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a b s t r a c t

Xenopus laevis adults mount effective immune responses to ranavirus Frog Virus 3 (FV3) infections and

clear the pathogen within 2–3 weeks. In contrast, most tadpoles cannot clear FV3 and succumb to

infections within a month. While larval susceptibility has been attributed to ineffective adaptive

immunity, the contribution of innate immune components has not been addressed. Accordingly,

we performed a comprehensive gene expression analysis on FV3-infected tadpoles and adults.

In comparison to adults, leukocytes and tissues of infected tadpoles exhibited modest (10–100 time

lower than adult) and delayed (3 day later than adult) increase in expression of inflammation-

associated (TNF-a, IL-1b and IFN-g) and antiviral (Mx1) genes. In contrast, these genes were readily and

robustly upregulated in tadpoles upon bacterial stimulation. Furthermore, greater proportions of larval

than adult PLs were infected by FV3. Our study suggests that tadpole susceptibility to FV3 infection is

partially due to poor virus-elicited innate immune responses.

& 2012 Elsevier Inc. All rights reserved.
Introduction

The tadpole and adult forms of the amphibian Xenopus laevis

each display distinct immune systems. This peculiarity affords a
unique opportunity to compare and contrast immune responses
in the same organism. Although both tadpoles and adults are
immunocompetent, both B and T cell responses are weaker in
larvae (Reviewed in (Du Pasquier et al., 1989; Robert and Ohta,
2009). In particular, there is no consistent expression of MHC
class I protein until metamorphosis, although thymic derived CD8
T cells are present (Flajnik and Du Pasquier, 1988; Flajnik et al.,
1986). Further weakness of larval adaptive immunity includes a
poor switch from IgM to IgY, an affinity of antibody lower than
adult, and incomplete skin graft rejection capacity (Chardonnens
and Du Pasquier, 1973; DiMarzo and Cohen, 1982b; Hsu and Du
Pasquier, 1984). Besides the observed absence of NK cells until
metamorphosis (Horton et al., 2003), little is known about tadpole
innate immune responses.

We have developed X. laevis as a reliable model system to
explore the evolution of viral immunity as well as to better
ll rights reserved.
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evaluate host factors involved in susceptibility to emerging infec-
tious diseases caused by ranavirus (RV) pathogens (Chinchar et al.,
2009). RVs have become a major concern for captive and wild
amphibians, fish, and other ectothermic species worldwide. In fact,
ranavirus infections were the leading causes of amphibian mortal-
ity in the US between 1996–2001 (Green et al., 2002; Schloegel
et al., 2010). We have focused our study on Frog Virus 3 (FV3),
which is the main member and the type species of the RV genus.
FV3 is a large (200 nm) poxvirus-like, double stranded DNA virus
that is infectious in both enveloped and non-enveloped form
(reviewed in Chinchar et al. (2009)). FV3 or FV3-like viruses are
now found worldwide, infecting many different amphibian species,
making it a serious global threat (Duffus et al., 2008; Gray et al.,
2007; Mazzoni et al., 2009; Pearman et al., 2004).

The Xenopus adaptive immune response elicited during FV3
infection has been well characterized (Gantress et al., 2003; Robert
et al., 2005). Adult frogs develop an effective CD8 T cell responses and
clear FV3 within 2–3 weeks (Morales and Robert, 2007). Potent
specific antibodies are also generated against FV3 in adults (Maniero
et al., 2006). Recently, we began to characterize innate immune
responses at an early stage of FV3 infection in adults that includes a
rapid up-regulation of genes encoding the pro-inflammatory cyto-
kines TNF-a and IL-1b (Morales et al., 2010). In contrast to adults,
most Xenopus tadpoles (�90%) are unable to clear the virus and die
within a few weeks after infection (Gantress et al., 2003). The high
susceptibility of larval stages to FV3 infection is also documented for
other anuran species in natural (Gray et al., 2009; Gray et al., 2007)
and captive population (Mazzoni et al., 2009). The weaker or
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immature adaptive immune effector functions in tadpoles may
explain this higher susceptibility. Indeed, our attempts to generate
protective immunity by immunization and to detect an anti-FV3
antibody response have so far been unsuccessful. However, the
variability of survival times observed among individuals suggests
that the tadpole immune system is not completely inactive or
ignorant of FV3 infection. Therefore, we postulate that in Xenopus

tadpoles, some innate immune responses are elicited upon FV3
infection.

To assess this possibility and begin to characterize innate immu-
nity in tadpoles, we determined the expression profiles of several
relevant inflammation-associated genes (TNF-a, IL-1b, IFN-g) and the
type I IFN-inducible Myxovirus-resistance 1 (Mx1) gene during the
early phase of FV3 infection. Surprisingly, the expression changes of
these genes upon FV3 infections is delayed and of lower in magnitude
in tadpoles compared to adults, which may be one of the reasons for
the high susceptibility of tadpoles to FV3.
Fig. 1. Low and delayed increases of inflammation-associated gene expression by

tadpole peritoneal and splenic leukocytes during FV3 infection. Quantitative gene

expression analysis (qPCR assay) was performed on PLs and spleen harvested from the

same pre-metamorphic tadpoles (st 56) infected by i.p. injection of FV3 (1�104 PFU)

for 1, 2, 3, 6, and 9 day. The primers used were specific for Xenopus TNF-a, IL-1b, and

IFN-g. Control cells for this experiment were the peritoneal and splenic leukocytes

removed on the day of infection (day 0). Each data point represents 3 different

experiments where cells from 3–5 tadpoles were pooled. The expression level was

determined using the delta delta CT method and the results are expressed as the

means7SD of relative quantification, with GAPDH used as endogenous control.
nSignificantly greater expression of cytokines in cells of infected tadpoles in comparison

with uninfected controls by Student’s t-test, pr0.005.
Results

Changes in inflammation-associated gene expression during FV3

infection

In adult X. laevis, increased expression of the pro-inflammatory
genes IL-1b and TNF-a by peritoneal leukocyte (PL) can be
detected as early as 1 day post-infection (dpi; (Morales et al.,
2010). We investigated whether a similar gene expression
kinetics are elicited in tadpoles upon FV3 infections. For this
purpose, we used outbred pre-metamorphic tadpoles at develop-
mental stage 56 (3–4 week post-fertilization; Supplementary
Fig. 1), when the spleen is well developed and immune responses
can be detected (review in Robert and Ohta (2009)). Tadpoles
were infected for 1 to 9 days by a single i.p. injection of 1�104

PFU of FV3, and PLs and tissues were collected from 3 individuals
at each time point for qPCR analysis. To obtain sufficient amounts
of RNA from PLs and spleens, we pooled respective samples from
three tadpoles. In three independent experiments using this
approach (Fig. 1), we detected a consistently delayed (6 dpi)
increases of TNF-a expression in PLs. Similarly, IL-1b gene
expression by PLs exhibited delayed increases (6 dpi), albeit with
greater variation in the magnitude of response (Fig. 1). For the
spleen, which represents both a primary and the only secondary
lymphoid organ in Xenopus, similar delayed increases of TNF-a
gene expression were observed, whereas the mRNA levels of IL-1b
were elevated by 1 dpi and subsided subsequently (Fig. 1).

Since activated leukocytes expressing pro-inflammatory genes
may have accumulated at the sites of infection, we examined the
immune gene expression profiles in several tadpole organs. Given
that the adult kidney is the main target of FV3 infection (Robert
et al., 2005), we focused on this tissue to compare gene expres-
sion between adults and tadpoles during FV3 infections. As
expected, adults exhibited rapid and marked increases of TNF-a
(1000� on average) and IL-1b (100� on average) mRNA levels as
early as 1 dpi, with further increases at 3 and 6 dpi (Fig. 2).
Interestingly, the basal mRNA levels of TNF-a and IL-1b in
uninfected tadpole kidneys were significantly higher than those
seen in uninfected adult kidneys (100� and 10� , respectively;
Fig. 2). In addition, the expression levels of these two genes
remained at basal at 1 and 3 dpi, and only modestly increased at
6 dpi (10� ; Fig. 2). Similarly, relatively delayed and modest
increases of TNF-a, IL-1b and IFN-g expression were found in
tadpole liver tissues (Supplementary Fig. 2).

In mammals, IFN-g is a critical effector cytokine initially produced
by activated NK cells during innate immune response, and later on
during adaptive immune responses by CD8 T and CD4 T helper 1
(Th1) cells (Schoenborn and Wilson, 2007). An IFN-g homologue has
been identified and partially characterized in Xenopus tropicalis, using
its fully sequenced genome (Qi and Nie, 2008). Using this sequence
we cloned, sequenced and characterized by phylogenetic analysis the
X. laevis IFN-g homologue (data not shown, GenBank accession
number: JN634068). We designed and validated primers specific for
this gene and here report the first expression analysis of the X. laevis

IFN-g in FV3-infected adults (Fig. 2). Significant increases of IFN-g
gene expression were already detectable at 1 dpi (20� on average
above non-infected controls), whereas greater increases (41000� )
occurred at the peak of the response, 6 dpi.

We then examined the IFN-g gene expression in various tissues of
FV3-infected pre-metamorphic tadpoles. In several experiments, we
detected no significant increases in IFN-g mRNA levels above unin-
fected controls at 1 and 3 dpi in kidneys, whereas at 6 and 9 dpi this
cytokine was consistently increased 30–40 fold over respective
controls (Fig. 2). Significant increases of IFN-g expression were also
observed in larval PLs and spleen (Fig. 1, bottom panel), and to a
lesser degree in liver tissues (Supplementary Fig. 2).

Kinetics of virus load in tadpoles

Since the less robust and more delayed inflammation-asso-
ciated gene expression changes observed in infected tadpoles
could be attributed to slower infection kinetics and/or lower virus
loads, it was important to evaluate the degree of FV3 infections in
tadpoles. For this purpose, we monitored the virus load over time
for different tadpole tissues by qPCR using primers specific for the
FV3 DNA polymerase II (vPol, 60R). Significant amplification of



Fig. 2. Low and delayed increases of inflammation-associated gene expression in

FV3 infected kidney of tadpoles compared to adults. A qPCR assay was performed

on kidneys from ip-infected pre-metamorphic tadpoles (1�104 PFU FV3) at 1, 2, 3,

6 and 9 dpi, and adults (1�106 PFU FV3) at 1, 3 and 6 dpi using primers specific

for Xenopus TNF-a, IL-1b, and IFN-g. Control cells for this experiment were kidneys

obtained from tadpoles on the day of infection (day 0). Each data point represents

3 different experiments where kidneys of 3 individuals were processed separately.

The data determined by the delta delta CT method are expressed as the means fold

change in expression7SD against GAPDH endogenous control. Statistical signifi-

cance between control and infected animals: npo0.005.

Fig. 3. Detection of viral replication in vivo by qPCR. Pre-metamorphic (st 56) X.

laevis tadpoles were injected i.p. with 1�105 PFU of FV3. DNA was extracted from

kidney, liver and intestine of three pooled tadpoles at 1, 2, 3, 6, and 9 dpi or from

uninfected tadpoles. Viral replication was determined by qPCR with primers

specific for FV3 DNA polymerase (ORF 60R). The replication of DNA polymerase

was standardized to GAPDH. Data are expressed as means fold change in

expression7SD against GAPDH endogenous control (note that SD is minimal

and fall within the size of the symbols).

Table 1
Comparison of FV3 infectivity between tadpole and adult stages of X. laevis.

(dpi) Pre-metamorphic tadpolesa Adultb

2 ND ND

6 2.7c 4.9

12 2.7 ND

ND: Not determined due to little or no cytopathicity at 1:50 or less dilution.
a Pre-metamorphic tadpoles (st 56, 3 week-old) were infected by i.p. injection

with 1�104 PFU of FV3.
b Two-year old, three-inch outbred adults were infected by i.p. injection with

1�106 PFU of FV3.
c Value expressed as PFU�104/mg of total protein of kidney lysate (see the

Materials and methods section).

Table 2
Primers sequences and uses.

Primers name Sequences

FV3 Polymerase 2 F ACGAGCCCGACGAAGACTACATAG

R TGGTGGTCCTCAGCATCCTTTG

Interleukin-1b F AAC AGAAGATGG CCAAGACTC

R ATG CAA CCG ATT CAA AGC

TNF-a F GCTCAAGGATAACTCCATCG

R AACCAAGTGGCACCTGAATG

IFN-g F CTGAGGAAATACTTTAACTCCATTGACC

R TTGTAACATCTCCCACCTGTATTGTC

GAPDH F ACCCCTTCATCGACTTGGAC

R GGAGCCAGACAGTTTGTAGTG

b2-m Consensus-F1 TGACGGTGAATCCTGGAGAC

b2-m Consensus-58R CGATAGCCGTGACAATGAGC

b-actin-ex2-F1 CCGGTGGTCAAGGTTTACACTG

b-actin-ex2-R1 TAGAGATCAGTGATTGGATGA

aF, forward.
bR, reverse.

b2-m, b2-microglobulin.
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vPol as compared to time 0 (tissues taken just after infection) was
already observed at 1 dpi in intestine, liver and kidney tissues,
which indicate that viral growth and productive infection in
tadpoles are initiated as early as it is in adults (Fig. 3). Further-
more, the increase in vPol DNA over 2 to 3 log peaked at 6 dpi,
consistent with what has been observed in adults (Chen et al.,
2011). Interestingly, the increase of virus load was substantially
higher (100� ) in the tadpole kidney than the liver and the
intestine (Fig. 3). This indicates that as in adult Xenopus, the
kidney is the main target of FV3 in tadpoles (Table 1).
As an additional parameter to compare the virus loads in
kidney tissues of adults and tadpoles during the early stage of FV3
infection, we determined the numbers of infectious particles
retrieved from lysates of kidney tissues from tadpoles and adults
at different times after infection using a 50% endpoint dilution
method (Reed and Muench, 1983). When the values obtained
were normalized with the amount of total protein of each lysate,
the virus loads at 6 dpi (peak of infection) were similar for
tadpoles and adults (Table 2).

We conclude from these data, that the infection kinetics and
infectivity of FV3 at early stage of infection is comparable
between tadpole and adult. In addition, in both Xenopus tadpoles
and adults the kidney is the main target of FV3.

Changes of inflammation-associated gene expression in tadpoles

following bacterial stimulation

To determine if the poor and delayed anti-FV3 pro-inflamma-
tory responses in tadpoles could be due to a general weakness of
its immune system, we used a previously established bacterial
stimulation protocol (Marr et al., 2007). Kidneys were collected
from 3 separate tadpoles at 1, 3 and 6 days following intraper-
itoneal challenge with heat-killed E. coli. Unlike FV3 infections,
significant increases in TNF-a, IL-1b and IFN-g gene expression
were already detected at 1 and 3 day post-stimulation (Fig. 4).
Pooled PLs and splenocytes also revealed rapid and robust
increases in expression of TNF-a and IL-1b genes, albeit with
some delay in IFN-g levels. Nevertheless, based on the more rapid
enhanced expression of these three genes, we conclude that



Fig. 4. Increase of inflammation-associated gene expression in kidneys, peritoneal and splenic leukocytes of tadpoles challenged with heat-killed bacteria. A qPCR assay

was performed on kidneys, PLs and spleen from untreated and immunized pre-metamorphic tadpoles (st 56) at 1, 3 and 6 day following i.p. injection of 5 ml of heat-killed

bacteria using primers specific for Xenopus TNF-a, IL-1b, and IFN-g. Data from the kidneys are from three individuals processed separately, whereas PLs and spleens were

pooled. The data determined by the delta delta CT method are expressed as the means fold change in expression7SD against GAPDH endogenous control. Statistical

significance between control and infected animals: npo0.005.
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tadpoles are capable of acute inflammatory responses, which
suggests that the low and delayed responses upon FV3 infection
are virus-related.

Change in expression of type I IFN-inducible gene in tadpoles during

FV3 infection

At the present time type I interferons are not characterized
in X. laevis, and multiple IFN-a/b gene model candidates are
present in the sequenced genome of X. tropicalis. Importantly, in
mammals (Cilloniz et al.; Yu et al., 2010) and in fish (Campbell
et al., 2011; Jorgensen et al., 2007), the expression of the type I
IFN-inducible Myxovirus-resistance 1 (Mx1) gene is induced by
type I interferons and/or by viral infections. Thus Mx1 serves as a
reliable marker of the IFN response. Accordingly, we identified
putative X. tropicalis and X. laevis homologs of the Mx1 gene by
bioinformatics approaches. Subsequently, we identified several
cDNA clones in the X. laevis EST database (Unigene Xl.56887) that
we obtained and fully sequenced. The X. laevis (Xl)Mx1 gene
encodes a putative molecule of 624 amino acids with overall
conserved domain architecture, especially at the N-terminus that
contains a GTP-binding domain and a dynamin family signature.
The identity of this putative Mx1 gene (gene bank accession
number: JN634067) was further evaluated by a phylogenetic
analysis (Supplementary Fig. 3). Both X. tropicalis and X. laevis
branch together with a high bootstrap value and form a cluster
independent of mammalian, avian and teleost Mx1 genes. We
designed specific primers and determined XlMx1 expression
profile during FV3 infection. The XlMx1 gene expression in adults
was markedly induced in kidneys and PLs at 3 and 6 dpi (Fig. 5).
The XlMx1 expression was also significantly increased in spleens
at 3 dpi (data not shown). Compared to adults, the increased
XlMx1 mRNA levels in tadpole kidneys were modest (10� ) and
delayed with a significant difference only at 6 dpi onward.
However, it is noteworthy that unlike cytokine genes, the increase
of XlMx1 expression in tadpole PLs was greater and less delayed
(Fig. 5).
Effects of FV3 infections on tadpole PLs

Our previous work revealed that during early stages of FV3
infection of Xenopus adults, the total numbers of PLs increased
(Morales et al., 2010). In addition, a minor fraction of these PLs
(less than 20%), consisting mostly of macrophages, became infected
by FV3 as determined by fluorescence microscopy using a rabbit
polyclonal antibody (Ab) specific for 53R, a putative 54.7-kDa
myristoylated viral protein that is critical for FV3 replication
(Robert et al., 2011). This Ab is FV3-specific and does not stain
uninfected Xenopus PLs.



Fig. 5. Delayed induced expression of type I interferon-inducible Mx gene in kidneys and PLs of tadpoles infected by FV3 compared to adults. qPCR assay performed on

kidneys and PLs of uninfected and ip-infected (1�106 PFU FV3) adults at 1, 3 and 6 dpi, and pre-metamorphic tadpoles (1�104 PFU FV3) at 1, 2, 3, 6 and 9 dpi, using

primers specific for XlMx1. Data from adult kidneys, larval kidneys and adult PLs are from 3 experiments using for each three separate individuals, whereas larval PLs were

pools of 3 individuals. The data determined by the delta delta CT method are expressed as the means fold change in expression7SD against GAPDH endogenous control.

Statistical significance between control and infected animals: npo0.005. (A) Adults, (B) Tadpoles.
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We were interested in determining if tadpole PLs were also
infected by FV3. For this purpose, PLs were collected from pools of
5 to 10 pre-metamorphic tadpoles at different times after FV3
infection, counted and stained for immunofluorescence micro-
scopy. To minimize potential side effects of ip injections on PLs,
we infected animals by oral ingestion. Similar to adults, the total
numbers of PLs increased significantly from 3 dpi and peaked at
6 dpi (Fig. 6A and B). We also noted an increase in the relative
fractions of mononuclear eosinophilic cells at 3 dpi (Fig. 6C).
Notably, the fraction of PLs infected by FV3 and positively stained
by the anti-53R Ab also markedly increased. At 3 dpi more than
40% of tadpole PLs were infected, which is more than twice the
number of infected adult PLs observed on average (Fig. 6C).
Further microscopic observations by phase contrast and fluores-
cence microscopy analysis indicated that most infected PLs
exhibited mononuclear phagocyte morphology (i.e., one well-
defined nucleus, no granulations; Fig. 7). To further determine if
these infected monocytic PLs were macrophages, we used a
mouse monoclonal Ab (anti-HAM56) specific for macrophage
antigen (HAM56), and reported to specifically cross-reacts with
Xenopus macrophages (Nishikawa et al., 1998). This mAb allowed
us to visualize infected peritoneal macrophages in Xenopus adults
(Robert et al., 2011). Surprisingly, we did not observe any specific
staining of tadpole PLs. Given the other reported differences
between tadpole and adult peritoneal macrophages including
morphological differences (Hsu, pers. comm.), MHC class I expres-
sion and response to bacterial stimulation (Marr et al., 2005), it is
possible that they also differ in the expression of the HAM
antigen.

We conclude that tadpole non-granulocytic leukocytes of the
peritoneal cavity are less resistant to FV3 infections than those of
adults.
Discussion

The immaturity of the Xenopus tadpole immune system has
been so far mainly documented for its adaptive arm (Du Pasquier,
Schwager, and Flajnik, 1989; Robert and Ohta, 2009). Accordingly,
it is generally assumed that tadpoles rely on efficient innate
immune defenses. This study provides evidence that this is
perhaps not always the case, and that the immaturity or weak-
ness of the tadpole immune system also includes some innate
immune components. Indeed, our data indicate that the response
of several genes critical for early host anti-viral immune defenses
is slower and is of lower magnitude in Xenopus tadpoles than in
adults. Aside from fundamental interests, our results are also
relevant in the context of conservation biology, since RVs such as
FV3 are causing emerging infectious diseases in many different
ectothermic vertebrate species worldwide including anuran
amphibians. Notably, RVs are particularly lethal for pre-meta-
morphic stages (Chinchar et al., 2009; Keesing et al., 2010).

Although tadpoles are immunocompetent, multiple indica-
tions of immaturity of their immune system have been reported.
These include, lower antibody affinity to model antigens such as
DNP-KLH (Hsu, 1998; Hsu and Du Pasquier, 1984), and poorer
isotype switch from IgM to IgY (the IgG functional equivalent
isotype) as compared to adult frogs (Du Pasquier et al., 2000).
Since in mammals as well as in Xenopus, isotype switching is
dependent on T cell help (Du Pasquier et al., 2000), this implies an
overall less effective T cell response in tadpoles. This is supported
by the ability of improving the tadpole class switch by the
adoptive transfer of syngeneic adult splenocytes (Hsu and Du
Pasquier, 1984). Additional evidence of an immature tadpole T
cell effector functions include poor anti-tumor responses (Robert,
Guiet, and Du Pasquier, 1995) and slower skin graft rejection



Fig. 6. Increase of infected and total numbers of tadpole PLs during FV3 infection.

(A) One experiment where PLs were collected from 10 pre-metamorphic tadpoles

uninfected, or at 1 up to 9 day following FV3 infection by oral ingestion (105 PFU

in a volume of 5 ml) and counted on a hemacytometer. Data are expressed as

average total PL cell number per tadpole �103. (B) Average total number PLs from

three different experiments of five pooled pre-metamorphic tadpoles uninfected

or FV3 infected by oral ingestion for 2 and 3 day. (0) Day 0 control cells obtained

on the day of infection. Data are expressed as total PL cell number per tadpole

�1037standard deviation. n po0.05 by ANOVA between uninfected and 3 dpi, or

between 2 and 3 dpi. (C) PLs from B were cytocentrifuged on microscope slides,

fixed with formaldehyde, permeabilized with ethanol, then stained with a rabbit

anti-53R and FITC-conjugated donkey anti-rabbit Abs. Cells were then stained

with the DNA dye Hoechst-33258 (Blue) mounted in anti-fade medium and

visualized with a Leica DMIRB inverted fluorescence microscope. (0) Day 0 control

cells obtained on the day of infection. Data are presented as average percent of

infected 53Rþ cells determined in 10 randomly chosen fields from two different

experiments. n po0.05 by Student t-test. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Infected tadpole peritoneal monocytic leukocytes visualized by immuno-

fluorescence microscopy. PLs were harvested from 10 pooled pre-metamorphic

tadpoles 3 day after FV3 infection by oral ingestion. Cells were cytocentrifuged on

microscope slides, fixed with formaldehyde, permeabilized with ethanol, then

stained with a rabbit anti-53R and FITC-conjugated donkey anti-rabbit Abs. Cells

were then stained with the DNA dye Hoechst-33258 (Blue) mounted in anti-fade

medium and visualized with a Leica DMIRB inverted fluorescence microscope.

The upper panel shows the immunofluorescence image of the same cells shown in

bright field in the lower panel. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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(DiMarzo and Cohen, 1982a). Of particular relevance to viral
immunity is the fact that although tadpoles do have CD8 T cells,
there is no consistent MHC class I protein expression in the
thymus until metamorphosis, and only limited class I surface
expression on splenocytes during late pre-metamorphic stages
(Flajnik and Du Pasquier, 1988; Flajnik et al., 1986; Rollins-Smith
et al., 1997). We have clearly demonstrated the critical involve-
ment of CD8 T cells in resistance to FV3 by Xenopus adults that are
MHC class I competent (Morales and Robert, 2007). As such, we
have postulated that the higher susceptibility of tadpoles to FV3
may be in part due to an inefficient CD8 T cell responses (Gantress
et al., 2003).

While all these studies collectively support that tadpoles have
a poor adaptive immune system, the efficacy and/or maturity of
the tadpole innate immune system is still poorly characterized.
It is known that tadpole macrophages are morphologically dif-
ferent from adult macrophages, and are MHC class I negative but
class IIþ (Hsu, pers. comm). No NK cell activity or NK cells
(characterized by expression of the 1F8 marker) have been found
in tadpoles until metamorphosis (Horton et al., 2003). However, it
is difficult to draw conclusions towards the capacity of innate
effector functions based on such observations. Accordingly, using
a natural pathogen such as FV3 is more informative. The present
investigation clearly show that the responses of three important
inflammation-associated genes TNF-a, IL-1b and IFN-g in suscep-
tible tadpoles are less robust and delayed during early stage of
FV3 infection, both by immune cells and in infected tissues, as
compared to resistant adults.

The role of TNF-a in immune responses against viral infection is
well documented in mammals (reviewed in Bartee et al. (2008)).
This cytokine is among the first to be produced in response to viral
infection and in turn triggers multiple antiviral mechanisms as well
as pro-inflammatory cascades including IL-1b (review in Bartee
et al. (2008)). TNF-a is critically involved in immune responses
against a plethora of viruses including poxvirus (Diel et al., 2011), its
gene expression is rapidly increased by macrophages upon viral
infection, and can inhibit viral replication (Bartee et al., 2008). Aside
from mammals, robust (i.e., in the range of 100 fold increase) up-
regulation of TNF-a gene expression upon acute viral infection has
been reported in fish (Huang et al., 2011; Ordas et al., 2007; Purcell
et al., 2004; Purcell et al., 2006; Xiao et al., 2007), and in Xenopus

adults (Morales et al., 2010). Some of the biological activities of this
mediator have also been obtained with recombinant TNF-a proteins
of bony fish species including apoptotic activity in the mandarin fish
(Xiao et al., 2007) as well as nitric oxide production and recruitment
of inflammatory cells in turbot, Scophthalmus maximus (Ordas et al.,
2007). In Xenopus, TNF-a activates NF-kB, which is consistent with
its involvement in antiviral immune responses (Mawaribuchi et al.,
2008). Therefore, the low and delayed increases in TNF-a gene
expression in tissues, splenocytes and PLs of infected tadpoles
suggest that overall the early responses to FV3 infection are poor.

The delayed and low levels of IL-1b induction during FV3
infection, especially at the main site of infection in kidneys,
further substantiate the idea that the innate immune response
developed against FV3 by Xenopus tadpoles are relatively meager
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and delayed. IL-1b is another important cytokine largely respon-
sible for the acute phase response and acute protein synthesis.
Rapid and robust increases of IL-1b gene expression have been
observed for various viral infections in rainbow trout, Oncor-

hynchus mykiss (Cuesta and Tafalla, 2009; Purcell et al., 2004;
Purcell et al., 2006). In Xenopus adults it is strongly up-regulated
24 h following LPS treatment or FV3 infections (Morales et al.,
2010; Zou et al., 2000). Therefore, the low IL-1b increase only
3 day post-infection in tadpoles further argues that a suboptimal
innate immune response is elicited at early stages of FV3
infection.

Although IFN-g is typically produced in large amounts by CD8
and Th1 CD4 T cell effectors during the adaptive phase of immune
responses, it is also produced earlier by innate cell effectors such
as NK and NKT cells (Schoenborn and Wilson, 2007). The low
levels of IFN-g expression in most tissues including leukocytes of
uninfected and early stage infected (1–3 dpi) tadpoles could be
explained by the absence of NK cells until metamorphosis
(Horton et al., 2003). While increase of IFN-g expression at 6 dpi
would be consistent with the development of an adaptive
response and infiltration of activated T cells in infected tissues
as it the case in adults (Morales and Robert, 2007). However, the
magnitude of the IFN-g response is low compared to adults,
which is in agreement with previous studies suggesting a poor T
cell responses against FV3 in tadpoles (Gantress et al., 2003).

Collectively, as already underlined, our observations suggest
that the larval susceptibility to FV3 is at least in part a conse-
quence of poor innate immune responses. However, it is worth
noting that in comparison to adult frogs, the X. laevis tadpoles
possessed significantly greater baseline mRNA levels of the TNF-a
and IL-1b (but not IFN-g or Mx1) transcripts. This is reminiscent
of what has been reported for bony fish, where TNF-a and IL-1b
(Bird et al., 2002; Grayfer et al., 2008; Hirono et al., 2000) exhibit
constitutive gene expression, whereas IFN-g mRNA levels are
more tightly transcriptionally regulated and require stimulus for
induction (Grayfer and Belosevic, 2009; Grayfer et al., 2010;
Igawa et al., 2006). Perhaps during FV3 infections, the tadpoles’
strategy is to avoid exacerbating the already high inflammatory
cytokine levels. Possibly, the tissue damage resulting from later
stages of tadpole-FV3 infections may be due to these further
increases in inflammation-associated gene expression, accounting
for the tadpole mortalities. In spite of this, it is equally (if not
more) likely that adult frogs possess more efficient transcriptional
regulation of inflammatory cytokines than do tadpoles.

Mx1 proteins are dynamin-like GTPases that mediate antiviral
defenses through as of yet poorly understood mechanisms (Sadler
and Williams, 2008). Mx1 gene homologs have been identified
and characterized in several fish species (Robertsen, 2006). As in
mammals, fish Mx1 gene expression is induced by type I inter-
ferons and following viral infections (Purcell et al., 2004; Purcell
et al., 2006). In Xenopus, XlMx1 has an open reading frame coding
for 624 amino acids that displays the characteristic features of
Mx1 proteins including: a highly conserved tripartite GTP-binding
domain (GXXXXGKS, DXXG, and T/NKXD) and a dynamin family
signature at the N-terminus, a ‘‘central interactive domain’’ in the
middle, and a GTPase effector domain with leucine zipper motifs,
which are essential for Mx1 oligomerization, at the C-terminus
end (Haller et al., 2007). Further evidence of the potential role of
XlMx1 in Xenopus antiviral immune response is its tight regula-
tion of expression upon FV3 infection. In adults, the XlMx1 gene is
expressed at very low levels in non-infected animals, but is
rapidly induced upon FV3 infection, both in infected kidney and
in leukocytes. This implies that the type I IFN response is intact
and readily induced upon FV3 infection in adult Xenopus.
Although originally identified as a host factor against RNA viruses,
DNA viruses are also susceptible to the activities of Mx1 protein
(Netherton et al., 2009). Therefore, the involvement of Mx1
molecules in response to RV, also a DNA virus, is likely. Interest-
ingly, although XlMx1 expression in tadpoles was also increased
in kidney, it was induced with a delay of 3 day and with a more
modest increase in infected kidneys compared to adults. This
suggests of a delay in type I IFN responses in tadpoles, although
this still needs to be confirmed by a more direct monitoring of
type I IFN gene products. Alternatively, the delay in XlMx1
induction may result from a less efficient or incomplete signaling
cascade involving pattern-recognition receptors and other sensors
of viral products (Sadler and Williams, 2008). The induction of
XlMx1 response occurred earlier and was stronger in PLs com-
pared to kidneys of infected tadpoles. This may suggest a
previously unsuspected infection these cells, which remains to
be determined.

Taken together, the less robust and delayed increases in gene
expression of several key inflammation-associated cytokines
combined with delays in induction of a critical type I-inducible
gene, provide convergent evidence that elements of the tadpole
innate immune system are not fully efficient toward responding
to FV3 infections. Perhaps this is in part due to the fact that, as
reported here, innate immune cells of monocytic origin are
targeted by FV3 infections. The current study confirms that
tadpole macrophages have a different morphology compared to
adult macrophages. It will be interesting to learn whether the
infection of these Xenopus tadpole immune cells is a contributing
factor to the less efficient tadpole anti-viral immunity and the
enhanced susceptibility of this developmental stage to ranavirus
infection.
Materials and methods

Animals

Outbred young adults and pre-metamorphic (stage 56–58)
tadpoles were obtained from our Xenopus laevis Research
Resource for Immunology at the University of Rochester (http://
www.urmc.rochester.edu/smd/mbi/xenopus/index.htm). All ani-
mals were handled under strict laboratory and UCAR regulations
(Approval number 100577/2003-151), minimizing discomfort at
all times. Tadpoles were infected either by (1) intraperitoneal
(i.p.) injection with 1�104 PFU in 10 ml volume) of FV3 using a
glass Pasteur pipette whose small end had been pulled in a flame;
(2) oral ingestion of 10 ml (1�105 PFU) delivered in the pharynx
with a pipetman; or water bath exposure (1 h in 2 ml of water
containing 5�106 PFU). Controls were sham-infected with the
same amount of APBS. At different time points post-infection
(Day 0, 1, 3, 6 and 9) tadpoles were euthanized by immersion in
1% tricaine methane sulfonate (MS-222) buffered with bicarbo-
nate and peritoneal leukocytes were first collected by i.p. punc-
ture with Pasteur pipettes. Tissues including spleen, kidney, liver,
and intestine were dissected and directly homogenized on ice.
Adults (2 year-old) were injected i.p. with 1�106 PFU in 0.1 ml
volume.
FV3 stock and infection

Fathead minnow cells (FHM; American Type Culture Collec-
tion, ATCC No.CCL-42) were maintained in Dulbecco’s modified
Eagle’s medium (DMEM; Invitrogen) supplemented with 10% fetal
bovine serum (FBS; Invitrogen), penicillin (100 U/ml) and strep-
tomycin (100 mg/ml) with 5% CO2 at 37 1C. FV3 was grown by a
single passage on FMH cells, purified by ultracentrifugation on a
30% sucrose cushion and quantified by plaque assay on FMH
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monolayer under an overlay of 1% methylcellulose (Morales et al.,
2010).

To determine the number of infectious particles in the kidney
of infected tadpoles and adults, the whole kidney for one
individual at 2, 6 and 12 dpi was lysed in hypotonic 30 mM
NaHCO3 buffer by 3 freeze-thaw cycles. The total amount of
proteins for each lysate was determined by the Bradford assay
and the virus titer by the 50% endpoint dilution method (Reed and
Muench, 1983).

Bacterial stimulation

E. coli (XL1-blue, Strategene, La Jolla, Ca.) cultured overnight at
37 1C, were boiled for 1 h, centrifuged and resuspended in
0.1 volume (approximately 108 bacteria/ml) of Xenopus cell
culture medium (Marr et al., 2007). Tadpoles were injected i.p.
with 5 ml of heat-killed bacteria mixture.

PCR, RT-PCR and quantitative real-time PCR (qPCR)

RNA and DNA were extracted from cells and tissues using
Trizol reagent following the manufacturer’s protocol (Invitrogen).
0.5 to 1.0 mg of total RNA in 20 ml was used to synthesize cDNA
with the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA). 1 ml of
cDNA template was used in all RT-PCRs and 50 ng DNA for PCR.
Minus RT controls were included for every reaction, and all
primers spanned at least one intron (Table 2). A water-only
control was included in each reaction. PCR products were sepa-
rated on 1.5% agarose gels and stained with ethidium bromide.
Sizes of the products were determined using standardized mar-
kers of 1 kb plus from Invitrogen (Carlsbad, CA).

SYBR green-based real-time PCR (qPCR) was performed using
an ABI 7300 real-time PCR system and PerfeCTas SYBR Green
FastMix, ROX (Quanta) using the delta delta CT method. Briefly,
3 ml of diluted cDNA or genomic DNA (120 ng) was amplified in a
mixture of 50 ml containing 200 nM of each primer and 1� SYBR
green FastMix containing 1�ROX passive reference dye. Gene
copy numbers were calculated using ABI sequence detection
system software (SDS). Each sample was run in three replicates.
Melting curve analysis was carried out after each PCR run to
ensure the specificity of the reaction.

Cytospin and staining:

200,000 cells (200 ml volume) were cytocentrifuged using a
Shandon Southern cytospin centrifuge (600 rpm, 5 min.), fixed with
3.7% formalin for 1 min., permeabilized with 100% cold methanol
(�20 1C) and briefly washed with APBS. After blocking with 1% BSA
in APBS for 1 h, the cells were incubated overnight with rabbit anti-
FV3 53R serum, or normal rabbit serum as negative control. After
washing, cells were incubated with DyLight 488-conjugated F(ab’)2
donkey anti-rabbit IgG (HþL) (Jackson ImmunoReaserch, PA) and a
fluorescent DNA intercalator (Hoechst-33258). Preparations were
mounted in anti-fade medium (Molecular Probes, Oregon) and
visualized with a Leica DMIRB inverted fluorescence microscope with
a cooled charge-couple device (Cooke) controlled by Image-Pro soft-
ware (Media Cybernetics).

Phylogenetic analysis

Available deduced amino acid sequences of Mx1 homologs were
retrieved from GenBank using ENTREZ at the NCBI. Multiple nucleo-
tide and amino acid sequence alignments of Mx1 genes were
generated using Clustal X. Phylogenetic analysis was performed
using molecular evolutionary genetics analysis (MEGA, version 4.1).
Phylogenetic analysis was performed using molecular evolutionary
genetics analysis (MEGA, version 4.1). The neighbor joining method
with pairwise deletion of gaps and p-distances (proportion of
differences) was used to generate the tree. Numbers on nodes
represent percentages of 1000 bootstrap replicates supporting each
partition.

Statistics

A one-way analysis of variance (ANOVA) for Independent or
correlated samples was performed using an online database available
through Vassar Stat a website for statistical computation (http://
faculty.vassar.edu/lowry//anova1u.html). A standard weighted-means
analysis was done on independent samples k¼5 for all samples
with n45.
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