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Abstract

The fixing number of a graph G is the minimum cardinality of a set S ⊂ V (G) such that every nonidentity automorphism of G
moves at least one member of S, i.e., the automorphism group of the graph obtained from G by fixing every node in S is trivial. We
provide a formula for the fixing number of a disconnected graph in terms of the fixing numbers of its components and make some
observations about graphs with small fixing numbers. We determine the fixing number of a tree and find a necessary and sufficient
condition for a tree to have fixing number 1.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We use [7] for notation and terminology. The idea of distinguishing the nodes in a graph from one another goes
back to work by Sumner [18] and Entringer and Gassman [6]. Denote by N(v) the open neighborhood of node v. In
studying point determination in graphs, they consider the following question: which graphs G have the property that
for every pair u, v of nodes of G, N(u) = N(v) implies that u = v? In such a graph, every node v can be distinguished
from every other node by the map v �→ N(v).

Most of the work on the problem of distinguishing nodes has used ideas different from those of Sumner. Specifically,
the bulk of the existing literature has focused on two approaches to the problem. In the first—dimension/location
—introduced separately by Harary and Melter [10] and Slater [17] each node of a connected graph G is distinguished
from every other node of G by labeling a subset S of V (G) and using distances between the nodes of G and nodes of S
to construct a one-to-one function on V (G).

The second approach, within which the ideas in this article find a natural home, has its roots both in a method employed
by Tutte [19] to enumerate plane maps, and a later unrelated article by Zuckerman [20]. The notion of symmetry breaking
was formalized by Albertson and Collins [2] and, independently, by Harary [8,9]. In this approach, a subset of the node
set is colored in such a way that the automorphism group of the graph is ‘destroyed’, i.e., the automorphism group of
the resulting structure is trivial. One distinction between distance/location and symmetry breaking that is worth noting
is that, in the former, a 1–1 function on V (G) is usually explicitly present at the end of the process, while in the latter
we are usually left only with an assurance that, somehow, every two nodes can be distinguished.
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Both of these areas have applications. Dimension/location has been applied both to drug design [5] and to the problem
of a robot navigating through euclidean space using distinctive landmarks [12]. Symmetry breaking has been applied
to the problem of programming a robot to manipulate objects [13].

We shall denote the automorphism group of G by �(G) and by S1 the trivial group. For a node v of G, the set
{�(v) : � ∈ �(G)} is the orbit of v under �(G), and two nodes in the same orbit are similar. An automorphism � fixes
a node v if �(v) = v. The set of automorphisms that fix v is a subgroup of �(G) called the stabilizer of v and will be
denoted �v(G). Let O(v) be the orbit containing v. Then

|O(v)| = |�(G)|/|�v(G)|. (1)

For an elementary reference on group actions we refer to [11]. Lastly, we note a well-established fact (see [4]) that
will play a part in what follows: every automorphism is also an isometry, that is, for u, v ∈ V (G) and � ∈ �(G),
d(u, v) = d(�(u), �(v)).

Let S ⊂ V (G) and � ∈ �(G). The automorphism � is said to fix the set S if for every v ∈ S, we have �(v) = v.
The set of automorphisms that fix S is a subgroup �S(G) of �(G) and �S(G) = ⋂

v∈S �v(G). If S is a set of nodes for
which �S(G) = S1, then S fixes the graph G and we say that S is a fixing set of G. The minimum cardinality of a set of
nodes that fixes G is the fixing number fix(G), introduced in [9], and a fixing set containing fix(G) nodes is a minimum
fixing set of G (or, for short, a fix(G)-set). As an example, we note that, for every positive integer n,

fix(Kn) = n − 1,

fix(Pn) = 1, n�2,

fix(Cn) = 2, n�3.

Let c be a (not necessarily proper) coloring of V (G) and � ∈ �(G). The automorphism � is said to fix the coloring
c if for every v ∈ V (G), we have c(�(v)) = c(v). The set of automorphisms that fix c is a subgroup �(G, c) of �(G).
If c is a coloring for which �(G, c) = S1, then c fixes G, and we say that c is a fixing coloring of G. The minimum
number of colors in a coloring that fixes G is the chromatic fixing number �fix(G). The chromatic fixing number was
defined independently by Albertson and Collins [2] and Harary [9], and is further studied in [3,16].

2. The fixing number

We now present some elementary results on the fixing number. We begin by establishing that we may restrict our
attention to connected graphs.

2.1. Disconnected graphs

For a positive integer t, by tG we mean the disjoint union of t copies of G. A maximal set of pairwise isomorphic
components of G is a component class of G, and if H is a component of G and � an automorphism of G, then � acts
nontrivially on H if there is some v ∈ V (H) having �(v) �= v. A component isomorphic to H is a H-component.

Let T be the tree obtained from P6 by adding a new node v and joining v to a central node of P6; thus, T is the
smallest nontrivial identity tree. Consider the graph G = 3K2 ∪ 3T , shown in Fig. 1.

Note that �(K2) = S2 and �(T ) = S1. Let � ∈ �(G) and let H be a component of G on which � acts nontrivially.
Either (i) �(V (H)) = V (H), i.e., � induces a nontrivial automorphism of the nodes of H, or (ii) �(V (H)) = V (H ′),
where H ′ is a H-component of G distinct from H. If H is K2, then either (i) or (ii) could be true, while if H is T, then
(i) cannot be true since T admits no nontrivial automorphisms. Thus, if S ⊂ V (G) fixes G, then every K2-component
contains at least fix(K2) = 1 nodes of S, while two of the three T-components must each contain at least one node of S.

Fig. 1. The graph G = 3K2 ∪ 3T .
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Consequently, fix(G)�5. Choose nodes x1, x2, x3 from different K2-components of G and nodes y1, y2 from different
T-components of G. The set S′ = {x1, x2, x3, y1, y2} fixes G. It follows that fix(G) = 5. The ideas illustrated by the
preceding example can be used to express the fixing number of a graph in terms of the fixing numbers of its components.

Observation 1. Let A be the set of components X of G satisfying |�(X)| = 1 and let B be the set of components Y of G
satisfying |�(Y )| > 1. Let k be the number of component classes in A. Then

fix(G) =
∑
Y∈B

fix(Y ) + |A| − k.

2.2. Bounds on fix(G)

Two upper bounds on fix(G) are easily established. The number of nodes in a graph is its order. Let S be the set
constructed by choosing from each orbit of G every node except one. Then S fixes G. Hence, for every graph G having
order n and � orbits under the action of �(G), fix(G)�n − �.

To see the second upper bound, for each nontrivial automorphism � ∈ �(G), choose a node v� that is moved by �.
Then the union of all v� fixes G; consequently, fix(G)� |�(G)| − 1.

Still another upper bound on fix(G) is given by a previously studied invariant. Let S = {s1, s2, . . . , sk} be a k-subset
of V (G) and, for each node v ∈ V (G), define r(v|S) = (d(v, s1), d(v, s2), . . . , d(v, sk)). A k-set S is a resolving or
locating set for G if for every pair u, v of distinct nodes of G, r(u|S) �= r(v|S). The (metric) dimension or location
number dim(G), considered in [5,10,12,14,17], is the smallest cardinality of a resolving subset S ⊂ V (G). A resolving
set of minimum cardinality is a metric basis for G.

Lemma 2. If S is a metric basis for G, then �S(G) is trivial.

Proof. Let S = {s1, s2, . . . , sk} and suppose, to the contrary, that there is some node u and some � ∈ �S(G) for which
u �= �(u). Since S is a resolving set for G, there is some integer i with 1� i�k such that d(u, si) �= d(�(u), si).
However, since � fixes si , this contradicts the fact that � is an isometry; thus, no such automorphism � exists and
�S(G) is trivial. �

Theorem 3. For every connected graph G,

�fix(G) − 1�fix(G)� dim(G).

Proof. The upper bound on fix(G) is Lemma 2. The lower bound follows directly from the definitions of fix(G) and
�fix(G). �

2.3. Graphs with small fixing number

A graph G has fixing number zero if and only if G is an identity graph, i.e., �(G) is trivial. The problem of algebraically
characterizing those graphs with fixing number 1 is almost as simple. The following result is essentially proved in [2]
(where it provides a sufficient but not necessary condition for a graph G to have �fix(G) = 2) and follows immediately
from (1).

Observation 4. Let G be a nonidentity graph. Then fix(G) = 1 if and only if G has an orbit of cardinality |�(G)|.

As an immediate application of Observation 4 we determine the fixing number of the grid Ps × Pt .

Theorem 5. For every pair s, t of integers with s, t �2,

fix(Ps × Pt) =
{

2 if s = t = 2 or 3,

1 otherwise.
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Fig. 2. A graph with fixing number 2 and automorphism group Z6.

Proof. If s �= t , then �(Ps × Pt) = S2�S2 and the four nodes of degree 2 are similar, so by Observation 4 the fixing
number is 1. Similarly, if s = t �4, then �(Ps × Pt) = D4 and the eight nodes that are adjacent to the four nodes of
degree two are similar. If s = t = 2 or 3, then �(Ps × Pt) = D4 but neither P2 × P2 nor P3 × P3 contains an orbit of
size eight. �

The automorphism group of a graph with fixing number 1 can be arbitrarily large.

Observation 6. For every positive integer t, there is a graph Gt with fixing number 1 and |�(Gt )| = t .

Proof. Let G1 = K1 and G2 = K2. For t �3, let Gt be the graph obtained from C3t : u0, u1, . . . , u3t−1 by joining, for
each integer i ≡ 1, 2 mod 3, the node ui to a new node wi (thus introducing 2t new nodes) and then, for each integer
i ≡ 1 mod 3, subdividing the edge uiwi . The graph Gt has order 6t , fixing number 1, and automorphism group Zt . �

While every graph in the class constructed in Observation 6 has fixing number 1 and cyclic automorphism group,
not every graph with cyclic automorphism group has fixing number 1.

Observation 7. For every positive integer k, there are infinitely many graphs with fixing number k and cyclic auto-
morphism group.

Proof. When k = 1 the result is provided by Observation 6. Let k�2 and p1, p2, . . . , pk distinct prime numbers. For
each i with 1� i�k, construct the graph Gpi

according to the instructions in Observation 6. Form a graph H from
the graphs Gp1 , Gp2 , . . . , Gpk

as follows: introduce a new node z and, for every pair i, j of positive integers with
i ≡ 0 mod 3 and 1�j �k, join z to the pj nodes ui of Gpj

. The graph H has fixing number k and automorphism group
Zp1�Zp2� · · · �Zpk

�Zp1p2···pk
. �

The construction in Observation 7 is shown for the case p1 = 2, p2 = 3 in Fig. 2.

2.4. The fixing number of a tree

We now establish a formula for the fixing number of a tree. In order to do this, we first must prove some elementary
results.

2.4.1. Preliminary results
If v is an endnode of tree T, then every node similar to v is an endnode of T. An orbit that consists of endnodes will

be called an endorbit.

Lemma 8. Let T be a tree and S ⊂ V (T ). Then S fixes T if and only if S fixes the endnodes of T.
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Proof. One direction of the proof is trivial; for the other, let u and v be distinct nodes of T and � an automorphism
mapping u to v. Let P be a maximal path that includes both u and v. The path P has an endnode u′ satisfying
d(u, u′) < d(v, u′), and by assumption �(u′) = u′. But then d(u, u′) < d(�(u), u′), contradicting the fact that � is an
isometry. �

The eccentricity of a node u is e(u) = max{d(u, v) : v ∈ V (G)}. The radius of G is rad G = min{e(u) : u ∈ V (G)}
and the center of G is the subgraph Cen(G) induced by those nodes with eccentricity equal to the radius. A node v lies
between two nodes u, w if v lies on a u − w geodesic, i.e., v lies on a u − w path of length d(u, w). A set S of nodes
lies between u and v if some u − v geodesic has a nonempty intersection with S.

Lemma 9. Let u, v, w be three nodes of a tree T. If d(u, v) = d(u, w), then d(v, w) is even (and hence vw /∈ E(T )).

Proof. Let P : u = v0, v1, . . . , vk = v be the u − v path, Q the u − w path, and t the largest integer (0� t �k − 1) for
which vt ∈ V (P ) ∩ V (Q). Necessarily, d(v, vt ) = d(w, vt ) and the result follows. �

Jordan observed that the center of a tree T is either K1 or K2 [7]. In the first instance, we call T central and in the
second bicentral. For brevity we shall write C for Cen(T ).

Lemma 10. Let u, v be adjacent nodes of a tree T. If v /∈ V (C), then d(u, V (C)) �= d(v, V (C)).

Proof. Let Tu, Tv be the components of the tree T − uv containing the nodes u and v, respectively. For all nodes
x ∈ Tu and y ∈ Tv , we have d(u, x) = d(v, x) − 1 and d(v, y) = d(u, y) − 1. Since C is connected, the result follows
immediately. �

Lemma 11. Let u be a node in a tree T and v satisfy d(u, v) = e(u). Then V (C) lies between u and v.

Proof. Let P : u = v0, v1, . . . , vk = v be the u − v path in T and assume, to the contrary, that V (P ) ∩ V (C) = ∅.
Then there is a unique node vj on P that both (i) lies between u and V (C) and (ii) lies between v and V (C). Let
t = d(vj , V (C)). Since every node c ∈ V (C) has e(c) = rad T = r , we must have t + k − j �r . Furthermore, since
e(u) = d(u, v), we have t + r − 1�k − j . However, upon combining these two inequalities we find that t � 1

2 , which
implies that vj is central. �

Corollary 12. Let u, v be adjacent nodes in a tree T. If d(u, V (C)) < d(v, V (C)), then e(u) < e(v).

Corollary 13. Let v be a node of a tree T. Then e(v) = rad T + d(v, V (C)).

Proof. If v is central then the result follows immediately. Hence, let v /∈ V (C). We consider two cases according to
whether T is central or bicentral.

Case 1: T is central. Let c be the unique central node of T. Let e be that edge incident with c that lies between v and
c, and Tc the component of T − e containing c. From Lemma 11, it suffices to show that there is a node c′ ∈ V (Tc)

which satisfies d(c, c′) = rad T = r . Suppose, to the contrary, that every node of Tc is distance at most r − 1 from c.
Then necessarily every node in the component of T − e containing v is distance at most r from c. However, if u is the
node distinct from c that is incident with e, then e(u)�r , which contradicts our assumption that T is central.

Case 2: T is bicentral. Now let c1, c2 be the two central nodes of T. Since c1 and c2 are adjacent, we may from
Lemma 9 let d(v, c1) < d(v, c2). Let T2 be the component of T − uv containing the node c2. Then there must be a
node c′ ∈ V (T2) that is distance at least r − 1 from c2, and hence distance at least r from c1. The result then follows
from Lemma 11. �

Lemma 14. Let u and v be two nodes of a tree T having e(u) = e(v).

(i) If d(u, v) is odd, then T is bicentral and both central nodes of T lie between u and v.
(ii) If d(u, v) is even, then T may be central or bicentral, and the middle node of the u − v path P lies between u

and C.
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Proof. We consider two cases.
Case 1: d(u, v) is odd. If the center of T does not lie between u and v or if the tree is central, then there is a unique

node z on the u − v path that both lies between u and V (C) and between v and V (C). Thus, from Corollary 13,
d(u, z) = d(v, z). This contradicts our assumption that d(u, v) is odd. Consequently, the center lies between u and v

and T is bicentral.
Case 2: d(u, v) is even. Since e(u) = e(v), it follows from Corollary 13 that the two central nodes of T cannot both

lie on P. If only a single node of C lies on P, the result is immediate. Suppose then that the center of T does not lie
between u and v. Then there is a unique node z of P that lies between u and C and between v and C. Moreover, from
Corollary 13, d(u, z)=d(v, z), so that z is the central node of P. Consequently, the center of the u−v path lies between
u and v and the center of T. �

If u, v are similar nodes of a graph G, then since every automorphism is an isometry, we must have e(u) = e(v).

Lemma 15. Let u, v, w be three similar nodes in a tree T and P the u − v path in T. If P has odd order, z is the central
node of P, and w is in the component of T − z containing u, then d(u, w) < d(v, w). Similarly, if P has even order, e
is the central edge of P, and w is in the component of T − e containing u, then d(u, w) < d(v, w).

Proof. Suppose first that P is odd. From Corollary 13 and Lemma 14, d(u, z) = d(v, z) = d(w, z). However,
d(u, w)�2d(v, z) − 2 < 2d(v, z) = d(v, w). A similar argument proves the other case. �

2.4.2. Interchange equivalence classes
An automorphism � interchanges two nodes u, v if �(u) = v and �(v) = u. Let P : u0, u1, . . . , uk be a path in G

and � an automorphism of G. If, for every integer i with 0� i�k, �(ui) = uk−i , then � flips the path P.

Observation 16. If an automorphism � interchanges two nodes u, v in a graph G, then � flips every u − v path in G.

The following result, due to Prins, will prove useful.

Theorem 17 (Prins [15]). For every pair u, v of similar nodes in a tree T, there is an automorphism that interchanges
u and v.

We shall be interested in pairs of similar nodes that admit a special kind of interchange. Let u and v be similar nodes
in an orbit O. An automorphism � that interchanges u and v while fixing every other node in O is a (u, v)-interchange.
Define a relation RO on O as follows: uROv if there is a (u, v)-interchange. Then RO is an equivalence relation on O
(the properties of reflexivity and symmetry follow immediately; for transitivity: if f is a (u, v)-interchange and g is a
(v, w)-interchange, then fgf is a (u, w)-interchange). Two nodes that are related under RO will be said to be in the same
interchange equivalence class, which we abbreviate IEC. Every node v of T is in some orbit O(v) and hence in some
IEC under RO(v); we shall denote this IEC by v. As usual, the set of IECs of O under RO is written O/RO.

Lemma 18. For all � ∈ �(G), aROb if and only if �(a)RO�(b).

Proof. If f is an (a, b)-interchange, then �f �−1 is a (�(a), �(b))-interchange. A similar proof shows the
converse. �

Corollary 19. Let A, B ∈ O/R(O). Then |A| = |B| and, for every � ∈ �(G), �(A) ∩ B �= ∅ if and only if �(A) = B.

Corollary 20. For every node v ∈ V (G), |v| divides |O(v)| divides |�(G)|.

Let u, v be nodes in a connected graph G. Then we say that u fixes v if, for all � ∈ �(G), we have �(u) = u

implies that �(v) = v (or, equivalently, we can say that u fixes v if �u(G) < �v(G)). The relation ‘fixes’ is reflexive
and transitive but not necessarily symmetric. The fixing digraph F(G) is constructed as follows: V (F(G)) = V (G)

and (u, v) ∈ E(F(G)) if and only if u fixes v (in G). Note that for every node u, the loop (u, u) is an arc of F(G).
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For example, let G be the graph with V (G) = {a1, a2, b1, b2, c} and E(G) = {a1a2, a1c, a2c, b1b2, b1c, b2c}. Then
a1 fixes a2 (and vice versa), b1 fixes b2 (and vice versa), and every vertex fixes the vertex c. It follows that F(G)

has V (F(G)) = V (G) and E(F(G)) = {(a1, a1), (a1, a2), (a1, c), (a2, a2), (a2, a1), (a2, c), (b1, b1), (b1, b2), (b1, c),
(b2, b2), (b2, b1), (b2, c), (c, c)}.

Let G be a graph (or digraph) and P = {X1, X2, . . . , Xk} be a collection of subsets of V (G). Then the P-defective
domination number �̃P(G) is the smallest cardinality of a set S ⊂ V (G) such that for every integer i with 1� i�k, at
most one node of Xi is not adjacent from a node of S.

For example, let G be the grid P2 ×P4 with V (G)={aij : 1� i�2 and 1�j �4} and E(G)={aij ai′j ′ : |i − i′| = 1

or |j − j ′| = 1}. Let X1 = {a11}, X2 = {a12, a22}, X3 = {a21, a22, a23}, X4 = {a14, a24} and P = {X1, X2, X3, X4}.
Then {a23} is a minimum P-defective dominating set, so �̃P(G) = 1.

2.4.3. The main theorem
We are now ready to state and prove our main result.

Theorem 21. Let T be a tree, let � be the set of endorbits of T, and let P = ⋃
O∈� O/RO. Then fix(T ) = �̃P(F (T )).

Proof. We begin by showing that fix(T )� �̃P(F (T )). Let S be a P-defective dominating set of F(T ). By Lemma 8,
it suffices to prove that every endnode of T is fixed by S. Suppose to the contrary that there is an endorbit O, a node
u ∈ O, and an automorphism � ∈ �S(T ) such that �(u) �= u. Since � moves both u and �(u), it follows from our
choice of S that u �= �(u). We claim that u = {u}; suppose, to the contrary, that u′ is a node distinct from u having
u′ ∈ u. From our choice of S, the automorphism � fixes u′. But then, from Lemma 18, we have u=�(u′)=�(u). This
is a contradiction and our claim is proved.

Let v be a node in O distinct from u for which d(u, v) is a minimum, and P the u − v path in T. We now consider
two cases.

Case 1a: P has odd order. Let z be the central node of P and Tu, Tv the components of T − z containing u and v,
respectively. Since Tu and Tv are necessarily isomorphic, there is an automorphism �′ that interchanges u and v, flips
P (in the process moving every node in Tu ∪ Tv), and fixes every node in T − (Tu ∪ Tv). Then, from Lemma 15 and
our choice of v, we have O ∩ V (Tu ∪ Tv) = {u, v}. However, the automorphism �′ then interchanges u and v without
moving any other nodes in O. Thus v ∈ u, a contradiction.

Case 1b: P has even order. Then by Lemma 14, T is bicentral and both central nodes z1, z2 of T lie between u and
v. Every automorphism that moves u to v moves every node of T. Let Tu and Tv be the two components of T − z1z2
containing u and v, respectively. From Lemma 15 and our choice of v, it must be the case that O= {u, v}; thus, v ∈ u,
a contradiction, so fix(T )� �̃P(F (T )).

We now prove that fix(T )� �̃P(F (T )). Let S be a fixing set for T and suppose, to the contrary, that |S| < �̃P(F (T )).
Then there is an IEC containing two endnodes not dominated by S. Amongst all such pairs of endnodes, let u, v be
chosen such that d(u, v) is a minimum. Let P be the u − v path in T. We consider two cases.

Case 2a: P has odd order. Let z be the central node of P and Tu, Tv the components of T −z containing the nodes u, v,
respectively. Since S fixes T and the components Tu and Tv are isomorphic, there is (without loss of generality) some
node w ∈ S ∩ V (Tu); on the other hand, since the node w does not fix u, there is some automorphism � ∈ �w(T ) and
some u′ ∈ V (Tu)−{u}, such that �(u)=u′. However, every automorphism that interchanges u and v must necessarily
move u′, contradicting our assumption that u and v are in the same IEC.

Case 2b: P has even order. Let z be the central edge of P; then by Lemma 14, z is also the central edge of T.
Consequently, every (u, v)-interchange moves every node of T. Since u and v are in the same IEC, it must therefore be
the case that O(u) = {u, v}, from which it follows that any node of T fixes both u and v, contradicting our assumption
that no node of S fixes either of them. �

2.4.4. An alternative characterization of the IECs
In order to compute the fixing number of a tree using Theorem 21, we must be able to find the endorbits of that

tree, compute the IECs, and then determine the P-defective domination number of the associated fixing digraph.
Computing the endorbits in a tree is computationally easy; see, for example, [1]. We now show that, once we have
found the endorbits, it is possible to compute the IECs relatively easily, and certainly without finding the automorphism
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group. We then apply this result to obtain an interesting characterization of trees with fixing number 1. In the next
section we note that the process of determining fix(T ) can be simplified as well.

Lemma 22. Let T be a tree, O an orbit of T, and u, v ∈ O such that d(u, v) is odd. Then every automorphism that
sends u to v moves every node of T.

Proof. The result follows from Lemma 14. �

Theorem 23. Let T be a tree, O an orbit of T, and u, v distinct in O.

(i) If d(u, v) is odd, then uROv if and only if O = {u, v}.
(ii) If d(u, v) is even, then uROv if and only if d(u, v) = d(u,O − {u}).
Proof. Considering (i) first, we note that one direction is trivial and the other follows immediately from Lemma 22.

We now prove (ii). Assume first that d(u, v)=d(u,O−{u}). Let P be the u−v path in T and z the central node of P.
Let Tu and Tv be the components of T − z containing the nodes u and v, respectively. Then Tu and Tv are isomorphic
and there is an automorphism � of T that interchanges u and v while fixing every node in V (T )−V (Tu∪Tv). Moreover,
from our assumption and Lemma 15, neither Tu nor Tv contains any nodes in O−{u, v}. Thus, � is a (u, v)-interchange
and uROv.

To see the converse, let uROv and assume that d(u, v) > d(u,O−{u}). Let u′ ∈ O be such that d(u, u′)=d(u,O−{u}).
Since uROv, there is a (u, v)-interchange � that fixes u′. Since � is an isometry, d(u, u′) = d(v, u′). Thus, if P is the
u − v path in T and z the central node of P, then z lies between u and u′ and between v and u′ and, by assumption,
d(u, z) > d(u′, z). However, from Lemma 14, z lies between u and the center of T. Thus, d(u′, V (C))�d(u′, z) +
d(z, V (C)) < d(u, z) + d(z, V (C)) = d(u, V (C)). This together with the fact that e(u) = e(u′) contradicts Corollary
13 and the result follows. �

An IEC v will be called trivial if v = {v} and nontrivial otherwise.

Corollary 24. Let O be an orbit in a tree T. If |O|�3, then O contains a nontrivial IEC.

Proof. Let O contain three nodes. If T is central, then by Lemma 14 the distance between any two of these nodes is
even. If, on the other hand, T is bicentral, then let z be the central edge of T. Necessarily, some component of T − z

contains two nodes u, v ∈ O, and d(u, v) is even. Thus, in either case, there is a pair of nodes in O that are at even
distance and we may apply Case (ii) of Theorem 23 to establish the existence of a nontrivial IEC. �

An immediate and interesting consequence of Corollary 24 is the following.

Theorem 25. Let T be a tree. Then fix(T ) = 1 if and only if �(T ) = S2.

Proof. If �(T ) = S2, then clearly fix(T ) = 1. Let fix(T ) = 1 and S = {u} a fix(T )-set. Suppose, to the contrary, that
|�(T )| > 2. Since �u(T ) = S1, from (1) the orbit O(u) containing u has cardinality |�(T )|�3. Employing Corollaries
19 and 24, we see that there are nodes v, w ∈ O and an automorphism that interchanges v, w while fixing u. This
contradicts our choice of u and the result follows. �

2.4.5. The minimum fixing set
If v is a noncentral node of a tree T, then there is a unique edge e incident with v that lies between v and the center

of T. The component of T − e that contains the node v will be denoted T (v).

Lemma 26. Let v be a noncentral node in a tree T and � ∈ �(T ). If � moves v, then � moves every node of T (v).

Proof. Let � and v be as above and suppose, to the contrary, that there is a node v′ ∈ V (T (v)) that is fixed by �.
Since � is an isometry, v′ is equidistant from v and �(v). Thus v does not lie between v′ and �(v). By our choice of
v′, the v − �(v) path does not include the edge e. However, this implies that v lies between �(v) and the center of T,
contradicting the fact that e(v) = e(�(v)). �
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Corollary 27. If v is a noncentral node in a tree T and u ∈ V (T (v)), then u fixes every node that is fixed by v.

Lemma 28. If S is a fix(T )-set and v ∈ S, then v fixes every node in T (v).

Proof. Certainly the result is true when v is an endnode; suppose, then, that v is not an endnode and to the contrary
that there is an automorphism � and a node u ∈ V (T (v)) having �(u) �= u and �(v) = v. Since S fixes T, there is
a node v′ ∈ V (T (v)) ∩ S that fixes u. Consider a maximal path P beginning at v and including the node v′, and let
w be the endnode of T that is the last node of P. Since w ∈ V (T (v)) ∩ V (T (v′)), we know from Corollary 27 that
w fixes every node fixed by v and every node fixed by v′. Thus (S − {v, v′}) ∪ {w} fixes T, which contradicts our
choice of S. �

Theorem 29. For every tree T, there is a fix(T )-set consisting only of endnodes of T.

Proof. Amongst all �̃P(F (T ))-sets, let S be one containing the maximum number of endnodes. We claim that every
node in S is an endnode. Suppose, to the contrary, that this is not the case, and let w ∈ S be a node of degree at
least 2. We assume that �(T ) is nontrivial. If w is central, then the result is immediate, so we assume that w is not
central. Following the notation of Lemma 26, choose an endnode x from Tw; then, from Lemma 26, x fixes w and thus
fixes every node fixed by w. The set (S ∪ {x}) − {w} is a �̃P(F (T ))-set containing more endnodes than S, which is a
contradiction. �

3. Conclusion

In this article, it is shown that the fixing number of a tree is the P-defective domination number of a special kind
of digraph. However, so far as we are aware, little if anything is known about the P-defective domination number. In
particular, we would be interested in learning how difficult it is to compute �̃P(G) for different classes of graphs G and
collections P of subsets of V (G).

Other questions suggested by our results include the following. We have seen that trees with fixing number 1 admit
a wholly group-theoretic characterization. Is the same true for every tree? More generally, given a group � and a graph
G on which � acts, what restrictions, if any, does the structure of � place on the value of fix(G)?
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