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a b s t r a c t

Given a graph G = (V , E) in which a fugitive hides on vertices or along edges, graph
searching problems are usually to find the minimum number of searchers required to
capture the fugitive. In this paper, we consider the problem of finding the minimum
number of steps to capture the fugitive. We introduce the fast edge searching problem
in the edge search model, which is the problem of finding the minimum number of steps
(called the fast edge-search time) to capture the fugitive. We establish relations between
the fast edge searching and the fast searching that is the problem of finding the minimum
number of searchers to capture the fugitive in the fast search model. While the family of
graphs whose fast search number is at most k is not minor-closed for any positive integer
k ≥ 2, we show that the family of graphs whose fast edge-search time is at most k is
minor-closed. We establish relations between the fast (fast edge) searching and the node
searching. These relations allow us to transform the problem of computing node search
numbers to the problem of computing fast edge-search numbers or fast search numbers.
Using these relations, we prove that the problemof deciding, given a graphG and an integer
k, whether the fast (edge-)search number of G is less than or equal to k is NP-complete; and
it remains NP-complete for Eulerian graphs.We also prove that the problemof determining
whether the fast (edge-)search number of G is half of the number of odd vertices in G is
NP-complete; and it remains NP-complete for planar graphs with maximum degree 4. We
present a linear time approximation algorithm for the fast edge-search time that always
delivers solutions of at most (1+ |V |−1

|E|+1 ) times the optimal value. This algorithm also gives
us a tight upper bound on the fast search number of graphs. We also show a lower bound
on the fast search number using the minimum degree and the number of odd vertices.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Given a graph in which a fugitive hides on vertices or along edges, graph searching problems are usually to find the
minimumnumber of searchers required to capture the fugitive. The edge searching problemand the node searching problem
are two major graph searching problems. The edge searching problem was introduced by Megiddo et al. [13]. They showed
that determining the edge search number of a graph is NP-hard. They also gave a linear time algorithm to compute the edge
search number of a tree. The node searching problem was introduced by Kirousis and Papadimitriou [9]. They showed that
the node search number is equal to the pathwidth plus one and that the edge search number and node search number differ
by at most one. Both searching problems are monotonic [4,10].

Let G = (V , E) be a graphwith vertex set V and edge set E. In the edge searchmodel, initially, G contains no searchers but
G contains one fugitive who hides on vertices or along edges. The fugitive is invisible to searchers, and he canmove at a great
speed at any time from one vertex to another vertex along a searcher-free path between the two vertices. There are three
types of actions for searchers in each step, i.e., placing a searcher on a vertex, removing a searcher from a vertex, and sliding a
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Fig. 1. The fast search number is 3 while the brush number is 7.

searcher along an edge from one endpoint to the other. An edge is cleared only by a sliding action. An edge the fugitive could
be on is said to be contaminated, and an edge the fugitive cannot be on is said to be cleared. A contaminated edge uv can be
cleared in one of two ways by one sliding action: (1) sliding a searcher from u to v along uv while at least one searcher is
located on u, and (2) sliding a searcher from u to v along uv while all edges incident on u except uv are already cleared. An
edge search strategy in a k-step search is a sequence of k actions such that the final action leaves all edges of G cleared. The
graph G is cleared if all edges are cleared. The minimum number of searchers required to clear G in the edge search model
is the edge search number of G, denoted by es(G). In this paper, we introduce a new searching problem in the edge search
model, called fast edge searching, which is the problem of finding the minimum number of steps (or equivalently, actions)
to clear G in the edge search model. In the fast edge searching problem, the minimum number of steps required to clear G
is the fast edge-search time of G, denoted by fet(G), and the minimum number of searchers required so that G can be cleared
in fet(G) steps is the fast edge-search number of G, denoted by fen(G). A fast edge-search strategy that uses fet(G) steps to
clear G is called an optimal fast edge-search strategy.

The motivation to consider the fast edge searching problem is that, in some real-life scenarios, the cost of a searcher
may be relatively low in comparison to the cost of allowing a fugitive to be free for a long period of time. For example, if a
dangerous fugitive hiding along streets in an area, policemen always want to capture the fugitive as soon as possible.

The fast edge searching problem has a strong connection with the fast searching problem, which was first introduced
by Dyer et al. [7]. The fast search model has the same setting as the edge search model except that every edge is traversed
exactly once by a searcher and searchers cannot be removed. The minimum number of searchers required to clear G in the
fast search model is the fast search number of G, denoted by fsn(G). A fast search strategy in a k-step fast search is a sequence
of k actions such that the final action leaves all edges of G cleared. Notice that this definition is slightly different from the
one used in [7].1 A fast search strategy that uses fsn(G) searchers to clear G is called an optimal fast search strategy.

Note that the goal of the fast edge searching problem is to find the minimum number of steps to capture the fugitive in
the edge search model, while the goal of the fast searching problem is to find the minimum number of searchers to capture
the fugitive in the fast search model.

The fast searching problem has a close relationwith the graph brushing problem [1,12] and the balanced vertex-ordering
problem [3]. For any graph, the brush number is equal to the total imbalance of an optimal vertex-ordering. For some graphs,
such as trees, the fast search number is equal to the brush number. But for someother graphs, the gap between the fast search
number and the brush number can be arbitrarily large. For example, for a complete graph Kn with n (n ≥ 4) vertices, the fast
search number is n, and the brush number is n2/4 if n is even, and (n2

− 1)/4 otherwise. The difference is caused mainly by
the different behavior of searchers and brushes. In the fast search problem, a searcher can go through an occupied vertex to
clear two incident edges, but this is not allowed for brushes in the brushing problem. This difference can be illustrated by
the graph H with k (k ≥ 4) parallel paths sharing the same ends (see Fig. 1). The fast search number of H is 3 and the brush
number is k.

Bonato et al. [5] introduced the capture time on cop-win graphs in the Cops and Robber game. While the capture time of
a cop-win graph on n vertices is bounded above by n− 3, half the number of vertices is sufficient for a large class of graphs
including chordal graphs.

In Section 2, we give definitions and notation. In Section 3, we establish relations between the fast edge searching and
the fast searching. We also show that the family of graphs whose fast edge-search time is at most k is minor-closed for any
positive integer k. In Section 4, we first establish relations between the fast (fast edge) searching and the node searching.
By these relations, the problem of computing the node search number of a graph is equivalent to that of computing the
fast (edge-)search number of a related graph. We then prove that the problem of deciding, given a graph G and an integer
k, whether the fast (edge-)search number of G is less than or equal to k is NP-complete; and it remains NP-complete for
Eulerian graphs. Since the family of graphs {G : fsn(G) ≤ k} is not minor-closed for any positive integer k ≥ 2 [7], we
cannot obtain an upper bound on the fast search number using the fast search number of complete graphs. In Section 5, we
present a linear time approximation algorithm. Using this algorithm, we show that the number of vertices in a graph is an
upper bound on the fast search number of the graph. The lower bounds given in [14] are basically based on the number of
odd vertices in the graph. In Section 6, we show a new lower bound based on the minimum degree and the number of odd
vertices. In Section 7, we first show the fast search number of the graph of a family of functions is equal to the number of

1 In [7], a fast search strategy for graph G is a sequence of |E(G)| sliding actions that clear G.
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Fig. 2. A graph H with 3n+ 6 vertices and 4n+ 5 edges, where n = 4.

functions in the family. We then prove that the problem of deciding, given a graph H , whether the fast search number of H
is a half of the number of odd vertices in H is NP-complete; and it remains NP-complete for planar graphs with maximum
degree 4. Finally, we conclude this paper in Section 8.

2. Preliminaries

Throughout this paper, all graphs andmultigraphs have no loops. We use G = (V , E) to denote a graph with vertex set V
and edge set E, and we also use V (G) and E(G) to denote the vertex set and edge set of G respectively. We use uv to denote
an edge with endpoints u and v. Definitions omitted here can be found in [15].

For a graph G = (V , E), the degree of a vertex v ∈ V , denoted by degG(v), is the number of edges incident on v. A vertex
is odd when its degree is odd. Similarly, a vertex is even when its degree is even. Let Vodd(G) be the set of all odd vertices in
G, and Veven(G) = V \ Vodd(G). For a vertex v ∈ V , the set {u : uv ∈ E} is the neighborhood of v, denoted as NG(v). In the case
with no ambiguity, we use deg(v) and N(v) without subscripts. Let δ(G) = min{|N(v)| : v ∈ V (G)}. For a subset V ′ ⊆ V ,
G[V ′] denotes the subgraph induced by V ′, and for a subset E ′ ⊆ E, G[E ′] denotes the subgraph formed by E ′.

A component of a graph G is a maximal connected subgraph of G. A cut-edge or cut-vertex of a graph is an edge or vertex
whose deletion increases the number of components. A block of a graph G is a maximal connected subgraph of G that has
no cut-vertex. If G itself is connected and has no cut-vertex, then G is a block. It is easy to see that an edge of G is a block
if and only if it is a cut-edge. If a block has at least 3 vertices, then it is 2-connected. Thus, the blocks of a graph are its
isolated vertices, its cut-edges, and its maximal 2-connected subgraphs. The block graph of G is a graph T in which each
vertex represents a block of G and two vertices are connected by an edge of T if the two corresponding blocks share a vertex
of G. The block graph must be a tree if G is connected. A block of G that corresponds to a degree-one vertex of T is called a
leaf block. Note that every leaf block has exactly one cut-vertex.

A path is a list v0, e1, v1, . . . , ek, vk of vertices and edges such that each edge ei, 1 ≤ i ≤ k, has endpoints vi−1 and vi and
each vertex appears exactly once (except that its first vertex might be the same as its last). Thus we can denote a path by a
list of vertices v0v1 . . . vk. A cycle is a path that begins and ends on the same vertex.

We say that a vertex in G is occupied at some moment if at least one searcher is located on this vertex at this moment.

3. Fast edge searching vs. fast searching

In this section, we consider the relationship between the fast edge searching in the edge search model and the fast
searching in the fast search model.

Theorem 3.1. For any graph G = (V , E), fet(G) = fsn(G)+ |E|.

Proof. Note that a fast search strategy can be considered as an edge-search strategy. Since a fast search strategy consists
of fsn(G) placing actions and |E| sliding actions, we have fet(G) ≤ fsn(G) + |E|. Recall that the fast edge-search time is
the minimum number of actions needed to clear G in the edge search model. If an edge-search strategy of G containing
removing actions, we can delete all removing actions and the remaining actions still form a valid edge-search strategy with
fewer actions (and possibly more searchers). If an edge-search strategy of G containing sliding actions that slide a searcher
from u to v along a cleared path between them, we can replace these actions by placing a searcher on vertex v. The resulted
strategy is an edge-search strategy thatmay contain fewer actions (and again possiblymore searchers). So, in an optimal fast
edge-search strategy, removing actions are not contained, and traversing along a cleared path is also not necessary. Thus,
we can always convert a fast edge-search strategy to a fast search strategy. Hence, fsn(G) ≤ fet(G)− |E|, which completes
the proof. �

Corollary 3.2. For any graph G, fen(G) ≤ fsn(G).

The difference between fen(G) and fsn(G) can be large. As illustrated in Fig. 2, letH be a graphwith 3n+6 (n > 1) vertices
and 4n+ 5 edges. Note that the fast search number of a graph is at least half of the number of odd vertices in the graph [7].
Since H has 2n+ 6 odd vertices, we know that fsn(H) ≥ n+ 3. In fact, we can clear H using n+ 3 searchers by a fast search
strategy. But we can clear H using 2 searchers by a fast edge-search strategy. Thus the ratio fsn(H)/fen(H) = (n+ 3)/2 can
be arbitrarily large. We have the following relation between the fast edge-search number and the fast search number.

Theorem 3.3. For any graph G, let G be a graph obtained from G by replacing each edge of G by a path of length 2. Then,
fsn(G) = fen(G).



B. Yang / Theoretical Computer Science 412 (2011) 1208–1219 1211

Proof. Because every optimal fast search strategy of G can be converted to a fast edge-search strategy of G, we have
fen(G) ≤ fsn(G). We now show that fsn(G) ≤ fen(G). Let S be an optimal fast edge-search strategy of G. For any edge
uv ∈ E(G) and its corresponding path uu′v inG, the following two cases cannot happen in S: (1) if a searcher slides from u to
v along uu′v and then back from v to u along vu′u, then these 4 sliding actions can be replaced by 3 actions, that is, placing
a searcher on v and sliding the searcher from v to u along vu′u; and (2) if a searcher slides from u to u′ and another searcher
slides from v to u′ and then one searcher slides from u′ to v and the other slides from u′ to v, then these 4 sliding actions
can be replaced by 3 actions as in case (1). Because the above two cases cannot happen in S, we can easily convert S to a fast
search strategy of G. Thus fsn(G) ≤ fen(G), which completes the proof. �

Corollary 3.4. Let G be a graph such that for every vertex v with deg(v) ≠ 2, all neighbors of v have degree 2. Then,
fsn(G) = fen(G).

From [7], we know that the family of graphs {G : fsn(G) ≤ k} is not minor-closed for any positive integer k ≥ 2. For any
integer ℓ, there exist graphs G and its subgraph H such that the ratio fsn(H)/fsn(G) > ℓ. But for the fast edge searching, we
can show that the family of graphs {G : fet(G) ≤ k} is minor-closed.

Theorem 3.5. Given a graph G, if H is a minor of G, then fet(H) ≤ fet(G).

Proof. For a vertexv ∈ V (H), letCv be a subset of vertices fromV (G) such thatv is obtained fromGby identifying the vertices
of Cv under contraction. Given a fast edge-search strategy of G, we convert it to a search strategy of H by the following rules:
whenever a searcher is placed on v′ ∈ V (G), the corresponding searcher in the new search strategy is placed on v ∈ V (H) if
there is a Cv such that v′ ∈ Cv , but does nothing otherwise; andwhenever a searcher slides along an edge u′v′ from u′ ∈ V (G)
to v′ ∈ V (G), the new search strategy does one of the following actions: (1) a searcher slides along edge uv from u ∈ V (H) to
v ∈ V (H) if there are two sets Cu and Cv such that u′ ∈ Cu, v′ ∈ Cv , and uv ∈ E(H); (2) a new searcher is placed on v ∈ V (H)
if there are two sets Cu and Cv such that u′ ∈ Cu and v′ ∈ Cv , but uv ∉ E(H); (3) a new searcher is placed on v ∈ V (H) if
there is a Cv such that v′ ∈ Cv , but there is no Cu such that u′ ∈ Cu; and (4) does nothing otherwise. Note that all optimal
fast edge-search strategies do not contain any removing actions.

It is easy to verify that the new strategy can clear H using at most fet(G) steps. Thus, fet(H) ≤ fet(G). �

4. Node searching vs. fast (edge) searching

In this section, we establish relations between the node search number and the fast (edge-)search number. Using these
relations, we can prove that both fast edge search problem and fast search problem are NP-hard. In the node search model
[9], there are only two types of actions for searchers: placing and removing. An edge is cleared if both endpoints are occupied
by searchers.We use placeX (u) to denote the action of placing a searcher on vertex u in the strategy X , and use removeX (u) to
denote the action of removing a searcher from vertex u in the strategy X . For a graph G, the minimum number of searchers
needed to clear G in the node searchmodel is the node search number of G, denoted by ns(G). In the fast searchmodel, we use
placeY (u) to denote the action of placing a searcher on vertex u in the strategy Y , and use slideY (u, v) to denote the action
of sliding a searcher from u to v along edge uv in the strategy Y . In the case with no ambiguity, we use place(u), remove(u)
and slide(u, v) without subscripts.

For a path P of length at least 1, we know that ns(P) = 2 and fsn(P) = fen(P) = 1. For a cycle C of length at least
3, we know that ns(C) = 3 and fsn(C) = fen(C) = 2. For any graph G, it is easy to see that ns(G) ≤ fsn(G) + 1 and
ns(G) ≤ fen(G) + 1. The gap between the node search number and the fast (edge-)search number can be arbitrarily large
for some graphs. For example, for a complete bipartite graph K1,n with bipartitions of size 1 and n, we have fsn(K1,n) =

fen(K1,n) =
 n

2


whereas ns(K1,n) = 2.

From [9], we know that node search strategies can be standardized as follows.

Lemma 4.1 ([9]). For any graph G, there always exists a monotonic node search strategy satisfying the following conditions:

(i) it clears G using ns(G) searchers;
(ii) every vertex is visited exactly once by one searcher;
(iii) every searcher is removed immediately after all the edges incident on it have been cleared (ties are broken arbitrarily); and
(iv) a searcher is removed from a vertex only when all the edges incident on it are cleared.

An optimal node search strategy satisfying the properties in Lemma 4.1 is called a standard node search strategy. For a
graph with n vertices, any standard node search strategy is monotonic and has 2n actions. It is easy to see the first action is
placing and the last action is removing.

For a graph G, let G′ be a graph obtained from G by adding a vertex a and connecting it to each vertex of G. Let A′G
be a multigraph obtained from G′ by replacing each edge with 4 parallel edges. Let AG be a graph obtained from A′G by
replacing each edge of A′G with a path of length 2. In graphs G′, A′G and AG, the vertex a is called apex. It is easy to see that
fsn(A′G) = fsn(AG).

Lemma 4.2. For a complete graph Kn with n ≥ 2, fsn(AKn) = fen(AKn) = n+ 2.
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Proof. Since fsn(A′Kn) = fsn(AKn), we will show that fsn(A′Kn) = n + 2. We first show that fsn(A′Kn) ≤ n + 2. We place n
searchers on each vertex of Kn and 2 searchers on the apex a. Since A′Kn is an Eulerian graph, we can slide one searcher on a
along every edge of A′Kn exactly once. Thus fsn(A′Kn) ≤ n+ 2.

We now show that fsn(A′Kn) ≥ n + 2. Note that A′Kn can be obtained from Kn+1 by replacing each edge of Kn+1 with 4
parallel edges. Let S be an optimal fast search strategy of A′Kn , v be the first cleared vertex, and uv be the second last cleared
edge incident on v. Just after uv is cleared, there is only one dirty edge incident on v. There are two cases to clear uv.

1. If uv is cleared by sliding a searcher from u to v, then v must be occupied by at least two searchers, and every other vertex
of A′Kn is occupied by at least one searcher.

2. If uv is cleared by sliding a searcher from v to u, then u is occupied by at least two searchers, and every other vertex of
A′Kn is occupied by at least one searcher.

From the above cases, we have fsn(A′Kn) ≥ n + 2. Thus, fsn(AKn) = fsn(A′Kn) = n + 2. It follows from Corollary 3.4 that
fen(AKn) = fsn(AKn) = n+ 2. �

We have the following relation between the node search number of G and the fast search number of AG.

Lemma 4.3. For a graph G and its corresponding graph AG described above, fsn(AG) ≤ ns(G)+ 2.

Proof. Since fsn(A′G) = fsn(AG), we will show that fsn(A′G) ≤ ns(G)+ 2. Let ns(G) = k and X = (X1, . . . , X2n) be a standard
node search strategy, where n is the number of vertices in G. Each Xi is one of the two actions: placing and removing. There is
no searcher on G before X1 and X1 is a placing-action. Let Ei(X), 1 ≤ i ≤ 2n, be the set of cleared edges just after Xi and E0(X)
be the set of cleared edges just before X1. We will show that fsn(A′G) ≤ k + 2 by constructing a fast search strategy Y that
uses k+ 2 searchers to clear A′G. For each action Xi, 1 ≤ i ≤ 2n, we use a sequence of actions, denoted as y(Xi), to simulate
the action Xi. So Y is the concatenation of all y(Xi) and can be expressed as (y0, y(X1), . . . , y(X2n)), where y0 is a sequence of
k+ 2 actions that place k+ 2 searchers on the apex a and each y(Xi), 1 ≤ i ≤ 2n, is a sequence of sliding actions. Let Ei(Y )
be the set of all cleared edges by strategy Y just after y(Xi) and E0(Y ) be the set of cleared edges just after y0. Note that Ei(Y )
is not a multiset, that is, a multiple edge pq appears in Ei(Y ) only when all parallel edges between p and q are cleared. Let Ea
be a set of all edges incident on a.

We now construct Y from X inductively such that Ei(X) = Ei(Y ) \ Ea for each i satisfying 1 ≤ i ≤ 2n. It is easy to see that
E0(X) = E0(Y ) = ∅. Initially, if the action X1 is placeX (u), then let y(X1) = (slideY (a, u)). Thus, E1(X) = E1(Y ) \ Ea = ∅.

Suppose that Ej−1(X) = Ej−1(Y ) \ Ea and the set of vertices in G occupied by searchers just after Xj−1 is equal to the set
of vertices in A′G − a occupied by searchers just after the last action of y(Xj−1). We now consider Ej(X) and Ej(Y ) \ Ea. There
are two cases regarding the action Xj.

Case 1. Xj = placeX (v). If Ej(X) \ Ej−1(X) = ∅, then no edge is cleared by Xj, and no recontamination happens.
Thus we set y(Xj) = (slideY (a, v)). It is easy to see that Ej(X) = Ej−1(X) = Ej−1(Y ) \ Ea = Ej(Y ) \ Ea. If
Ej(X) \ Ej−1(X) ≠ ∅, the graph Gj formed by the edges of Ej(X) \ Ej−1(X) is a star with the center v. It is easy to
see that each vertex of Gj − v is occupied by a searcher just before Xj. Let V (Gj − v) = {u1, u2, . . . , um}. We can
construct y(Xj) = ((slideY (a, v))2, (slideY (v, u1), slideY (u1, v))2, . . . , (slideY (v, um), slideY (um, v))2, (slideY (v, a))2), where
(slideY (a, v))2 means that the action slideY (a, v) contiguously appears two times to clear two parallel edges between a
and v, and (slideY (v, u1), slideY (u1, v))2 means that a pair of actions (slideY (v, u1), slideY (u1, v)) contiguously appears two
times to clear four parallel edges between v and u1. Since X is a standard node search strategy, the apex a is occupied by
at least three searchers just before two of them moves from a to v in the first two actions of y(Xi). Thus Ej(X) \ Ej−1(X) =
(Ej(Y ) \ Ea) \ (Ej−1(Y ) \ Ea). It follows from the inductive hypothesis that Ej(X) = Ej(Y ) \ Ea and the set of vertices in G
occupied by searchers just after Xj is equal to the set of vertices in A′G − a occupied by searchers just after the last action of
y(Xj).

Case 2. Xj = removeX (v). We set y(Xj) = (slideY (a, v), (slideY (v, a))2). Since no edge can be cleared by a removing-action
in X , we have Ej(X) \ Ej−1(X) = (Ej(Y ) \ Ea) \ (Ej−1(Y ) \ Ea) = ∅. Since X is a standard node search strategy, each edge
incident on v is cleared just before Xj−1. Thus, just before the first action of y(Xi), each edge in A′G− a incident on v is cleared
and the apex a is occupied by at least two searchers and one of themmoves from a to v in the first action of y(Xi). From the
inductive hypothesis, we know that Ej(X) = Ej(Y )\ Ea and the set of vertices in G occupied by searchers just after Xj is equal
to the set of vertices in A′G − a occupied by searchers just after the last action of y(Xj). �

Lemma 4.4. For a graph G, let G′ be a graph obtained from G by adding a vertex a and connecting it to each vertex of G. Then
ns(G′) = ns(G)+ 1.

Proof. For G′, we first place one searcher on a, and then use an optimal node search strategy of G to clear G′. Thus,
ns(G′) ≤ ns(G)+ 1.

We now show that ns(G) ≤ ns(G′) − 1. Let S be a standard node search strategy of G′. Since a is adjacent to all other
vertices in G′, it follows from Lemma 4.1(iv) that no searcher is removed from any vertex before a searcher is placed on
a and no searcher is placed on any vertex after the searcher on a is removed. Suppose that there is a moment t at which
G′ − a contains ns(G′) searchers. Note that the last action before t must be placing a searcher on a vertex in G′ − a. Since
no searcher is placed on any vertex after the searcher on a is removed, it follows from Lemma 4.1(ii) that a has not been
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occupied before t . Thus, all edges incident on a are dirty. Note that the first action after t must be removing a searcher from
a vertex in G′ − a. From Lemma 4.1(iv), all the edges incident on this vertex are cleared. This is a contradiction. Thus, at any
moment when G′ contains ns(G′) searchers, there is a searcher on a. Let S ′ be a strategy obtained from S by deleting the
actions place(a) and remove(a). Then S ′ is a monotonic node search strategy that can clear the graph G′ − a (i.e., G) using
ns(G′)− 1 searchers. Hence, ns(G) ≤ ns(G′)− 1. Therefore, ns(G′) = ns(G)+ 1. �

Lemma 4.5. For a graph G and its corresponding graph AG, ns(G) ≤ fsn(AG)− 2.
Proof. It follows from Lemma 4.4 that ns(G) = ns(G′) − 1. Since ns(G′) = ns(A′G) and fsn(A′G) = fsn(AG), we only need to
show that ns(A′G) ≤ fsn(A′G)− 1.

Let S = (S0, s1, . . . , sm) be an optimal fast search strategy of A′G that clears A′G using k searchers, where S0 is a sequence
of k placing actions. We can construct a monotonic node search strategy T by modifying S in the following way. For each
action si (i ≥ 1) that slides a searcher from u to v, if u is occupied by only one searcher just before sliding, then we delete
this action; otherwise, we replace si by the actions remove(u) and place(v).

For any multiple edge between two vertices u and v, when a searcher slides the second time from one endpoint to the
other by S, both u and v must be occupied by searchers. Thus, all four parallel edges are cleared by T . Hence, T is amonotonic
node search strategy that clears A′G using k searchers.

We now show that we can modify T to obtain a monotonic node search strategy that clears A′G using k − 1 searchers.
Note that some actions in T may be redundant, that is, placing a searcher on an occupied vertex. For any multiple edge uv,
when a searcher slides the first time from one endpoint to the other by S, all four parallel edges are cleared by the actions
remove(u) and place(v) in T . Thus, any moment when S requires a searcher to slide along the second parallel edge between
u and v, T does not need such a searcher. Therefore, we can delete redundant actions from T to obtain a monotonic node
search strategy that clears A′G using k− 1 searchers. �

From Lemmas 4.3, 4.5 and Corollary 3.4, we have the main result of this section.
Theorem 4.6. For a graph G and its corresponding graph AG, ns(G) = fsn(AG)− 2 = fen(AG)− 2.

For a graph G, let pw(G) be the pathwidth of G and G′′ be the graph obtained from G by replacing each edge of G with
a path of length 3. Since pw(G) = ns(G) − 1, we have pw(G) = fsn(AG) − 3. And since es(G) = pw(G′′), we have
es(G) = fsn(AG′′)− 3.

Given a graph G and an integer k, the fast search (fast edge search) problem is to determine whether G can be cleared by
k searchers in the fast search (fast edge search) model. Then we have the following result.2

Corollary 4.7. The fast search problem and the fast edge search problem are NP-complete. They remain NP-complete for Eulerian
graphs.

Since the node search problem is NP-complete for cubic graphs [11], we can strength the above theorem as follows.
Corollary 4.8. The fast search problem and the fast edge search problem are NP-complete for multigraphs that are 12-regular
multigraphs after deleting one vertex.

From Theorem 3.1, we can also show that, given a graph G and an integer k, it is NP-complete to determine whether
fet(G) ≤ k. It remains NP-complete for Eulerian graphs.

5. Approximation algorithm

Since the family of graphs {G : fsn(G) ≤ k} is not minor-closed for any positive integer k ≥ 2 [7], we cannot obtain
an upper bound on the fast search number using the fast search number of complete graphs. In this section, we present a
linear time algorithm that can compute a fast search strategy for any connected graph G = (V , E), which is also a fast edge-
search strategy because any fast search strategy is also a fast edge-search strategy. We can use this algorithm to show that
the number of vertices in a graph is an upper bound on the fast search number of the graph. Since the fast search number
of a complete graph Kn (n ≥ 4) is n, we know this upper bound is tight. Using this algorithm, we can also compute a fast
edge-search strategy of G whose length (i.e., the number of actions) is at most (1 + |V |−1

|E|+1 ) times the fast edge-search time
of G.

IfG is not connected, the fast search number ofG is the sumof fast search numbers of all components. Sowe only consider
connected graphs. The input of the algorithm is a connected graph G with at least 4 vertices. The output of the algorithm is
a fast (edge-)search strategy ⟨Vp, As⟩, where Vp is a multiset of vertices on which we place searchers and As is a sequence of
arcs corresponding to sliding actions, that is, an arc (u, v) corresponds to sliding along the arc from tail u to head v. Given
two vertices u and v in G, the distance between them, denoted by distG(u, v), is the number of edges on the shortest path
between them.

Algorithm FastSearch(G)
Input: A connected graph G = (V , E) with at least 4 vertices.
Output: A fast (edge-)search strategy ⟨Vp, As⟩ of G.

2 Dereniowski et al. [6] independently proved the fast search problem is NP-complete by a ‘‘weak search’’ approach that is different from our method.
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1. Compute a block graph T of G.
2. Arbitrarily pick a leaf t of T . Let B be a block of G corresponding to t and a be a vertex of Bwhich is not a cut-vertex of G.

Call FastSearchBlock(B, a).
3. Update T by deleting the leaf t , and update G by deleting all vertices of B except the vertex that is a cut-vertex of G and is

incident with a dirty edge of G. If G contains no edges, then stop and output themultiset of vertices Vp onwhich searchers
are placed and output the sequence of arcs As in the order when searchers slide along them from tail to head; otherwise,
go to step 2.

Algorithm FastSearchBlock(B, a)

1. B′ ← B− a, H ← B′, and P ← ∅.
2. If Vodd(B′) = ∅, then place searchers on a if necessary so that a is occupied by at least degB(a) searchers. Slide searchers

from a to every vertex in NB(a) to clear a. If V (B′) contains only one vertex, then return to FastSearch; otherwise, place
a searcher on each unoccupied vertex in V (B′). If there is a vertex occupied by at least two searchers, then slide one of
them along all edges of B′; otherwise, place a searcher on an arbitrary vertex of B′ and slide it along all edges of B′. Return
to FastSearch.

3. Arbitrarily pick a vertex u ∈ Vodd(H) and find a vertex v ∈ Vodd(H) such that distH(u, v) = min{distH(u, w) : w ∈
Vodd(H) and w ≠ u}. Let Puv be the shortest path between u and v. Update P ← P ∪ {Puv} and H ← H − E(Puv). If
Vodd(H) ≠ ∅, repeat Step 3.

4. If H has only one component, then place searchers on a if necessary so that a is occupied by at least |V (H) ∩ NB(a)|
searchers. Slide |V (H) ∩ NB(a)| searchers from a to every vertex in V (H) ∩ NB(a). Place a searcher on each unoccupied
vertex of H . If a vertex of H is occupied by at least two searchers, then slide one of them along all edges of H; otherwise,
place a searcher on a vertex of H and slide it along all edges of H to clear H . For each path in P , we slide the searcher
from one end of the path to the other. Return to FastSearch.

5. Let h be the number of components in H . Construct a graph H ′ such that each vertex v of V (H ′) represents a component
Hv of H and two vertices u and v are connected by an edge of H ′ if there is a path in P which contains a vertex of
the component Hu corresponding to u and contains a vertex of the component Hv corresponding to v, and the subpath
between u and v does not contain any vertex of other components (different from Hu and Hv). Assign a direction to each
path in P such that each path in P becomes a directed path and H ′ becomes an acyclic graph. Let H1,H2, . . . ,Hh be a
sequence of all components in H such that the corresponding sequence of all vertices of H ′ forms an acyclic ordering.
Set i← 1.

6. If V (Hi) ∩ NB(a) ≠ ∅, then go to Step 9.
7. If Hi contains a single vertex, then slide all searchers on this vertex along untraversed edges to the other endpoints

complying with the direction of edges. i← i+ 1 and go to Step 6.
8. Place a searcher on each unoccupied vertex of Hi. If a vertex of Hi is occupied by at least two searchers, then slide one of

them along all edges of Hi; otherwise, place a searcher on a vertex of Hi and slide it along all edges of Hi to clear Hi. Go
to Step 11.

9. If Hi contains more than one vertex, then go to Step 10. Let x be the unique vertex in Hi. Place searchers on a if it
is occupied by less than two searchers so that a is occupied by two searchers. Slide a searcher from a to x. Slide all
searchers on x along untraversed edges to the other endpoints complying with the direction of edges. If i = h, then
return to FastSearch; otherwise, i← i+ 1 and go to Step 6.

10. If i < h and a is occupied by less than |V (Hi) ∩ NB(a)| + 1 searchers, then place searchers on a so that a is occupied by
|V (Hi)∩NB(a)|+1 searchers. If i = h and a is occupied by less than |V (Hi)∩NB(a)| searchers, then place searchers on a
so that a is occupied by |V (Hi)∩NB(a)| searchers. Slide |V (Hi)∩NB(a)| searchers from a to every vertex in V (Hi)∩NB(a).
Place a searcher on each unoccupied vertex of Hi. If a vertex of Hi is occupied by at least two searchers, then slide one of
them along all edges of Hi; otherwise, place a searcher on a vertex of Hi and slide it along all edges of Hi to clear Hi.

11. For each pair of vertices u, v ∈ V (Hi) satisfying that the shortest path Puv between them is a subpath of a path in P ,
we slide the searcher from one end of Puv to the other complying with the direction of edges. If i = h, then return to
FastSearch; otherwise, i← i+ 1 and go to Step 6.

Theorem 5.1. For any connected graph G = (V , E), Algorithm FastSearch(G) outputs a fast search strategy that clears G using
at most |V | searchers in the fast search model.

Proof. In FastSearch(G), we first decompose G into blocks. Then we choose a leaf block B, clear B and leave one searcher on
the vertex of Bwhich is a cut-vertex of G. Since the block graph of G is a tree, we can repeat this process until G is cleared. If
each leaf block B can be cleared using at most |V (B)| searchers, then G can be cleared using |V | searchers.

We now consider how to clear a leaf block B using at most |V (B)| searchers such that the cut-vertex of G in B is occupied
by at least one searcher when B is cleared. Note that B has only one cut-vertex of the current G since B is a leaf block in G. If
B is an edge uv, where u is a leaf of the current G then uv can be cleared by sliding a searcher from u to v. Thus, B (i.e., uv)
can be cleared using one searcher such that the cut-vertex v of G in B is occupied by one searcher when B is cleared.

Suppose that B contains at least three vertices. Pick a vertex a of Bwhich is not a cut-vertex of the currentG. Let B′ = B−a.
Then B′ is connected since B is a block. We have two cases on Vodd(B′).
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Case 1. Vodd(B′) = ∅. Then B′ is an Eulerian graph. Clear a by sliding searchers from a to every vertex in NB(a). Place a
searcher on each unoccupied vertex in V (B′). If there is a vertex occupied by at least two searchers, then slide one of them
along all edges of B′, and thus the total number of searchers used to clear B is atmost |V (B)|−1; otherwise place an additional
searcher on an arbitrary vertex of B′ and slide it along all edges of B′. Thus, the total number of searchers used to clear B is
at most |V (B)|.

Case 2.Vodd(B′) ≠ ∅. Note that every graph has even number of odd vertices. Let u and v be two vertices inVodd(B′) and Puv
be the shortest path between them. Since v is the closest vertex to u in Vodd(B′), we know that V (Puv) ∩ Vodd(B′) = {u, v}.
Let B′′ be the graph obtained from B′ by deleting all edge of Puv . Note that both u and v have even degree in B′′. Thus,
|Vodd(B′′)| = |Vodd(B′)| − 2. We can repeat the above process until we obtain an even graph H and the set of all deleted
shortest paths P . If H has only one component, similar to Case 1, we can clear H using at most |V (H)| searchers. Since all
end vertices of paths in P are different, we can clear each path of P by sliding a searcher from one endpoint to the other.

Suppose that H contains at least two components, i.e., h ≥ 2. Since B′ is connected, each component Hi, 1 ≤ i ≤ h, in
H must contain at least one vertex of a path in P . We clear each H1,H2, . . . ,Hh in the acyclic ordering of H ′. If Hi contains
a single vertex v, then v cannot be a leaf of B because B is a block containing at least 3 vertices. Note that v becomes a
single vertex in Hi because we delete all edges of P from H . Thus at least one path in P contains v as an interior vertex,
and furthermore, v cannot be the end vertex of a path in P because no path in P contains an odd vertex of H as an interior
vertex. If v ∈ NB(a), then place searchers on a if necessary so that a is occupied by two searchers, and slide one searcher
from a to v. Because the number of in-edges of v is equal to the number of out-edges of v and we clear H1, . . . ,Hh in the
acyclic ordering of H ′, we can slide searchers from v along all untraversed edges to the other endpoints complying with the
edge directions. Suppose that Hi contains at least two vertices. If V (Hi) ∩ NB(a) ≠ ∅, then place searchers on a if necessary
so that we can slide |V (Hi) ∩ NB(a)| searchers from a to every vertex in V (Hi) ∩ NB(a). We have two subcases.

Case 2.1. i < h. In this case, we place a searcher on each unoccupied vertex of Hi, and place another searcher on a vertex
of Hi and slide it along all edges of Hi to clear Hi. Since i < h, we have enough searchers to clear Hi and leave at most |V (Hi)|
searchers on vertices V (Hi) when B is cleared.

Case 2.2. i = h. Since h > 1, there is a vertex u of Hh that is an end vertex of a path in P and is occupied before we place
searchers on Hh. We place a searcher on each unoccupied vertex of Hh, and place another searcher on the vertex u and slide
it along all edges of Hh to clear Hh. Thus, we can use |V (Hh)| + 1 searchers to clear Hh and at least one searcher comes from
another component.

For each pair of vertices u, v ∈ V (Hi) satisfying that the shortest path Puv between them is a subpath of a path in P , we
slide the searcher from one end of Puv to the other complying with the edge directions. We clear B′[V (Hi)] that is a subgraph
of B′ induced from V (Hi) using at most |V (Hi)| searchers.

From cases 2.1 and 2.2, B can be cleared using at most |V (B)| searchers. Therefore, it follows from cases 1 and 2 that
fsn(G) ≤ |V |. �

Theorem 5.2. Algorithm FastSearch(G) can be implemented with linear time.

Proof. Let n be the number of vertices andm be the number of edges in G. In step 1 of FastSearch(G), it takes O(n+m) time
to compute a block graph T of G. For step 2 of FastSearch(G), we first analyze the running time of FastSearchBlock(B, a).

In FastSearchBlock(B, a), steps 1 and 2 need O(|V (B)| + |E(B)|) time. In step 3, using the breadth first search, it takes
O(|V (H)|+ |E(H)|) time to compute distH(u, v). Step 4 needs O(|V (H)|+ |E(H)|) time. In step 5, it takes O(|V (H)|+ |E(H)|)
time to construct H ′ and compute the acyclic orientation of P and H ′. Step 6 needs O(1) time. Steps 7, 9 and 11 need
O(|V (P )| + |E(P )|) time. Steps 8 and 10 need O(|V (Hi)| + |E(Hi)|) time. Since every edge is traversed once, the total
running time of FastSearchBlock(B, a) is O(|V (B)| + |E(B)|).

Thus, step 2 of FastSearch(G) needs O(|V (B)| + |E(B)|) time. Step 3 also needs O(|V (B)| + |E(B)|) time. Therefore,
FastSearch(G) can be implemented with O(n+m) time. �

For any connected graph G, since each placing-action places a new searcher in the fast search model, |Vp| is the number
of searchers required by FastSearch(G). Then G can be cleared in |Vp| + |As| steps by FastSearch(G). Since any fast search
strategy is also an edge search strategy, G can be cleared in at most |Vp| + |As| steps in the edge search model. Thus,
FastSearch(G) is also an approximation algorithm for the fast edge-search time with the following approximation ratio.

Theorem 5.3. For any connected graph G with n vertices and m edges,

|Vp| + |As|

fet(G)
≤


1+

n− 1
m+ 1


.

For odd graphs, the approximation ratio for the fast search number is 2, and for fast edge-search time is 1+ n
n+2m .

Corollary 5.4. For any connected odd graph G with n vertices and m edges,

|Vp|

fsn(G)
≤ 2 and

|Vp| + |As|

fet(G)
≤


1+

n
n+ 2m


.
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Fig. 3. The graph of a set of 6 functions.

6. Lower bound

In this section, we give a new lower bound that is related to both the number of odd vertices and the minimum degree.

Theorem 6.1. For a connected graph G with δ(G) ≥ 3,

fsn(G) ≥ max

δ(G)+ 1,


δ(G)+ |Vodd(G)| − 1

2


.

Proof. Note that fsn(G) ≥ es(G) for any graph G. From Theorem 2.4 in [2], we know that es(G) ≥ δ(G)+1 for any connected
graph Gwith δ(G) ≥ 3. If |Vodd(G)| ≤ δ(G)+ 3, then fsn(G) ≥ δ(G)+ 1 ≥ ⌈ δ(G)+|Vodd(G)|−1

2 ⌉, which completes the proof.
Suppose that |Vodd(G)| > δ(G) + 3. Let S be an optimal fast search strategy of G such that searchers are placed on

vertices only when it is necessary. Let v be the first vertex cleared by S. When v is cleared, each vertex in N(v) must contain
at least one searcher. Let V ′ ⊆ V (G) be the set of occupied vertices just after v is cleared and k be the total number of
searchers on V ′. If v is occupied by searchers after it is cleared, then these searchers will stay on v until the end of the
search. For each vertex u ∈ V ′ \ {v}, if deg(u) is even, then each searcher on u maybe move to an odd vertex in the rest of
the searching process; if deg(u) is odd, either a searcher was placed on u, or a searcher slid to u and this searcher will stay
on u until the end of the search. Thus, just after v is cleared, we need at least 1

2 max{(|Vodd(G) \ {v}| − k), 0} additional
searchers to clear G. Notices that N(v) ⊆ V ′ and |V ′| ≤ k. Therefore, fsn(G) ≥ k + 1

2 max{(|Vodd(G) \ {v}| − k), 0}
≥

1
2 max{(|Vodd(G) \ {v}| + k), 0} ≥ ⌈ δ(G)+|Vodd(G)|−1

2 ⌉. �

From Theorem 6.1, we can improve the approximation ratio of FastSearch(G).

Theorem 6.2. If G is connected graph with n vertices and m edges, and δ(G) ≥ 3, then

|Vp| + |As|

fet(G)
≤


1+

n− δ(G)− 1
m+ δ(G)+ 1


.

7. Planar graphs

For a graph G, let b(G) be the brush number of G. Since every brush cleaning strategy gives us a fast search strategy,
we know that b(G) ≥ fsn(G) ≥ |Vodd(G)|/2. Thus, if b(G) = |Vodd(G)|/2, then fsn(G) = |Vodd(G)|/2. But when
fsn(G) = |Vodd(G)|/2, b(G) can be as large as Ω(|V (G)|2). For example, consider a complete graph Kn, where n ≥ 5 and
n is odd. Let K be the graph obtained from Kn by attaching three pendent edges on a vertex of Kn and attaching one pendent
edge on all other vertices. We can show that fsn(K) = |Vodd(K)|/2 = n+ 1 and b(K) ≥ (n2

− 1)/4.
Let F = {f1, f2, . . . , fk} be a family of plane curves satisfying the following conditions (see Fig. 3): (1) each fi is the graph

of a continues function of time with domain [si, ti],−∞ < si < ti < +∞, (2) any pair of curves do not share an endpoint,
and (3) each pair of curves have a finite number of intersection points. From condition (2) we know that at each intersection
point, at most one curve starts from or ends on this intersection point. From condition (3) we know that no pair of curves
overlap over any period of time.

A graph of F , denoted by GF = (VF , EF ), is the graph formed from F such that VF is the set of all endpoints and intersection
points of curves in F and EF = {f : f is a subcurve of a curve in F whose endpoints belong to VF and no interior point of f
belongs to VF }. Note that the definition of the edge set EF can be easily converted to the traditional definition, that is, a set
of pairs of vertices.

Theorem 7.1. Let F = {f1, f2, . . . , fk} be a set of plane curves satisfying the above three conditions, and let GF = (VF , EF ) be the
graph of F . Then fsn(GF ) = k and fet(GF ) = k+ |EF |.

Proof. Since each vertex of GF has coordinates, we can sort all vertices by alphabetical order from left to right in a sequence,
say v1, v2, . . . , vn. For simplicity,we consider a continues version of fast searching that is equivalent to our fast searchmodel.
For each curve fi, place a searcher λi on the left endpoint of fi and associate λi with fi. We sweep an imaginary vertical line
ℓ from the position passing through v1 to the position passing through vn. At any moment when ℓ moves, each intersection
point between ℓ and a curve fi is occupied by the searcher λi. It is easy to see that no recontamination can happen because all
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Fig. 4. A variable gadget Gk
x with k = 4.

subcurves on the left-hand side of ℓ are cleared and on the right-hand side are dirty. This can be easily converted to the fast
searching because every edge is traversed exactly once. Thus, fsn(GF ) ≤ k. Note that fsn(GF ) ≥ |Vodd(GF )|/2 = k. Therefore,
fsn(GF ) = k. It follows from Theorem 3.1 that fet(GF ) = k+ |EF |. �

From [3], we know that the vertex-ordering v1, v2, . . . , vn in the proof of Theorem 7.1 is perfectly balanced. We can
extend Theorem 7.1 to curves in 3D space.

Corollary 7.2. Let F = {f1, f2, . . . , fk} be a set of curves in 3D space satisfying the following conditions, (1) each curve has at
most one intersection point with the plane parallel to xy-plane, (2) any pair of curves do not share an endpoint, and (3) each pair
of curves have a finite number of intersection points. Let GF = (VF , EF ) be a graph of F . Then fsn(GF ) = k and fet(GF ) = k+|EF |.

The conditions in Theorem 7.1 and Corollary 7.2 are sufficient, but not necessary. Let Kn be a complete graph of order n
(n ≥ 5) and n be an odd number. Let Pm be a path of lengthm (m ≥ 1). Let H be the cartesian product of Kn and Pm. Let H ′ be
a graph obtained from H by adding a path u0u1 . . . um+1um+2 to H such that u0 and um+2 are leaves, each ui, 1 ≤ i ≤ m+ 1,
is a vertex in the ith copy of Kn, and each pair of adjacent vertices ui and ui+1, 1 ≤ i ≤ m, are not matched in H . It is easy to
see that H ′ is a simple graph with 2(n + 1) odd vertices. Since each copy of Kn is an Eulerian graph, we can clear H ′ using
n+ 1 searchers. Thus, fsn(H ′) = n+ 1. But we cannot draw n+ 1 monotonic curves in 3D as those curves in Corollary 7.2.

From [14], we know that the fast search number of cubic graphs can be found in O(n2) time. Similar to [8], we now show
that the fast search problem is NP-complete for planar graphs withmaximum degree 4. We first show a property of variable
gadgets as follows.

Lemma 7.3. Let Gk
x be a multigraph as illustrated in Fig. 4. For any optimal fast search strategy of Gk

x , if a searcher slides from x
to its neighbor x′, then for each leaf xi (1 ≤ i ≤ k) there is a searcher sliding to xi from its neighbor x′i; and if a searcher slides to x
from its neighbor x′, then for each leaf xi (1 ≤ i ≤ k) there is a searcher sliding from xi to its neighbor x′i .

Proof. Refer to Fig. 4. If we place k+1 searchers on vertices x′1, x1, x2, . . . , xk, thenwe can clear Gk
x by sliding searchers from

all xi to their neighbors and then sliding searchers from right to left along the remaining edges. Thus, fsn(Gk
x) ≤ k + 1. On

the other hand, fsn(Gk
x) ≥ |Vodd(Gk

x)|/2 = k + 1. Therefore, fsn(Gk
x) = k + 1. Suppose that there is an optimal fast search

strategy S, in which xx′ is cleared by sliding from x to x′ and x′ixi is cleared by sliding from xi to x′i . Without loss of generality,
we can suppose that each x′jxj (i+1 ≤ j ≤ k) is cleared by sliding from x′j to xj. Since S is an optimal fast search strategy with
fsn(Gk

x) = k + 1 and |Vodd(Gk
x)|/2 = k + 1, every searcher must start from an odd vertex and end at another odd vertex. If

i < k, since xx′ is cleared by sliding from x to x′, x′kxk is cleared by sliding from x′k to xk, and x′k is an even vertex, we know that
the two parallel edges between x′ and x′k must be cleared by sliding two searchers from x′ to x′k. Using the similar argument
for each j from k down to i+1, we know that the two parallel edges incident on x′i+1 must be cleared by sliding two searchers
to x′i+1, and then one of them slides from x′i+1 to xi+1 and the other slides to vertex x′′i that is adjacent to x′i . Let x

′

i be occupied
by searcher λ1 and x′′i be occupied by λ2. Note that the two parallel edges between x′′i and x′i are still contaminated. If there is
another searcher λ starting from x′′i and sliding to x′i and then back to x′′i , then there are two searchers ending at x′′i . This is a
contradiction. If there is another searcher λ starting from x′′i and sliding to x′i and λ2 also slides to x′i along the other parallel
edge, then there are at least two searchers ending at x′i . This is a contradiction. Similarly, we can find contradictions for all
other cases. Therefore, if a searcher slides from x to its neighbor, then for each leaf xi (1 ≤ i ≤ k) there is a searcher sliding
to xi from its neighbor.

Note that a fast search strategy is reversible. Thus, if a searcher slides to x from its neighbor in an optimal fast search
strategy, then for each leaf xi (1 ≤ i ≤ k) there is a searcher sliding from xi to its neighbor. �

We now use the graph Gk
x in Lemma 7.3 as a variable gadget to show the NP-completeness for planar graphs with

maximum degree 4. The reduction is the same as the one used in Theorem 1 of [8]. Because the difference between fast
searching and perfect ordering, we need to argue differently.

Theorem 7.4. Given a planar graph G with maximum degree 4, the problem of determining whether fsn(G) = |Vodd(G)|/2 is
NP-complete.

Proof. It is easy to see that the problem is in NP. We will show it is NP-hard by a reduction from the planar positive 2-
in-4SAT problem. Let φ be a boolean formula in the conjunctive normal form with m clauses {c1, . . . , cm} and n variables
x1, . . . , xn. That is, φ = c1 ∧ c2 ∧ . . . ∧ cm, where each clause ci is a disjunctive of four variables. The incident graph of φ
is the bipartite graph with vertex set {c1, . . . , cm, x1, . . . , xn} and edge set {cixj : ci contains xj}. The formula φ is planar if
the incident graph is planar. A truth assignment of φ is 2-in-4 satisfying if each clause has exactly two true variables, and
φ is 2-in-4 satisfiable if there is a 2-in-4 satisfying truth assignment. From [8], we know that the problem of determining
whether a planar positive formula φ is 2-in-4 satisfiable is NP-complete.
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Fig. 5. The graph Gφ constructed for φ = c1 ∧ c2 ∧ c3 , where c1 = (v ∨ w ∨ x ∨ y), c2 = (v ∨ x ∨ y ∨ z) and c3 = (v ∨ w ∨ x ∨ z).

We now construct an instance of the planar fast searching problem. For each clause ci, 1 ≤ i ≤ m, we construct a vertex
ci as the clause gadget. For each variable x that appears k times in φ, we construct the gadget Gk

x (refer to Fig. 4) to correspond
to the variable x. Note that Gk

x has k + 1 leaves x, x1, . . . , xk and xi (1 ≤ i ≤ k) corresponds to the i-th occurrence of the
variable x. For each variable gadget Gk

x with leaves x, x1, . . . , xk, connect vertex xi to vertex cj such that the clause cj contains
the i-th occurrence of the variable x. In polynomial time, we can construct a graph with maximum degree 4, denoted by Gφ

(see Fig. 5). We will show that the planar positive formula φ is 2-in-4 satisfiable if and only if fsn(Gφ) = |Vodd(Gφ)|/2.
Suppose that the planar positive formula φ is 2-in-4 satisfiable. Then Gφ is a planar graph. Consider a 2-in-4 satisfying

truth assignment of φ. For a variable x whose value is true and appearing k times in φ, we clear the variable gadget Gk
x by

sliding a search from x to x′ to clear xx′, and sliding a searcher from x′i to xi to clear each xix′i . The remaining edges in Gk
x can

be cleared correspondingly such that k+1 searchers starting from vertices of Gk
x , among them one searcher ends on x′1 and k

searchers slide into clause gadgets. For each variable xwhose value is false and appearing k times in φ, we clear the variable
gadget Gk

x by sliding a searcher from xi to x′i to clear each xix′i and sliding a search from x′ to x to clear xx′. The remaining
edges in Gk

x can be cleared correspondingly such that k searchers slide into Gk
x from clause gadgets, one searcher starts from

x′1 and ends on x. Since each clause has four variables and two of them have true value, each clause gadget (vertex) has two
searchers sliding in and two searchers sliding out. Thus, Gφ is cleared by n+ 2m searchers. Since |Vodd(Gφ)| = 2n+ 4m, we
have fsn(Gφ) = |Vodd(Gφ)|/2.

Conversely, suppose that fsn(Gφ) = |Vodd(Gφ)|/2. From [14], for each odd vertex, there is at least one searcher is placed
on it or occupies it at the end of the game. Since fsn(Gφ) = |Vodd(Gφ)|/2, for each even vertex in Gφ , there is no searcher
is placed on it or occupies it at the end of the game. From Lemma 7.3, for each gadget Gk

x , if edge xx′ is cleared by sliding
a search from x to x′, then we set the corresponding variable true. Note that each x′ixi (1 ≤ i ≤ k) is cleared by sliding a
searcher from x′i to xi. If edge xx′ is cleared by sliding a search from x′ to x, then we set the corresponding variable false. Note
that each x′ixi (1 ≤ i ≤ k) is cleared by sliding a searcher from xi to x′i . Since for each clause gadget c in Gφ , it has degree 4
and there is no searcher is placed on it or occupies it at the end of the game, we know that two searchers slide into c and
two slide out. Thus, φ is 2-in-4 satisfiable.

The multigraph can be easily transformed to a graph by replacing one of each parallel edge by a path of length 2 such
that both of them have the same fast search number. �

From Corollary 3.3, we can show that, given a planar graph G with maximum degree 4, it is NP-complete to determine
whether fen(G) = |Vodd(G)|/2.

Corollary 7.5. Given a planar graphGwithmaximumdegree 4, the problemof determiningwhether fet(G) = 1
2 |Vodd(G)|+|E(G)|

is NP-complete.

8. Conclusions

Many graph searching problems have been introduced. Most of these problems only consider the minimum number of
searchers required to capture the fugitive. In this paper, we consider the minimum number of steps to capture the fugitive.
We introduce the fast edge searching problem in the edge search model. We establish relations between the fast edge
searching and the fast searching in the fast search model. We also establish relations between the fast (edge) searching
and the node searching. By these relations, the problem of computing the fast search number, edge search number, node
search number, or pathwidth of a graph is equivalent to that of computing the fast edge-search time of a related graph. This
makes the fast (edge) searching is more versatile than others. We can use the fast (edge) searching to investigate either
how to draw a graph ‘‘evenly’’ (an extended version of the balanced vertex-ordering), or how to decompose a graph into a
‘‘path’’ (i.e., pathwidth, which is related to many graph parameters). We show that the family of graphs whose fast edge-
search time is at most k is minor-closed. This makes arguments for upper bounds and lower bounds of the fast edge-search
time less complicated, comparing with the fast search number. We prove NP-completeness results for computing the fast
(edge-)search number, and the fast edge-search time, respectively. We also prove that the problem of determining whether
fsn(G) = 1

2 |Vodd(G)| or fet(G) = 1
2 |Vodd(G)| + |E(G)| is NP-complete; and it remains NP-complete for planar graphs with

maximum degree 4. For connected graphs with δ(G) ≥ 3, we present a linear time approximation algorithm for the fast
edge-search time that can give solutions of at most (1+ |V |−δ(G)−1

|E|+δ(G)+1 ) times the optimal value. This algorithm also gives us a
tight upper bound on the fast search number of graphs.
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