Quantities equivalent to the norm of a weighted Bergman space✩

E.G. Kwon

Department of Mathematics Education, Andong National University, Andong 760-749, South Korea

Received 2 December 2006
Available online 5 June 2007
Submitted by J.H. Shapiro

Abstract

Let $0 \leq \alpha < \infty$, $0 < p < \infty$, and $p - \alpha > -2$. If f is holomorphic in the unit disc D and if ω is a radial weight function of secure type, then the followings are equivalent:

\[
\int_D |f(z)|^p \omega(z) \, dA(z) < \infty,
\]
\[
\int_D |f(z)|^{p-\alpha} |\nabla f(z)|^\alpha \omega(z) \, dA(z) < \infty,
\]
\[
\frac{1}{\int_0^\infty \left(\int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta \right)^{1-\alpha/p} \left(\int_0^{2\pi} |\nabla f(re^{i\theta})|^p \, d\theta \right)^{\alpha/p} \omega(r) \, r \, dr} < \infty.
\]

Here $\nabla f(z) = (1 - |z|^2) f'(z)$. Furthermore, if $f(0) = 0$ and ω is monotone, then three quantities on the left sides are mutually equivalent. This generalizes a classical result of Hardy–Littlewood.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Weighted Bergman space norm; Hardy–Littlewood theorem

1. Introduction

Let $D = \{ z \in \mathbb{C} : |z| < 1 \}$ be the unit disc of the complex plane \mathbb{C} and let $dA(z) = dx \, dy$ denote the Lebesgue area measure of \mathbb{C}. It follows from a theorem of Hardy and Littlewood that

\[
\int_D |f(z)|^p \left(1 - |z|^2 \right)^\beta dA(z) \approx |f(0)|^p + \int_D |f'(z)|^p \left(1 - |z|^2 \right)^{p+\beta} dA(z)
\] (1.1)

Generalizing (1.1), a number of authors have studied the question of finding radial weights ω for which we have

$$\int_D |f(z)|^p \omega(z) dA(z) \approx |f(0)|^p + \int_D |f'(z)|^p (1 - |z|^2)^\beta \omega(z) dA(z)$$

for f holomorphic in D and $0 < p < \infty$. In particular, we mention that results of Siskakis [13] and of Pavlovic and Peláez [12] show that this is true for the weights considered in Example 3.1 of [13].

In this paper, we improve these results by introducing a class of weights for which one can prove the stronger result

$$\int_D |f(z)|^p \omega(z) dA(z) \approx |f(0)|^p + \int_D |f(z)|^p (1 - |z|^2)^\alpha |f'(z)|^\alpha \omega(z) dA(z)$$

for f holomorphic in D, $0 < p < \infty$ and $0 \leq \alpha < p + 2$. This class of weights include other previously considered in distinct settings.

We begin with introducing the following weight function $\omega(z)$ that generalize $(1 - |z|)^\beta$.

Definition. A weight on D means a function $\omega : D \to [0, \infty)$ which is locally integrable. We call it “secure weight” if there is $r_s \in [0, 1)$ such that the following conditions are satisfied for $|z| = r \in [r_s, 1)$:

1. ω is radial, that is, $\omega(z) = \omega(|z|)$.
2. $\omega(r)$ is almost monotone.
3. $\omega(r) \approx \omega\left(\frac{1 + r}{2}\right)$.
4. $\int_r^1 \omega(\rho) d\rho \approx (1 - r)\omega(r)$.

Here and throughout, almost monotone means either almost increasing or almost decreasing in the sense of Bernstein [1]: a real valued function ψ on an interval is called almost increasing if $\psi(r_1) \lesssim \psi(r_2)$ for all $r_1 \leq r_2$, and almost decreasing if $\psi(r_1) \gtrsim \psi(r_2)$ for all $r_1 \leq r_2$.

At first glance, (S3) and (S4) seems to be rather obscure. But if we set $\psi(r) = \omega(1 - r)$, (S3) says that ψ has the doubling property: $\psi(r) \approx \psi\left(\frac{r}{2}\right)$ while (S4) says that the averaging property

$$\frac{1}{r} \int_0^r \psi(t) dt \approx \psi(r) \quad \text{for } 0 < r \leq 1 - r_s.$$ \hspace{1cm} (1.2)

The concept of secure weight has scope wider than several known concepts on weights, for example “admissible weight” in [7] and “majorant” in [3,4,11], as we shall see later. A typical example of secure weight $\omega(r)$ is

$$(1 - r)^a \left(1 + \log \frac{1}{1 - r}\right)^b$$

for some a: $-1 < a < \infty$ and b: $-\infty < b < \infty$.

Throughout this paper, ω always stands for a secure weight on D.

In terms of ω, the weighted Bergman space $A^{p,\omega}$ ($0 < p < \infty$) is defined to consist of all holomorphic f in D satisfying

$$\|f\|_{p,\omega} := \int_D |f(z)|^p \omega(z) dA(z) < \infty.$$

When $\omega(z) = (1 - |z|)^\beta$ ($\beta > -1$), we denote $\|f\|_{p,\omega}$ by $\|f\|_{p,\beta}$.
We let $\tilde{\nabla} f(z)$ stand for $(1 - |z|^2) f'(z)$ for the notational convenience, which is originated from the invariant complex gradient

$$\tilde{\nabla} f(z) = (f \circ \varphi_z)'(0), \quad \text{where } \varphi_z(w) = \frac{z - w}{1 - \overline{z} w}.$$

Then, in terms of the p-means

$$M_p(r, f) = \left(\int_0^{2\pi} |f(re^{i\theta})|^p \frac{d\theta}{2\pi} \right)^{1/p}, \quad 0 < r < 1,$$

(1.1) can be stated as

$$\|f\|_{p, \omega}^p \approx \int_D |f'(z)|^p (1 - |z|^2)^{p+\beta} dA(z) = 2\pi \int_0^1 M_p(r, \tilde{\nabla} f)^p (1 - r^2)^{\beta r} dr$$

provided $f(0) = 0$.

Now we state the following improvement of (1.1) as our main result.

Theorem 1.1. Let $0 \leq \alpha < \infty$, $0 < p < \infty$, and $p - \alpha > -2$. If f is holomorphic in D and if ω is a secure weight, then the following conditions are equivalent.

(i) $\|f\|_{p, \omega}^p < \infty$;

(ii) $\int_D |f(z)|^{p-\alpha} |\tilde{\nabla} f(z)|^\alpha \omega(z) dA(z) < \infty$;

(iii) $\int_0^1 M_p(r, f)^{p-\alpha} M_p(r, \tilde{\nabla} f)^\alpha \omega(r) r dr < \infty$.

Furthermore, if $f(0) = 0$ and $r_s = 0$, then three quantities on the left sides are mutually equivalent.

When $\omega(r) = (1 - r^2)^\alpha$, that (i) \Leftrightarrow (ii) appeared in [8]. Theorem 1.1 will be proven in Sections 3–4 after considering special cases in Section 2. A relationship between secure weights and other classes of weights will be discussed in Section 5.

The author would like to thank the anonymous referee for suggesting a good number of corrections and references to make this paper stylish.

2. Preliminary results and special cases

This section is a preparatory one to prove Theorem 1.1. We will prove special cases of Theorem 1.1 in Theorems 2.2 and 2.3.

Lemma 2.1. Let $0 < \alpha < \infty$. If ω is a secure weight, then the functions $L(z)$ and $K(z)$ defined by

$$L(z) = L_{\alpha, \beta}(z) := \int_{|z|}^1 \left(r \log \frac{r}{|z|} \right)^{\alpha-1} \omega(r) dr,$$

$$K(z) = K_{\alpha, \beta}(z) := \int_{|z|}^1 (r - |z|)^{\alpha-1} \omega(r) dr$$

satisfy
\(K(z) \approx (1 - |z|)^\alpha \omega(z) \) for \(r_s \leq |z| < 1 \), \hspace{1cm} (2.1)

and

\(L(z) \approx K(z) \) for \(\max \left\{ r_s, \frac{1}{2} \right\} \leq |z| < 1 \). \hspace{1cm} (2.2)

Proof. Let \(|z| \geq r_s \). By the almost monotonicity of \(\omega \) and (S3) it follows that

\(\omega(r) \approx \omega(z) \) for \(|z| < r < \frac{1 + |z|}{2} \)

and it simply follows that

\((r - |z|)^{\alpha - 1} \approx (1 - |z|)^{\alpha - 1} \) for \(\frac{1 + |z|}{2} < r < 1 \).

Hence

\[
K(z) = \int_{|z|}^{1 + |z|/2} (r - |z|)^{\alpha - 1} \omega(r) \, dr \\
\approx \omega(z) \int_{|z|}^{1 + |z|/2} (r - |z|)^{\alpha - 1} \, dr + (1 - |z|)^{\alpha - 1} \int_{1 + |z|/2}^{1} \omega(r) \, dr \\
\approx (1 - |z|^2)^{\alpha} \omega(z).
\]

This gives (2.1).

From the inequality

\(x \log \frac{1}{x} \leq 1 - x^2 \leq 2 \log \frac{1}{x} \) for \(0 < x < 1 \), \hspace{1cm} (2.3)

it follows that

\[
\frac{3}{4} (r - |z|) \leq r \log \frac{r}{|z|} \leq 3(r - |z|) \quad \text{for} \quad \frac{1}{2} \leq |z| \leq r < 1,
\]

which gives (2.2). \(\square \)

The following is a primitive form of our equivalence.

Theorem 2.2. Let \(\omega \) be a secure weight on \(D \) with \(r_s = 0 \). Then for \(f \) holomorphic in \(D \) with \(f(0) = 0 \) and for \(0 < p < \infty \),

\[
\int_{D} |f(z)|^{p - 2} |\nabla f(z)|^2 \omega(z) \, dA(z) \approx \int_{D} |f(z)|^{p} \omega(z) \, dA(z).
\] \hspace{1cm} (2.4)

Proof. Using

\(\Delta |f|^p \approx |f|^{p - 2} |f'|^2 \)

off zeros of \(f \), Green’s theorem gives that

\[
\int_{0}^{2\pi} |f(re^{i\theta})|^p \, d\theta \approx \int_{|z| < r} |f(z)|^{p - 2} |f'(z)|^2 \log \frac{r}{|z|} \, dA(z).
\] \hspace{1cm} (2.5)
Taking the integration $\int_0^1 \omega(r)r\,dr$ on both sides,

$$
\int_D |f(z)|^p \omega(z)\,dA(z) \approx \int_0^1 \omega(r)r\,dr \int_{|z|<r} |f(z)|^{p-2} |f'(z)|^2 \log \frac{r}{|z|} \,dA(z)
$$

$$
= \int_D |f(z)|^{p-2} |f'(z)|^2 \left[\int_1^1 \omega(r) \log \frac{r}{|z|} \,dr \right] \,dA(z)
$$

$$
\geq \int_D |f(z)|^{p-2} |f'(z)|^2 \left[\int_1^{(1-|z|)} \omega(r) \,dr \right] \,dA(z)
$$

$$
\approx \int_D |f(z)|^{p-2} \nabla f(z)^2 \omega(z)\,dA(z),
$$

(2.6)

where we used the second inequality of (2.3) and the equivalence (2.1).

On the other hand, by taking the integration $\int_1^1 \omega(r)r\,dr$ on both sides of (2.5),

$$
\int_{|z|>\frac{1}{2}} |f(z)|^p \omega(z)\,dA(z) \approx \int_{|z|<r} \int_0^1 \omega(r)r\,dr \int_{|z|<r} |f(z)|^{p-2} |f'(z)|^2 \log \frac{r}{|z|} \,dA(z)
$$

$$
= \int_D |f(z)|^{p-2} |f'(z)|^2 \left[\int_1^{\max\{1,|z|\}} \omega(r) \log \frac{r}{|z|} \,dr \right] \,dA(z)
$$

$$
\leq \int_D |f(z)|^{p-2} |f'(z)|^2 \left[\int_{|z|}^{(1-|z|)} \omega(r) \,dr \right] \,dA(z)
$$

$$
\approx \int_D |f(z)|^{p-2} \nabla f(z)^2 \omega(z)\,dA(z),
$$

(2.7)

where we used (2.2) and (2.1).

Since $M_p(r, f)^p$ is increasing, by (S3) it follows that

$$
\int_D |f(z)|^p \omega(z)\,dA(z) \approx \int_{|z|>\frac{1}{2}} |f(z)|^p \omega(z)\,dA(z),
$$

so that (2.4) follows from (2.6) and (2.7). □

The following generalizes (1.1) on the settings of ω.

Theorem 2.3. Let ω be a secure weight on D with $r_2 = 0$. Then for f holomorphic in D with $f(0) = 0$ and for $0 < p < \infty$, we have

$$
\|f\|_{p,\omega}^p \approx \int_0^1 M_p(r, \nabla f)^p \omega(r) r\,dr.
$$

(2.8)

Proof. Let $g(z) = \frac{f(z)}{z}$. Then by the subharmonicity of g and the monotonicity of $M_p(r, g)^p$
\[|f'(0)|^p = |g(0)|^p \lesssim \int_{|w|<\frac{1}{6}} |g(w)|^p dA(w) \lesssim \int_{\frac{1}{12}<|w|<\frac{1}{6}} |g(w)|^p dA(w) \lesssim \int_{|w|<\frac{1}{6}} |f(w)|^p dA(w). \]

Replacing \(f \) by \(f \circ \varphi_z \),
\[|\tilde{\nabla} f(z)|^p \lesssim \int_{|w|<\frac{1}{6}} |f \circ \varphi_z(w)|^p dA(w). \]

Thus,
\[\int_D |\tilde{\nabla} f(z)|^p \omega(z) dA(z) \lesssim \int_D \int_{|w|<\frac{1}{6}} |f \circ \varphi_z(w)|^p \omega(z) dA(w) dA(z) \]
\[= \int_D \omega(z) dA(z) \int_{|\varphi_z(u)|<\frac{1}{6}} |f(u)|^p |\varphi_z'(u)|^2 dA(u) \]
\[= \int_D |f(u)|^p dA(u) \int_{|\varphi_z(u)|<\frac{1}{6}} \frac{(1-|z|^2)^2}{|1-\bar{z}u|^4} \omega(z) dA(z). \quad (2.9) \]

An elementary calculation shows that
\[|\varphi_z(u)| < \frac{1}{6} \implies |u| \leq \frac{1+6|z|}{6+|z|} \implies |u| \leq \frac{1+|z|}{2}. \quad (2.10) \]

Whence
\[\int_{|\varphi_z(u)|<\frac{1}{6}} \frac{(1-|z|^2)^2}{|1-\bar{z}u|^4} \omega(z) dA(z) \lesssim \int_{|u| \leq \frac{1+|z|}{2}} \frac{(1-|z|^2)^2}{|1-\bar{z}u|^4} \omega(z) dA(z) \]
\[\lesssim \int_{|u| \leq \frac{1+|z|}{2}} (1-r|u|)^{-1} \omega(r) r dr \]
\[\lesssim (1-|u|)^{-1} \int_{|u| \leq \frac{1+|z|}{2}} \omega \left(\frac{1+r}{2} \right) r dr \]
\[\lesssim (1-|u|)^{-1} \int_{|u|}^{1} \omega(s) ds \]
\[\approx \omega(u), \quad (2.11) \]

where we have used (2.10), the well-known estimate [2, Lemma, p. 65]
\[\int_0^{2\pi} \frac{(1-r^2)^2}{|1-re^{-i\theta}|^4} d\theta \lesssim (1-r|u|)^{-1}, \]

(S3) and (S4), in this order. Therefore by substituting (2.11) into (2.9), it follows that
\[\|f\|_{p, \omega}^p \gtrsim \int_0^{2\pi} M_p(r, \tilde{\nabla} f)^p \omega(r) r dr. \]

For the converse direction, we consider the cases \(0 < p \leq 1 \) and \(p \geq 1 \) separately. Suppose first \(0 < p \leq 1 \). A well-known theorem of Littlewood–Paley [10,14] says that
\[
\int_0^{2\pi} |f(re^{i\theta})|^p d\theta \lesssim \int_D (1 - |z|^2)^{p-1} |f'(z)|^p dA(z), \tag{2.12}
\]

where \(f_r(z) = f(rz) \). Taking \(\int_0^1 \omega(r)r \, dr \) after changing a variable on the right side of (2.12), it follows by (2.1) that

\[
\int_D |f(z)|^p \omega(z) dA(z) \lesssim \int_0^1 \omega(r) \left(\int_{|z|<r} (r-|z|)^{p-1} \omega(r) r \, dr \right) dA(z)
\]
\[
\lesssim \int_D |\tilde{\nabla} f(z)|^p \omega(z) dA(z). \tag{2.13}
\]

Next, suppose \(1 \leq p < \infty \). Take a positive integer \(n \) such that \(0 < p/n \leq 1 \). Set \(F = f^n \). Then \(F \) is holomorphic in \(D \) so that by the above case

\[
\int_D |F(z)|^{p/n} \omega(z) dA(z) \lesssim \int_D |\tilde{\nabla} F(z)|^{p/n} \omega(z) dA(z).
\]

Thus, it follows that

\[
\int_D |f(z)|^p \omega(z) dA(z) \lesssim \int_D |f(z)^{n-1} \tilde{\nabla} f(z)|^{p/n} \omega(z) dA(z).
\]

The last quantity is bounded by

\[
\left(\int_D |\tilde{\nabla} f(z)|^p \omega(z) dA(z) \right)^{1/n} \cdot \left(\int_D |f(z)|^p \omega(z) dA(z) \right)^{1-1/n}.
\]

Hence

\[
\|f\|_{p,\omega}^p \lesssim \int_0^1 M_p(r, \tilde{\nabla} f)^p \omega(r) r \, dr
\]

under the additional assumption \(\|f\|_{p,\omega}^p < \infty \). This assumption can be removed by a limiting process: use \(f_{\rho}(z) \) in place of \(f(z) \) and let \(\rho \to 1^- \). \(\square \)

3. Reducing to a decreasing weight case

We need the following technical lemma in reducing the proof of Theorem 1.1 to the case of secure weight with \(r_s = 0 \).

Lemma 3.1. Let \(\omega \) be a secure weight on \(D \). Then there is another secure weight \(\omega_1 \) on \(D \) with \(r_s = 0 \) such that \(\omega_1(r) = \omega(r) \) for \(r_s \leq r < 1 \).

Proof. If \(\omega(r_s) = 0 \), then \(\omega(r) = 0 \) for \(r \in [r_s, 1) \), so that we can take \(\omega_1 \equiv 0 \). Otherwise, we may suppose \(\omega(r_s) = 1 \). Take

\[
\omega_1(r) = \begin{cases}
1, & \text{if } 0 \leq r \leq r_0, \\
\omega(r), & \text{if } r_s \leq r < 1.
\end{cases}
\]

Then \(\omega_1 \) satisfies (S1) and is (S2) for all \(z \in D \) and \(r \in [0, 1) \). We need to check that
\[\omega_1(r) \approx \omega_1 \left(\frac{1 + r}{2} \right) \quad \text{for } r \in [0, 1), \] (3.1)

and that
\[\int_r^1 \omega_1(\rho) \, d\rho \approx (1 - r) \omega_1(r) \quad \text{for } r \in [0, 1). \] (3.2)

By (S3) and (S4), these are obvious when \(r_s \leq r < 1 \).

To see (3.1) for \(r < r_s \), there are two cases: case \(r_s < \frac{1 + r}{2} < \frac{1 + r_s}{2} \) and case \(\frac{1 + r}{2} < r_s \). In the first case
\[\omega_1(r) = \omega_1(r_s) \approx \omega_1 \left(\frac{1 + r_s}{2} \right) \approx \omega_1 \left(\frac{1 + r}{2} \right) \approx \omega_1(r_s), \]
and in the second case
\[\omega_1(r) = \omega_1 \left(\frac{1 + r}{2} \right) = 1, \]
which gives (3.1).

To see (3.2) for \(r < r_s \), we note by (S4) that
\[\frac{1}{C} (1 - r_s) \leq \int_{r_s}^1 \omega_1(\rho) \, d\rho \leq C (1 - r_s) \]
for some \(C > 1 \), from which it follows
\[\frac{1}{C} (1 - r) \leq (r_s - r) + \frac{1}{C} (1 - r_s) \leq \int_r^{r_s} \omega_1(\rho) \, d\rho = \int_r^1 \omega_1(\rho) \, d\rho + \int_{r_s}^1 \omega_1(\rho) \, d\rho \]
\[\leq (r_s - r) + C (1 - r_s) \leq C (1 - r). \]
This gives (3.2). \(\square \)

4. Proof of Theorem 1.1

With the help of Lemma 3.1, we are sufficient to prove the equivalence of the left-hand side quantities of (i), (ii), and (iii) under the condition \(r_s = 0 \) and \(f(0) = 0 \).

Fixing such a \(\omega \) and \(f \) throughout the proof, let us denote for simplicity
\[I(p, \alpha; f) := \int_D \left| f(z) \right|^{p-\alpha} \left| \bar{\nabla} f(z) \right|^{\alpha} \omega(z) \, dA(z) \]
and
\[J(p, \alpha; f) := 2\pi \int_0^1 M_p(r, f)^{p-\alpha} M_p(r, \bar{\nabla} f)^{\alpha} \omega(r) \, dr. \]

Then \(\log I(p, \alpha; f) \) and \(\log J(p, \alpha, f) \) are convex functions of \(\alpha \), that is,
\[\log I(p, \alpha; f) \leq I(p, s; f)^{(t-\alpha)/(t-s)} \cdot I(p, t; f)^{1-(t-\alpha)/(t-s)} \] (4.1)
and
\[\log J(p, \alpha; f) \leq J(p, s; f)^{(t-\alpha)/(t-s)} \cdot J(p, t; f)^{1-(t-\alpha)/(t-s)} \] (4.2)
if \(0 \leq s < \alpha < t < \infty \). This can be easily checked by noting that
\[\alpha = \frac{t - s}{t - s} + \frac{\alpha - t}{t - s} \]

and applying Hölder’s inequality with paring \((\frac{1}{t - s}, \frac{1}{\alpha - t})\).

We are going to prove that

\[\|f\|_{p, \omega}^p \approx I(p, \alpha; f) \approx J(p, \alpha; f). \]

We will make use of Theorems 2.2 and 2.3 which can be summarized as

\[\|f\|_{p, \omega} = J(p, 0; f) \approx I(p, 0; f) = I(p, 2; f) \approx I(p, p; f) = J(p, p; f). \]

(4.3)

Along with (4.3), the following result plays an essential role in this proof.

Theorem A. (See [9, Theorem C].) Let \(0 < p, \alpha < \infty\). Then

\[\int_D |f(z)|^{p - \alpha} |f'(z)|^\alpha (1 - |z|)^{\alpha - 1} dA(z) \lesssim \sup_{0 < r < 1} M_p(r, f) \]

(4.4)

for all \(f\) in the Hardy space \(H^p\) if and only if \(2 \leq \alpha < p + 2\).

We now proceed the proof. Note by (4.3) that we may assume \(\alpha \neq 0\) and \(\alpha \neq p\). We consider the cases \(\alpha > p\) and \(\alpha < p\) separately.

Case \(\alpha > p\). We prove that (i) \(\Rightarrow\) (ii) \(\Rightarrow\) (iii) \(\Rightarrow\) (i).

(i) \(\Rightarrow\) (ii). If \(0 < \alpha \leq 2\), then by (4.1) and (4.3),

\[I(p, \alpha; f) \leq I(p, 0; f)^{1 - \alpha/2} I(p, 2; f)^{\alpha/2} \approx I(p, 0; f) = \|f\|_{p, \omega}^p. \]

If \(2 < \alpha < \infty\), then by (4.4) we have

\[\int_D |f(z)|^{p - \alpha} |f'(z)|^\alpha (1 - |z|)^{\alpha - 1} dA(z) \lesssim \int_0^{2\pi} |f(re^{i\theta})|^{p} d\theta \]

provided \(p - \alpha > -2\). Making a change of variables on the left side and taking \(\int_0^1 \omega(r)r dr\) on both sides,

\[\int_0^1 \omega(r)r dr \int_{|z| < r} |f(z)|^{p - \alpha} |f'(z)|^\alpha (1 - \frac{|z|}{r})^{\alpha - 1} r^{\alpha - 2} dA(z) \lesssim \int_D |f(z)|^p \omega(z) dA(z). \]

(4.5)

The left side of (4.5) is

\[\int_D |f(z)|^{p - \alpha} |f'(z)|^\alpha \left(\int_{|z|}^1 (r - |z|)^{\alpha - 1} \omega(r) dr \right) dA(z), \]

whence (2.1) gives

\[I(p, \alpha; f) \lesssim I(p, 0; f) = \|f\|_{p, \omega}^p. \]

(ii) \(\Rightarrow\) (iii). Hölder’s inequality with the paring \((\frac{\alpha}{p}, \frac{\alpha}{\alpha - p})\),

\[M_p(r, \nabla f)^p \leq \left(\int_0^{2\pi} |f(re^{i\theta})|^{p - \alpha} |\nabla f(re^{i\theta})|^\alpha \frac{d\theta}{2\pi} \right)^{p/\alpha} M_p(r, f)^{p(1 - \alpha/p)}, \]

so that
\[M_p(r, f)^{-p(1-p/\alpha)}M_p(r, \nabla f)^p \leq \left(\int_0^{2\pi} |f(re^{i\theta})|^{p-\alpha} |\nabla f(re^{i\theta})|^\alpha \frac{d\theta}{2\pi} \right)^{p/\alpha}. \]

Taking \(f_0^1 \omega(r) \, dr \) on the \(\alpha \) power of both sides,

\[J(p, \alpha; f) \lesssim I(p, \alpha; f). \]

(iii) \(\Rightarrow \) (i). Let \(0 < \rho < 1 \). Taking \(f_0^\rho \omega(r) \, dr \) after making a change of variables on the right side of (2.12), it follows as in (2.13) that

\[
\int_{|z|<\rho} |f(z)|^p \omega(z) \, dA(z) \lesssim \int_0^\rho \omega(r) r \, dr \int_{|z|<r} (r - |z|)^{p-1} |f'(z)|^p \, dA(z)
\[
\leq \int_{|z|<\rho} |f'(z)|^p \left(\int_{|z|}^\rho (r - |z|)^{p-1} \omega(r) r \, dr \right) dA(z)
\[
\leq \int_{|z|<\rho} |\nabla f(z)|^p \omega(z) \, dA(z).
\]

Thus by applying Hölder’s inequality with the paring \((\alpha p, \alpha \alpha - \alpha)\),

\[
\int_0^\rho M_p(r, f)^p \omega(r) r \, dr \lesssim \int_0^\rho M_p(r, \nabla f)^p \omega(r) r \, dr
\[
\leq \left(\int_0^\rho M_p(r, f)^{p-\alpha} M_p(r, \nabla f)^\alpha \omega(r) r \, dr \right)^{p/\alpha} \cdot \left(\int_0^\rho M_p(r, f)^p \omega(r) r \, dr \right)^{1-p/\alpha},
\]

so that

\[
\int_0^\rho M_p(r, f)^p \omega(r) r \, dr \lesssim \int_0^\rho M_p(r, f)^{p-\alpha} M_p(r, \nabla f)^\alpha \omega(r) r \, dr \lesssim J(p, \alpha; f).
\]

By letting \(\rho \to 1^- \), we obtain

\[\| f \|_{p, \omega}^p = J(p, 0; f) \lesssim J(p, \alpha; f). \]

Case \(\alpha < p \). We prove that (i) \(\Rightarrow \) (iii) \(\Rightarrow \) (ii) \(\Rightarrow \) (i).

(i) \(\Rightarrow \) (iii). By (4.2) and (4.3),

\[J(p, \alpha; f) \leq J(p, 0; f)^{1-\alpha/p} J(p, p; f)^{\alpha/p} \approx I(p, 0; f) = \| f \|_{p, \omega}^p. \]

(iii) \(\Rightarrow \) (ii). By Hölder’s inequality with the paring \((\alpha p - \alpha, \frac{p}{\alpha - \alpha})\),

\[
\int_0^{2\pi} |f(re^{i\theta})|^{p-\alpha} |\nabla f(re^{i\theta})|^\alpha \frac{d\theta}{2\pi} \leq M_p(r, f)^{p-\alpha} M_p(r, \nabla f)^\alpha,
\]

so that the left side of (ii) is bounded by a constant times the left side of (iii).

(ii) \(\Rightarrow \) (i). By (4.3), we may assume \(\alpha \neq 2 \). Then (4.3) and (4.1) gives the following:

\[\| f \|_{p, \omega}^p \approx I(p, p; f) \lesssim I(p, \alpha; f)^{(2-p)/(2-\alpha)} I(p, 2; f)^{(p-\alpha)/(2-\alpha)} \quad \text{if } 0 < \alpha < p \leq 2; \]

\[\| f \|_{p, \omega}^p \approx I(p, 2; f) \lesssim I(p, \alpha; f)^{(p-2)/(p-\alpha)} I(p, p; f)^{(2-\alpha)/(p-\alpha)} \quad \text{if } 0 < \alpha < 2 < p; \]

\[\| f \|_{p, \omega}^p \approx I(p, 2; f) \lesssim I(p, 0; f)^{1-2/\alpha} I(p, \alpha; f)^{2/\alpha} \quad \text{if } 2 < \alpha < p. \]
Therefore
\[\|f\|_{p,\omega}^p \lesssim I(p, \alpha; f) \quad (4.6) \]
by (4.3) once more under the additional assumption \(I(p, 0; f) < \infty \). But since \(p > \alpha \), \(|f|^{p-\alpha} |f'|^\alpha\) as well as \(|f|^p\) are subharmonic, so that (4.6) follows by applying \(f_\rho(z) = f(\rho z) \), \(0 < \rho < 1 \), in place of \(f(z) \) and letting \(\rho \to 1^- \).

5. A comparison of secure weights with admissible weights and Majorants

We are going to consider relationships with other terminologies related to weights.

A function \(\phi : [0, \pi] \to [0, \infty) \) is called an “admissible weights” in the sense of [7] if the followings are satisfied:

(AW1) \(\phi \) is continuous and increasing.

(AW2) \(\phi(0) = 0 \) and \(\phi(t) > 0 \) if \(t > 0 \).

(AW3) \[\int_0^\delta \frac{\phi(t)}{t} dt \lesssim \phi(\delta) \quad \text{for } 0 < \delta < 1. \]

(AW4) \[\int_\delta^\pi \frac{\phi(t)}{t^2} dt \lesssim \frac{\phi(\delta)}{\delta} \quad \text{for } 0 < \delta < 1. \]

A function \(m : [0, 2] \to [0, \infty) \) is called a “majorant” in the sense of [3,4,11] if the following are satisfied:

(M1) \(m \) is continuous and increasing.

(M2) \(m(0) = 0 \) and \(\frac{m(t)}{t} \) is decreasing.

A majorant \(m \) is called “regular majorant” if

(R) \[\int_0^x \frac{m(t)}{t} dt + \int_x^2 \frac{m(t)}{t^2} dt \lesssim m(x) \quad \text{for } 0 < x < 2. \]

We call \(m : [0, 2] \to [0, \infty) \) an “almost majorant” if (M1) and (M2) are satisfied with almost increasing and almost decreasing respectively in the place of increasing and decreasing. Also we call \(m \) an “almost regular majorant” if \(m \) is an almost majorant satisfying (R). It was observed in [6, Lemma 1] that (AW1) and (AW4) implies \(\frac{\phi(t)}{t} \) is almost decreasing on \((0, 1] \).

Lemma 5.1. Let \(\psi : [0, 1) \to [0, \infty) \) is locally integrable. If either

(AM) \(\psi \) is almost increasing and \(\frac{\psi(t)}{t} \) is almost decreasing or if

\(\psi \) is almost decreasing and \(\frac{\psi(t)}{t} \) is almost increasing,

then \(\omega : D \to [0, \infty) \) defined by \(\omega(z) = \psi(1 - |z|) \) is a secure weight.

Proof. Consider the first case (AM). (S1) and (S2) are obvious. The assumption gives the doubling property of \(\psi \):

\[\psi(t) \lesssim \psi(2t) = 2t \frac{\psi(2t)}{2t} \lesssim 2t \frac{\psi(t)}{t} = 2\psi(t) \]

and (1.2)
\[\psi(r) = \frac{2}{r^2} \int_0^r t \, dt \lesssim \frac{1}{r} \int_0^r \frac{\psi(t)}{t} \, dt = \frac{1}{r} \int_0^r \psi(t) \, dt \lesssim \psi(r) \frac{1}{r} \int_0^r \, dt = \psi(r) \]

which are equivalent to (S3) and (S4), respectively. The second case is similar. \(\square \)

Proposition 5.2.

(i) If \(\phi \) is an admissible weight, then \(\omega : D \to [0, \infty) \) defined either by

\[\omega(z) = \phi(1 - |z|) \quad \text{or by} \quad \omega(z) = \frac{\phi(1 - |z|)}{1 - |z|} \]

are secure weights.

(ii) If \(m \) is an almost majorant, then \(\omega : D \to [0, \infty) \) defined by \(\omega(z) = m(1 - |z|) \) is a secure weight.

(iii) If \(m \) is an almost regular majorant, then \(\omega : D \to [0, \infty) \) defined by

\[\omega(z) = \frac{m(1 - |z|)}{1 - |z|} \]

is a secure weight.

Proof. (i) \(\phi \) is increasing by (AW1) and \(\frac{\phi(t)}{t} \) is almost decreasing by [6, Lemma 1], so that by lemma \(\omega(z) = \phi(1 - |z|) \) is secure. For the second case, let

\[\omega(r) = \frac{\phi(1 - r)}{1 - r}, \quad 0 \leq r < 1. \]

Then \(\omega \) is almost increasing, so (S2) follows. Almost increasing property of \(\omega \) and (AW1) gives

\[\omega(r) = \frac{\phi(1 - r)}{1 - r} \gtrsim \frac{\phi(\frac{1-r}{2})}{1 - r} = 2\omega \left(\frac{1 + r}{2} \right) \gtrsim 2\omega(r), \] \hspace{1cm} (5.1)

so that (S3) follows. (S4) follows by using (AW3):

\[(1 - r)\omega(r) \lesssim \int_r^1 \omega(\rho) \, d\rho = \int_0^{1-r} \frac{\phi(t)}{t} \, dt \lesssim \phi(1 - r) = (1 - r)\omega(r). \] \hspace{1cm} (5.2)

(ii) (M1) and (M2) gives (AM), so that by lemma the result follows.

(iii) Since \(\omega \) is increasing, (5.1) with \(m \) in place of \(\phi \) holds, which gives (S3). By use of (R), (3.2) also holds with \(m \) in place of \(\phi \), which gives (S4). \(\square \)

Example 5.3. Let \(b < -1 \). It follows simply that

\[\int_r^1 (1 - \rho)^{-1} \left(1 + \log \frac{1}{1 - \rho} \right)^b \, d\rho = \frac{-1}{b + 1} \left(1 + \log \frac{1}{1 - r} \right)^{b+1}. \]

Whence by (S4) the integrand is not a secure weight. The functions of the form

\[t^{-1} \left(1 + \log \frac{1}{t} \right)^b \]

is neither an admissible weight nor a majorant. The functions of the form

\[\left(1 + \log \frac{1}{t} \right)^b \]

is neither an admissible weight nor a regular majorant.
References