\}$ is a cut set of size 2, contradicting the 3-connectedness of B–N fullerene graphs.

Case 5. H has size five or six.
If H consists of five squares (see Fig. 15 (left)), then v_1 is adjacent to v_2 and v_3 to v_4. Hence H is not a maximal square fragment. This is a contradiction. If H consists of six squares (see Fig. 15 (right)), then the neighboring face h' of H containing v_1 and v_2 has size more than six. It is impossible. □

By Lemma 3.6 and Theorem 4.4, the k-resonance ($k \geq 3$) of B–N fullerene graphs can be characterized as follows:

Theorem 4.5. A B–N fullerene graph B is k-resonant ($k \geq 3$) if and only if $B \in \mathcal{T}$ or B is one of B_1, B_2, B_3, B_4, B_5.

Corollary 4.6. A B–N fullerene graph is k-resonant ($k \geq 3$) if and only if it is 3-resonant.

5. Cell polynomials of 3-resonant B–N fullerene graphs

The cell polynomial (also known as the “resonant ring polynomial” or “R-polynomial”) proposed by Gutman and John [7,10,11] for counting resonant patterns of polycyclic conjugated hydrocarbon extends Hosoya and Yamaguchi’s sextet polynomial [9]. The cell polynomial of a B–N fullerene graph B can be expressed as

$$\rho(B; x, y) = \sum_{0 \leq i < C_1, 0 \leq j < C_2} r(B; i, j)x^iy^j,$$

where $r(B; i, j)$ denotes the number of resonant patterns of B with i squares and j hexagons, and C_1 (resp. C_2) is the maximum number of squares (resp. hexagons) in all the resonant patterns.

As we have shown, any set of disjoint faces of a 3-resonant B–N fullerene graph form a resonant pattern. The cell polynomials of the five B–N fullerene graphs B_1 to B_5 in Theorem 4.4 are computed as follows.

$$\rho(B_1; x, y) = x^6 + 6x^5 + 15x^4 + 8x^3y^2 + 20x^3y + 20x^2y + 24xy + 12x^2 + 12xy + 8y^3 + 15x^2 + 24xy + 16y^2 + 6x + 8y + 1;$$

$$\rho(B_2; x, y) = 2x^3y + 3x^3 + 6x^2y + y^3 + 12x^2 + 12xy + 4y^2 + 6x + 5y + 1;$$

$$\rho(B_3; x, y) = 3x^2 + 6x + 1;$$

$$\rho(B_4; x, y) = x^4 + 4x^3 + 2xy^2 + 11x^2 + 8xy + 2y^2 + 6x + 4y + 1;$$

$$\rho(B_5; x, y) = 2x^3 + 9x^2 + y^2 + 6 + 2y + 1.$$

Then we compute the cell polynomial for T_n ($n \geq 1$) by the transferred matrix method. Since $T_0 \cong B_3$,

$$\rho(T_0; x, y) = 3x^2 + 6x + 1.$$

Remember that in T_n, H_0 is one of the cap consisting of three pairwise adjacent squares and H_1 is the hexagon layer adjacent to H_0. In $\rho(T_n; x, y)$, we denote the part of the polynomial, corresponding to the resonant patterns that contain none of the faces of H_0 or H_1, by a_{00}^n; the part corresponding to the resonant patterns that contain one face of H_0 but none of H_1 by a_{10}^n, the part corresponding to the resonant patterns that contain none of the faces of H_0 but one of H_1 by a_{01}^n; and the part corresponding to the resonant patterns that contain one face of H_0 and one of H_1 by a_{11}^n. Then

$$\rho(T_n; x, y) = a_{00}^n + a_{10}^n + a_{01}^n + a_{11}^n.$$

For example, in $\rho(T_0; x, y)$, $a_{00}^0 = 1$, $a_{10}^0 = 3x$, $a_{01}^0 = 3x$, $a_{11}^0 = 3x^2$.

Note that for a given face f of H_1 in T_n, H_{i+1} (or H_{i-1}) has only one face disjoint from f. Hence, if one face of H_1 belongs to a resonant pattern F in T_n and there is a face of H_{i+1} (or H_{i-1}) also belongs to F, then the face of H_{i+1} (or H_{i-1}) belonging to F is uniquely determined by the one in H_1.

Moreover, T_{n+1} ($n \geq 0$) can be viewed as the graph obtained from T_n by extending a layer of hexagons between H_0 and H_1 in it. Hence, a_{00}^n can be deduced from a_{00}^0 and a_{01}^0 as

$$a_{00}^1 = a_{00}^0 + a_{01}^0.$$

And similarly, a_{10}^1, a_{01}^1, and a_{11}^1 can be deduced as follows:

$$a_{01}^1 = 3a_{00}^0y + a_{01}^0y; \quad a_{10}^1 = a_{10}^0 + 3a_{11}^0; \quad a_{11}^1 = a_{10}^0y + a_{11}^0y.$$

Fig. 15. The illustration for Case 5 in the proof of Theorem 4.4.
that is, \((a_{00}, a_{01}, a_{10}, a_{11}) = (a_{00}^0, a_{01}^0, a_{10}^0, a_{11}^0)T\), where

\[
T = \begin{bmatrix} 1 & 3y & 0 & 0 \\ 1 & y & 0 & 0 \\ 0 & 0 & 1 & y \\ 0 & 0 & 3 & y \end{bmatrix}.
\]

Set \(A_0 = (a_{00}^0, a_{01}^0, a_{10}^0, a_{11}^0) = (1, 3x, 3x, 3x^2)\). Then

\[\rho(T_1; x, y) = a_{10}^0 + a_{01}^0 + a_{10}^1 + a_{11}^1 = A_0 TL,\]

where \(L = (1, 1, 1, 1)^T\).

In fact, for any \(n \geq 1\), the recursive relation is valid. That is \((a_{00}^n, a_{01}^n, a_{10}^n, a_{11}^n) = (a_{00}^{n-1}, a_{01}^{n-1}, a_{10}^{n-1}, a_{11}^{n-1})T = A_0 T^n\). Hence,

\[\rho(T_n; x, y) = A_0 T^nL.\]

For example,

\[\rho(T_1; x, y) = 3x^2y + 9x^2 + 6xy + 6x + 3y + 1,\]

and

\[\rho(T_2; x, y) = 3x^2y^2 + 18x^2y + 6xy^2 + 9x^2 + 3y^2 + 2xy + 6x + 6y + 1.\]

Acknowledgements

We are grateful to the referees for their careful reading of the manuscript and helpful comments.

References