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Abstract Efficient solution techniques for high-order temporal and spatial discontinuous Galerkin

(DG) discretizations of the unsteady Navier–Stokes equations are developed. A fourth-order impli-

cit Runge–Kutta (IRK) scheme is applied for the time integration and a multigrid preconditioned

GMRES solver is extended to solve the nonlinear system arising from each IRK stage. Several mod-

ifications to the implicit solver have been considered to achieve the efficiency enhancement and

meantime to reduce the memory requirement. A variety of time-accurate viscous flow simulations

are performed to assess the resulting high-order implicit DG methods. The designed order of accu-

racy for temporal discretization scheme is validate and the present implicit solver shows the superior

performance by allowing quite large time step to be used in solving time-implicit systems. Numerical

results are in good agreement with the published data and demonstrate the potential advantages of

the high-order scheme in gaining both the high accuracy and the high efficiency.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.
Open access under CC BY-NC-ND license.
1. Introduction

In the past decade, interest in the use of discontinuous Galer-

kin (DG)1,2 methods for compressible flow simulation has
become more widespread in aerodynamics applications. The
DG methods possess many attractive features, such as the

capability to handle complicated geometries, the flexibility
for h/p adaptation, the compact stencils, the nice mathematical
properties of conservation, stability, and convergence.

However, in the DG methods, numerical algorithms of
computing the unsteady flows have lagged behind.3 Most
time-dependent calculations have been carried out in conjunc-

tion with the explicit time-integration methods which suffer
from a very restrictive time step especially for the high-order
schemes and hence become notoriously inefficient when deal-
ing with the low-reduced frequency phenomena. Therefore it

is desirable to develop a fully implicit method for the unsteady
flow computations in the context of the DG discretization.

Recently, many efforts have been made on the use of

higher-order implicit temporal schemes4–11 in order to more
efficiently resolve the unsteady flow problems. The implicit
Runge–Kutta (IRK) methods which are with nice mathemati-

cal characteristics, self-starting and easily implemented in a
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variable time-stepping mode5 were extended for the DG
schemes to solve the compressible Euler and Navier–Stokes
equations in Refs. 8,9 respectively. In addition, the key to a

competitive implicit scheme lies in the utilization of an efficient
nonlinear solver, and for those methods described above, the
multigrid solver8,9 and Newton–Krylov solver7,10 have been

applied to solving the resulting implicit system at each time
step. On the other hand, the authors of Ref. 12 examined the
performance of various solution algorithms for the DG meth-

ods and concluded that the multigrid preconditioned GMRES
solver yielded the most efficient and scalable algorithm.
Inspired by this work, the present study has been able to
extend their p-multigrid preconditioned GMRES solver12 to

time-dependent problems and develop efficient unsteady solu-
tion techniques for high-order temporal and spatial DG dis-
cretizations of the Navier–Stokes equations. We remark that

the features of the designed implicit solution approaches
include allowing quite large time step to be used in the
unsteady calculation and achieving both the high efficiency

and high accuracy without significant memory increase.

2. DG formulation

The unsteady Navier–Stokes equations are written as

s ¼ rq ð1Þ
@q

@t
þr � fc qð Þ � r � fv q; sð Þ ¼ 0 ð2Þ

where s is the auxiliary variable, q the conservative state vec-

tor, fc qð Þ the inviscid flux tensor and fv q; sð Þ the viscous flux
tensor. In order to formulate the DG method, we introduce
approximate solution qh, sh and polynomial test function vh
on the cell K, and then the weak formulation for Eqs. (1)

and (2) can be given as

Z
K

mhshdX ¼
Z
K

mhrqhdXþ
Z
@K

q̂h � q�h
� �

m�h ndr ð3Þ
R
K

mh
@qh
@t

dXþ
Z
@K

mhðfc � fvÞ � ndr

�
R
K
rmh � fcðqhÞ � fvðqh; shÞð ÞdX ¼ 0

ð4Þ

where X is domain, r the boundary of X, q̂h the numerical flux

function, the superscript – denotes the values inside the cell K
and n is the outward unit normal vector to the boundary. In
this article the test (basic) function is chosen based on the Tay-

lor series expansion at the cell centroid13 and the method in
Ref. 14 which involves spline interpolation technique is
adopted here to treat the curved boundaries. A local Lax–

Friedrichs numerical flux1 is used to replace the flux fc Æ n
and the viscous flux fv Æ n is approximated by the BR2
scheme.15 Then by assembling all the elemental contributions

together, the ultimate semi-discrete system of Eq. (4) is
obtained as

M
dq

dt
þ RðqÞ ¼ 0 ð5Þ

where M denotes the mass matrix and R(q) the residual vector.
3. Temporal discretization

3.1. High-order IRK scheme

We choose a six-stage, fourth-order accurate IRK scheme,
which is thus denoted as IRK4 in this work. The formula for

the IRK4 scheme can be expressed as

qð0Þ ¼ qn

qðsÞ ¼ qn � Dt
Xs
j¼1

asjM
�1R qðjÞ

� �
ðs ¼ 1; 2; . . . ; 6Þ

qnþ1 ¼ qð6Þ

8>>>><
>>>>:

ð6Þ

where asj represents the Butcher coefficient,
4 define the nonlin-

ear unsteady residual Re and reformulate the IRK4 scheme as

Re qðsÞ
� �

¼M

Dt
qðsÞ þ assR qðsÞ

� �
� M

Dt
qn �

Xs�1
j¼1

asjR qðjÞ
� �" #

¼ 0 ðs ¼ 1; 2; . . . ; 6Þ
ð7Þ

Eq. (7) is solved with the basic idea proposed in Ref. 16
which introduces quasi-Newton subiteration time step to con-
verge the resulted nonlinear system of each stage and therefore

only uses the physical time step. Clearly, efficiently driving the
unsteady residual to zero is crucial to the success of the IRK
scheme.

3.2. Modified multigrid preconditioned GMRES solver

In order to solve the nonlinear system of Eq. (7), the GMRES

solver originally developed in Ref. 12 for steady flows is
extended here to solve this time-implicit system. The distinctive
feature of the solver employs a proper cycling strategy for mul-

tigrid DG solution. Like Ref. 8, we restrict ourselves to the use
of the p-multigrid alone. Furthermore, both the line-implicit
and the point-implicit linearized Gauss–Seidel (LGS) relaxa-
tion methods are considered as smoothers of each multigrid

level.
Since the Jacobian matrices are involved in the GMRES

algorithm as well as in the LGS smoother, it is important to

efficiently form the full Jacobian matrix. In the current work
we apply the numerical procedure in Ref. 17, which was
designed to evaluate the diagonal block matrix, here to com-

pute those off-diagonal components of the Jacobian matrices
as well.

Specifically for the cell K, we have the expression of off-

diagonal matrices for the neighboring cells nb as

@RK

@qnb
� RK qK; qnb þ eð Þ � RK qK; qnbð Þ

e
ð8Þ

where e is a small parameter, e.g., e � qnbk k � 10�8. The
method is computationally expensive. According to the recent
and detailed research,18 it requires kNdNe times to evaluate the

residual vector, where Nd is the number of degree, Ne is the
number of equations and k depends on meshes. Therefore to
improve the efficiency, a delayed matrix updating technique
is further utilized, which only allows one evaluation for the

Jacobian components during each entire time step.
In addition to the modification of evaluating and updating

the Jacobian matrix, in the present solver the number of

subcycles for solving the coarsest level problem remains 2.



Fig. 1 Comparison of temporal efficiency between the BDF2

and IRK4 schemes with different termination tolerance.

Fig. 2 Comparison of effectiveness between GMRES and

p-multigrid method with different implicit smoothers.
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And also different from the original method, we use a small
number of GMRES iterations with fixed 1 restart and 3 Krylov
basis throughout this paper. The benefit of such modifications

is to reduce the memory increments due to the additional
storage for the subspace basis, especially for the higher-order
DG schemes. Moreover, there is no need for any kind of escaping

strategies in this GMRES algorithm since a small number of
iterations are adopted. The only stopping criterion for the
designed approach is the termination of the nonlinear itera-

tions and we choose the tolerance ratio 10�4 as Ref. 19.

Remark 1. While the employment of the high-order tempo-
ral discretization scheme IRK4 is an important part of the

efficiency improvement, the adoption and modification of
the GMRES solver described above are equally important
aspects for the robustness and efficiency enhancement.

We note that these are two key points that enable our
method to use much larger time step sizes, thereby provid-
ing a competitive scheme for the unsteady flow simulations.

Remark 2. The simple choice of evaluating Jacobian matrix
numerically and specifying parameters for the GMRES
algorithm can lead us to treat the resulting implicit solver

as a black box. Therefore for the practical DG code, it is
easy to be implemented and extended to other implicit
time-integration methods, such as widely used 2nd-order
backwards differencing (BDF2) scheme.

4. Presentation of results

4.1. von-Karman vortex street

For the first case, we concentrate on assessing the accuracy and
efficiency of the designed high-order IRK scheme. The von-
Karman vortex street is chosen at Mach number

Ma1= 0.1, Reynolds number Re1= 150 and has been per-
formed on a 99 · 54 mesh with grid points clustered in the
wake. The reference solutions are obtained with explicit

three-stage Runge–Kutta method and the lift on the body is
used as the representative measure of error.

Table 1 provides a detailed temporal refinement study with
the IRK4 scheme. For the DG methods of various orders, the

desired fourth order of accuracy of the IRK scheme is achieved
within the range of time steps of interest. Fig. 1 depicts the
required CPU time to obtain a preset level of error for the

IRK4 and BDF2 schemes with different iteration termination
tolerance. As the similar conclusions drawn in Ref. 8 for the
Euler equations, here we demonstrate more performance
Table 1 Temporal accuracy of the IRK4 scheme for the 2nd (P1),

Time step DG (P1) DG (

L2 error Order L2 er

6.4 8.85 · 10�4 1.68 ·
3.2 5.39 · 10�5 4.04 1.04 ·
1.6 3.10 · 10�6 4.12 6.19 ·
0.8 1.87 · 10�7 4.05 3.69 ·
0.4 1.10 · 10�8 4.09 2.23 ·
0.2 6.40 · 10�10 4.09 1.35 ·
improvement for the high-order temporal schemes for solving
the Navier–Stokes equations. One can see for the accuracy
level of 10�4 that the IRK4 scheme achieves almost one order

of magnitude of speed-up relative to the BDF2 scheme. Also
notable from the Fig. 1 is that decreasing the tolerance ratio
has almost moved the curves uniformly, meaning the tolerance

ratio 10�4 is small enough to ensure the convergence of the
nonlinear iteration.4

Furthermore, the effectiveness of the GMRES solver has

been verified in Fig. 2, where the present solver outperforms
the p-multigrid (p-MG) method in terms of CPU time for both
3rd (P2) and 4th (P3) DG.

P2) DG (P3)

ror Order L2 error Order

10�3 1.75 · 10�3

10�4 4.01 1.01 · 10�4 4.11

10�6 4.07 6.21 · 10�6 4.02

10�7 4.07 3.97 · 10�7 3.97

10�8 4.05 2.51 · 10�8 3.98

10�9 4.05 1.62 · 10�9 3.95



Fig. 5 Vorticity contour lines using 20 levels over the range ±6

for Case 2.

Table 2 Comparison of computational efficiency between

BDF2 and IRK4 schemes for Case 2.

Method Time step size CPU time (s)

BDF2 0.003 1.22 · 105

IRK4 0.100 1.81 · 104
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the line-implicit and the point-implicit smoothers, in particular
at larger time step, when the p-multigrid method coupled with
the point-implicit smoother has even failed to converge. And it

should be noted that compared to the p-multigrid method, the
modified GMRES solver requires only 10% more memory at
most, owing to our parameter choices for the steady-state sol-

ver. Fig. 3 further demonstrates the advantage of using large
time step by giving quantitative comparison of the lift coeffi-
cients CL obtained by the Runge–Kutta and IRK4 schemes.

One can observe that the IRK4 is able to deliver comparable
accuracy with only 4–5 points to resolve one shedding cycle,
for which the computation time saved is nearly up to 2 orders
of magnitude over the explicit counterpart.

4.2. Flow past an NACA0012 airfoil

The flow past a stationary NACA0012 airfoil is carried out

with two different initial conditions. Case 120: Ma1= 0.5,
Re1= 5000, and angle of attack a = 2�; Case 221:
Ma1= 0.2, Re1= 5000, and a = 10�. A relatively coarse

mesh consisting of 4050 triangular cells and relatively large
time step size 0.2 are used in Case 1 in order to illustrate the
importance of high-order schemes. As shown in Fig. 4, the

unsteady wake is obtained only when the higher-order of accu-
racy in both the temporal and spatial discretizations is avail-
able. For Case 2, a much finer mesh containing 6864
quadrilateral and 31803 triangular elements is utilized. And

still, we use a large time step of 0.1 in the computation. The
vorticity fields computed by the 4th order DG coupled with
IRK4 scheme are given in Fig. 5. Current results are well
Fig. 3 Comparison of computed lift coefficients between the

IRK4 and Runge–Kutta schemes for the 2nd order DG.

Fig. 4 Entropy contours obtained by DG (P1) with IRK4 (top),

DG (P3) with BDF2 (middle) and DG (P3) with IRK4 (bottom)

for Case 1.
consistent with the solutions obtained with sufficiently refined
mesh and much more restrictive time step size, see Fig. 6(f) in

Ref. 21. Table 2 lists the computational efforts for the BDF2
and the IRK4 schemes for a comparable accuracy. The effi-
ciency of the IRK4 scheme is clearly illustrated due to the abil-

ity to adopt much larger time step than the low order method.
Fig. 6 O-type NACA0012 airfoil mesh.

Fig. 7 Comparison of lift coefficients for flow past an O-type

NACA0012 airfoil.



Table 4 Comparison of computational efficiency between

BDF2 and IRK4 schemes for flow past SD7003 airfoil.

Method Time step size CPU time (s)

BDF2 0.0015 47300

IRK4 0.0400 8560
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The flow over an oscillating NACA0012 airfoil has been
used extensively in Refs. 6,11,22 for validation because of
the availability of experimental data.23 The airfoil undergoes

harmonic pitching motion about the quarter chord with
a = am + Dasin2kt, where am = 0.016�, Da = 2.51�, and the
reduced frequency k= 0.0814, and Ma1= 0.755. In the cur-

rent simulation, the Hermite weighted essentially non-oscilla-
tory limiters are adopted and the computation is performed
on an ‘‘O’’-type mesh shown in Fig. 6. We compare the peri-

odic lift coefficient versus the angle of attack in Fig. 7. One
can see the present results agree well with the computational
results in Ref. 6 although small discrepancy exists compared
with the experimental data, which may be caused by the larger

mean angle of attack in the experiment according to Ref. 22.
Fig. 8 Average pressure coefficient and skin friction coefficient

distribution for flow past SD7003 airfoil.

Fig. 9 Instantaneous vorticity contours and average velocity

contours and streamlines for flow past SD7003 airfoil.

Table 3 Measured and computed properties for flow past

SD7003 airfoil.

Source Separation (x/c) Mean CL Mean CD

Ref. 24 0.36 0.360 0.0470

Ref. 25 0.34 0.380 0.0504

Present result 0.36 0.375 0.0490
4.3. Flow past an SD7003 airfoil

For the last case we focus on the flow around the SD7003 air-
foil with a laminar separation at Ma1= 0.2, Re1= 1 · 104,
and a = 4�, which at this condition is fundamentally two-

dimensional flow with available high-resolution numerical
data.24,25 The 4th-order DG and IRK4 scheme with fixed time
step of 0.04 have been conducted on a hybrid mesh composed

of 4428 quadrilateral cells and 12296 triangular cells. The sur-
face pressure and skin friction coefficients Cf are shown in
Fig. 8 and a summary of the computed properties of the flow

is also listed in Table 3, where overall the results are seen to
agree favorably with the previously published ones.

Fig. 9 presents the vorticity contours and velocity contours

with streamlines for the flow features of separation on the
upper surface and shedding of the tailing vortices. Notice
how the combination of accurate time step and spatial discret-
ization yields a solution with small dissipation that can capture

the vortex propagation into the wake with high fidelity. Simi-
larly, the temporal efficiency between the BDF2 and IRK4
scheme is compared in Table 4, where the IRK4 scheme

requires about five times less CPU time for this case.

5. Conclusions

(1) Temporal convergence studies indicate that the current
IRK4 scheme has achieved the designed order of accu-
racy. Additional modifications to the steady-state solver
have been proved to be able to increase the computation

efficiency of the unsteady algorithms with a small mem-
ory increment compared to the p-multigrid method.

(2) Numerical results of the von-Karman vortex street have

demonstrated the efficiency gains by the use of high-
order time integration scheme especially at tighter error
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tolerances. The suggested GMRES solver has also

shown the superior performance by enabling much lar-
ger time step to be used for both the line-implicit and
the point-implicit smoothing strategies. And the advan-

tages in accelerating the convergence of nonlinear sys-
tems are more noticeable for the larger time step.

(3) Numerical experiments for typical airfoil flows show the
clear superiority of high-order schemes when imple-

mented with the relatively coarse spatial and temporal
resolution. Moreover, the present DG methods are able
to capture all the relevant flow features of the unsteady

separation and vortex shedding, and the computational
results are in good agreement with the published data.

Further work will be carried out including the application
of the present methods to more complex turbulent flow
simulations.
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