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SOX10 involvement in syndromic form of Hirschsprung disease (intestinal aganglionosis, HSCR) in
humans as well as developmental defects in animal models highlight the importance of this transcription
factor in control of the pool of enteric progenitors and their differentiation. Here, we characterized the
role of SOX10 in cell migration and its interactions with β1-integrins. To this end, we crossed the
Sox10lacZ/+ mice with the conditional Ht-PA::Cre; beta1neo/+ and beta1fl/fl mice and compared the
phenotype of embryos of different genotypes during enteric nervous system (ENS) development.
The Sox10lacZ/+; Ht-PA::Cre; beta1neo/fl double mutant embryos presented with increased intestinal
aganglionosis length and more severe neuronal network disorganization compared to single mutants.
These defects, detected by E11.5, are not compensated after birth, showing that a coordinated and
balanced interaction between these two genes is required for normal ENS development. Use of video-
microscopy revealed that defects observed result from reduced migration speed and altered direction-
ality of enteric neural crest cells. Expression of β1-integrins upon SOX10 overexpression or in Sox10lacZ/+

mice was also analyzed. The modulation of SOX10 expression altered β1-integrins, suggesting that SOX10
levels are critical for proper expression and function of this adhesion molecule. Together with previous
studies, our results strongly indicate that SOX10 mediates ENCC adhesion and migration, and contribute
to the understanding of the molecular and cellular basis of ENS defects observed both in mutant mouse
models and in patients carrying SOX10 mutations.

& 2013 Elsevier Inc. All rights reserved.
Introduction

The enteric nervous system (ENS), composed of interconnected
ganglia distributed along the length of the gut, is the part of the
peripheral nervous system that controls the peristaltic and secre-
tory activity of the gut (Burns and Thapar, 2006; Gershon and
Wade, 1994). Mainly derived from vagal neural crest cells, ENS
development is dependent on proper proliferation, survival, differ-
entiation, and rostro-caudal migration of enteric neural crest cells
(ENCC) along the gut (Heanue and Pachnis, 2007; Obermayr et al.,
2012). Alteration of these events can cause an absence of enteric
ganglia, usually affecting the colon, and leading to severe con-
stipation or intestinal obstruction, a condition known in humans
as Hirschsprung disease (HSCR) (Amiel et al., 2008; Goldstein
et al., 2013; Heanue and Pachnis, 2007). HSCR affects 1:5000 live
ll rights reserved.
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births and requires surgery and re-anastomosis to remove the
aganglionic bowel segment (Hotta et al., 2009).

HSCR is a multigenic disorder. Molecular and developmental
studies have identified several critical players in HSCR and ENS
development, including the RET tyrosine kinase and EDNRB
G-coupled receptors and their ligands, L1CAM and β1-integrins
adhesion molecules, and various transcription factors including
SOX10 (Amiel et al., 2008; Goldstein et al., 2013; Heanue and
Pachnis, 2007); however, mutations in HSCR-associated genes
account for less than 50% of cases and incomplete penetrance
and intrafamilial variability are common. Interactions between
HSCR susceptibility loci and modifier genes have been described
using genome wide screens and familial studies (Amiel et al.,
2008; Gabriel et al., 2002). Similar strategies in mouse and two-
locus complementation approaches have identified components
contributing to the phenotype variability (see for example Barlow
et al. (2003), Heanue and Pachnis (2007), McCallion et al. (2003),
Owens et al. (2005), and Wallace and Anderson (2011)). In several
studies, Sox10 mutants were considered as a model of choice
(Cantrell et al., 2004; Maka et al., 2005; Owens et al., 2005;
Stanchina et al., 2006, 2010; Wallace et al., 2010).
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SOX10 is a member of the high-mobility group-domain SOX
family of transcription factors (Bowles et al., 2000; Kelsh, 2006;
Wegner, 1999). Mouse model studies have highlighted its crucial
function during ENS development (Herbarth et al., 1998; Pingault
et al., 1998; Southard-Smith et al., 1998). In Sox10lacZ/+ hetero-
zygous embryos, mutant ENCC are unable to maintain their
progenitor status and acquire pre-neuronal traits, reducing pro-
genitor pool size and resulting in variable enteric defects (Paratore
et al., 2002). Extinction of Sox10 expression is a prerequisite for
neuronal differentiation to proceed (Bondurand et al., 2006; Kim
et al., 2003). SOX10 function in these processes may be mediated
through interactions with Ret, Sox8, Zeb2, or Edn3/Ednrb (Cantrell
et al., 2004; Lang et al., 2000; Lang and Epstein, 2003; Maka et al.,
2005; Stanchina et al., 2006, 2010; Zhu et al., 2004). However, the
interactions between Sox10 and L1cam (Wallace et al., 2010) and
the severe enteric network disorganization observed in Sox10;
Zeb2 double mutants (Stanchina et al., 2010) suggested that Sox10
could also play a central role in cell adhesion and migration.

Gut colonization by ENCC, the mode of ENCC migration, and
the organization of the ganglia network can reflect variations in
the molecular mechanisms driving ENCC interactions and their
progression in response to their environment. ENCC express a
large repertoire of adhesion receptors that control their adhesion
to the extracellular matrix (ECM) and neighboring cells (Breau
et al., 2009; Hackett-Jones et al., 2011; McKeown et al., 2013;
Newgreen and Hartley, 1995). Integrins are the main ECM
receptors, and the specific combination of α and β subunits
determines the ligand recognition and cellular responses
(Barczyk et al., 2010; Beauvais-Jouneau and Thiery, 1997;
Campbell and Humphries, 2011; Hynes, 2002). ENCC integrins
include α4β1, α5β1, α6β1, αVβ1, αVβ3, and αVβ5 (Breau et al., 2009,
2006; Broders-Bondon et al., 2012; McKeown et al., 2013), and
ENCC lacking β1-integrin subunit gene Itgb1 stop migrating
before they reach the caecum, generating an HSCR-like pheno-
type (Breau et al., 2009, 2006). Severe enteric network disorga-
nization along the whole length of the gut was also clearly
apparent and defects observed were shown to result from
impaired migratory abilities and enhanced aggregation properties
of mutant ENCC.

Here, we investigated the interaction between Sox10 and Itgb1
in ENS development. The phenotypes of mice carrying combina-
tions of Sox10 and Itgb1 mutations were analyzed, focusing on
migration and cell adhesion processes. The effect of SOX10 over-
expression or haploinsufficiency on β1-integrins expression and
function was also examined.
Ta
b
le

1
G
en

ot
yp

es
d
is
tr
ib
u
ti
on

an
d
vi
ab

ili
ty

an
al
ys
is

of
an

im
al
s
re
su

lt
in
g
fr
om

C
ro
ss
in
g
st
ra
te
gy

an
d
of
fs
p
ri
n
g
cl
a

Pa
re
n
ts

G
en

ot
yp

es

H
t-
PA

::
C
re
;
be

ta
1n

eo
/+
;
So

x1
0l

a
cZ
/+

be
ta
1+

/fl
;
So

x1
0+

/+
;
R
26

RY
FP

X
H
t-
PA

::
C
re
;
be

ta
1+

/fl
;
So

x1
0+

/+
;
R
26

be
ta
1fl

/fl
;
R
26

RY
FP

be
ta
1n

eo
/fl
;
So

x1
0+

/+
;
R
26

R
Y
FP

be
ta
1+

/fl
;
So

x1
0l
a
cZ
/+
;
R
26

RY
FP

H
t-
PA

::
C
re
;
be

ta
1n

eo
/fl
;
So

x1
0+

/+
;
R

H
t-
PA

::
C
re
;
be

ta
1+

/fl
;
So

x1
0l

a
cZ
/+
;
R

be
ta
1n

eo
/fl
;
So

x1
0l

a
cZ
/+
;
R
26

RY
FP

H
t-
PA

::
C
re
;
be

ta
1n

eo
/fl
;
So

x1
0l
a
cZ
/+
;

Th
e
cr
os
si
n
g
st
ra
te
gy

,t
h
e
ei
gh

t
ge

n
ot
yp

es
ge

n
er
at
ed

an
d
th
e
fi
ve

co
rr
e

Materials and methods

Animals and tissue collection

Mouse models used in this study are: Sox10tm1Weg ((Britsch
et al., 2001), referred as Sox10lacZ in our study), Gt(ROSA)26
Sortm1(EYFP)Cos ((Srinivas et al., 2001) referred as R26RYFP),
Itgb1tm1Ref ((Potocnik et al., 2000), referred as betafl), Itgb1tm2Ref

((Fassler and Meyer, 1995), referred as beta1neo) and Tg(PLAT-cre)
116Sdu ((Pietri et al., 2003) referred as Ht-PA::Cre). Crossing
strategy was as follows: homozygous Ht-PA::Cre mice were
crossed with heterozygous beta1neo/+ mice and subsequently with
Sox10lacZ/+ heterozygotes to generate Ht-PA::Cre; beta1neo/+;
Sox10lacZ/+ mutants. These mice were then crossed with beta1fl/fl;
R26RYFP mice to generate eight progeny genotypes, correspond-
ing to five classes of mutants referred as controls, SOX10 hetero-
zygotes (Sox10lacZ/+), beta1-null, double heterozygotes (DH), and
double mutants (DM). The crosses, the eight genotypes generated
and the five corresponding classes are reported in Table 1, along



Fig. 1. Genetic interaction between Sox10 and Itgb1. (A) Whole-mount TUJ1 immunohistochemistry on E13.5 guts from wild-type, beta1neo/+, Sox10lacZ/+, and DH embryos.
Panels (left to right) show staining in the distal stomach, middle of small intestine, caecum, and colon, respectively. (B) Schematic representation of the gut. The areas
marked at the top represent the regions of the gut shown in A. Below the schematic, the lines and perpendicular arrows indicate the extent of colonization for each class of
embryos. The number of embryos presenting with a defined defect is indicated to the left of each arrow. s, stomach; si, small intestine; ce, caecum; co, colon.

Y. Watanabe et al. / Developmental Biology 379 (2013) 92–10694
with the total number of embryos (ranging from E10.5 to E17.5) of
each genotype collected during the study, showing that up to
E17.5, all genotypes are represented in the expected Mendelian
ratio. Death rate of each class of mutant postnatally is also
reported in Table 1.

Experiments were performed in accordance with the ethical
guidelines of the INSERM and CNRS. Embryos were obtained from
timed pregnancies. Dissected guts were used for explant or acute
cultures, video-microscopy, and flow cytometry analysis. Alterna-
tively, guts or embryos were fixed, sectioned and/or used to
perform various labelings.

Organotypic cultures, Immunostainings and X-Gal staining

Ex-vivo cultures of guts were carried out as in Breau et al.
(2009). Immunostainings of sections, embryos, guts, acute or 2D
cultures were performed as described (Bondurand et al., 2003;
Broders-Bondon et al., 2012), using the primary and secondary
antibodies shown in Supplementary Table 1. Immunostained
samples were examined using an Olympus SZH10 stereo micro-
scope coupled to Visilog, a Zeiss Axioplan 2 confocal microscope
coupled to Metamorph, at the Nikon Imaging Center of Curie
Institute (NIMCE@IC-CNRS). Focal adhesions were quantified using
ImageJ software. X-Gal staining followed standard procedures.

Enteric network quantification

Image stacks were acquired at the proximal or median part
(first third) of small intestine as well as at the migratory wave
front (variable region depending on the phenotypes observed).
To quantify the ENCC density, the area devoid of YFP+ cells (ENCC)
and TUJ1+ cells (neurons) was analyzed as in Broders-Bondon et al.
(2012), and the proportion of ENCC-free area per image deter-
mined. Segmentation was applied on the maximum intensity
projection of 3–6 confocal slices taken from stained guts using a
self-developed imageJ macro (Broders-Bondon et al., 2012) based
on K-means clustering (Dima et al., 2011).

Video time-lapse imaging

Video time-lapses of ex-vivo gut cultures, individual ENCC
tracking within the gut tissue, speed of locomotion, directionality
and persistence measurements were performed as in Breau et al.
(2009) and Broders-Bondon et al. (2012).



Fig. 2. Genetic interaction between Sox10 and Itgb1 controls ENS development. (A) Whole-mount TUJ1 immunohistochemistry on E14.5 guts from controls, Sox10lacZ/+,
beta1-null, DH, and DM embryos. Panels (left to right) show staining in the distal stomach, proximal and median part of the small intestine, caecum, and colon, respectively.
(B) Schematic representation of the gut and phenotypes observed are presented as in Fig. 1. (C) Higher magnification panels of Sox10lacZ/+, beta1-null, and DM small intestine
showing network disorganization. s, stomach; si, small intestine; ce, caecum; co, colon.
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Cell culture, transfection and flow cytometry

Neuro 2a (N2a) neuroblastoma cells were maintained in
Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal
calf serum and transfected with a SOX10-GFP tagged construct
under CMV promoter (Rehberg et al., 2002) using Lipofectamine
Plus reagents (Gibco BRL).

N2a cells were trypsinised, centrifuged at 1300 rpm for 10 min
at 4 1C, and resuspended in DMEM/F12 (Gibco BRL). Embryonic
guts were dissociated as described previously (Bondurand et al.,



Fig. 3. Comparison of network organization of single and double mutants. (A) Confocal compilation showing neuronal network (TUJ1), ENCC distribution (YFP) and
combination (Merge) within the proximal and median (1/3rd) small intestine and migratory wave front, in controls, beta1-null, DH, and DM. (B–C): Quantification of network
disorganization within the proximal and median part of the small intestine. (B) Quantification of ENCC-free areas relative to mean area in controls, summarized as box plots.
The top and bottom of each box are the 25th and 75th percentiles of the ENCC-free regions areas, respectively. The red line in the middle of the box is the median.
(C) Proportion of ENCC-free areas, expressed as percent of the field of view (1024�1024 pixels, or 107�107 μm) and summarized as box plots, as in (B).

Y. Watanabe et al. / Developmental Biology 379 (2013) 92–10696
2003). Gut and N2a cell suspensions obtained were incubated with
RPE or APC-labeled primary or secondary antibodies directed
against the extracellular domain of integrin subunits (β1, or α5)
on ice for 30 min, and analyzed with a CyAnADPLX7 instrument
(Beckman-Coulter).
Real-time Q-PCR

Total RNA was isolated and reverse transcribed using standard
procedures and cDNA were amplified using Fast SYBRs Green
Master Mix (Applied Biosystems). PCR analysis was performed in



Fig. 4. Timing of ENS defects in controls, Sox10lacZ/+, beta1-null, DH, and DM embryos. (A) E10.5 whole-mount X-Gal staining showing ENCCmigration along the foregut. Note that the
lacZ reporter is present in the Sox10lacZ allele as well as in the Itgb1-floxed locus and therefore shows Sox10 and/or Itgb1 in targeted cells, depending of the genotypes of the embryos.
(B) Analysis of E11.5 embryos with combined Sox10 and Itgb1 mutations. X-gal (E11.5) and TUJ1 (E12.25) staining/labeling performed on whole-mount guts are shown in the first
column. X-Gal and neurofilament (NF) staining/labeling of whole embryos are shown in the last two columns. s, stomach; ce, caecum; co, colon; drg, dorsal root ganglia; V and IX/X,
cranial ganglia; pn, peripheral nerves; Ot, otic vesicle. Wave front of migration is indicated by black or white arrows in A and B, respectively.
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duplicates for three independent experiments and analyzed by the
ΔCt method using cyclophilin B as housekeeping gene and GFP-
cells for normalization. Primers are available upon request.

Statistical analysis

In Fig. 3, mutant phenotypes were compared to controls using
the Kruskal Wallis test for multiple comparisons. For quantifica-
tion of cell-free area, only the areas above the mean size of the
control free areas were compared. Significance levels were: no0.05,
nno0.01, nnno0.005.
In Figs. 6–8 and Supplementary Fig. 1, results are mean7SEM.
Statistical significance was tested with Student's t-test. P values:
no0.05, nno0.01, nnno0.001.
Results

Genetic interaction between Sox10 and Itgb1 controls ENS formation

To test for a genetic interaction between Sox10 and Itgb1, we first
crossed Sox10lacZ/+ mice with beta1neo/+ animals and compared the



Fig. 5. Phenotypic analysis of guts from newborn mice with Sox10 and Itgb1 mutations. (A) Controls, Sox10lacZ/+, beta1-null, DH, and DM guts were dissected and
photographed (first column). The same guts were used subsequently for TUJ1 immunohistochemistry (second column). White boxes indicate the region presented in the
second column. Black arrows indicate the transition zone from stenotic to dilated gut segments. (B) Whole-mount X-Gal staining of guts from Sox10lacZ/+and DM showing
severe disorganization of the enteric network at birth. White boxes indicate the region shown in higher magnification. In A and B, note the extensive aganglionic segment in
the hindgut of DM postnatal mice. ce, caecum.

Y. Watanabe et al. / Developmental Biology 379 (2013) 92–10698
enteric phenotypes of single and double heterozygotes upon
normal complete colonization of the gut by ENCC (E13.5–E14.5)
(Barlow et al., 2003; Young et al., 1998). As distribution of enteric
neurons reflects the progress of migration and differentiation of
ENS progenitors, we compared neurogenesis in the gut of mutant
embryos of different genotypes at E13.5 using whole-mount
immunostaining with the neuronal class III β-tubulin TUJ1 marker
(Barlow et al., 2003; Stanchina et al., 2006). Consistent with
previous findings, the guts of wild-type and beta1 heterozygotes
were fully colonized whereas the majority of Sox10lacZ/+ embryos
presented with colonization delay (Fig. 1 and (Breau et al., 2006;
Maka et al., 2005; Stanchina et al., 2006, 2010)). No additional



Fig. 6. Migratory properties of ENCC at the migratory front. (A) Individual trajectories of ENCC within the midgut or caecum of E12.5 beta1-null, DH, and DM embryos. The
tracks overlay the first image in the time series, with the initial positions of the cells indicated by circles. Average speed (B) and persistence (C) of tracked DH (n¼18), and DM
(n¼27) ENCC within the midgut and beta1-null (n¼21), DH (n¼16), and DM (n¼20) ENCC within the caecum. (D) Directionality of tracked DH (n¼18) and DM (n¼24) ENCC.
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defects were observed in DH compared to single mutants (Fig. 1A
and B, last lanes). The enteric phenotype of Sox10 heterozygous;
beta1-null double mutants (DM) was therefore analyzed.
Because the homozygous Itgb1 knockout is embryonic lethal,
we used a conditional ablation strategy. Using beta1fl; R26RYFP
and Ht-PA::Cre mouse lines, Itgb1 was deleted in all neural crest
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cells (NCC) as they emerge from the neural tube (Breau et al.,
2006). We crossed Ht-PA::Cre; beta1neo/+; Sox10lacZ/+ with beta1fl/fl;
R26RYFP mice and analyzed the enteric phenotypes of the five
classes of mutants generated at E14.5 (for detailed genotypes see
Table 1). A colonization delay was detected in the majority of
Sox10lacZ/+ animals, and beta1-null single mutants (absence of
TUJ1+ cells from the caecum or from the middle of the colon
caudally, Fig. 2A and B). Three of the seven DH embryos had a
slight colonization delay compared to single mutants (Fig. 2A and
B); however, similar experiments performed at earlier (E12.5) and
later (up to E17.5) stages did not confirm this observation. In
contrast, guts from DM embryos showed a severe colonization
delay. TUJ1 staining stopped within the first half of the small
intestine of all embryos analyzed (Fig. 2A and B). Therefore,
combined deficits in SOX10 function and β1-integrins-mediated
adhesion caused profound ENS defects, arguing for a genetic
interaction between the two loci that could rely on cooperative
activity or on a successive requirement of these two molecules
during ENS development.

As previously described (Breau et al., 2009, 2006), a disorgani-
zation of the neuronal network with abnormal aggregates sur-
rounded by enlarged TUJ1-free spaces was also observed along the
beta1-null mutant guts. This network disorganization was not
observed in Sox10lacZ/+, but was exacerbated in DM that exhibited
larger TUJ1-free regions (Fig. 2C).

Quantitative analysis highlights enteric network disorganization
in DM

To determine whether the observed phenotypes arise from
alterations affecting all ENCC or result from defects in neuronal
differentiation, we took advantage of the R26RYFP locus under the
control of Ht-PA::Cre present in our lines. Neuronal (TUJ1+) and
ENCC (YFP+) populations were analyzed in three regions: the
proximal and median part (first third) of the small intestine and
the migratory wave front (Fig. 3A). YFP+ and TUJ1+ cells exhibited
a similar pattern throughout, suggesting that enteric defects
observed result from the absence of all ENCC along a variable
length of the intestine. In colonized regions, organization of both
cell types was also very similar, with enlarged ENCC-free spaces
observed in DM compared to other genotypes (Fig. 3A), confirming
the disorganization of enteric network observed affect all ENCC.

To quantify this defect more carefully, the ENCC distribution
was analyzed in the proximal and median part of the small
intestine of embryos of different genotypes (Fig. 3B). The areas
devoid of cells that are above the mean size of the control cell-free
areas were measured. Significantly larger ENCC-free areas were
observed in DM compared to DH in both regions (proximal small
intestine; 17777242 and 9407113 respectively, Po0.01 and
1/3rd of small intestine 23417414 and 797764, Po0.005,
respectively). The proportion of ENCC-free areas was also quanti-
fied and expressed as the percentage of the image not containing
YFP+ cells (Fig. 3C), giving values inversely proportional to density.
The proportion of ENCC-free areas was similar for controls,
DH, and beta1-null mutants (34.7271.52, 36.3272.22 and
35.5472.00, respectively), but significantly increased within the
proximal small intestine of DM (47.0472.52, Po0.05 in each
case). Increased proportion was also observed in the median part
of the small intestine of DM, but significantly different upon DM
and DH comparison only (62.4273.81 and 37.5171.73, Po0.005,
respectively; controls: 41.7171.81; beta1-null: 43.4072.76,
Po0.16). Therefore, in Sox10lacZ/+ ENCC, depletion of β1-integrins
leads to a significant change in the ENS network, with larger
meshwork size, and a reduced density of ENCC, indicating that the
organization of the ENS is modulated by the interplay between
β1-integrins and SOX10.
Timing analysis reveals severe ENS defects from E11.5 onwards

The behavior of vagal NCC at the time of foregut invasion was
compared among genotypes. X-Gal staining of E10.5 whole-mount
embryos showed stained cells in the stomach region and, irre-
spective of the genotype of the embryos, cells moving in lines to
colonize the midgut (see black arrows, Fig. 4A), suggesting an
absence of additional defects in DM compared to single mutants at
this stage.

One day later (E11.5), the results were different (Fig. 4B). X-Gal
and TUJ1 stainings on whole-mount gut preparations revealed a
slight delay in Sox10lacZ/+, beta1-null, and DH embryos compared
to controls, with the front of migrating ENCC in the mutants
stopping in the final quarter of the midgut, or just before the
caecum (Fig. 4B first column). This delay was clearly exacerbated
in DM embryos (cells never reached the second half of the midgut,
n¼5; Fig. 4B). Network disorganization was also visible in colo-
nized regions of the DM gut, suggesting that DM defects are
detected by E11.5. The observation of other NCC derivatives such as
cranial ganglia, dorsal root ganglia and peripheral nerves by X-Gal
staining or neurofilament (NF) whole-mount immunohistochem-
istry revealed no obvious differences between DM and single
mutants at this stage (Fig. 4B) or earlier (data not shown), suggesting
that a cooperative requirement of Sox10 and Itgb1 is required for
ENCC migration along the gut only.

To determine whether ENS defects in DM were overcome after
E14.5, guts from newborn mice were photographed and stained
for TUJ1 and X-Gal. As shown in Fig. 5, the aganglionic gut
segment in DM often extended above the caecum and affected
the last third of the small intestine (Fig. 5A, compare position of
black arrows). The ENS network was also more disorganized in
colonized regions of DM compared to other genotypes (Fig. 5A and B).
The postnatal survival of these animals was monitored up to
5 weeks of age (Table 1). Almost all Sox10lacZ/+ and DH survived,
but 43% of beta1-null and 100% of the DM died before weaning. Six
of the eight DM died within the first 2 days after birth, but milk
was present in the stomach (Fig. 5A), indicating that they started
feeding. The remaining DM pups died at 19 and 23 days of
unknown causes. Thus, ablation of β1-integrins in Sox10 hetero-
zygous animals results in more severe ENS defects from E11.5 that
are not compensated in later development and reduce postnatal
survival.

Video-microscopy demonstrates altered migration properties of DM
ENCC

To determine the cellular mechanism underlying the ENS
defect observed, we first compared the proliferation and survival
capacities of ENCC of different genotypes. To this end, E12.5 guts
were dissociated, plated in acute culture over a short period of
time, fixed and used for immunolabelling. Cell death was quanti-
fied by counting the activated caspase-3 positive cells among
the SOX10 positive population and no statistical difference was
found. Indeed, the percentage of apoptosis in controls, Sox10lacZ/+,
beta1-null, DH and DM ENCC was 0.3770.09%, 0.5270.22%,
0.5870.16%, 0.5170.13% and 0.7270.15%, respectively (n44;
DM vs. controls (P¼0.07), Sox10lacZ/+ (P¼0.47), beta1-null
(P¼0.56), DH (P¼0.33)). Proliferation was quantified by counting
the Phospho-Histone H3 positive cells among the SOX10 popula-
tion and no significant difference was observed either. Indeed,
proliferation rates in controls, Sox10lacZ/+, beta1-null, DH and
DM ENCC were 10.571.4%, 9.470.7%, 11.671.3%, 9.271.2% and
9.570.5%, respectively (n¼3; DM vs. controls (P¼0.51), Sox10lacZ/+

(P¼0.94), beta1-null (P¼0.12), DH (P¼0.81)). As gut colonization
defects in beta1-null mice were previously shown to result from
impaired migratory abilities and enhanced aggregation properties



Fig. 7. Effect of SOX10 overexpression or Sox10 haploinsufficiency on Itgb1/β1-integrins expression. N2a cells were transfected with a SOX10-GFP expression vector. (A) Four
chosen cell populations expressing increasing amounts of SOX10-GFP were used for (B) Real time quantitative-PCR analysis of the expression of Mpz (graph on the left) and
Itgb1 (graph on the right), and for (C) flow cytometry analyses of β1 integrins expression. In (B), results are presented as relative Mpz and Itgb1 expression (fold induction)
compared to the GFP-cells. In (C), β1 and activated β1 (actβ1) –APC mean fluorescence intensity are presented as raw data or relative mean intensity of 3 experiments.
(D) E17.5 gut sections from beta1 heterozygotes and DH were labeled with SOX10 and β1-integrins antibodies (E) Beta1 heterozygotes (beta1-het) and DH E14.5 guts were
dissociated and used for flow cytometry analysis to quantify β1- and actβ1 integrin associated-RPE mean fluorescence intensity among the YFP+ population.
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of mutant ENCC (Breau et al., 2009), the dynamic behavior of ENCC
of different genotypes was examined.

The migration of YFP+ cells in E12.5 gut tissues in ex-vivo
cultures was imaged using time-lapse fluorescence microscopy.
Individual cell trajectories showed that DM cells are unable to
migrate for long distances (but rather form aggregates) compared
to DH and beta1-null cells (Fig. 6A). The other genotypes did not
express YFP and the controls beta1 heterozygotes have already
reached the hindgut by E12.5 and were not tracked.

The migration speeds of individual cells were measured for
beta1-null, DH and DM at the migratory front. The beta1-null
ENCC had invaded the ceacum at this stage and their mean speed
of locomotion was found to be 44.8076.96 μm/h (n¼21). Due to
phenotype variability, DH ENCC speed was measured in the
midgut or ceacum region depending on the embryos analyzed.
ENCC mean speed was very similar in both regions (36.737
2.87 μm/h (n¼18) and 31.9673.48 μm/h (n¼16), respectively),
and not significantly different from that of beta1-null cells
(P¼0.11). In most cases, DM ENCC were found migrating in the
midgut region and their mean speed (22.8072.69 μm/h, n¼27)
was significantly reduced, indicating that the more severe ENS
defect is partly due to altered cell migration capacities (Fig. 6B).



Fig. 8. Effect of Sox10 haploinsufficiency on cell adhesion in-vitro. (A) Gut cross-sections from E12.5 Wild-type and Sox10lacZ/+ midgut were placed on FN-coated and labeled
with SOX10/TUJ1 antibodies. Low magnification images provide an overview of the explant morphology. White boxes in (A) indicate the region shown in higher
magnifications, providing detail. (B) Quantification of focal adhesions (FA) in wild-type and Sox10lacZ/+ ENCC measured by localization of Vinculin and SOX10 using antibodies
provided in Supplementary Table 1. (C) Quantification of activated β1-integrins (act β1) in FAs. In (B) and (C) graphs show the mean area and mean Feret's diameter indicating
the size of FAs. To generate data presented in A, B and C, note that three independent experiments were carried out using 2 to 3 embryos of each genotype.
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In the only one DM sample in which cells were found to reach the
caecum, ENCC presented a mean speed of migration of 19.4172.08
(n¼20), displaying a decreased velocity compared to beta1-null and
DH ENCC (P¼0.0018 and P¼0.0041 respectively, Fig. 6B).
The same cell trackings were used to analyze the persistence
(calculated by dividing the distance between its initial and final
positions by the total distance covered by the cell, Fig. 6C) and the
directionality (evaluated by measuring the angle between the
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rostro-caudal axis of the gut and the straight line separating the
initial and final positions of the cell, Fig. 6D). These measurements
confirmed the severe defects in DM. In the midgut, mutant cells
showed decreased persistence compared to DH (0.3170.044 vs.
0.6870.047, respectively, Po0.0001) (Fig. 6C). The one DM
sample in which cells were found to reach the caecum also
showed decreased persistence compared to other genotypes
(0.2470.033, 0.4270.039, and 0.3770.046 for DM, DH and
beta1-null, respectively; DM vs. DH and beta1-null, P¼0.0014
and P¼0.0289, Fig. 6C). Finally, the directionality of migration of
DM cells was found erratic too compared to DH, indicating that
most of the leading cells migrated in the wrong (caudo-rostral)
direction (Fig. 6D). Other DM cells were almost static. Altogether,
our results highlight an essential role of SOX10 in cell migration
that may depend on β1-integrins.

Effect of SOX10 overexpression or Sox10 haploinsufficiency on β1 and
α integrins expression

SOX10 regulates the expression of several genes during ENS
and other neural crest derivatives development, including Ednrb,
L1cam, Ret andMpz (Lang et al., 2000; Peirano et al., 2000; Wallace
et al., 2010; Zhu et al., 2004). Itgb1 expression was therefore
analyzed in N2a cells upon SOX10 overexpression. We used N2a
neuroblastoma cells for our analyses as these tumor cells are
derived from and still exhibit some similarities to neural crest
cells. Quantitative PCR analysis of four cell populations expressing
increasing amount of SOX10-GFP (Fig. 7A) revealed that SOX10
strongly activates Mpz transcription as previously described
(Peirano et al., 2000), but has no significant impact on Itgb1
expression (Fig. 7B).

In parallel, we tested the effect of SOX10 overexpression on β1-
integrins membrane protein levels (Fig. 7C). Flow cytometry
analysis using APC-coupled antibodies directed against the total
or activated form of the β1-integrin subunit revealed a shift
in the mean fluorescence intensity upon SOX10 overexpres-
sion, suggesting that this transcription factor drastically reduce
β1-integrins expression and activation in a dose-dependent manner
(Fig. 7C).

In parallel, the expression of β1-integrins in E17.5 gut sections
were examined in embryos with different combinations of Sox10
and Itgb1 mutant alleles (Fig. 7D). β1-Integrins were not expressed
in beta1-null mutants or DM (data not shown). While β1-integrins
showed lower expression in enteric ganglia compared to muscle at
E17.5, β1-integrins were detected in SOX10+ cells of wild-type,
beta1 heterozygotes, Sox10lacZ/+, and DH embryos (Fig. 7D and data
not shown). The level of β1-integrins in ENCC (YFP+) from E14.5
dissociated gut cell suspensions of beta1 heterozygotes (controls)
and DH was also quantified by flow cytometry. The YFP+ popula-
tion represented 6.0870.68 and 5.1470.33 of the total popula-
tion analyzed in controls and DH cells respectively, suggesting
similar numbers of ENCC between the two genotypes. No sig-
nificant difference in total or activated β1-integrins-RPE mean
fluorescence intensity was detected (Fig. 7E), suggesting that Sox10
haploinsufficiency does not affect β1-integrins expression.

We also tested whether SOX10 overexpression or haploinsuffi-
ciency could modify other integrins protein levels and focused on
α5 and αv, since these subunits dimerize with β1, β3, or β5, and
interactions between L1cam and Sox10 (Wallace and Anderson,
2011; Wallace et al., 2010), αvβ3, αvβ1, and α5β1 (Felding-
Habermann et al., 1997) have been reported. SOX10 overexpres-
sion reduced αv and α5-integrins levels in a dose dependent
manner (Supplementary Fig. 1A). In contrast, immunofluorescent
stainings of gut sections revealed no major change in the expres-
sion of either αv or α5 in embryos of various genotypes
(Supplementary Fig. 1B). Altogether, our results suggest that
SOX10 overexpression in-vitro but not Sox10 haploinsufficiency
in-vivo could affect expression of β1 and other integrins.

SOX10 haploinsufficiency alters cell adhesion properties

The effect of SOX10 haploinsufficiency on cell adhesion was
examined. Gut explant cultures using rings of E12.5 midgut were
established. Fibronectin (FN) was used as a permissive substratum
for adhesion and migration of ENCC. After 24 h of culture, explants
were stained for SOX10 (to detect progenitors) and TUJ1 (to detect
neurons). In control cultures, both cell types formed scattered
networks around the explants, at the periphery of smooth muscle
cells. In contrast, few Sox10lacZ/+ ENCC were found outside the
explants, and often formed aggregates containing both neurons
and progenitor cells (Fig. 8A). These data suggest that Sox10lacZ/+

ENCC are either unable to migrate or interact efficiently with
their environment, and/or have modified intercellular adhesion
properties.

The adhesion sites formed by wild-type or Sox10lacZ/+ ENCC on
the FN-coated surface (Fig. 8B) were examined by labeling with
antibodies against SOX10 to visualize ENCC and vinculin to
identify focal adhesions (FA). The number, area, and Feret's
diameter of FA were quantified. Feret's diameter corresponds to
the longest length of the focal adhesion signal, independently of
its orientation in the cell. Wild-type and Sox10lacZ/+ ENCC had
similar numbers of FA (data not shown). However, mutant ENCC
displayed a significant increase of the area and Feret's diameter
per FA (0.5870.045 and 1.2270.03, respectively) compared to
wild-type (0.2670.01 and 0.9470.015, respectively; Fig. 8B). The
change in FA size suggests modifications in their dynamics in
Sox10lacZ/+ ENCC that may affect the migratory properties. These
results also suggest that Sox10lacZ/+ ENCC adhere more strongly to
FN, possibly by increasing recruitment of β1- or β3-integrins at the
FN contact sites. Of interest, Sox10 heterozygotes also displayed a
significant increase in the FA area and Feret's diameter visualized
by activated β1-integrin subunit antibody (Fig. 8C). These results
highlight an essential function of SOX10 in cell–ECM and/or cell–
cell adhesion, events that are dependent on proper integrins
function and β1, in particular.
Discussion

This study demonstrates an essential role for SOX10 in the
control of migration and shows that the coordinated action of
SOX10 and the β1-integrin subunit is required for proper ENCC
migration along the gut and enteric neuronal network organiza-
tion. Our observations thus extend the SOX10 interaction network
and open new research areas concerning its function.

Analysis of ENS development in Sox10; Itgb1 mutant revealed
that complete removal of β1-integrins function in the context of
Sox10 heterozygosity leads to an increase in enteric phenotype
severity. Both timing of ENCC colonization of the gut and quality of
the ENS network were affected, highlighting a cooperative or
successive requirement for SOX10 and cell–ECM adhesion recep-
tors during ENS development.

An interaction between SOX10 and another adhesion molecule,
L1cam was previously reported (Wallace et al., 2010). Authors
clearly showed that L1cam; Sox10 double mutants defects
observed resulted from excessive cell death of neural crest cells
prior to entering the gut. In contrast, and similar to Sox10; Zeb2 DH
(Stanchina et al., 2010), severe ENS defects in Sox10; Itgb1 embryos
were observed from E11.5 onwards, suggesting that cooperativity
between SOX10 and β1-integrins is critical as ENCC migrate along
the gut. However, we cannot exclude the possibility that crosstalk
between SOX10 and β1-integrins occurs earlier, but that the
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conditional ablation strategy used here prevented its observation.
β1-integrins were shown to be barely detectable at the cell surface
of beta1-null ENCC when they start to invade the foregut, at E9.5,
and completely absent from E11.5 onwards (Breau et al., 2006).
Minor amounts of β1-integrins on the cell surface at early stages,
or the activity of αvβ3 integrin, also expressed by ENCC, may
be sufficient, and explain the absence of ENS defect in DM
before E11.5.

Previous analysis suggested that β1-integrins activity was
crucial for caecum colonization only (Breau et al., 2006). By
contrast, the affected gut segment in DM extended beyond the
ileo-caecal junction through the small intestine, suggesting that
migration within the midgut is under the control of coordinate
action of SOX10 and β1-integrins or requires molecules acting in
synergy with β1-integrins. Whether this function is mediated
through FN or other ECM components in-vivo remains to be
determined.

In addition to the ENS, Sox10 and Itgb1 are expressed in other
NCC derivatives and their removal appears deleterious during the
formation of some derivatives, Schwann cells in particular (Britsch
et al., 2001; Mollaaghababa and Pavan, 2003; Pietri et al., 2004;
Wegner, 2009). The formation and differentiation of other NCC
derivatives in E10.5 and E11.5 DM was therefore examined, but no
obvious additional defect was found, suggesting that the coopera-
tive requirement for SOX10 and β1-integrins could be specific to
ENS development. Alternatively, functional redundancy could
explain the absence of other defects. Indeed, SOX9, SOX8, SOX2,
and other integrins have been shown to play key roles in some
NCC derivatives and could compensate for the partial or complete
absence of SOX10 or β1-integrins in those cells (Beauvais-Jouneau
and Thiery, 1997; Bronner-Fraser, 1986; Crump et al., 2004;
Delannet et al., 1994; Desban and Duband, 1997; Kil and
Bronner-Fraser, 1996; Le et al., 2005; Stolt and Wegner, 2009;
Testaz and Duband, 2001; Wegner, 2009; Wegner and Stolt, 2005).
However, we cannot exclude that interactions in other NCC
derivatives could take place beyond the stages analyzed. We
believe the ENS defects observed may not be the cause of the
early postnatal mortality observed in DM. The presence of milk in
the stomach shows that they are able to breathe and feed. SOX10
and β1-integrins involvement in the control of other NCC derived
tissues such as lung or heart could explain early death, but further
experiments are needed to test these possibilities.

To decipher the cellular basis of the ENS defects, migration of
mutant ENCC was observed by video-microscopy. Similar migra-
tion speeds in DH and beta1-null ENCC suggested that SOX10 is
involved in control of cell migration. Changes in cell adhesion
properties were also observed in Sox10lacZ/+ cells, as shown by the
formation of cell aggregates upon coating on permissive substra-
tum, suggesting heterozygous cells are unable to migrate or
interact efficiently with their environment, and/or have modified
intercellular adhesion properties. In addition, strong alterations in
directionality, persistence and speed of migration observed in DM,
indicated that the severe ENS defects observed are partly due to
altered cell migration, and that SOX10 and β1-integrins act
synergistically to control this process. To understand the molecular
mechanisms underlying the Sox10/Itgb1 genetic interaction, the
effect of SOX10 overexpression or Sox10 haploinsufficiency on
integrins expression and function was examined. No effect of
SOX10 overexpression on Itgb1 transcription was found, suggesting
that Itgb1 is not a SOX10 target gene. In contrast, β1-integrins
membrane protein levels and activation were clearly downregu-
lated by SOX10 overexpression. β1-Integrins membrane protein
levels were unchanged in Sox10lacZ/+ and DH mutant ENCC, but
increased Vinculin and activated β1-integrins clustering were
observed at cell–FN adhesion sites revealed by larger FA. Integrins
mediate the interaction of cells with ECM. During the development
of cell–matrix adhesions, these receptors are activated and recruit
structural and signaling proteins, which contribute to maturation of
nascent adhesion sites into FA, making the link between ECM and
the actin cytoskeleton and stimulating cell migration and contrac-
tility (for reviews see Wehrle-Haller (2012) and Zamir and Geiger
(2001)). The change in the size of FA reflects modifications in either
their maturation or dynamics, two processes that regulate cell
migration.

The severe increase in ENS defects in DM suggests that other
molecules whose signaling is in direct or indirect connection with
β1-integrins might be affected by changes in Sox10. Immunohis-
tochemistry and flow cytometry analyses of other α subunits
showed that α5 and αv may also be under SOX10 control. The
effect on other β chains remains to be determined.

Alternatively, SOX10 and β1-integrins could be part of a
common signaling pathway. Signaling by vascular endothelial
growth factor, platelet-derived growth factor receptor, and tyro-
sine kinase receptors such as c-Kit, EGFR, ErbBs are modulated by
integrins. The essential function of ErbBs in ENS development, as
well as their possible regulation by SOX10, suggests that SOX10
function in ENS migration could rely on ErbB upregulation and
activation of β1-integrins dependent signaling cascades (Adelsman
et al., 1999; Barczyk et al., 2010; Chalazonitis et al., 2011; Crone
et al., 2003; Goodman and Picard, 2010; Streuli and Akhtar, 2009;
Yamashita et al., 2010). SOX10, in synergy with its known cofac-
tors, could also induce Ret or Ednrb expression (Lang et al., 2000;
Lang and Epstein, 2003; Zhu et al., 2004) and subsequent RET- or
EDNRB-β1-integrins dependent signaling cascades (Cockburn
et al., 2010; Lange et al., 2007) and thus control cell migration.
Finally, SOX10 has recently been shown to regulate other genes
involved in migratory processes, some of them expressed in gut
and interacting with components of β1-integrins signaling path-
ways (Finzsch et al., 2008; King et al., 2011; Lee et al., 2008;
Veevers-Lowe et al., 2010; You and Lin-Chao, 2010). The defects
observed could therefore be due to changes in crosstalk mediated
by these genes.

Diverse human pathologies involve integrins-mediated cell
adhesion, including thrombotic disease, inflammation (including
inflammatory bowel disease), cancer, fibrosis, and infectious dis-
eases (Goodman and Picard, 2010). Itgb1 variations have not been
reported in human pathology so far. The severe phenotype
observed upon ablation of this gene (null mutants die soon after
implantation due to inner cell mass defects) offers an explanation
for the absence of human mutations. However, similar to ITGAV,
ITGA2, and ITGB3, polymorphisms or common haplotypes could
influence the phenotype resulting from mutations in other genes
(Barczyk et al., 2010; Goodman and Picard, 2010; Napolioni et al.,
2011). HSCR penetrance is incomplete in patients carrying SOX10
mutations, and even within HSCR affected patients, the length of
the aganglionosis and the nature of the transition zone can vary.
Some patients with SOX10 mutations have chronic intestinal
pseudo-obstruction instead of HSCR (for review see Pingault
et al. (2010)). The molecular basis for this phenotype is currently
unknown. Here, DM not only present with an increase in the
length of the non-colonized region, but also with an altered
organization of the enteric network in the colonized intestine.
Whether the SOX10/β1-integrins cooperativity contributes to the
variability of phenotypes in patients with SOX10 mutations
remains to be clarified. It may also be of interest to search for
variations in the Itgb1 gene in patients carrying SOX10 mutations
and presenting with altered gut function without distal aganglio-
nosis (pseudo-obstruction).

In conclusion, our study suggests that SOX10 is not only
required to control stem cell maintenance and cell differentiation,
but also is crucial in controlling cell migration and adhesion.
Interestingly, SOX10 is not the only SOX gene known to interact
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with ECM. During chondrogenesis, SOX9 regulates collagen and
aggrecan genes, suggesting a strong link between SOX genes and
ECM formation (Guth and Wegner, 2008). Besides further our
understanding of the molecular and cellular bases of ENS defects
caused by SOX10 mutations in humans and mice, our results may
contribute to the development of therapeutic strategies for HSCR
and intestinal pseudo-obstruction.
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