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Abstract

We study the dilepton forward—-backward and the longitudinal, normal and transverse lepton polarization asymmetries in
the heavy baryon decays of, — AlTI~. We show that the asymmetries have a less dependence on the nonperturbative
QCD effects. In the standard model, we find that the integrated forward—backward asymmetries (FBAs) and three
components of the polarizations in the QCD sum rule approach (pole modehCat8 (—0.12) and (58.3, —9.4, —0.07)%
((583,-126, —0.07)%) for A, — Aptu~ and —0.04 (—0.03) and (109, —10.0, —0.39)% ((109, —0.2, —0.34)%) for
Ap — At T, respectivelyD 2001 Elsevier Science B.\@pen access under CC BY license.

1. Introduction

It is known that the FBAs of the dileptons in the inclusive decays of sI™/~ provide us with information on
the short-distance (SD) contributions, which are dominated by the top quark loops in the standard model [1]. The
longitudinal lepton polarizations ih— si+1~, which are another parity violating observables, are also interesting
asymmetries. In particular, the tau polarizatiorbir> st~ t~ could be accessible to the-factories [2,3]. It is
noted that the FBAs of the exclusive decdys> MI™[~ are identically zero when are pseudoscalar mesons
such ast and K but nonzero forM being vector mesons such asand K*. However, the longitudinal lepton
polarizations [4] as well as other components [5] are nonzero for both types of the exdbisieson decay
modes.

In this Letter, we study the dilepton forward—backward and various lepton polarization asymmetries in the heavy
baryon decays oA, — AlTI~. To study these baryonic decays, one of the most difficulties is to evaluate the
hadronic matrix elements. It is known that there are many form factors fatghe- A transition, which are hard
to be calculated since they are related to the nonperturbative effect of QCD. However, in heavy particle decays, the
heavy quark effective theory (HQET) could reduce the number of form factors and supply the information with
respect to their relative size [6—-8]. With the HQET, we shall use the QCD sum rule approach [6] and the pole
model [9] in our numerical calculations for the form factors.

The Letter is organized as follows. In Section 2, we study the effective Hamiltonian for the decays of
Ap — AlTI™ (I =e, u, v) and form factors in thel, — A transition. In Section 3, we derive the general forms
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of the lepton polarization and dilepton forward—backward asymmetries, in> Al/™[~. We give our numerical
analysis in Section 4. In Section 5, we present our conclusions.
2. Effective Hamiltonian and form factors

To study the heavy baryon decay 4f — AITI~ (I =e or i or T), we start with the effective Hamiltonian for
theb-quark decay ob — si+I1—, given by

10
Gr
H=—-4—V,V* C; O; , 1
75 ,; (1) Oi (1) 1

whereGr is the Fermi constany/;; are the CKM matrix elements, ard («) and O; (i) are the expressions for

the renormalized Wilson coefficients and operators, whose expressions can be found in Ref. [10], respectively. In
terms of the Hamiltonian in Eq. (1), the free quark decay amplitude is written as

Graem

V2n

M(b—sitl™) = Vip V., [E(Cgﬂ(u)yﬂﬂ_ — %Cﬂu)iawq”PR)bl_y“l +§C10yMP|_bl_y“y51],

2
with PLry = (1 F y5)/2. We note that in Eq. (2) only the term associated with the Wilson coefficigsis
independent of tha scale. We also note that the dominant contribution to the decay rate is from the long-distance
(LD), such as that from thec resonant states af, ¥’, etc. It is known that to find out the LD effects for the
B-meson decays, in the literature [1,3,4,11-13], both the factorization assumption (FA) and the vector meson
dominance (VMD) approximation have been used. For the LD contributions in baryonic decays, we assume that
the parametrization is the same as that in Bameson decays. Hence, we may include the resonant effect (RE)
by absorbing it to the corresponding Wilson coefficients. The effective Wilson coefficiéf@“dﬁas the standard
form

al(j—ItI)M;
C" = Co(1) + (3C1(w) + C h(x,9) + —— k;j 2,
§" = Co() + (3C1(w) + C2(w) | h(x. ) j%/ P ME T,

where h(x,s) describes the one-loop matrix elements of operai@is= 5,y* PLbgcgyPLca and Oz =
sy* PLbcy, P c as shown in Ref. [10]M;(I";) are the masses (widths) of intermediate states, and the factors
k; are phenomenological parameters for compensating the approximations of FA and VMD and reproducing the
correct branching ratios a8(B — J/¥X — [TI"X) = B(B — J/¥X) x B(J/¥ — [T[7). In this Letter we
take the Wilson coefficients at the scaleuof- m;, ~ 5.0 GeV and their values are taking to 6e(m;) = —0.226,
Ca2(mp) = 1.096,C7(mp) = —0.305,Cq(m;) = 4.186, andC1o(m;) = —4.599, respectively.

It is clear that one of the main theoretical uncertainties in studying exclusive decays arises from the calculation
of form factors. With the HQET, the hadronic matrix elements for the heavy baryon decays could be parametrized
as follows [9]

(A(p, 9)[5Tb| Ap(v,5')) =it a(p, )| Fi(q?) + ¥ F2(q) ) Tuen, (v, ), (3)

wherev = p,,/ M, is the four-velocity of the heavy baryon? = (pa, — pa)? is the square of the momentum
transform, and™ denotes the possible Dirac matrix. Note that in terms of the HQET there are only two independent
form factors, F; and F», in Eq. (3) for eachl". In the following, we shall use¢; and R = F»>/F; as the two
independent parameters and adopt the HQET approximation to analyze the behavjersofi/ 1~

From Egs. (2) and (3), the transition matrix elementdaipa,) — A(pa)l*(p+)l~ (p-) can be expressed as

Graem

V2n

M(Ap — Al = Vip V[ Huy LYy + Hau LY ], (4)
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with
v=Iy*l,  La=Iy"ysl,
Hi, = Ay (A1PR+ B1PL) Ap + Aicq"(A2PR + B2PL) Ay,
Hzy = E1 Ay, PLAp + E2Aioyq” PL A, + E3qu APL Ap, (5)
where one has

q=pa, —PA=Dp++ DP-,
2myp

A :_q—2C7f,~T, B =C§"fi.  Ei=Cuofi.
RF;

f1:f2T=F1+ﬁRF1, f2=fz= . ©)
My,

3. Lepton asymmetries

In this section we present the formulas for the forward—backward and the longitudinal, normal and transverse
lepton polarization asymmetries iy, (pa,) — A(pa)lT (p+,s+)~ (p—). We shall concentrate on t#& spin for
the polarizations. To do this, we write e four-spin vector in terms of a unit vectd, along thel/* spin in its
rest frame, as

52 0
o P+°§ > 2 Sy S
= b = - b 7
s3 - s =§+ B +mlp+ (7)
and choose the unit vectors along the longitudinal, normal, and transverse components gfdlagization to be
. Py . Py x(Ppaxpy) . PAXDy
eL = —5—, €N = = > = s eT=—5S5—"35—, (8)
|P+] [p+ X (pa X p4)l |pa X p+|
respectively. The partial decay width fdy, — AI*I~ is given by
dpa dp+ dpi-
dIr = 45 —PA— DIt — DI , 9
4My, (Pay = PA = Pt = PI) o s e 5 )32E; (21)32E, ©)
with
2_11, 02 A A AN 2
M| =§|M |“[1+ (PLéL + Pnén + PréT) - €], (10)

where| MP|2 is related to the decay rate for the unpolarizécand P; (i =L, N, T) are the longitudinal, normal

and transverse polarizationsidf, respectively. Introducing dimensionless variables, ot V;,V/, r = Mﬁ/Mﬁh
mp=mi/Mu,, lp =my/Myp,, § =q°/M5 andi=pa, - pa/M5 = (1+r —3§)/2, using the transition matrix
element of Eq. (4), and integrating the angle dependence of the lepton, the differential decay width in Eq. (9)
becomes

_1 0 z
dr'=zdr [1+P-£]. (11)
with

Ol
drl= 3F82 s MAb,/ (5)4/ IRAh(s)ds (12)
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and

P = PLéL + Puén + Prér, (13)
where

$G) =L —r)?—28(L+r)+35 (14)
and

RAb(§)=4@§|C7|2F12{—(1—Rz)[ff—4(1—f)(f—r)]—2R(ﬁ+Rf)(§—4(1—f)2)
+8—2[(1 R¥)(1—17)(f—r) +2R(vr +Ri)(1— A)z]—Zﬁz‘f((leRz)HZR\/?)}
+ 12m), ReC§ C7<1+2—2>F2[(1 R?)(f—r) +2R(Vr + Ri)(1—-17)]

+ (|CE™? + | Cr0l?) F2 {(1 4A2)[(1+Rz)f+2Rﬁ]

+2<1+2%)(1— D[ - r)(1 - R) + 2R(VF + RP) (1 - f)]}

+6m2(|CS™|? — 1C10P?) FZ[(L+ R?)F +2RT ]. (15)
In Egs. (12) and (15), the allowed rangesds
42 <5< (A2 (16)

Defining the longitudinal, normal and transvelSepolarization asymmetries by
dre-£=1—-dr@ §=-1

dr@ -E=1)+dlr@ &£=-1

from Eq. (11) we find that

4m? RL(5)
P (5 = ] ’ .
v FRA,,@) (18)
3 ®(5) RNGS)
@ =g ’\/7RAb(s> (19)
Pr(s) = §nm,¢3¢7 /E RT(5) "
4 RAb(S)

where

RL(®) = F2ReCS Cio[ (1 — RA)((L = )% +§(1+r) — 25%) + 2R(Vr + R) (25 + (L — r +3§)7)]
+ 6F12 Recloc;*mb[(l —r—3)(1— R?) +2R(Vr + RT)(1—r +3)].

Pi(3) = 17)

RN () = 4FF bICﬂ (L= R (L= 1) +2R(F + RF)(L—r +)]

+ F2(1— R?)|CS™% + F2ReCS Cio[ (1 — r) (1 — R?) +2(1— r +5)R(VF + R7)]
+ 2F i, (2ReCS"C3 + ReC10Cy) (1 — R? + 2R(V/r + R7)),
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RT(§) = Ff% IMC7C3o(1— R? +2R(V/r + R7)) + FAImCE"Co(1 - R?). (21)

We note that the transverse part of the lepton polarization in Eq. (20) ie@d observable.
The differential and normalized dilepton forward—backward asymmetries (FBAs) for the dedgy-efAl*]~
as a function of are defined by

1 0
dAre(S) f d2I (5) f d2I (5)
= dcos)———— — | dcosh ———— |, 22
ds [ ds dcosh dsdcosh (22)
0 -1
and
1 G d2r (s) d2r (s)
S S
$)=——| [ dcosh——— — | dcosh) ——— |, 23
Ara () dF(f)/d§|:f didcosh / d§dcos€i| (23)
0 -1

respectively, wher@ is the angle of * with respect ta4, in the rest frame of the lepton pair. Explicitly, we obtain

dArs(5) G242 A2 . mn? .
= ';8;'?’ M3,6 61— 4=" ) Res(6), (24)
and
03— 4in? Reg(s
s = 5v9(0) |1 L 20, (25)
s RA;, ()
where
R R?f
Res(8) = FZ(1— R?) [2@, ReC10Cy <1 - 2%) +3§ ReCSﬁCfO}. (26)

From Egs. (15), (18)—(21) and (25), (26), we see thai =L, N, T) and.Agg depend only oIR since the factoFl2

is canceled out. Thus, once one gets the valug,ahe only uncertainty for the asymmetries is from the Wilson
coefficients. It is interesting to note that these asymmetries are sensitive to the chiral structure of electroweak
interactions since they are related to the productsgdf;, C10C7 andCoC,.

4. Numerical analysis

In our numerical calculations, the Wilson coefficients are evaluated at theiscale, and the other parameters
are listed in Table 1 of Ref. [8]. For the form factors in thg — A transition, we use the results from both the

Table 1
Form factors in the QCD sum rule approach

Fp F
¢2=0 0.462 -0.077
a —0.0182 —0.0685

b —0.000176 0.00146
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QCD sum rule approach [6] and the pole model [9]. In the QCD sum rule approach we use the form
F;i(0)
Fi (qz) T 1L 40?2+ ba?
14+ aqg+bq
where the parameters in Eq. (27) are shown in Table 1. From Table 1, we fine®at F»>(0)/F1(0) = —0.17

and R(q%ax) = —0.44 which are consistent with the CLEO result®&= —0.25+ 0.14+ 0.08 [14]. In the pole
model, we adopt

2 Agep \?
Fi(CI)=Ni m ) (28)

(27)

wherez=pa - pa,/Mp, =1 +r — qz/M/zlb)MA,,/Z and Aycp is chosen around 200 MeV. Assuming the form
factors for the transition ofti. — A are similar to that ofA, — A and usingR = —0.25 [14] and the branching
ratio of AT — Ae™v,, we obtain thatVy » are(52.32,—13.08)[8].

4.1. Forward-backward asymmetries

From Egs. (24) and (25), we see that the FBAs for the light charged lepton modgs-efAl*I~ (I = e andu)
are close to each other. As a result, we shall not mention the electron mage-sfAete™. In Figs. 1 and 2, we
showApg(Ap — AITI™) as a function of dimensionless varialiléor [ = 1« andz, respectively. From Fig. 1(a),
we see thatdrg (A, — ApT ™) has a zero value dp which satisfies the condition

21 1— R2+4+ 2R(\/T + RI)
ReCecyy= e ReC;C%, i R*zf (29)

Furthermore, we find that the contributions from the pole and QCD sum rule models to FBAs overlap atgRe low
region so that in both models Eq. (29) can be simplified to

2my,
ReCE Ciy~ — > ReC7C},, (30)
= -~ 02
[ o [
+§ 04 (a) *o ¥ (b)
< r < [
T T o1F
= = [
< 02+ < [
S & r
<< < 0r
0
YA
0.2 -
02|
0.4 +
I T BT R
0 -0.3 0.4 0.5 0.6
qZ/M/Z\b

Fig. 1. FBAs as a function ajz/Mflb for (a) Ap, — ApTu~ and (b)A, — At . The curves with and without resonant shapes represent
including and no LD contributions, respectively. The solid (dash-dotted) curves stand for the QCD sum rule approach and the dashed (dotted)
for the pole model with (withoutR, respectively.
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Fig. 2. The differential FBA ofiAFB/dq2 for Ap, — Aut ™ as afunction oiqz. Legend is the same as Fig. 1.

which is independent of the hadronic form factors. Explicitly, from Fig. 1(a), in the standard model we get that
S0 is 0.109 and 0114 with and withoutR terms for excluding LD effects, and@8 and 0102 for including LD

effects, respectively. It is clear that the zero pointek (A, — Ap™ ™) is mainly affected by the weak Wilson
coefficients ofC7 andCg that are sensitive to physics beyond the standard model. For example, if 6pandCqy

has an opposite sign to that in the standard model, the condition for the zero point in Eq. (30) will not be satisfied.
Therefore, measuring a sizable value of the FBA arofinid a clear indication of new physics. This result is
similar to B — K*I™1~ decays mentioned by [15] with large energy effective theory (LEET) [16]. We note that
the vanishing of the FBAs in the inclusive decaysef (s, d)I*I~ and the exclusive ones & — (K*, p)I*]~

were first studied by Burdman [17]. Our conclusion for the baryonic decays coincides with that in Ref. [17].

From the figures, we find that there is no much difference for the FBAs between the QCD sum rule approach
and the pole model at the lower valuesgdt especially for that in the muon mode. By takiRgto be zero, the
distributions for both models in Figs. 1 and 2 should be identical. Thus, the differences for the FBAs in the different
QCD models actually reflect the effects of the rakioThe insensitivity to the form factors for the FBAs provides
us a candidate to test the standard model.

In Fig. 3, we show the differential FBA af Arg(s)/ds which, unlike Agg, is insensitive toR. This can be
understood that due to Eqgs. (24) and (25) it is proportion&g(s) in which the terms with"l2 are the dominant
contributions and those witR are negligible since these terms are related to eiifesr R/, which are small.

We now define the integrated FBA to be

Arg = / ds Ars($), (31)
4inf
wheresmax = (1 — +/r)2. Without LD contributions, in the standard model we find that
Ag(Ap — Aptp”) = —0.13(-0.12), (32)
and
Ars(Ap — Att77) = -0.04(-0.03), (33)
for the QCD sum rule approach (pole model), respectively.



334 C.-H. Chen, C.Q. Geng / Physics Letters B 516 (2001) 327-336

~

= w0 (b)
< () S0
T Teost
<Q . <"Q 0.5
= = L
Al ~ [
.
0.5 L
1 B 2 S Y I S SR R
0.6 0.4 0.5 0.6
q /M3, 4 /M3,

Fig. 3. Longitudinal polarization asymmetries. Legend is the same as Fig. 1.
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Fig. 4. Normal polarization asymmetries. Legend is the same as Fig. 1.

4.2. Polarization asymmetries

We now discuss the longitudinal, normal and transverse polarization asymmetries of the lepton and their
implications. From Egs. (18)—(21), the distributionsRf, Py and Pr with respect to the dimensionless kinematic
variables are shown in Figs. 4 and 5, respectively. From the figures, we find that the results of the QCD sum rule
and pole models to various polarizations are as follows:

(1) they overlap fully forP ;
(2) Py is not sensitive to the models except for the sméltegioninA, — Aputu™;
(3) the effects of the different QCD models B are significant at the largg? region.

Clearly, P_ and Py for the mosiy? region inA, — AlTI~ are independent of the QCD models.

Itis easily seen that outside the resonant states, both polarizatidnsaofd Py are insensitive to the LD effects.
We note thatP, for A, — AuTr™ is close to 1, while that for the tau mode is over 40%, in the most values
of g2 except that around resonant regions. The large asymmetrigs in AlT]~ are good candidates to test
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Fig. 5. Transverse polarization asymmetries. Legend is the same as Fig. 1.
Table 2
Integrated lepton polarization asymmetries in the standard model without LD effects
Model Mode 1027, 102 Py 102 Pr
QCD sum rule Ap— ApTp~ 583 -94 —-0.07
Ap— Atto™ 109 —100 —0.39
Pole model Ap— AptTu~ 583 —126 —0.07
Ap— At~ 109 -92 -0.34

the standard model. Fdtr, since it is proportional to the imaginary parts of the Wilson coefficient products, the
LD contributions are important. Note that in the standard model, the effective Wilson coefficiej‘gg obntains
absorptive parts, whil€7 andC1g have only real values. From Eg. (20), the part otGglffC{O) yields a nonzero
value of Pr, but that of Im{C7C7,) vanishes. However, due to the enhanced facfdrat smalls for the term

corresponding to IfC7Cj), one could search for these regions since the contribution from some nonstandard CP
violation model may not be negligible.

Finally, in Table 2, we list the integrated lepton polarization asymmetries,in> Al*I~, defined by
Smax
P = / ds Pi. (34)
4in?

In Table 2, the results are calculated in the standard model without LD effects.

5. Conclusions

We have given a detailed analysis on the dilepton forward—backward and the longitudinal, normal and transverse
lepton polarization asymmetries for the decaysigf— AlTI~ (I = e, u, T) in the standard model. Based on the

HQET, there are only two independent form factars,and F»> or F; and R, involved in the matrix element of
Ab — A.
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We have shown that all the asymmetries are relatetlaod free of the other form factdf;. Moreover, we have
found thatR is always associated witlfr so that by neglecting its contributions, there are only a few percentages
lose in the asymmetries. Thus, the asymmetries in the heavy baryonic dilepton decays have a less dependence c
the nonperturbative QCD effects. We have also demonstratedtloa, — Al/*I~) are QCD model independent
guantities. We have pointed out that the FBA for the light lepton mode gets to z& avhtch is only sensitive to
the weak couplings. Finally, since the absolute values of the integfatettl observables of the transverse lepton
polarizations inA;, — Alt1~ are less than 1@ in the standard model, measurifg such as in the tau mode at a
level of 102 would be a clear signal for some new CP violation mechanism.
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