
Theoretical Computer Science 251 (2001) 1–166
www.elsevier.com/locate/tcs

Fundamental Study

L(A) = L(B)? decidability results from
complete formal systems

G�eraud S�enizergues∗;1

LaBRI, UMR 5800, CNRS et Universit�e Bordeaux1, 351 Cours de la lib�eration,
33405-Talence Cedex, France

Received 26 May 1998; revised 23 May 2000; accepted 13 June 2000
Communicated by M. Nivat

Abstract

The equivalence problem for deterministic pushdown automata is shown to be decidable.
We exhibit a complete formal system for deducing equivalent pairs of deterministic rational
boolean series on the alphabet associated with a dpda M. We then extend the result to deter-
ministic pushdown transducers from a free monoid into an abelian group. A general algebraic
and logical framework, inspired by Harrison et al. (Theoret. Comput. Sci. 9 (1979) 173–205),
Conrcelle (Theoret. Comput. Sci. 6 (1978) 255–279) and Meitus (Kybernetika 5 (1989) 14–25
(in Russian)) is developed. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Deterministic pushdown automata; Rational series; Finite-dimensional vector spaces;
Matrix semi-groups; Complete formal systems

Contents

1. Introduction 3
1.1. Motivation 3
1.2. Results 5
1.3. Techniques 6
1.4. Organization of the paper 8

2. Preliminaries 9
2.1. Pushdown automata 9
2.2. Deterministic context-free grammars 9
2.3. Free monoids acting on semi-rings 10

∗ Fax: 33-5-56-84-66-69.
E-mail address: ges@labri.u-bordeaux.fr (G. S�enizergues).
1 http:==www.labri.u-bordeaux.fr= ∼ges

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00285 -1

2 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

3. Series and matrices 14
3.1. Deterministic series and matrices 14
3.2. Deterministic spaces 30
3.3. Height, defect and linearity 32
3.4. Derivations 38

4. Deduction systems 41
4.1. General formal systems 41
4.2. Strategies 43
4.3. System D0 45
4.4. Congruence closure: de�nition 50

5. Triangulations 50
5.1. Restricted systems 51
5.2. General systems 58

6. Constants 60
7. Strategies for D0 61
8. Tree analysis 65

8.1. Depth and weight 65
8.2. Linearity 67
8.3. N -stacking sequences 68

9. Completeness of D0 81
10. Elimination 82

10.1. Congruence closure: properties 82
10.2. System D1 85
10.3. System D2 91
10.4. Deterministic substitutions 93
10.5. System D3 99
10.6. System D4 99
10.7. System D5 102

11. Coe�cients in a group H 104
11.1. De�nitions and basic properties 104
11.2. Deterministic rational series 108
11.3. Vectors, matrices 113
11.4. Algebraic properties 115
11.5. Operations on row-vectors 122
11.6. Deterministic spaces 123
11.7. Height, defect and linearity 123
11.8. Formal system H0 125
11.9. Triangulations 127
11.10. New constants 132
11.11. Strategies for H0 133
11.12. Tree analysis 134
11.13. Completeness of H0 141

12. Examples 141
12.1. Example 1 142
12.2. Example 2 146
12.3. Example 3 151

13. Applications and perspectives 155
13.1. Applications 155
13.2. Perspectives 157

Acknowledgements 158
References 159
Index 163

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 3

1. Introduction

We solve here the equivalence problem for deterministic pusdown automata (see
Section 1.2), which was an open question in formal language theory and also, undi-
rectly, in semantics of programming languages (see Section 1.1). We use several ideas
and techniques which appeared in previous works on the subject (see Section 1.3) and
also introduce some new ones. We aim to give a self-contained and readable exposition
of our solution (see Section 1.4).

1.1. Motivation

1.1.0.1. Origins The notion of context-free grammar and context-free language were
introduced in the late 1950s [8], as a mathematical model for approximating natural
languages. Their possible utilization for de�ning the syntax of programming languages
was quickly recognized [30,50]. The notion of pushdown automaton was then devised
in order to �t with this class of grammars [9,10]. Let us recall that this class of
formal languages constitutes level 2 of Chomsky’s celebrated hierarchy, whose level 1
is the class of regular languages (introduced in [41]). The e�orts towards devising
subclasses of context-free grammars allowing an e�cient left-to-right parsing algorithm
converged towards the de�nition of LR(k) grammars [42]; in the mean-time several
de�nitions of the notion of deterministic pushdown automaton were given [29,31,64]
which de�ne the same class of languages 2 which is nothing else than the class of
LR(k) languages. 3

1.1.0.2. The equivalence problem for deterministic pushdown automata In [29] the
authors investigate the mathematical properties of deterministic pushdown automata.
After having proved some positive algorithmic results, for example:

• it is recursively solvable to determine for an arbitrary deterministic language L and
a regular set R whether L=R (Theorem 5:1, p. 645),

they show some negative results, for example:

• for arbitrary deterministic languages L; L′, it is recursively unsolvable to determine
whether L⊆L′ (Theorem 5:3, p. 646, point (b)).

They conclude their article by mentioning the question:
“is it recursively unsolvable to determine if L1 =L2 for arbitrary deterministic

languages L1 and L2”?

2 We do not know if a formal proof of this statement exists, but this is asserted in [29, p. 621, footnote
1] and believed by us.

3 The fact that LR(k) grammars generate exactly the deterministic languages in the sense of [29] is
formally proved in [42, Theorem, p. 628, Theorem p. 630].

4 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

From the beginning, the solvability of the problem when L2 is rational (see above)
and its unsolvability when the equality relation is replaced by the inclusion relation
make this question likewise mysterious (hence mathematically attractive). 4

1.1.0.3. Partial solutions This question has motivated a huge amount of works which,
altogether, constructed increasing subclasses of dpda’s where the answer was positive 5

and also increasingly sophisticated methods to prove so. The decidability of the above
question (we name it the “equivalence problem for dpda’s”) was established for many
subclasses. Let us mention some important such subclasses where the equivalence was
proved decidable even though the inclusion problem was undecidable. 6

• the subclass of dpda’s with one state and no �-transition [40],
• the case where one dpda has one state and no �-transition and the other is general

[34],
• the subclass of dpda’s with only one stack symbol [80] (another related result is

also [38],
• the subclass of LL(k) grammars [62], generalized by the subclass of non-singular

dpda’s [78],
• the subclass of �nite-turn dpda’s [4,79],
• the subclass of dpda’s with no �-transition, with empty �nal con�gurations [56,59]

(a more general result implying this one is also [75]),
• the subclass of dpda’s with no �-transition, with arbitrary �nal con�gurations [55,60].

1.1.0.4. The equivalence problem for program schemes Let us say that two programs
P;Q are equivalent i�, on every given input, either they both diverge or they both
converge and compute the same result. It would be highly desirable to �nd an algo-
rithm deciding this equivalence between programs since, if we consider that P is really
a program and Q is a speci�cation, this algorithm would be a “universal program-
prover”. Unfortunately, one can easily see that, as soon as the programs P;Q compute
on a su�ciently rich structure (for example the ring of integers), this notion of equiv-
alence is undecidable. Nevertheless, this seemingly hopeless dream lead many authors
to analyze the reason why this problem is undecidable and the suitable restrictions
(either on the shape of programs or on the meaning of the basic operations they can
perform) which might make this equivalence decidable. 7 Informally, one can de�ne
an interpretation as an “universe of objects together with a certain de�nite meaning
for each program primitive as a function on this universe” and a program scheme

4 Even though, from this point of view, no practical application was expected.
5 Let us call positive a proof of the solvability of the equivalence problem for some class of automata,

i.e. we forget the negative way in which Ginsburg and Greibach raised the question.
6 All the decidability results concerning classes of languages which are boolean algebras, are omitted

in this introduction. They are, of course, interesting by themselves, but one can hardly hope to adapt the
corresponding methods to the equivalence problem for dpda’s.

7 This second point of view appears to be quite pragmatic; even approximate decision procedures appli-
cable to programs for which equivalence is undecidable were developed (see, for example [39]).

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 5

as a “program without interpretation” [49, p. 205, lines 5–13]. Several precise math-
ematical notions of “interpretation” and “program schemes” were given and studied
([12,13,24,28,36,39,44,49,52,57,61,63], see [19] for a survey). Many methods for ei-
ther transforming programs or for proving properties of programs were established but,
concerning the equivalence problem, the results turned out to be mostly negative: for
example, in [44, p. 221, lines 24–26], the authors report that “for almost any reasonable
notion of equivalence between computer programs, the two questions of equivalence
and non-equivalence of pairs of schemas are not partially decidable”. Nevertheless, two
kinds of program schemes survived all these studies:

• the monadic recursion schemes, where a special ternary function if-then-else has
the �xed usual interpretation: in [28] the equivalence problem for such schemes is
reduced to the equivalence problem for dpda’s and in [24] a reduction in the opposite
direction is constructed;
• the recursive polyadic program schemes: in [12,13], following a representation prin-

ciple introduced in [61], the equivalence problem for such schemes is reduced to the
equivalence problem for dpda’s and conversely.

1.1.0.5. Other links Some other Turing-equivalent problems on semi-Thue systems
were also found (see [67] for a survey) and formulations in terms of bisimulation
equivalence of in�nite graphs (or processes) have been found too (see [6] for a survey).

1.2. Results

We prove in this article the following results.

Theorem 87. It is recursively solvable to determine if L(A) =L(B) for arbitrary de-
terministic pushdown automata A and B.

This theorem was exposed in [69,71] and proved in [70]. We give here a revised
proof and a simpli�ed “proof-system” for all the pairs of equivalent “deterministic
rational boolean series” (see Section 1.3 and the system D5 in Section 10).

Corollary 180. The equivalence problem for monadic recursion schemes (with inter-
preted if-then-else); is decidable.

Corollary 181. The equivalence problem for recursive polyadic program schemes
(with completely uninterpreted function symbols) is decidable.

Theorem 177. It is recursively solvable to determine if T (A) =T (B) for arbitrary
deterministic pushdown transducers A and B; with outputs in an abelian group H.

This theorem extends Theorem 87 which corresponds to the case where H = {1}.

6 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

1.3. Techniques

1.3.0.6. Deterministic series and matrices This idea appeared in [34]. One of the
di�culties encountered in manipulating the con�gurations of a pushdown automaton
(a con�guration is a pair (state, stack-word)) is that no nice algebraic operation seems
naturally de�ned on them. We propose to overcome this di�culty by embedding the set
of con�gurations into a larger set: the set of deterministic rational boolean series which
is endowed with a partial sum, a product, a partial star. This notion of deterministic
rational boolean series is exactly the notion of set of associates de�ned in [34] and
generalized here to in�nite rational sets. In connection with the ideas of [47,48] we
have then generalized this notion to vectors and to matrices. This allows then to de�ne
a notion of linear combination of deterministic rational boolean series.

1.3.0.7. Deterministic spaces The notion of linear independence of languages (and
also of con�gurations) appeared in [47]. Let us sketch this idea for pre�x languages.
We recall that a language L is said to have the pre�x property if, for every u; v∈L,
if u is a pre�x of v, then u= v. Similarly, we shall say that a vector of languages
(�1; �2; : : : ; �n) is a pre�x vector i� ∪n

i=1�i is pre�x and for every i 6= j, �i ∩ �j = ∅. Let
(L1; L2; : : : ; Ln) be a family of pre�x languages:

(1) Either for every two pre�x vectors (�1; �2; : : : ; �n), (�1; �2; : : : ; �n)

n∑
i=1

�i · Li =
n∑

i=1

�i · Li ⇒ (�1; �2; : : : ; �n) = (�1; �2; : : : ; �n)

(2) or, there exists some i0 ∈ [1; n] , and a pre�x vector (1; 2; : : : ; n); such that

Li0 =
n∑

i=1

i · Li where i0 = ∅

When (1) (resp. (2)) is true, the family (L1; L2; : : : ; Ln) is said linearly independent
(resp. linearly dependent). In other words, if (1) is not true, then (2) must be true.
The adaptation of this idea to equivalence of con�gurations (instead of equality of
languages) was technically non-obvious because, even when (1) is shown to be untrue
by a pair of vectors �; � de�ned by con�gurations, the vector appearing in (2) need
not be still de�ned by a con�guration. But we prove that it always corresponds to a
deterministic rational boolean vector (Lemma 30).

We are then naturally led to consider, for every given set of deterministic rational
boolean series {Ui | i∈ I}, the set of all deterministic rational linear combinations of
these series. We call such a set the deterministic space generated by {Ui | i∈ I}.

1.3.0.8. Deduction systems This idea appeared in full generality in [14]. We expose
this idea in details in Section 4. A deduction system is a kind of formal system, i.e.
a set of assertions together with a set of axioms and deduction rules. The originality
of these systems stems in the fact that the notion of proof allows some loops. Such

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 7

“looping proofs” are guaranteed to be correct as soon as some cost-function is strictly
increasing at every deduction step. We introduce in Section 4.3 a deduction system
D0 which treats assertions of the form U ≡V , where U; V are “deterministic rational
boolean series” and U ≡V means that U and V de�ne the same deterministic, cf.
language.

1.3.0.9. Strategies A strategy is a method allowing to �nd a proof of the fact that
two con�gurations (or series) are equivalent. A basic step of all the usual strategies is
to replace a pair

U ≡ V (1)

by the �nite set of all pairs obtained by letting one terminal letter x∈X act on both
sides:

{U � x ≡ V � x; x ∈ X }:
Such a step in the construction of a proof is called a TA step.

In [78, p. 68], is introduced a second kind of step called a replacement, which
introduces, from a pair (1), another �nite set of pairs

U ′ ≡ V ′; U ′′ ≡ V ′′ (2)

such that

U ≡ V ⇔ (U ′ ≡ V ′ and U ′′ ≡ V ′′):

In the case of �nite-turn or real-time dpda’s [4,55,78,79], the sequences of pairs (Ui; Vi)
obtained by a suitable alternation of TA steps and replacement steps are
“smooth” in the sense that the lengths of both sides have similar variations.

We de�ne here a kind of replacement called TB (because it is also analogous with
transformation TB of [40]), which creates from two pairs

U ≡ V; U ′ ≡ V ′ (3)

a new pair

U ′′ ≡ V ′′ (4)

such that

(U ≡ V and U ′ ≡ V ′)⇔ (U ≡ V and U ′′ ≡ V ′′):

This transformation consists in replacing the pair U ′≡V ′ by the new pair U ′′≡V ′′

under the hypothesis that U ≡V . This type of replacements also leads to somewhat
“smooth” sequences of pairs in an algebraic sense which is sketched below.

1.3.0.10. N -stacking sequences Let us call a SAB-tree the (possibly in�nite) tree ob-
tained from an initial true equation U ≡V by the above strategy. We show that this

8 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

tree has “smooth branches” in the following sense: on every in�nite branch b= (xi)06i,
there exists:

• a “short sequence” of nodes

(xi)i06i6i0+Ld0 +k1

(where Ld0 ; k1 are constants),
• a “small” generating set

G1 = {Ui | 16i6d0}

(where d0 is a constant),
• and d0 integers

�1; �2; : : : ; �d0 ∈ [i0; i0 + Ld0]

such that all left- and right-hand sides of the equations at nodes x�1 ; x�2 ; : : : ; x�d0

belong to the deterministic space generated by G1 and have small coe�cients on the
generating set G1.

We are faced with a system of d0 linear equations linking only d0 di�erent series. The
“linear independence” idea (explained above) can then be applied to cut the branch
b (we name TC the precise tranformation allowing to cut a branch containing such a
system of equations). At end, we obtain from the initial SAB-tree a �nite SABC-tree
which is a proof in the formal system D0.

1.4. Organization of the paper

The overall organization of the paper should be clear from the table of contents. Let
us give additional hints to the reader.

The main result, Theorem 87, is obtained in Section 9. In particular, Sections
10–13 are not needed to establish this theorem. The crucial part of the proof of
Theorem 87 is Section 8:3, whose general idea is explained in the last paragraph of
Section 1.3. The precise realization of this idea turns out to be complex and combines
all the intermediate results of Sections 2.1–8.2. In some sense, everything in Sections
2.1–8.2 has been written in order to �t in some argument of Section 8.3.

Once this main result is established we give re�nements, generalizations, examples,
applications and perspectives (Sections 10–13):

• Section 10 is devoted to successive simpli�cations of the deduction system D0, so
as to obtain a last system D5 which is quite simple and is still complete.
• In Section 11 we generalize the classical equivalence problem for “boolean dpda’s”

to “H -dpda’s”: these are dpda’s whose transitions have outputs in some group
H . We show that when H is abelian, the equivalence problem remains decidable
(Theorem 177).
• Some examples of proofs in our formal systems are given in Section 12.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 9

• We give Section 13 some immediate applications either to formal language theory or
to other areas of theoretical computer science. We than sketch perspective of other
applications or extensions of the methods and results.

2. Preliminaries

2.1. Pushdown automata

A pushdown automaton is a 6-tuple M= 〈X; Z; Q; �; q0; z0〉 where X is the terminal
alphabet, Z is the �nite stack-alphabet, Q is the �nite set of states, q0 ∈Q is the initial
state, z0 is the initial stack-symbol and � :QZ× (X ∪{�})→Pf(QZ∗), is the transition
mapping.

Let q; q′ ∈Q;!;!′ ∈Z∗; z ∈Z; f∈X ∗ and a∈X ∪{�}; we note (qz!; af) 7→M

(q′!′!;f) if q′!′ ∈ �(qz; a). ∗7→M is the reexive and transitive closure of 7→M. For

every q!; q′!′ ∈QZ∗ and f∈X ∗, we note q!
f7→M q′!′ i� (q!; f) ∗7→M(q′!′; �).

M is said deterministic i�, for every z ∈Z; q ∈ Q:

either Card(�(qz; �)) = 1 and for every x ∈ X; Card(�(qz; x)) = 0; (5)

or Card(�(qz; �)) = 0 and for every x ∈ X; Card(�(qz; x))61: (6)

M is said real time i�, for every qz ∈QZ , Card(�(qz; �)) = 0. A dpda M is said
normalized i�, for every qz ∈QZ; x∈X :

q′!′ ∈ �(qz; x)⇒ |!′|62 and q′!′ ∈ �(qz; �)⇒ |!′| = 0: (7)

Given some �nite set F ⊆QZ∗ of con�gurations, the language recognized by M with
�nal con�gurations F is de�ned by L(M; F) = {w∈X ∗ | ∃c∈F; q0z0

w→M c}.

2.2. Deterministic context-free grammars

Let M be some deterministic pushdown automaton (we suppose here that M is
normalized). The variable alphabet VM associated to M is de�ned as

VM = {[p; z; q] |p; q ∈ Q; z ∈ Z}:
The context-free grammar GM associated to M is then

GM = 〈X; V; P〉;
where V =VM,

P is the set of all the pairs of one of the following forms:

([p; z; q]; x[p′; z1; p′′][p′′; z2; q]); (8)

where p; q; p′; p′′ ∈Q; x∈X; p′z1z2 ∈ �(pz; x)

([p; z; q]; x[p′; z′; q]); (9)

10 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

where p; q; p′ ∈Q; x∈X; p′z′ ∈ �(pz; x)

([p; z; q]; a); (10)

where p; q∈Q; a∈X ∪{�}; q∈ �(pz; a). GM is a strict-deterministic grammar. (A gen-
eral theory of this class of grammars is exposed in [33] and used in [34].)

We call mode every element of QZ ∪{�}. For every q∈Q; z ∈Z , qz is said
�-bound (resp. �-free) i� condition (5) (resp. condition (6)) in the above de�nition
of deterministic automata is realized. The mode � is said �-free. We de�ne a mapping
� :V∗→QZ ∪{�} by

�(�) = � and �([p; z; q] · �) = pz

for every p; q∈Q; z ∈Z; �∈V∗. For every w∈V∗ we call �(w) the mode of the
word w.

For technical reasons (which will be made clear in Section 7), we suppose that Z
contains a special symbol e such that, for every q∈Q; �(qe; �) = {q} and im(�)⊆Pf

(Q(Z − {e})∗). Equivalently,

∀q ∈ Q; ([q; e; q]; �) ∈ P (11)

and

∀(v; w) ∈ P; w ∈ (V − {[p; e; q]|p; q ∈ Q})∗: (12)

2.3. Free monoids acting on semi-rings

2.3.1. Semi-ring K〈〈W 〉〉
Let us consider a semi-ring (K;+; ·; 0K; 1K) and an alphabet W . By (K〈〈W 〉〉;+; ·; ∅; �)

we denote the semi-ring of series over the set of non-commutative undeterminates W ,
with coe�cients in K:

the set K〈〈W 〉〉 is de�ned as KW∗
; the sum and product are de�ned by ∀S; T ∈KW∗

;
w∈W∗,

(S + T)(w) = S(w) + T (w); (S · T)(w) =
∑

w1·w2=w

S(w1) · T (w2):

Each word w∈W∗ can be identi�ed with the element of KW∗
mapping the word w on

1K and every other word w′ 6=w on 0K; each scallar k ∈K can be identi�ed with the
element of KW∗

mapping the word � on k and every word w′ 6= � on 0K. A family of
series (Si)i∈I is said locally �nite i�, for every w∈W∗, the set {i∈ I | (Si)(w) 6= 0} is
�nite. The sum∑

i∈I

Si

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 11

of a locally �nite family is de�ned as usual. Every series S ∈K〈〈W 〉〉 can then be
written in a unique way as

S =
∑

w∈W∗
Sw · w;

where, for every w∈W∗, Sw ∈K.
We recall that for every S ∈K〈〈W 〉〉 such that S� = 0, (Sn)n∈N is locally �nite and

S∗ is the series de�ned by

S∗ =
∑
n∈N

Sn: (13)

The semi-rings K considered in this paper 8 are naturally endowed with a notion of
sum ∑

i∈I

ki

for every denumerable family (ki)i∈I of elements of K which extends the notion of
sum for locally �nite families. Given two alphabets W;W ′ and two semi-rings K;K′, a
map :K〈〈W 〉〉→K′〈〈W ′〉〉 is said �-additive i� it ful�lls: for every denumerable family
(Si)i∈I of elements of K〈〈W 〉〉,

(∑
i∈I

Si

)
=
∑
i∈I

 (Si): (14)

Let us denote by C(K′) the center of K′, i.e. the set {k ∈K′;∀k ′ ∈K′; k · k ′ = k ′ · k}.
The following property of K〈〈W 〉〉 will be used in the sequel: for every semi-ring K′,
alphabet W ′, maps K :K→K′ which is a semi-ring homomorphism and K(K)⊆C(K′),
 W :W →K′〈〈W ′〉〉; there exists a unique �-additive semi-ring homomorphism

 ̃ :K〈〈W 〉〉 → K′〈〈W ′〉〉 such that; ∀k ∈ K; ̃ (k) = K(k);∀v ∈ W; ̃ (v) = W (v)

(15)

A map :K〈〈W 〉〉→K〈〈W ′〉〉 which is a semi-ring homomorphism, a �-additive map
and which �xes every element of K, will be called a substitution. The support of S is
the language

supp(S) = {w ∈ W ∗ | Sw 6= 0K}:
A series S such that supp(S) is �nite is called a polynomial. By K〈W 〉 we denote the
set of polynomials with coe�cients in K and undeterminates in W . It is a sub-semi-ring
of K〈〈W 〉〉.

8 i.e. K=B or K=B〈〈V 〉〉 in Sections 2–10, K=B〈〈H〉〉 or K=B〈〈H〉〉〈〈V 〉〉, where H is a group, in
Section 11.

12 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

2.3.2. Semi-ring B〈〈W 〉〉
Let (B;+; ·; 0; 1) where B= {0; 1} denote the semi-ring of “booleans”. In this partic-

ular case (which is the only case considered in Sections 2–10), we sometimes identify
a series S with its support. The usual ordering 6 on B extends to B〈〈W 〉〉 by

S6S ′ i� ∀w ∈ W ∗; Sw6S ′
w:

2.3.3. Actions of monoids
Given a semi-ring (S;+; ·; 0; 1) and a monoid (M; ·; 1M), a map ◦ :S×M→S is called

a right-action of the monoid M over the semi-ring S i�, for every S; T ∈S; m; m′ ∈M:

0 ◦ m = 0; S ◦ 1M = S; (S + T) ◦ m = (S ◦ m) + (T ◦ m)

and

S ◦ (m · m′) = (S ◦ m) ◦ m′: (16)

A right-action ◦ is said to be a �-right-action if it ful�lls the additional property
that, for every denumerable family (Si)i∈I of elements of S and m∈M:(∑

i∈I

Si

)
◦ m =

∑
i∈I

(Si ◦ m): (17)

2.3.4. The action of W∗ on B〈〈W 〉〉
We recall the following classical �-right-action • of the monoid W∗ over the semi-

ring B〈〈W 〉〉: for all S ∈B〈〈W 〉〉; u; w∈W∗

(S • u)w = Su·w

(i.e. S • u is the left-quotient of S by u, or the residual of S by u). For every S ∈B〈〈W 〉〉
we denote by Q(S) the set of residuals of S:

Q(S) = {S • u | u ∈ W ∗}:
We recall that S is said rational i� the set Q(S) is �nite. We de�ne the norm of a

series S ∈B〈〈W 〉〉, denoted ‖S‖ by

‖S‖ = Card(Q(S)) ∈ N ∪ {∞}:

2.3.5. The action of X ∗ on B〈〈V 〉〉
Let us �x now a deterministic (normalized) pda M and consider the associated

grammar G. We de�ne a �-right-action ⊗ of the monoid (X ∪{e})∗ over the semi-
ring B〈〈V 〉〉 by for every p; q∈Q; z ∈Z; �∈V∗; x∈X

[p; z; q] · � ⊗ x =

 ∑

([p;z;q];m)∈PM

m • x

 · �; (18)

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 13

[p; z; q] · � ⊗ e = � i� ([p; z; q]; �) ∈ PM; (19)

[p; z; q] · � ⊗ e = ∅ i� ({[p; z; q]} × V ∗) ∩ PM = ∅; (20)

�⊗ x = ∅; �⊗ e = ∅: (21)

A series S ∈B〈〈V 〉〉 is said �-free i� ∀w∈V∗; Sw = 1⇒ �(w) is �-free. We de�ne the
map

�� :B〈〈V 〉〉 → B〈〈V 〉〉
as the unique �-additive map such that

��(∅) = ∅; ��(�) = �

and for every p∈Q; z ∈Z; q∈Q; �∈V∗,

��([p; z; q] · �) = ��(([p; z; q]⊗ e) · �) if pz is �-bound and;

��([p; z; q] · �) = [p; z; q] · � if pz is �-free:

The above de�nition is sound because, by hypothesis (7), every [p; z; q] ⊗ e is
either the unit series � or the empty series ∅. One can notice that for every w∈V∗,
��(w)∈V∗ ∪ {∅}. We call �� the �-reduction map. We then de�ne � as the unique �-
right-action of the monoid X ∗ over the semi-ring B〈〈V 〉〉 such that: for every
S ∈B〈〈V 〉〉; x∈X ,

S � x = ��(��(S)⊗ x):

One can notice that if u 6= �, then S � u is �-free. Let us consider the unique substitution
’ :B〈〈V 〉〉→B〈〈X 〉〉 ful�lling: for every p; q∈Q; z ∈Z ,

’([p; z; q]) = {u ∈ X ∗ | [p; z; q]� u = �}
(in other words, ’ maps every subset L⊆V∗ on the language generated by the grammar
G from the set of axioms L).

Lemma 1. For every S ∈B〈〈V 〉〉; u∈X ∗;
(1) ’(S) =’(��(S));
(2) ’(S � u) =’(S) • u (i.e. ’ is a morphism of right-actions).

Proof. Let p; q∈Q; z ∈Z; �∈V∗; X ∈X . One can check on formulas (18–21) that

• if [p; z; q] is �-bound, then

’(([p; z; q] · �)⊗ e) = ’([p; z; q] · �)

• if [p; z; q] is �-free, then

’(([p; z; q] · �)⊗ x) = ’([p; z; q] · �) • x:

14 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

By induction on |w|, it follows that, ∀w∈V∗,

’(��(w)) = ’(w); ’(w � x) = ’(w) • x:

By �-additivity of ’ and induction on |u|, the lemma follows.

We denote by ≡ the kernel of ’, i.e. for every S; T ∈B〈〈V 〉〉,

S ≡ T ⇔ ’(S) = ’(T):

3. Series and matrices

3.1. Deterministic series and matrices

We introduce here a notion of deterministic series which, in the case of the alphabet
V associated to a dpda M, generalizes the classical notion of con�guration of M. The
main advantage of this notion is that, unlike for con�gurations, it is possible to de�ne
nice algebraic operations on these series: a product, a partial sum and a kind of star
operation.

Let us consider a pair (W;ˆ) where W is an alphabet and ˆ is an equivalence
relation over W . We call (W;ˆ) a structured alphabet. The two examples we have in
mind are:

• the case where W =V , the variable alphabet associated to M and [p; A; q]ˆ
[p′; A′; q′] i� p=p′ and A=A′ (see [33, Proof of Lemma 11.5.2])
• the case where W =X , the terminal alphabet of M and x ˆy holds for every x; y∈X

(see [33, Proof of Lemma 11.5.2]).

3.1.1. De�nitions
De�nition 2. Let S ∈B〈〈W 〉〉. S is said left-deterministic i� either
(1) S = ∅ or
(2) S = � or
(3) ∃w0 ∈W∗; Sw0 = 1 and ∀w; w′ ∈W∗,

Sw = Sw′ = 1⇒ [∃A; A′ ∈W; w1; w′
1 ∈W ∗; A ˆ A′; w = A · w1 and w′ = A′ ·w′

1]:

A left-deterministic series S is said to have the type ∅ (resp. �, [A]ˆ) if case (1)
(resp. (2), (3)) occurs.

De�nition 3. Let S ∈B〈〈W 〉〉. S is said deterministic i�, for every u∈W∗, S • u is
left-deterministic.

This notion is the straighforward extension to the in�nite case of the notion of (�nite)
set of associates de�ned in [34, De�nition 3:2, p. 188].

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 15

We denote by DB〈〈W 〉〉 the subset of Deterministic Boolean series over W . Let us
denote by Bn;m〈〈W 〉〉 the set of (n; m)-matrices with entries in the semi-ring B〈〈W 〉〉.

De�nition 4. Let m∈N; S ∈B1; m〈〈W 〉〉 : S = (S1; : : : ; Sm). S is said left-deter-
ministic i� either
(1) ∀i∈ [1; m]; Si = ∅ or
(2) ∃i0 ∈ [1; m]; Si0 = � and ∀i 6= i0; Si = ∅ or
(3) ∃i0 ∈ [1; m]; Si0 6= ∅ and, ∀w; w′ ∈W∗; ∀i; j∈ [1; m];

(Si)w = (Sj)w′ = 1⇒ [∃A; A′ ∈W;w1; w′
1 ∈V∗; AˆA′; w =A · w1 and w′ =A′ · w′

1]:

A left-deterministic row-vector S is said to have the type ∅ (resp. (�; i0), [A]ˆ) if
case (1) (resp. (2), (3)) occurs.

Notice that S = (S1; : : : ; Sm) is left-deterministic i�

[∀i; j ∈ [1; m]2; supp(Si) ∩ supp(Sj) 6= ∅ ⇒ i = j] and
 m∑

j=1

Sj is left-deterministic

:

The right-action • on B〈〈W 〉〉 is extended componentwise to Bn;m〈〈W 〉〉: for every
S = (si; j), u∈W∗, the matrix T = S • u is de�ned by

ti; j = si; j • u:

The ordering 6 on B is also extended componentwise to Bn;m〈〈W 〉〉.

De�nition 5. Let S ∈B1; m〈〈W 〉〉. S is said deterministic i�, for every u∈W∗, S • u is
left-deterministic.

We denote by DB1; m〈〈W 〉〉 the subset of deterministic row-vectors of dimension m
over B〈〈W 〉〉.

De�nition 6. Let S ∈Bn;m〈〈W 〉〉. S is said deterministic (resp. left-deterministic) i�, for
every i∈ [1; n], Si;∗ is a deterministic (resp. left-deterministic) row-vector.

Let us notice �rst some easy facts about deterministic series.

Fact 7. Let S ∈DB〈〈W 〉〉. For every T ∈B〈〈W 〉〉; u∈W∗
(1) T6S⇒T ∈DB〈〈W 〉〉;
(2) S • u∈DB〈〈W 〉〉.

3.1.2. Residuals
Lemma 8. Let S ∈DB〈〈W 〉〉; T ∈B〈〈W 〉〉; u∈W∗. If S • u 6= ∅ then (S · T) • u=
(S • u) · T .

16 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Proof. Let S ∈DB〈〈W 〉〉; T ∈B〈〈W 〉〉; u∈W∗, such that S • u 6= ∅. Let u′; u′′ ∈W∗ such
that u= u′ · u′′; u′′ 6= � and let w∈ supp(S). If w • u′ = � then S • u′ = � (because S • u′
is left-deterministic), hence S • u= � • u′′ = ∅, which would contradict the hypothesis.
It follows that

∀u′ ≺ u; ∀w ∈ supp(S); w • u′ 6= �:

Hence,

∀w1 ∈ supp(S);∀w2 ∈ supp(T); (w1 · w2) • u = (w1 • u) · w2:

This proves that (S · T) • u= (S • u) · T .

Lemma 9. Let S ∈DB〈〈W 〉〉; T ∈B〈〈W 〉〉; u∈W∗ and U = S · T . Exactly one of the
following cases is true:
(1) S • u 6= ∅;

in this case U • u= (S • u) · T .
(2) S • u= ∅; ∃u′; u′′; u= u′ · u′′; S • u′ = �;

in this case U • u=T • u′′.
(3) S • u= ∅;∀u′ 4 u; S • u′ 6= �;

in this case U • u= ∅= (S • u) · T .

Proof. Clearly, one of the hypotheses (1)–(3) must occur. Let us examine each one
of these cases.

In case (1), by Lemma 8, U • u= (S • u) · T .
In case (2), U • u= (U • u′) • u′′ and by case (1), U • u′ = (S • u′) · T . It follows

that U • u=T • u′′.
In case (3), if S = ∅, the conclusion of lemma is clearly true. Let us suppose now

that S 6= ∅ and let u′≺ u be the maximum pre�x of u such that S • u′ 6= ∅. Then, there
exist some A∈W; u′′ ∈W∗ such that u= u′ ·A · u′′ and there exist some B1; : : : ; Bq ∈W;
S1; : : : ; Sq ∈B〈〈W 〉〉 − {∅} such that S • u′ =

∑
16i6q Bq · Sq and B1 ˆ

· · · ˆBi ˆ · · · ˆ Bq (because S • u′ is left-deterministic). By maximality of u′, A does
not belong to {B1; : : : ; Bq}, hence

U • u =

 ∑

16i6q

Bi · Si · T

 • A

 • u′′ = ∅ • u′′ = ∅:

Lemma 10. Let S ∈DB1; m〈〈W 〉〉; T ∈Bm;1〈〈W 〉〉; u∈W∗ and U = S · T . Exactly one
of the following cases is true:
(1) ∃j; Sj • u =∈{∅; �};

in the case U • u= (S • u) · T .
(2) ∃j0; ∃u′; u′′; u= u′ · u′′; Sj0 • u′ = �;

in this case U • u′ =Tj0 • u′′.
(3) ∀j; Sj • u= ∅;∀u′ 4 u; Sj • u′ 6= �;

in this case U • u= ∅= (S • u) · T .

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 17

Proof. Let us note S = (Sj)16j6m; T = (Tj)16j6m. Clearly, one of hypotheses (1)–(3)
must occur. Let us examine each one of these cases.
In case (1), every 3-tuple (Sj; Tj; u) ful�lls case (1) or (3) of Lemma 9, hence
(Sj · Tj) • u= (Sj • u) · Tj. Hence,

U • u =
∑

16j6m

(Sj · Tj) • u =
∑

16j6m

(Sj • u) · Tj = (S • u) · T:

In case (2), S • u′ must be left-deterministic of type (�; j0), hence ∀j 6= j0; Sj • u′ = ∅.
It follows that

U • u = Tj0 • u′′:
In case (3), every 3-tuple (Sj; Tj; u) ful�lls case (3) of Lemma 9, hence (Sj ·Tj) • u= ∅
= (Sj • u) · Tj. It follows that

U • u = ∅ = (S • u) · T:

Lemma 11. Let S ∈DB1; m〈〈W 〉〉; T ∈Bm; s〈〈W 〉〉; u∈W∗ and U = S · T . Exactly one of
the following cases is true:
(1) ∃j; Sj • u 6∈ {∅; �}

in this case U • u= (S • u) · T .
(2) ∃j0; ∃u′; u′′; u= u′ · u′′; Sj0 • u′ = �;

in this case U • u=Tj0 ;∗ • u′′.
(3) ∀j; ∀u′ 4 u; Sj • u= ∅; Sj • u′ 6= �;

in this case U • u= ∅s = (S • u) · T .

Proof. Let us notice that for every k ∈ [1; s]:

Uk = S · T∗; k (22)

and that the hypothesis of the 3 cases considered in Lemma 10 depend on the vector
S and the word u only (but not on the integer k ∈ [1; s]). In case (1), by Lemma 10,
∀k ∈ [1; s]

Uk • u = (S • u) · T∗; k ;

hence U • u= (S • u) · T: Cases 2 and 3 can be treated in the same way.

Lemma 12. For every S ∈Bn;m〈〈W 〉〉; T ∈Bm; s〈〈W 〉〉; if S and T are both left-deter-
ministic; then S · T is left-deterministic.

Lemma 13. For every S ∈DBn;m〈〈W 〉〉; T ∈DBm; s〈〈W 〉〉; S · T ∈DBn; s〈〈W 〉〉.
(This statement appeared �rst in [34, Lemma 3:5, p. 190] for n= s= 1.)

Proof. As the notion of deterministic matrix is de�ned row by row, it is su�cient to
prove this lemma in the particular case where n= 1. Let us note U = S ·T . Let u∈W∗.

18 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Let us show that U • u is left-deterministic. Let us consider every one of the 3 cases
considered in Lemma 11. In case (1) or (3),

U • u = (S • u) · T

and in case (2),

U • u=T • u′′:

In both cases, by Lemma 12, U • u is left-deterministic.

3.1.3. Rational matrices, norm
Let us generalize the de�nition of rationality of series in B〈〈W 〉〉 to matrices. Given

M ∈Bn;m〈〈W 〉〉 we denote by Q(M) the set of residuals of M :

Q(M) = {M • u | u ∈ W ∗}:

Similarly, we denote by Qr(M) the set of row-residuals of M :

Qr(M) =
⋃

16i6n

Q(Mi;∗):

M is said rational i� the set Q(M) is �nite. One can check that it is equivalent to the
property that every coe�cient Mi; j is rational, or to the property that Qr(M) is �nite.
We denote by RBn;m〈〈W 〉〉 (resp. DRBn;m〈〈W 〉〉) the set of rational (resp. deterministic,
rational) matrices over B〈〈W 〉〉. For every M ∈RBn;m〈〈W 〉〉, we de�ne the norm of M
as

‖M‖ = Card(Qr(M)):

Lemma 14. Let A∈DBn;m〈〈W 〉〉; B∈Bm; s〈〈W 〉〉. Then ‖A · B‖6‖A‖+ ‖B‖.

Proof. Let A= (ai; k); B= (bk; j); C =A · B; C = (ci; j): Let 16i6n; H ∈Q(Ci;∗). Let
u∈W∗ such that

H = Ci;∗ • u = (Ai;∗ · B) • u:

We apply Lemma 11 to S =Ai;∗ and T =B. If case (1) or (3) of Lemma 11 is realized
then

H = (Ai;∗ • u) · B:

If case (2) of Lemma 11 is realized then

H = Bk0 ;∗ • u′′:

The number of residuals H obtained by case (1) is less or equal than ‖A‖ and the
number obtained by case (2) is less or equal than ‖B‖. This proves the inequality.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 19

3.1.4. W=V
Let (W;ˆ) be the structured alphabet (V;ˆ) associated with M and let us consider a

bijective numbering of the elements of Q: (q1; q2; : : : ; qnQ). Some particular “vectorial”
notions turn out to be useful:

• we de�ne a Q-series as a family S = (Sq)q∈Q such that the row-vector (Sq1 ; Sq2 ; : : : ;
SqnQ

) is deterministic,
• we de�ne a Q-form as a family �= (�q)q∈Q of deterministic series; more gener-

ally a Q − �-form (where �∈N − {0}) is a family of deterministic row-vectors:
�= (�q)q∈Q with �q ∈DB1; �〈〈V 〉〉 for every q∈Q.

Given a Q-series S and a Q-�-form �, their Q-product S ∗� is the deterministic row-
vector de�ned by

S ∗ � =
∑
q∈Q

Sq · �q:

Given the above ordering of the elements of Q, one can identify the Q-series (Sq)q∈Q

with the row-vector (Sq1 ; Sq2 ; : : : ; SqnQ
) and the Q-�-form (�q)q∈Q with the nQ-�-matrix:

�q1

...
�qj

...
�qnQ

The Q-product appears then to be just the ordinary product of matrices.
Let us de�ne here handful notations for some particular row-vectors or Q-series.

Let us use the Kronecker symbol �i; j meaning � if i = j and ∅ if i 6= j. For every
16n; 16i6n, we de�ne the row-vector �ni as

�ni = (�ni; j)16j6n where ∀j; �ni; j = �i; j :

We call unit row-vector any vector of the form �ni .
For every 16n; 16m, we denote by ∅n ∈DB1; n〈〈V 〉〉 the row-vector:

∅n = (∅; : : : ; ∅)

and we denote by ∅nm ∈DBm;n〈〈V 〉〉 the matrix:

∅n
...
∅n
...
∅n

20 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

For every !∈Z∗; p; q∈Q; [p!q] is the deterministic series de�ned inductively by

[p�q] = ∅ ifp 6= q; [p�q] = � ifp = q;

[p!q] =
∑
r∈Q

[p; A; r] · [r!′q] if ! = A · !′ for some A ∈ Z; !′ ∈ Z∗:

(In particular, [pAq] = [p; A; q].)
By [p!] we denote the Q-series:

[p!] = ([p!q])q∈Q:

(In particular [qi] = �nQi .) These Q-series represent faithfully the con�gurations of M

in the sense that, for every �-free con�gurations q!; q′!′ and word f∈X ∗,

q!
f→M q′!′ i� [q!]� f = [q′!′]: (23)

By [!] we denote the Q–Q-matrix:

[!] = ([p!q])p∈Q; q∈Q:

Here also we identify [!] with the matrix ([qi!qj])16i6nQ;16j6nQ
∈DBnQ; nQ〈〈V 〉〉.

Let us consider the componentwise extension of ’ to row-vectors. For every
�∈N− {0}; S ∈B1; �〈〈V 〉〉 we de�ne ’(S)∈B1; �〈〈X 〉〉 by

∀j ∈ [1; �]; ’(S)1; j = ’(S1; j):

We then extend ≡ to
⋃

16� B1; �〈〈V 〉〉 by: for every �∈N− {0}; S; S ′ ∈B1; �〈〈V 〉〉
S ≡ S ′⇔’(S) = ’(S ′): (24)

The next lemmas relate the mapping �� and right-action � with the right-action •.

Lemma 15. Let �∈N− {0}; S ∈DB1; �〈〈V 〉〉:
(1) there exists v∈V∗ such that ��(S) = S • v,
(2) ��(S) ≡ S.

Proof. We treat �rst the case where �= 1, i.e. S is a series.
If for every w∈ supp(S); ��(w) = ∅; then ��(S) = ∅; which is a residual of S, hence

point (1) of the lemma is true. Moreover, in this case every w∈ supp(S) contains a
letter [p; z; q] which is �-bound and such that [p; z; q]⊗ e = ∅, hence S ≡ ∅= ��(S),
which establishes point (2) of the lemma.

Let us suppose now that there exists some w0 ∈ supp(S) such that ��(w0) =w′ ∈V∗:
Then w0 = [p1; z1; q1] · · · [pn; zn; qn] ·w′, where n¿0 and for every i∈ [1; n], [pi; zi; qi]⊗
e = �. Let us set v= [p1; z1; q1] · · · [pn; zn; qn]: We consider the set of words

D(v) = {v′ · [pj+1; zj+1; q′j+1]; 06j6n− 1; q′j+1 ∈ Q; v′ = v(j); q′j+1 6= qj+1};
where v(j) denotes the pre�x of v with length i.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 21

We set

S ′ =
∑

w∈D(v)

w · (S • w): (25)

It is clear that, as S is deterministic:

S = v · (S • v) + S ′: (26)

Moreover, one can check that, for every w∈D(v), ��(w) = ∅ (because the letters
[pj+1; zj+1; q′j+1] ful�ll ��([pj+1; zj+1; q′j+1]) = ∅): Hence ��(S ′) = ∅. As S is determinis-
tic, S • v must be left-deterministic of the same type as w′, hence S • v is �-free. Using
now (26) we obtain

��(S) = S • v + ∅ = S • v: (27)

Point (1) is then proved. Applying ’ to the two members of Eq. (26) and using point
(1) we obtain that

’(S) = ’(v · ��(S)) = ’(v) · ’(��(S)):

But, by the hypothesis on the letters [pi; zi; qi]; ’(v) = �. It follows that ’(S) =’(��(S)),
i.e. point (2) is true.
Let us treate now the general case. Let S = (S1; : : : ; Sj; : : : ; S�). Let us consider �S =

∑�
j=1

Sj. Let us apply the above arguments (and notations) on �S.
Case 1: ∀w∈ supp(�S); ��(w) = ∅. In that case ��(S) = ∅� = S • v (for some v∈V∗)

and S ≡ ��(S).
Case 2: ∃w0 ∈ supp(�S); ��(w0) =w′ ∈V∗. For every j∈ [1; �],

Sj = v · (Sj • v) +
∑

w∈D(v)

w · (Sj • w): (28)

where ��(v) = �; ��(
∑

w∈D(v) w · (Sj •w)) = ∅ and Sj • v is �-free. It follows that for
every j∈ [1; �], ��(Sj) = Sj • v hence

��(S) = S • v: (29)

We also know that ’(v) = �; ’(
∑

w∈D(v) w · (Sj •w)) = ∅, which together with (28)
shows that:

’(S) = ’(S • v):

Hence points (1), (2) of the lemma are proved.

Remark 16. Point (2) of the lemma is also a direct corollary of point (1) of
Lemma 1. The proof given here for point (2) will be re-used in the proof of
Lemma 111.

22 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Corollary 17. (1) ∀�∈N− {0};∀S ∈DB1; �〈〈V 〉〉; ��(S)∈DB1; �〈〈V 〉〉:
(2) ∀�∈N− {0};∀S ∈DRB1; �〈〈V 〉〉; ��(S)∈DRB1; �〈〈V 〉〉:

Lemma 18. Let �∈N−{0}; S ∈DB1; �〈〈V 〉〉; u∈ (X ∪{e})∗. One of the three following
cases must occur:
(1) S ⊗ u= ∅�;
(2) S ⊗ u= ��j for some j∈ [1; �];
(3) ∃u1; u2 ∈ (X ∪{e})∗; v1 ∈V∗; p; q∈Q; A∈Z; !∈Z∗; �Q-�-form such that

u = u1 · u2; S ⊗ u1 = S • v1 = [qA] ∗ �; S ⊗ u = ([qA]⊗ u2) ∗ �; and

[qA]⊗ u2 = [p!] with |!|¿1:

Proof. Let u∈ (X ∪{e})∗. Let us prove the lemma by induction on |u|.
u= �: If S ∈∅� ∪{��j | 16j6�} then clearly the conclusion of case (1) or (2) is

realized. Otherwise, S has a decomposition as S = [qA] ∗� and the conclusion of case
(3) is realized with u1 = u2 = �; v1 = �, p= q; !=A.

u= u0 · a; a∈X ∪{e}: Let us consider the u1; u2; v1; p; q; A; !; � given by the
induction hypothesis on u0.

(S ⊗ u0)⊗ a = (([qA]⊗ u2) ∗ �)⊗ a

and

[qA]⊗ u2 = [p!]; |!|¿1:

Let [p!]⊗ a= [p′�′].
Case 1: |�′|¿1. Then S⊗ua= ([qA]⊗u2a)∗�. Hence conclusion (3) of the lemma

is ful�lled by u′1 = u1; u′2 = u2a; v′1 = v1; q′ = q; A′ =A;!′ = �′; �′ =�.
Case 2: |�′|= 0.

S ⊗ u0a = �r:

Subcase 1: �r ∈{∅�}∪ {��j | 16j6�}. Conclusion (1) or (2) of the lemma is then
realized.
Subcase 2: �r = [r′B] ∗	 for some r′ ∈Q; B∈Z;	∈DBQ;�〈〈V 〉〉.
Then

S ⊗ ua = [r′B] ∗	; S • (v1[qAr]) = �r = [r′B] ∗	:

Conclusion (3) of the lemma is then realized by u′1 = ua; u′2 = �; v′1 = v1[qAr]; q′ = r′;
A′ =B;!′ =B;�′ =	.

Lemma 19. Let �∈N−{0}; S ∈DB1; �〈〈V 〉〉; u∈X +. One of the three following cases
must occur:
(1) S � u= ∅�;
(2) S � u= ��j for some j∈ [1; �];

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 23

(3) ∃u1; u2 ∈X ∗; v1 ∈V∗; q∈Q; A∈Z; �Q-�-form such that

u = u1 · u2; ��(S)� u1 = S • v1 = [qA] ∗ � and S � u = ([qA]� u2) ∗ �:

Proof. Suppose that u= x1 · · · xl with l¿1. Let u′ = en0x1en1 · · · xlenl such that S �
u= S ⊗ u′. If the hypothesis of case (1) or (2) is realized, it is clear that the corre-
sponding conclusion is realized. Otherwise

u′ = u′1 · u′2; S ⊗ u′1 = S • v1 = [qA] ∗ �; S ⊗ u′ = ([qA]⊗ u′2) ∗ �

and

[qA]⊗ u′2 = [p′!′]; |!′|¿1:

Let u1 =�X (u′1); u2 =�X (u′2), (where �X : (X ∪{e})∗→X ∗ is the projection on the
subalphabet X). If u′2 = �, then S � u= [qA] ∗ � implies that [qA] is �-free; if u′2 6= �;
together with the condition [qA]⊗u′2 6∈ {∅Q}∪ {�Qp |p∈Q} it implies that [qA] is �-free,
hence that

S ⊗ u′1 = ��(S)� u1:

The condition that S⊗u′ = S�u; |u|¿1 implies that S⊗u′ is �-free, hence that [qA]⊗u′2
is �-free, so that

[qA]⊗ u′2 = [qA]� u2:

Hence point (3) of the lemma is realized.

Corollary 20. (1) ∀S ∈DB1; �〈〈V 〉〉; u∈X ∗; S � u∈DB1; �〈〈V 〉〉:
(2) ∀S ∈DRB1; �〈〈V 〉〉; u∈X ∗; S � u∈DRB1; �〈〈V 〉〉:

Proof. Let us consider case (3) of Lemma 19. Due to the form of the rules gener-
ating the right-action ⊗ (see Section 2.3), [qA] � u2 is of the form [p!] for some
p∈Q;!∈Z∗. Hence S � u is the Q-product of a Q-series by a Q-�-form, which is a
deterministic row-vector by Lemma 13.

We give now an adaptation of Lemma 11 to the actions ⊗;� in place of • .

Lemma 21. Let S ∈DB1; m〈〈V 〉〉; T ∈Bm; s〈〈V 〉〉; u∈ (X ∪{e})∗ and U = S·T .
Exactly one of the following cases is true:
(1) S ⊗ u 6∈ {∅m}∪ {�mj |16j6m}

in this case U ⊗ u= (S ⊗ u) · T .
(2) ∃j0;∃u′; u′′; u= u′ · u′′; S ⊗ u′ = �mj0

;
in this case U ⊗ u=Tj0 ;∗ ⊗ u′′.

(3) ∀j; ∀u′ 4 u; S ⊗ u= ∅m and S ⊗ u′ 6= �mj ;
in this case U ⊗ u= ∅s = (S ⊗ u) · T .

24 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Proof. The arguments used in the proof of Lemmas (8)–(11), can be adapted to ⊗
in place of • . The only non-trivial adaptation is that of lines 6–7 of the proof of
Lemma 8: let us suppose that u∈ (X ∪{e})∗ is such that

∀u′ ≺ u; ∀w ∈ supp(S); w ⊗ u′ 6= � (30)

and let us prove that

∀w1 ∈ supp(S);∀w2 ∈ supp(T); (w1 · w2)⊗ u = (w1 ⊗ u) · w2: (31)

We prove by induction on |u| that (30) implies (31).
|u|= 0: by de�nition of a right-action, ∀w∈W∗; w ⊗ �=w. Hence conclusion (31)

is true.
u= u0 · a, where u0 ∈ (X ∪{e})∗; a∈X ∪{e}:
Hypothesis (30) is ful�lled by u0 too, hence, by induction hypothesis,

(w1 · w2)⊗ u0 = (w1 ⊗ u0) · w2:

If w1 ⊗ u0 = ∅, then, by the above equality (w1 · w2)⊗ u0 = ∅ too, hence

(w1 · w2)⊗ u0a = ∅ = (w1 ⊗ u0a) · w2;

hence (31) is true.
Otherwise, by hypothesis (30) w1 ⊗ u0 6∈ {∅; �}, hence there exists p; q∈Q; A∈Z such
that

w1 ⊗ u0 = [p; A; q] · w3:

By de�nitions (18)–(20)

([p; A; q] · w3w2)⊗ a = ([p; A; q]⊗ a) · w3w2;

hence

(w1 · w2)⊗ u0a = (w1 ⊗ u0a) · w2:

Lemma 22. Let S ∈DB1; m〈〈V 〉〉; T ∈Bm; s〈〈V 〉〉; u∈X + and U = S · T . Exactly one of
the following cases is true:
(1) S � u 6∈ {∅m}∪ {�mj |16j6m}

in this case U � u= (S � u) · T .
(2) ∃j0;∃u′; u′′; u= u′ · u′′; ��(S � u′) = �mj0

;
in this case U � u= ��(Tj0 ;∗ � u′′).

(3) ∀j; ∀u′ 4 u; S � u= ∅m and ��(S � u′) 6= �mj ;
in this case U � u= ∅s = (S � u) · T .

Proof. Let u= x1 · · · xl: Let us consider which case (as de�ned in the lemma) occurs.
Case 1: S�u= S⊗ �u with �u= en0 ·x1en1 · · · xle nl . By Lemma 21, U ⊗ �u= (S⊗ �u) ·T;

and, as S ⊗ �u is �-free and 6∈ {∅m}∪ {�mj |16j6m},
U ⊗ �u = U � u; S ⊗ �u = S � u;

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 25

which shows that

U � u = (S � u) · T:

Case 2: let �u′ = en′0 · x1en′1 · · · xie n′i , with 06i6l, such that

��(S � u′) = S ⊗ �u′:

By Lemma 21, case (2), where u′′ = �

U ⊗ �u′ = Tj0 ;∗;

hence U � u′ = ��(Tj0 ;∗), hence

U � u = ��(Tj0 ;∗)� u′′ = ��(Tj0 ;∗ � u′′):

Case 3: let �u= en0 · x1en1 · · · xle nl such that

U ⊗ �u = U � u:

The hypothesis of this case implies that, ∀j; ∀u′ 4 u;

S ⊗ �u 6= �mj

(because, as �mj is �-free, if S ⊗ �u= �mj then ��(S � u) = �mj too). Hence, by Lemma 21

U ⊗ �u = ∅m:

Hence,

U � u = ∅m = (S � u) · T:

The particular letters [p; e; q] for p; q∈Q play a special role in Sections 7 and 8: we
use them as marks in the series (somehow like the ceilings of [79]). We de�ne below
a map �e which removes the marks in the series. Let us de�ne �e :DB〈〈V 〉〉→B〈〈V 〉〉
as the unique substitution such that

�e([p; e; q]) = � if p = q; �e([p; e; q]) = ∅ if p 6= q;

�e([p; A; q]) = [p; A; q] if A 6= e: (32)

We note �Ve = {[p; e; q] |p; q; ∈Q}; Ve =V− �Ve. A deterministic series S ∈DB〈〈V 〉〉 is
said e-free i� its type is (∅) or (�) or ([pA]), with A 6= e.

Lemma 23. For every S ∈DB1; �〈〈V 〉〉
(1) �e(S)∈DB1; �〈〈V 〉〉,
(2) ‖�e(S)‖6 ‖S‖,
(3) S ≡ �e(S).

26 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Sketch of proof. We establish �rst that, for every u∈V∗e ;∃u′ ∈V∗ such that

�e(S) • u = �e(S • u′) and S • u′ is e-free: (33)

Let us prove (33) by induction on |u|.
|u|= 0: If �e(S) = ∅� then (33) is true: it su�ces to choose some u′ such that

S • u′ = ∅�. Otherwise, �e(S) 6= ∅� and, using the determinism of S, one can show that
there exists a maximal integer n such that

∃(pi)16i6n ∈ Qn; S • ([p1; e; p1] · · · [pn; e; pn]) 6= ∅�:
Then u′ = [p1; e; p1] · · · [pn; e; pn] (where u′ = � when n= 0) satis�es (33).
|u|=m+ 1 : u= u1 · v1 where u1 ∈V∗e ; |u1|=m; v1 ∈Ve. By induction hypothesis there

exists u′1 ∈V∗ such that

�e(S) • u1 = �e(S • u′1) and S • u′1 is e-free:

If S • u′1 ∈{∅�; ��1 ; : : : ; ���}, then u′ = u′1v1 satis�es (33). Otherwise let ([pA]) be the type
of S • u′1 (p∈Q; A 6= e). We then have

�e(S) • u1 = �e(S • u′1) (34)

S • u′1 = [pA] ∗ � (35)

for some Q-�-form �.
Subcase 1: v1 = [p; A; q1] (for some q1 ∈Q). Let us consider the vector �q1 : by

induction hypothesis, there exists some w′
1 ∈V∗ such that

�e(�q1) • � = �e(�q1 • w′
1) and �q1 • w′

1 is e-free: (36)

Combining Eqs. (34) – (36) we see that u′ = u′1 · [p; A; q1] · w′
1 ful�lls:

�e(S) • (u1 · v1) = (�e(S) • u1) • v1

= �e(S • u′1) • [p; A; q1]

= �e([pA] ∗ �) • [p; A; q1]

= �e(�q1)

= �e(�q1 • w′
1)

where S • (u′1 · [p; A; q1] · w′
1) =�q1 •w′

1 and �q1 •w′
1 is e-free. Hence (33) is ful�lled

by our choice of u′.
Subcase 2: v1 6∈ {[pAq1]|q1 ∈Q}

�e(S) • u1v1 = ([pA] ∗ �e(�)) • v1 = ∅�:
�e(S • u′1v1) = �e(([pA] ∗ �) • v1) = �e(∅�) = ∅�:

Hence u′ = u′1 · v1 satis�es (33).

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 27

Let us prove the lemma now. By (33) every residual �e(S) • u is left-deterministic
of the same type as S • u′. Hence �e(S) is deterministic. Moreover formula (33) shows
that ‖�e(S)‖6‖S‖.
Let us prove point (3) now. By de�nition (32), for every v∈V , v ≡ �e(v). As ≡ is
the kernel of a substitution, this is su�cient to ensure point (3).

3.1.5. Equivalence on row-vectors
We give here some basic properties of the equivalence ≡ over vectors (de�ned by

(24)). Let us consider the structured alphabet (X;ˆ) where the equivalence ˆ is the
coarsest one: ∀x; y∈X; x ˆ y.

Lemma 24. Let �∈N− {0}; S ∈DB1; �〈〈V 〉〉; j∈ [1; �]. Then
(1) ’(S)∈DB1; �〈〈X 〉〉.
(2) ’(S) = ��

j ⇔ ��(S) = ��
j .

Proof. (1) Let us suppose that S is �-free. Either S has type ∅ (resp. (�; j)), and it is
then clear that ’(S) is left-deterministic of the same type, or S has type [pzq]ˆ for
some �-free mode pz and then, ’(S) is left-determinsitic of type [x]ˆ (for any x∈X).

Let S ∈DB1; �〈〈V 〉〉; u∈X ∗. Let us show that

’(S) • u is left-deterministic: (37)

By Lemma 1 ’(S) • u=’(��(S � u)). The vector ��(S � u) is deterministic (by Corol-
laries 17, 20) and �-free. Hence, by the �-free case, ’(��(S � u)), is left-deter-
ministic. This proves (37), hence point (1) of the lemma.

(2) By Lemma 1, ’(S) =’(��(S)), and by the above arguments in the �-free case:
’(��(S)) has the type (�; j) i� ��(S) has the same type. This proves point (2).

Lemma 25. Let �∈N − {0}; j∈ [1; �]; S ∈DB1; �〈〈V 〉〉. Then ’(S)1; j = {u∈X ∗|��

(S � u) = ��j }.

Proof. By Lemma 1,

u ∈ ’(S)1; j ⇔ � ∈ ’(S)1; j • u⇔ � ∈ ’(��(S1; j � u)):

By Lemma 24, point (1)

� ∈ ’(��(S1; j � u)⇔’(��(S � u)) = ��j ;

and by Lemma 24, point (2)

’(��(S � u)) = ��j ⇔ ��(S � u) = ��j :

The above equivalences prove the lemma.

28 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Corollary 26. Let �∈N−{0}; S; S ′ ∈DB1;�〈〈V 〉〉. Then S ≡ S ′ if and only if; ∀u∈X ∗;
∀j∈ [1; �];

��(S � u) = ��j ⇔ ��(S ′ � u) = ��j :

De�nition 27. For every �∈N − {0}; S; S ′ ∈B1; �〈〈V 〉〉 we de�ne: Div(S; S ′) = inf{|u|;
u∈X ∗, u∈’(S)4’(S ′)}.

Where S4 S ′ means
∑

16 j6� Sj4 S ′
j , the sum of the symmetric di�erences of the

components of S and S ′. We recall that for �= 1, S4 S ′ =
∑

u ∈ X∗
Su 6= S′u

u. We recall also

that inf (∅) =∞. From Lemma 25 one can equivalently write

Div(S; S ′) = inf{|u|; u∈X ∗;∃j ∈ [1; �]; (��(S � u) = ��j)⇔ (��(S ′ � u) 6= ��j)}:
(38)

For every n∈N∪{∞}, we denote by ≡n the following approximation of ≡:

S ≡n S ′⇔’(S)∩ (X6n × · · · × X6n) = ’(S ′)∩ (X6n × · · · × X6n):

(Hence ≡∞ is just ≡.) By Lemma 25 one can equivalently write

S ≡n S ′ ⇔ [∀u ∈ X6n;∀j ∈ [1; �]; (��(S � u) = ��j))⇔ (��(S ′ � u) = ��j)]:

3.1.6. Operations on row-vectors
Let us introduce two new operations on row-vectors and prove some technical lem-

mas about them.
Given A; B∈B1; m〈〈W 〉〉 and 16 j06m we de�ne the vector C =A j0 B as

follows:
if A= (a1; : : : ; aj; : : : ; am); B= (b1; : : : ; bj; : : : ; bm) then C = (c1; : : : ; cj; : : : ; cm), where

cj = aj + aj0 · bj if j 6= j0 cj = ∅ if j = j0:

Lemma 28. Let A; B∈B1; m〈〈W 〉〉 and 16j06m:
(1) if A; B are left-deterministic; then A j0 B is left-deterministic;
(2) if A; B are deterministic; then A j0 B is deterministic;
(3) if A; B are deterministic; then ‖A j0 B‖6 ‖A‖+ ‖B‖.

Proof. Let C =A j0 B.
(1) Let us prove �rst that if A; B are both left-deterministic, then C is left-

deterministic too.
If A is left-deterministic of type [pz], then C is left-deterministic of the same type.
If A is left-deterministic of type (�; j1) with j1 6= j0, then C =A, hence C is left-
deterministic.
If A is left-deterministic of type (�; j0), then C6B, hence C is left-deterministic.
If A is left-deterministic of type (∅), then C = ∅, hence C is left-deterministic.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 29

(2) Let us suppose now that A is deterministic and let us examine a residual C • u,
for some u∈W∗. Lemma 9 applies on S = aj0 and T = bj for every j 6= j0. But the
case of the lemma ful�lled by (S; T; u) depends on (S; u) only. Suppose aj0 • u 6= ∅
(case 1); in this case

C • u = (A • u) j0B: (39)

Suppose aj0 • u= ∅;∃u′; u′′; u= u′ · u′′; aj0 • u′ = � (case 2); in this case

C • u = 〈B • u′′|∅mj0
〉; (40)

where ∅mj0
is the row vector �mj0

in which ∅ and � have been exchanged and 〈∗|∗〉 is
the “scalar product” de�ned by 〈S; T 〉= ∑m

j = 1 Sj · Tj.
Suppose aj0 • u= ∅; ∀u′ 4 u; aj0 • u′ 6= � (case 3); in this case, Eq. (39) is true again.

When Eq. (39) is true, C • u is left-deterministic by part (1) of this proof, and when
Eq. (40) is true, C • u is left-deterministic because B is assumed deterministic. We
have proved that C ∈DB1; m〈〈W 〉〉.

(3) The number of residuals of the form (39) is bounded above by ‖A‖ and the num-
ber of residuals of the form (40) is bounded above by ‖B‖. Hence ‖C‖6 ‖A‖+ ‖B‖.

Given A∈DB1; m〈〈W 〉〉 and 16 j06m we de�ne the vector A′ = ∗
j0

(A) as follows:
if A= (a1; : : : ; aj; : : : ; am) then A′ = (a′1; : : : ; a

′
j; : : : ; a

′
m), where

a′j = a∗j0
· aj if j 6= j0; a′j = ∅ if j = j0:

Lemma 29. Let A∈DB1; m〈〈W 〉〉 and 16 j06m.
Then ∗

j0
(A)∈DB1; m〈〈W 〉〉 and ‖ ∗j0

(A)‖6 ‖A‖.

Proof. Let us examine a residual A′ • u, for some u∈W∗. Let u′ = max{v4 u | v∈ a∗j0
}.

Let u′′ ∈W∗ such that u= u′ · u′′. One can check that for every S; T ∈B〈〈W 〉〉

(S · T) • u = (S • u) · T +
∑

u=u1·u2 ;
�∈S•u1

T • u2:

Applying this formula to S = a∗j0
and T = aj, with j 6= j0 we obtain

a′j • u = (a∗j0
• u) · aj +

∑
u=u1·u2 ;
�∈a∗

j0
•u1

aj • u2: (41)

Since aj0 is deterministic and aj0 • u′′ 6= � we get

a∗j0
• u = (aj0 • u′′) · a∗j0

:

30 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

As A is deterministic, if u2 has some pre�x u′2 in aj0 , then aj • u′2 = ∅ so that aj • u2 = ∅.
Hence ∑

u=u1·u2 ;
�∈a∗j0•u1

aj • u2 = aj • u′′:

Plugging the two last equations into (41) we obtain

a′j • u = (aj0 • u′′) · a∗j0
· aj + aj • u′′ (for j 6= j0); and a′j • u = ∅ (for j = j0)

which can be rewritten as

A′ • u = (A • u′′) j0 A
′: (42)

Let us show that A′ is left-deterministic. If A is left-deterministic of type [pz], then A′

is left-deterministic of the same type.
If A is left-deterministic of type (�; j1) with j1 6= j0, then A′ =A (notice that ∅∗= �),

hence A′ is left-deterministic.
If A is left-deterministic of type (�; j0) or (∅), then A′=∅, hence A′ is left-deterministic.
By point (1) of Lemma 28, the fact that A • u′′ and A′ are both left-deterministic

implies that (A • u′′) j0 A
′ is left-deterministic too. By formula (42), A′ • u is left-

deterministic. We have proved that A′ ∈DB1; m〈〈W 〉〉.
Moreover, by formula (42), Card(Q(A′))6Card(Q(A)), i.e. ‖A′‖6 ‖A‖.

3.2. Deterministic spaces

We adapt here the key idea of [47,48] to series.

3.2.1. De�nitions
Let (W;∼) be some structured alphabet and let us consider the set E =DRB〈〈W 〉〉.

A series U =
∑n

i = 1 i · Ui where ̃∈DRB1; n〈〈W 〉〉, Ui ∈DRB〈〈W 〉〉 is called a linear
combination of the Ui’s. We call deterministic space of rational series (d-space for
short) any subset V of E which is closed under �nite linear combinations. Given any
set G= {Ui | i∈ I}, one can check that the set V of all (�nite) linear combinations of
elements of G is a d-space (by Lemma 13) and that it is the smallest d-space containing
G. Therefore, we call V the d-space generated by G and we call G a generating set
of V (we note V=V({Ui | i∈ I})). (Similar de�nitions can be given for families of
series.)

3.2.2. Linear independence
We let now W =V . Following an analogy with classical linear algebra, we develop

now a notion corresponding to a kind of linear independence of the images by ’ of
the given series. Let us extend the equivalence relation ≡ to d-spaces by: for every
d-spaces V1;V2, V1 ≡ V2 ⇔ ∀i; j∈{1; 2};∀S ∈Vi ;∃S ′ ∈Vj; S ≡ S ′.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 31

Lemma 30. Let S1; : : : ; Sj; : : : ; Sm ∈DRB〈〈V 〉〉. The following are equivalent:
(1) ∃�̃; �̃∈DRB1; m〈〈V 〉〉; �̃ 6≡ �̃; such that

∑
16j6m �j · Sj ≡

∑
16j6m �j · Sj;

(2) ∃j0 ∈ [1; m]; ∃̃∈DRB1; m〈〈V 〉〉; ̃ 6≡ �m
j0
; such that Sj0 ≡

∑
16 j6m j · Sj;

(3) ∃j0 ∈ [1; m]; ∃̃ ′ ∈DRB1; m〈〈V 〉〉; ′j0
≡ ∅; such that Sj0 ≡

∑
16j6m ′j · Sj;

(4) ∃j0 ∈ [1; m]; such that V((Sj)16j6m) ≡ V((Sj)16j6m; j 6=j0).

The equivalence between (1), (2) and (3) was �rst proved in [47, Lemma 11, p. 589 9],
in the case where the Sj’s are con�gurations qj!, with the same !.

Proof. Let us use the notation S = (Sj)16j6m ∈DRBm;1〈〈V 〉〉. In a �rst step, we assume
that all the vectors �̃; �̃; S are �-free.

(1)⇒ (2): Let us consider

u = min{’(̃�)�’(�̃)}:
By Lemma 25, under our �-freeness assumption, ∃j0 ∈ [1; m], such that

�̃� u = �mj0
⇔ �̃ � u 6= �mj0

:

Let us suppose, for example, that �̃� u= �m
j0

while �̃� u 6= �m
j0

and let ̃= �̃� u. As
≡ is preserved by the action � (see Lemma 1):

(̃� · S)� u ≡ (�̃ · S)� u: (43)

Using Lemma 22 we obtain

(̃� · S)� u = Sj0 : (44)

Let us examine now the righthand-side of equality (43). Let u′≺ u. By minimality of
u, �̃� u′ is a unit i� �̃� u′ is a unit. But if �̃� u′ is a unit, then �̃ � u= ∅m, which
is false. Hence �̃ � u′ is not a unit. By Lemma 22

(�̃ · S)� u = (�̃ � u) · S: (45)

Let us plug equalities (44) and (45) in equivalence (43) and let us de�ne ̃= �̃� u.
We obtain

Sj0 ≡ ̃ · S; where ̃ 6≡ �mj0
:

(2)⇒ (3):

Sj0 ≡ j0 · Sj0 +

∑

j 6=j0

j · Sj

; j0 6≡ �:

By the well-known Arden’s lemma (see Corollary 55, point (C1)), we can deduce that

Sj0 ≡
∑
j 6=j0

∗j0
j · Sj = ∗

j0
() · S:

9 Numbering of the english version.

32 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Taking ′ = ∗
j0

() we obtain

Sj0 ≡ ′ · S where ′j0
= ∅:

(3)⇒ (4): Let us denote by Ŝ the vector (S1; : : : ; Sj0−1; ∅ ; Sj0+1 : : : ; Sm)∈DBm;1〈〈V 〉〉.
If T = �̃ · S then T ≡ (̃� j0 ̃

′) · Ŝ.
(4)⇒ (1): Let us suppose (4) is true for some integer j0. The element Sj0 is clearly

equivalent (mod ≡) to two linear combinations of the Sj’s with non-equivalent vectors
of coe�cients (mod ≡). Hence (1) is true.

Let us consider now the general case where some vector �̃; �̃; S might be �-bound.
By Lemma 15, point (2),

�̃ ≡ �� (̃�); �̃ ≡ ��(�̃); S ≡ ��(S)

and by Corollary 17,

�� (̃�); ��(�̃) ∈ DRB1; d〈〈V 〉〉:
Hence the Lemma in the general case follows from the Lemma in the �-free case.

3.3. Height, defect and linearity

We de�ne here notions of height and defect (for deterministic rational series) and a
subsequent notion of (d; d′)-linearity which will play a crucial role in Section 8. We
then relate these “size notions” with the notion of norm.

3.3.1. De�nitions
Let S ∈DRB〈〈V 〉〉. We call linear decomposition of S any pair ([p!]; �) where

p∈Q;!∈Z∗; �∈DBQ;1〈〈V 〉〉 such that

S = [p!] ∗ �:

We denote by D(S) the set of all linear decompositions of S. We de�ne the right-defect
of S (rd(S) for short) by

rd(S) = min{‖�‖ | ∃p ∈ Q;! ∈ Z∗; ([p!]; �) ∈ D(S)}:
One can easily see that the right-defect of S is �nite and not greater than ‖S‖. We call
minimal decomposition of S the decomposition ([p0!0]; �0) which makes the triple
(p; |!|; ‖�‖) minimal for the right-to-left lexicographic ordering in Q×N×N. We
then de�ne the linear-height of S (noted |S|) as the integer |S|= |!0| (and it is clear
that rd(S) = ‖�0‖).

The height and right-defect of a Q-form are de�ned similarly.
Let �∈DRBQ;1〈〈V 〉〉. We call linear decomposition of � any pair ([!];) where

!∈Z∗; 	∈DBQ;1〈〈V 〉〉 such that

� = [!] ∗	:

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 33

D(�) denotes the set of all linear decompositions of �. The minimal decomposition
of � is the ([!0]; 	0) which makes the pair (|!|; ‖	‖) minimal for the right-to-left
lexicographic ordering in N×N. The integers |�|; rd(�) are then de�ned by

|�| = |!0|; rd(�) = ‖	0‖:

We say that S is marked i� S contains some occurence of some letter in {[p; e; q] |
p; q∈ q}⊆V (we assumed the existence of such a “dummy” letter e∈Z in Section
2.2).

De�nition 31. Let S ∈DRB〈〈V 〉〉 and d; d′ ∈N; d¿ 1.
(1) S is said (0; d′)-linear i� rd(S)6d′ and S is not marked,
(2) S is said (d; d′)-linear i�, either it is (0; d′)-linear or S has a decomposition

S =
∑

q∈Q[phq] · [qeq] · �q where every �q is a (0; d′)-linear series and |h|6d.

In case 2, we call the series �q the d′-linear components of S. In case 1, we consider
that S itself is the unique linear component of S. It should be clear that the set of
d′-linear components are independent of the value of d (for d large enough) and that
it is uniquely de�ned: it is empty if S is not (d; d′)-linear for any d, otherwise it is
equal to

{S • u | u ∈ V ∗; S • u is unmarked and; ∀u′ ≺ u; S • u′ is marked}:

We denote by DBlind
′〈〈V 〉〉 (resp. DRBlind

′〈〈V 〉〉) the set of series in DB〈〈V 〉〉 (resp.
DRB〈〈V 〉〉) which are (0; d′)-linear.

Example. No series can be (0; 0)-linear. S is (0; 1)-linear i� S = ∅. S is (0; 2)-linear
i� there exists !∈ (Z − {e})∗; Q′⊆Q, such that S =

∑
q∈Q′ [p!q].

Hence, one can view the (0; d)-linear series as series which have a structure “not
too far” from the linear structure of the con�gurations of the initial dpda M.

(We illustrate in Fig. 1 the above de�nitions.)

3.3.2. Height and norm
Let us de�ne the integer constant K0 = |Q|+ 1.
(Here |Q| denotes the cardinality of the set Q.)

Lemma 32. Let S ∈DRB〈〈V 〉〉; x∈X; d; d′ ∈N;
(1) rd(S � x)6 rd(S);
(2) S is (d; d′)-linear ⇒ S � x is (d + 1; d′)-linear;
(3) ‖S � x‖6 ‖S‖+ K0.

Sketch of proof. Point (1) follows from Lemmas 22 and 19. Points (2) and (3) follow
from the hypothesis that the dpda M is normalized.

34 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Fig. 1. (d; d′)-linearity.

Lemma 33. Let B; A∈Z; �∈DBQ;1〈〈V 〉〉. If ‖[A] ∗ �‖¿‖�‖ then; ∀q∈Q; [qBA] ∗
� =∈Qr([A] ∗ �).

Proof. Suppose that ∃q∈Q, such that [qBA] ∗�∈Qr([A] ∗�). Let us �x some q∈Q;
uq ∈V∗; q′ ∈Q, ful�lling

[qBA] ∗ � = ([q′A] ∗ �) • uq:

Case 1: uq = �. Hence q= q′; B=A; [qB]∗[A]∗�= [qB]∗�. It follows that [A]∗�=�
and �nally ‖[A] ∗ �‖= ‖�‖.
Case 2: uq 6= �; � 6= ∅1

Q.10 Then uq = [q′Ar]vq for some r ∈Q; vq ∈V∗.

[qBA] ∗ � = (([q′A] ∗ �) • [q′Ar]) • vq = �r • vq:

It follows that, ∀p∈Q,

[pA] ∗ � = �r • vq • [qBp] ∈ Qr(�);

hence ‖[A] ∗ �‖= ‖�‖.

10 By ∅1
Q we denote the Q − 1-form which has all its entries equal to ∅.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 35

Case 3: uq 6= �; �= ∅1
Q. Then ‖[A] ∗ �‖= ‖�‖= 1.

In all cases the lemma is proved by contraposition.

Lemma 34. Let !∈Z+; A′; A∈Z; p∈Q; �∈DBQ;1〈〈V 〉〉. If ‖[A] ∗ �‖¿ ‖�‖; then
(1) ‖[!A] ∗ �‖= |Q| · |!|+ ‖[A] ∗ �‖;
(2) ‖[pA′!A] ∗ �‖= 1 + |Q| · |!|+ ‖[A] ∗ �‖.

Proof. Let us prove point (1) by induction on n= |!|.
n= 0: Formula (1) is obvious in this case.
n= 1: !=B. ‖[!A] ∗ �‖= ‖[B] ∗ ([A] ∗ �)‖. By Lemma 33,

Qr([BA] ∗ �) = {[qBA] ∗ � | q ∈ Q} :∪Qr([A] ∗ �);

(where
:∪ denotes a disjoint union) hence ‖[BA]∗�‖= |Q|+‖[A]∗�‖. n=m+1; m¿ 1:

!=CB!′ for some C; B∈Z; !′ ∈Z∗.
‖[!A] ∗ �‖= ‖[CB] ∗ ([!′A] ∗ �)‖. As a consequence of the induction hypothesis,
‖[B] ∗ [!′A] ∗ �‖¿‖[!′A] ∗ �)‖, hence, by Lemma 33

‖[!A] ∗ �‖ = |Q|+ ‖[B!′A] ∗ �‖:
By induction hypothesis, ‖[B!′A] ∗ �)‖=m · |Q|+ ‖[A] ∗ �‖, hence

‖[!A] ∗ �‖ = (m + 1) · |Q|+ ‖[A] ∗ �‖:
Let us prove now point (2).

By the above induction, ‖[A′!A] ∗ �‖= |Q| + ‖[!A] ∗ �‖, i.e. ∀q∈Q; [qA′!A] ∗
� =∈Qr([!A] ∗ �). Hence,

Qr([pA′!A] ∗ �) = {[pA′!A] ∗ �} :∪Qr([!A] ∗ �):

It follows that

‖[pA′!A] ∗ �‖ = 1 + ‖[!A] ∗ �‖ = 1 + |!| · |Q|+ ‖[A] ∗ �‖:

Lemma 35. Let !∈Z∗; B∈Z; p∈Q; �∈DBQ;1〈〈V 〉〉. Then ‖[pB!] ∗ �‖6 1 + |Q| ·
|!|+ ‖�‖.

Proof. One can notice that ‖[pB!]‖= 1 + |Q| · |!|. Hence, by Lemma 14,

‖[pB!] ∗ �‖6‖[pB!]‖+ ‖�‖= 1 + |Q| · |!|+ ‖�‖:

Lemma 36. Let S ∈DRB〈〈V 〉〉. Then 1+|Q|·(|S|−2)+rd(S)6 ‖S‖6 1+|Q|·|S|+rd(S).

Proof. The upper bound on ‖S‖ follows from Lemma 35. The lower bound follows
from Lemma 34 point (2) in the case where |S|¿ 2 and is clear for |S|6 1.

The following lemma serves as a crucial technical argument in Section 8.

36 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Lemma 37. Let U = [ph] ∗�;H =U � u where p∈Q; h∈Z∗; |h|¿ 1; � is a Q-form;
u∈X ∗; |u|6 k. Let us suppose that ‖H‖¿ 1 + k|Q|+ ‖�‖. Then
H = ([ph]� u) ∗ � where [ph]� u= [q!] for some q∈Q; |!|¿ k.

Intuitive meaning. If U is a deterministic rational series admitting a decomposition
over the Q-form � and, U � u has a su�ciently large norm (compared to ‖�‖ and
|u|), then the action of u on U cannot have “touched” the form �.

Proof. If |u|= 0 the conclusion of the lemma is clearly true. Let us suppose now that
|u|¿ 1. By Lemma 22, one of the following 3 cases occurs.
Case 1: ∀r ∈Q; [phr]� u 6∈ {∅; �}. Hence, ∃!∈Z∗;∃q∈Q; [ph]� u= [q!],

H = [q!] ∗ � and, by Lemma 35,

‖H‖61 + |Q|(|!| − 1) + ‖�‖:
The hypothesis about ‖H‖ implies then: |!|¿k + 1. Hence |!|¿k.

Case 2: ∃q∈Q;∃u′; u′′ ∈X ∗; u= u′u′′; ��([phq]� u′) = �: Hence H = ��(�q� u′′)
where |u′′|6k.
Subcase 2.1: u′′ = �. Then

‖H‖ = ‖��(�q)‖6‖�q‖6‖�‖¡ 1 + k|Q|+ ‖�‖:
Subcase 2.2: u′′ 6= �. By Lemma 19, ∃u′′1 ; u′′2 ∈X ∗; u′′ = u′′1 · u′′2 ; ∃r ∈Q; A∈Z; �′Q-

form such that

��(�q � u′′1) = [rA] ∗ �′ ∈ Qr(�) and �q � u′′ = ([rA]� u′′2) ∗ �′:

As |u′′2 |6|u′′|6k, we have

‖H‖= ‖�q � u′′‖6 ‖[rA] ∗ �′‖+ k|Q|
6 ‖�‖+ k|Q|
¡ 1 + k|Q|+ ‖�‖;

contradicting the hypothesis about ‖H‖. This case is impossible.
Case 3: H = ∅. This contradicts also the hypothesis.

Lemma 38. Let D¿0. Let �= (�q)q∈Q be a Q-form and let S ∈V((�q)q∈Q) such
that
(1) ‖�‖¿D + |Q|; |�|¿2;
(2) rd(S)6D.
Then; ∃!∈Z∗;∃p∈Q; S = [p!] ∗ �.

Proof. Let S ful�lling hypotheses (1), (2). S can be written as

S =
∑
q∈Q

�q�q = [p0!0] ∗	;

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 37

where ([p0!0];) is the minimal decomposition of S. Let us suppose that

∃q ∈ Q;∃u ∈ �q;∃u′; u′′ ∈ V ∗; u = u′ · u′′ and S • u′ = 	q: (46)

Then 	q • u′′ =�q, hence Qr()⊇Qr(�q).
As |�|¿2, we must have �= [A] ∗ �′ for some A∈Z; |�′|¿1, hence by Lemma 33

Qr(�) = {[sA] ∗ �′ | s ∈ Q} :∪Qr(�′)

= {[sA] ∗ �′ | s ∈ Q − {q}} :∪Q(�q)

which shows that

Card(Q(�q)) = Card(Qr(�))− |Q|+ 1: (47)

From (47) and the fact that Qr()⊇Q(�q) we draw

‖	‖¿‖�q‖ = ‖�‖ − |Q|+ 1¿D + 1:

But this contradicts the fact that rd(S)6D. We have established that (46) is impossible.
In other words, case (2) of Lemma 11 cannot occur in the action of a word u∈ �q on
the linear combination

∑
q∈Q �q�q. Hence ∀q∈Q; ∀u∈ �q;∃qu ∈Q;!u ∈Z+,

S • u = ([p0!0] • u) ∗	 = [qu!u] ∗	: (48)

Let us notice that !0; !u have the same rightmost letter A0. For such q; u, by Eq. (47)
we have the following equality

‖S • u‖ = ‖�q‖ = ‖�‖ − |Q|+ 1: (49)

The minimality of decomposition ([p0!0];) implies that ‖[A0] ∗	‖¿‖	‖, the hy-
pothesis |�|¿2 implies |�q|¿2 hence |!u|¿2 and Lemma 34 point (2) gives the
equality

‖S • u‖ = 1 + |Q|(|!u| − 2) + ‖[A0] ∗	‖ (50)

These two Eqs. (49), (50) show that there exists some unique integer 16n6|!|, such
that

∀q ∈ Q;∀u ∈ �q; |!u| = n:

But all the words !u are su�xes of !0, hence there exists some unique words
!′

0; !
′′
0 ; !0 =!′

0 · !′′
0 such that

∀q ∈ Q;∀u ∈ �q; S • u = [q!′′
0] ∗	 = �q:

It follows that [!′′
0] ∗	 =� and S = [p0!′

0] ∗ �.

38 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

3.4. Derivations

3.4.1. Ordinary derivations
A sequence of deterministic series S0; S1; : : : ; Sn is a derivation i� there exist x1; : : : ; xn
∈X such that S0� x1 = S1; : : : ; Sn−1� xn = Sn. The length of this derivation is n. If
u= x1 · x2 · · · · · xn we call S0; S1; : : : ; Sn the derivation associated with (S0; u). We
denote this derivation by S0

u→ Sn.
A derivation S0; S1; : : : ; Sn is said to be a sub-derivation of a derivation S ′

0; S
′
1; : : : ; S

′
m

i� there exists some i∈ [0; m] such that, ∀j∈ [1; n]; Sj = S ′
i+j.

3.4.2. Stacking derivations
Let us adapt the usual notion of stacking derivation to derivations of series. For every

u∈X ∗ we de�ne the binary relation ↑ (u) over DB〈〈V 〉〉 by for every S; S ′ ∈DB〈〈V 〉〉;
S ↑ (u)S ′ ⇔ ∃A∈Z; !∈Z+; p; q∈Q;	∈DBQ;1〈〈V 〉〉 such that

S = [pA] ∗	; [pA]� u = [q!]; S ′ = [q!] ∗	:

It is clear that if S ↑ (u)S ′ then S � u= S ′ and that the converse is not true in general.
A derivation S0; S1; : : : ; Sn is said to be stacking i� it is the derivation associated to a
pair (S; u) such that S = S0 and S0 ↑ (u)Sn.

De�nition 39. A vector S ∈DRB1; �〈〈V 〉〉 is said loop-free if and only if for every
v∈V+, S • v 6= S.

Let us notice that every polynomial is loop-free. The two following lemmas give
other examples of loop-free vectors.

Lemma 40. Let �∈DB1; n〈V 〉; �∈Bn; �〈〈V 〉〉; such that ∞¿‖� · �‖¿‖�‖. Then � · �
is loop-free.

Proof. Let �; � ful�ll the hypothesis of the lemma and suppose, for sake of contra-
diction, that there exists some v∈V+ such that

(� · �) • v = � · �:

By induction, for every n¿0,

(� · �) • vn = � · �: (51)

As � is a polynomial, there exists some n0¿0 such that |vn0 | is greater than the greatest
length of a monomial of �. Using Lemma 10, equality (51) for such an integer n0 means
that there exists some k ∈ [1; n]; v′′ su�x of vn0 such that

�k • v′′ = � · �: (52)

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 39

Using the hypothesis of the lemma we conclude that

‖�‖¿‖�k • v′′‖ = ‖� · �‖¿ ‖�‖

which is contradictory.

Lemma 41. Let S ∈DRB1; �〈〈V 〉〉; u∈X ∗; such that ‖S � u‖¿‖S‖. Then S � u is loop-
free.

Proof. Let us consider S; u ful�lling the hypothesis of the lemma and let us consider the
3 possible forms of S � u proposed by Lemma 19. Forms (1) or (2) are incompatible
with the inequality ‖S � u‖¿‖S‖. Hence S � u has the form (3)

u = u1 · u2; ��(S)� u1 = S • v1 = [qA] · �; S � u = ([qA]� u2) · �

where

u1; u2 ∈ X ∗; v1 ∈ V ∗; q ∈ Q; A ∈ Z:

Hence S � u= � ·� for some polynomial �∈DRB1; Q〈V 〉. As for every r ∈Q, �r = S •
(v1[qAr]), we obtain that ‖S‖¿‖�‖. Finally,

∞¿ ‖S � u‖ = ‖� · �‖¿ ‖S‖¿‖�‖;

and by Lemma 40, S � u is loop-free.

Lemma 42. Let S ∈DRB〈〈V 〉〉; w∈X ∗; such that
(1) S is �-free and loop-free;
(2) ∀v4w; ‖S � v‖¿‖S‖. Then the derivation S w→ S �w is stacking.

Proof. S is left-deterministic. If it has type ∅ or (�; j), the lemma is trivially true.
Otherwise

S = [qA] · �

for some q∈Q; A∈Z and some matrix �∈DRBQ;�〈〈V 〉〉. Suppose that for some pre�x
u4w and r ∈Q,

[qAr]� u = �: (53)

As S is �-free, we must have u 6= �.
Then, S � u= ��(�r) so that

‖S � u‖6‖��(�r)‖6‖��(�)‖6‖�‖6‖S‖

which shows that S = S � u while u 6= �. This would contradict the hypothesis that S
is loop-free, hence (53) is impossible.

40 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Let us apply now Lemma 22 to the expression ([qA] ·�)�w: case (2) is impossible,
hence

([qA] · �)� w = ([qA]� w) · �;

which is equivalent to

S ↑ (w)S � w:

Lemma 43. Let S; S ′ ∈DRB〈〈V 〉〉; w∈X ∗; k ∈N, such that S �w = S ′ and ‖S ′‖¿
‖S‖+ k ·K0 + 1. Then the derivation S w→ S ′ contains some stacking sub-derivation of
length k.

Proof. Let S = S0; : : : ; Si; : : : ; Sn be the derivation associated to (S; w). Let i0 = max
{i∈[0; n] | ‖Si‖= min{‖Sj‖ | 06j6n}} and i1 = max{i∈ [i0 +1; n] | ‖Si‖= min{‖Sj‖ | i0
+ 16j6n}}. Let w =w0w1w′ where |w0|= i0; |w0w1|= i1.

As ‖S �w0w1‖¿‖S �w0‖, by Lemma 41, S �w0w1 = Si1 is loop-free. Using
Lemma 32, point (3):

‖Sn‖ − ‖Si1‖¿‖Sn‖ − ‖Si0‖ − (‖Si1‖ − ‖S0‖)¿(k − 1) · K0 + 1:

Using Lemma 32, point (3), we must have |w′|¿k. Let w′ =w2w3 with |w2|= k. By
de�nition of i1, ∀i∈ [i1 + 1; i1 + k]; ‖Si‖¿‖Si1‖+ 1.

By Lemma 42, the sub-derivation Si1 ; : : : ; Si1+k (associated to (Si1 ; w2)) is stacking.

Lemma 44. Let S; S ′ ∈DRB〈〈V 〉〉; w∈X ∗; k; d; d′ ∈N; such that S is �-free; (d; d′)-
linear and
(1) the derivation S w→ S ′ contains no stacking sub-derivation of length k.
(2) |w|¿d · k.
Then S ′ is (0; d′)-linear.

Proof. If S is (0; d′)-linear, then the result follows from Lemma 32, point (1). Other-
wise,

S =
∑
q∈Q

[p!q][qeq]Tq

for some !∈Z∗; 16|!|6d; (Tq)q∈Q ∈DRBQ;1〈〈V 〉〉 such that ∀q∈Q; rd(Tq)6d′. Let
S w→ S ′ = (S0; : : : ; Sn). By induction on l, using hypothesis (1), one can show that: for
every l∈ [0; |!| − 1], either

∃m6k · l;∃!m ∈ Z+; |!m|6|!| − l and Sm =
∑
q∈Q

[pm!mq][qeq]Tq

or

∃m6k · l; ∃q ∈ Q; Sm = ��(Tq):

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 41

Similarly,

∃m06k · |!|;∃q ∈ Q; Sm0 = ��(Tq):

Hence Sm0 is (0; d′)-linear. Using Lemma 32 we obtain that Sn = S ′ is (0; d′)-linear
too.

4. Deduction systems

4.1. General formal systems

We follow here the general philosophy of [14,34]. For any set E, we denote by
P(E) the set of its subsets and by Pf(E) the set of it �nite subsets.

Let us call formal system any triple D= 〈A; H; |−− 〉 where A is a denumerable
set called the set of assertions, H , the cost function a mapping A → N∪{∞} and
|−− , the deduction relation is a subset of Pf(A)×A.

A is given with a �xed bijection with N (an “encoding” or “G�odel numbering”) so
that the notions of recursive subset, recursively enumerable subset, recursive function,
: : : over A;Pf(A); : : : are de�ned, up to this �xed bijection; we assume that D satis�es
the following axiom:
(A1) ∀(P; A)∈ |−− , (min{H (p); p∈P}¡ H (A)) or (H (A) =∞).

(We let min(∅) =∞.) We call D a deduction system i� D is a formal system
satisfying the additional axiom:

(A2) |−− is recursively enumerable.
In the sequel, we use the notation P |−− A for (P; A)∈ |−− . We call proof in the
system D, relative to the set of hypotheses H⊆A, any subset P⊆A ful�lling:

∀p ∈ P; (∃Q⊆P;Q |−− p) or (p ∈H):

We call P a proof i�

∀p ∈ P; (∃Q⊆P;Q |−− p)

(i.e. i� P is a proof relative to ∅).
Let us de�ne the total map � :A→ {0; 1} and the partial map � :A→ {0; 1} by

�(A) = 1 if H (A) =∞; �(A) = 0 if H (A) ¡∞;

�(A) = 1 if H (A) =∞; � is unde�ned if H (A) ¡∞:

(� is the “truth-value function”, � is the “1-value function”.)

Lemma 45. Let P be a proof relative to H⊆H−1(∞) and A∈P. Then �(A) = 1.

In other words, if an assertion is provable from true hypotheses, then it is true.

42 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Proof. Let P be a proof. We prove by induction on n that

P(n) :∀p ∈ P;H (p)¿n:

It is clear that, ∀p∈P;H (p)¿0. Suppose that P(n) is true. Let p∈P −H :∃Q⊆P;
Q |−− p. By induction hypothesis, ∀q∈Q;H (q)¿n and by (A1), H (p)¿n + 1. It
follows that: ∀p∈P −H; H (p) =∞. But by hypothesis, ∀p∈H; H (p) =∞.

A formal system D will be said complete i�, conversely, ∀A∈A; �(A) = 1⇒ there
exists some �nite proof P such that A∈P. (In other words, D is complete i� every
true assertion is “�nitely” provable.)

Lemma 46. If D is a complete deduction system; � is a recursive partial map.

Proof. Let i 7→ Pi be some recursive function whose domain is N and whose image
is Pf(A). Let h : (Pf(A) × A×N)→ {0; 1} be a total recursive function such that

P |−− A i� ∃n ∈ N; h(P; A; n) = 1

(such an h exists, because the r.e. sets are the projections of the recursive sets, see [58]).
The following (informal) semi-algorithm computes � on the assertion A:

(1) i := 0; n := 0; s := i + n;
(2) P :=Pi;
(3) b := minp∈P{maxQ⊆ P{h(Q;p; n)}};
(4) c := (A∈P);
(5) if (b ∧ c) then (�(A) = 1; stop);
(6) if i = 0 then (i := s + 1; n := 0; s := i + n)

else (i := i − 1; n := n + 1);
(7) goto 2;

In words, the property “H (A) =∞” is semi-decidable just because the property “there
exists a �nite P such that P is a D-proof and A∈P” is semi-decidable too.

In order to de�ne deduction relations from more elementary ones, we set the fol-
lowing de�nitions.

Let |−− ⊆Pf(A)×A. For every P;Q∈Pf(A) we set

• P
[0]
|−− Q i� P⊇Q,

• P
[1]
|−− Q i� ∀q∈Q;∃R⊆P; R |−− q,

• P
〈0〉
|−− Q i� P

[0]
|−− Q,

• P
〈1〉
|−− Q i� ∀q∈Q; (∃R⊆P; R |−− q) or (q∈P),

• P
〈n+1〉
|−− Q i� ∃R∈Pf(A); P

〈1〉
|−− R and R

〈n〉
|−− Q (for every n¿0),

•
〈∗〉
|−− =

⋃
n¿0

〈n〉
|−− .

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 43

Given |−− 1; |−− 2⊆Pf(A)×Pf(A), for every P;Q∈Pf(A) we set

P(|−− 1 ◦ |−− 2)Q i� ∃R⊆A; (P |−− 1R) ∧ (R |−− 2Q):

The particular deduction systems Di = 〈Ai ; Hi; |−− Di
〉 (i∈ [0; 5]), that we shall intro-

duce in Sections 4.3 and 10, will always be de�ned from simpler binary relations ‖−− j
by means of the above constructions.

The key statement of this work is that a particular deduction system, D0 (de�ned
in Section 4.3), is complete (Theorem 86). We prove this completeness result by
exhibiting a “strategy” S which, for every true assertion constructs a �nite D0-proof
of this assertion. Notice that, by Lemma 46 we do not need to prove that S is
computable in any sense to establish that � is partial-recursive.

4.2. Strategies

Let D= 〈A; H; |−− 〉 be a deduction system. We call a strategy for D any partial
map S : A+ →A∗ such that
(S1) if S(A1A2 · · ·An) =B1 · · ·Bm then ∃Q⊆{Ai | 16i6n− 1} such that

{Bj | 16j6m} ∪ Q |−− An;

(S2) if S(A1A2 · · ·An) =B1 · · ·Bm then

min{H (Ai) | 16i6n} =∞⇒ min{H (Bj) | 16j6m} =∞:

Remark 47. Axiom (A1) on systems is similar to the “monotonicity” condition of [34]
or axiom (2:4:2′) of [14].

Axiom (S2) on strategies is similar to the “validity” condition of [34] or property
(2:4:1′) of [14]. Notice that (S2) is imposed on the strategy S only, but not on the
inverse of the deduction relation (|−−)−1. The trick is that (|−−)−1 is not valid in
general (see the rules R2, R′′6 of D0, Section 4.3) but is computable while S is
valid but is not required to be computable in general. In the case of D0, the strategy
SABC de�ned below (Section 7) turns out to be computable but we shall not be in
position to show this computability property before knowing that D0 is complete (i.e.
Theorem 86).

Given a strategy S, we de�ne T(S; A), the proof-tree associated to the strategy S

and the assertion A as the unique tree t such that

� ∈ dom(t); t(�) = A;

and, for every path x0x1; : : : ; xn−1 in t, with labels t(xi) =Ai+1 (for 06i6n−1) if xn−1

has m sons xn−1 ·1; : : : ; xn−1 ·m∈ dom(t) with labels t(xn−1 · j) =Bj (for 16j6m) then

(∀i ∈ [1; n− 1]; Ai 6= An and S(A1 · · ·An) = B1 · · ·Bm)

or

(∃i ∈ [1; n− 1]; Ai = An and m = 0)

44 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

or

(A1 · · ·An =∈ dom(S) and m = 0): (54)

Notice that xn−1 is a leaf (i.e. m= 0) i�:

(S(A1 · · ·An) = �) or (∃i ∈ [1; n− 1]; Ai = An) or (A1 · · ·An =∈ dom(S)): (55)

Let us say that S terminates i�, ∀A∈ �−1(1);T(S; A) is �nite; S is said closed i�,
∀W ∈ (�−1(1))+; W ∈ dom(S) (i.e. S is de�ned on every non-empty sequence of true
assertions). For every tree t let us de�ne

L(t) = {t(x)|∀y ∈ dom(t); x � Y ⇒ x = y};

I(t) = {t(x) | ∃y ∈ dom(t); x ≺ y}:

(Here L stands for “leaves” and I stands for “internal labels”.)

Lemma 48. If S is a strategy for the deduction-system D then; for every true
assertion A
(1) the set of labels of T(S; A) is a D-proof; relative to the set L(T(S; A)) −

I(T(S; A)).
(2) every label of a leaf is true.

Proof. Let us suppose that H (A) =∞. Let t =T(S; A); P = im(t) (the set of labels
of t), H=L(T(S; A))−I(T(S; A)).

Using (S2), one can prove by induction on the depth of x∈ dom(t) that, H (t(x)) =∞.
Point (2) is then proved. Let x be an internal node of t, with sons x · 1; x · 2; : : : ; x ·m
(m¿0), and with ancestors y1; y2; : : : ; yn−1; yn = x (n¿1), such that

t(y1) · · · t(yn) = A1 · · ·An; t(x · 1)t(x · 2) · · · t(x · m) = B1 · B2 · · ·Bm:

By de�nition of T(S; A),

S(A1 · · ·An) = B1 · · ·Bm

and by condition (S1):

∃Q⊆{Ai | 16i6n− 1}; such that {Bj | 16j6m} ∪ Q |−− An:

It follows that for every p =∈H;∃R⊆P; R |−− p, hence

∀p ∈ P; (∃R⊆P; R |−− p) or p ∈H:

Point (1) is proved.

Lemma 49. If S is a closed strategy for D; then; for every true assertion A; the set
of labels of T(S; A) is a D-proof.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 45

Proof. Let us suppose that H (A) =∞. Let t =T(S; A) and let P;H be de�ned as
above. By Lemma 48, P is a D-proof relative to H. By Lemma 48 point (2) and
Lemma 45, every label of a node of t is true. By the de�nition of a closed strategy,
if p∈H and x is a leaf of t such that p= t(x) then, the only possible true assertion
in clause (55) is “S(A1 · · ·An) = �”, which implies that

∃Q⊆P; Q |−− t(x):

Lemma 48 point (1) and this fact show that P is a proof.

Lemma 50. If D admits some terminating; closed strategy then D is complete.

Proof. Clear from Lemma 49.

Remark 51. By the same arguments, if D admits some closed (but not necessarily
terminating) strategy then D is ∞-complete in the sense that every true assertion has a
D-proof. This might be helpful only in cases where the proof-trees and the associated
proofs are regular in a reasonable sense. This point of view will not be developed
here. The comparison algorithms based on Valiant’s methods of alternate-staking or
parallel-stacking, might be seen in this way (this idea is due to B. Courcelle, thanks
to him and to M. Oyamaguchi for discussions on this subject).

4.3. System D0

Let us de�ne here a particular deduction system D0 “Taylored for the equivalence
problem for dpda’s”.

Given a �xed dpda M over the terminal alphabet X , we consider the variable
alphabet V associated to M (see Section 3.1) and the set DRB〈〈V 〉〉 (the set
of Deterministic Rational Boolean series over V∗). The set of assertions is de�ned
by

A = N× DRB〈〈V 〉〉 × DRB〈〈V 〉〉

i.e. an assertion is here a weighted equation over DRB〈〈V 〉〉.
The “cost-function” H :A→ N∪{∞} is de�ned by

H (n; S; S ′) = n + 2 · Div(S; S ′):

We recall Div(S; S ′), the divergence between S and S ′, is de�ned by

Div(S; S ′) = inf{|u| | u ∈ ’(S)4’(S ′))}

(See De�nition 27).
Let us notice that here

�(n; S; S ′) = 1⇔ S ≡ S ′:

46 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

We de�ne a binary relation ‖−− ⊂Pf(A)×A, the elementary deduction relation,
as the set of all the pairs having one of the following forms:
(R0)

{(p; S; T)} ‖−− (p + 1; S; T)

for p∈N; S; T ∈DRB〈〈V 〉〉,
(R1)

{(p; S; T)} ‖−− (p; T; S)

for p∈N; S; T ∈DRB〈〈V 〉〉,
(R2)

{(p; S; S ′); (p; S ′; S ′′)} ‖−− (p; S; S ′′)

for p∈N; S; S ′; S ′′ ∈DRB〈〈V 〉〉,
(R3)

∅ ‖−− (0; S; S)

for S ∈DRB〈〈V 〉〉,
(R′3)

∅ ‖−− (0; S; T)

for S ∈DRB〈〈V 〉〉; T ∈{∅; �}; S ≡T ,
(R4)

{(p + 1; S � x; T � x) | x∈X } ‖−− (p; S; T)

for p∈N; S; T ∈DRB〈〈V 〉〉; (S 6≡ �∧T 6≡ �),
(R5)

{(p; S; S ′)} ‖−− (p + 2; S � x; S ′ � x)

for p∈N; S; T ∈DRB〈〈V 〉〉; x∈X;
(R6)

{(p; S · T ′ + S ′; T ′)} ‖−− (p; S∗ · S ′; T ′)

for p∈N; (S; S ′)∈DRB1;2〈〈V 〉〉; T ′ ∈DRB〈〈V 〉〉; S 6≡ �;
(R7)

{(p; S; S ′); (p; T; T ′)} ‖−− (p; S + T; S ′ + T ′)

for p∈N; (S; T); (S ′; T ′)∈DRB1;2 〈〈V 〉〉,
(R8)

{(p; S; S ′)} ‖−− (p; S · T; S ′ · T)

for p∈N; S; S ′; T ∈DRB〈〈V 〉〉;

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 47

(R9)

{(p; T; T ′)} ‖−− (p; S · T; S · T ′)

for p∈N; S; T; T ′ ∈DRB〈〈V 〉〉,
(R10)

∅ ‖−− (0; S; ��(S))

for S ∈DRB〈〈V 〉〉,
(R11)

∅ ‖−− (0; S; �e(S))

for S ∈DRB〈〈V 〉〉:

Remark 52. (1) We do not claim that this system is minimal. This system is de-
vised so as to simplify (as much as we can) the proof of completeness. Successive
simpli�cations of the system itself will be achieved later on, in Section 10.

(2) One can check that, by the results of Section 3, the above rules really belong
to Pf(A)×A.

Lemma 53. Let P ∈Pf(A); A∈A such that P ‖−− A. Then min{H (p) |p∈P}6
H (A).

Proof. Let us check this property for every type of rule.
R0. p + 2 ·Div(S; T)6p + 1 + 2 ·Div(S; T).
R1. p + 2 ·Div(S; T) =p + 2 ·Div(T; S).
R2. as the weight p is the same in all the considered equations, we are reduced to

prove that

∀n ∈ N; S ≡n S ′ ∧ S ′ ≡n S ′′ ⇒ S ≡n S ′′ (obvious)

R3, R′3. ∞= Div(S; S).
R4. Let S; T ∈DRB〈〈V 〉〉; S 6≡ �; T 6≡ �. If Div(S; T) =∞ the required inequality

is true. If Div(S; T) = n∈N, let us consider some u∈’(S)4’(T); |u|= n.
We can suppose, for example, that S � u= �; T � u 6= �. As S 6≡ �;∃x0 ∈X;∃v∈X ∗;
u= x0· v. Hence (S � x0)� v= �; (T � x0)� v 6= �;Div(S � x0; T � x0)6|v|. Hence
we have

min{H (p + 1; S � x; T � x) | x ∈ X)}6H (p + 1; S � x0; T � x0)

6 (p + 1) + 2|v|
6 (p + 1) + 2 · Div(S; T)− 2

¡H (p; S; T):

48 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

R5. Let us suppose H (p + 2; S � x; S ′� x) 6=∞. Let Div(S � x; S ′� x) = n; v∈
(’(S �x)4’(S ′�x)). As xv∈’(S)4’(S ′), Div(S; S ′)6n + 1. Hence,

H (p; S; S ′)6p + 2(n + 1) = (p + 2) + 2 · Div(S � x; S ′ � x)

= H (p + 2; S � x; S ′ � x):

R7. S ≡n S ′; T ≡n T ′⇒ S + T ≡n S ′ + T ′ (obvious).
R8. S ≡n S ′⇒ S ·T ≡n S ′ ·T (clear because, every pre�x of a word of length 6n has

length 6n).
R9. T ≡n T ′⇒ S ·T ≡n S ·T ′ (analogous to R8).
R6. We are reduced to prove that, for every n¿ 0; (S; S ′)∈DRB1; 2 〈〈V 〉〉; T ′ ∈DRB
〈〈V 〉〉; S 6≡ �,

S · T ′ + S ′ ≡n T ′ ⇒ S∗ · S ′ ≡n T ′: (56)

Let us suppose that S ·T ′ + S ′ ≡n T ′. By de�nition of the star operation:

Sn+1 · S∗ · S ′ +
n∑

k=0

Sk · S ′ = S∗ · S ′: (57)

And by the properties established in the treatment of (R7), (R9):

Sn+1 · T ′ +
n∑

k=0

Sk · S ′ ≡n T ′: (58)

Let u∈X6n; u 6= �. As S 6≡ �;∀u′ 4 u; ��(Sn+1� u′) 6= �. By Lemma 22, for every
U ∈B〈〈V 〉〉,

(Sn+1 · U)� u = (Sn+1 � u) · U 6= �:

Using now Eqs. (57), (58) we obtain that

S∗ · S ′ � u = �⇔
n∑

k=0

Sk · S ′ � u = �⇔ T ′ � u = �:

As well

��(S∗ · S ′) = �⇔ ��

(
n∑

k=0

Sk · S ′
)

= �⇔ ��(T ′) = �:

At last,

{u ∈ X6n | ��(S∗ · S ′ � u) = �} = {u ∈ X6n | ��(T ′ � u) = �};

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 49

which, by property (38), shows that S∗ · S ′ ≡n T ′. This ends the proof of implication
(56).
R10. By Lemma 15, point (2), Div(S; ��(S)) =∞.
R11. By Lemma 23, Div(S; �e(S)) =∞.

Let us de�ne |−− by for every P ∈Pf(A); A∈A,

P |−− A⇔ P
〈∗〉
‖−− ◦

[1]
‖−−

0;3;4;10;11
◦

〈∗〉
‖−− {A}:

where ‖−− 0; 3; 4; 10; 11 is the relation de�ned by R0; R3; R′3; R4;R10; R11 only. We
let

D0 = 〈A; H; |−− 〉:

Lemma 54. D0 is a deduction system.

Proof. It should be clear, from the well-known decidability properties of �nite au-
tomata, that ‖−− is recursively enumerable. Using Lemma 53, one can show by
induction on n that

P
〈n〉
‖−− Q ⇒ ∀q ∈ Q; min{H (A)|A ∈ P}6H (q):

The proof of Lemma 53 also reveals that

P ‖−− {0;3;4;10;11}q⇒ (min{H (p) |p ∈ P}
¡ H (q)) or H (q) =∞:

It follows that, for every m; n¿ 0,

P
〈n〉
‖−− Q

[1]
‖−−

0;3;4;10;11
R

〈m〉
‖−− q

⇒ (min{H (p) |p ∈ P}¡ H (q)) or H (q) =∞:

Both axioms (A1), (A2) are ful�lled.

Let us remark the following algebraic corollaries of Lemma 53.

Corollary 55. (C1) ∀(S; S ′)∈DRB1; 2〈〈V 〉〉; T ′ ∈DRB〈〈V 〉〉; S 6≡ �;

S · T ′ + S ′ ≡ T ′ ⇒ S∗ · S ′ ≡ T ′

(C2) ∀S; S ′ ∈DRB〈〈V 〉〉; T ∈DRB〈〈V 〉〉;
[S · T ≡ S ′ · T and T 6≡ ∅]⇒ S ≡ S ′

Proof. Statement (C1) is a direct corollary of the fact that the value of H at the
left-hand side of rule (R6) is smaller or equal to the value of H at the right-hand
side of rule (R6). Let us prove (C2): let us consider S; S ′ ∈DRB〈〈V 〉〉; T ∈DRB〈〈V 〉〉,

50 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

such that

S · T ≡ S ′ · T and S 6≡ S ′: (59)

Let

u = min{v ∈ X ∗ | (��(S � v) = �)⇔ (��(S ′ � v) 6= �)}:
From the hypothesis that S ·T ≡ S ′ ·T , we get that, for every v∈X ∗,

(S · T)� v ≡ (S ′ · T)� v

and by the choice of u we obtain that

T ≡ (S ′ � u) · T or (S � u) · T ≡ T;

which, by (C1), implies

T ≡ (S ′ � u)∗ · ∅ or (S � u)∗ · ∅ ≡ T;

i.e.

T ≡ ∅: (60)

We have proved that (59) implies (60), hence (C2).

4.4. Congruence closure: de�nition

Let us consider the subset C of the rules of D0, consisting of all the instances of
the metarules R0 – R3, R′3, R6 – R11. We also denote by | |−− C⊆Pf(A)×A the
set of all instances of these meta-rules. This subset will be used in Section 7. The
non-obvious properties of this sytem will be needed in Section 10 only. Therefore the
study of C postponed to Section 10.1.

5. Triangulations

Let S1; S2; : : : ; Sd be a family of deterministic rational boolean series over the struc-
tured alphabet V (i.e. Si ∈DRB〈〈V 〉〉). We recall V is the alphabet associated with some
dpda M as de�ned in Section 2.2.

Let us consider a sequence S of n “weighted” linear equations

(Ei): pi;
d∑

j=1

�i; jSj;
d∑

j=1

�i; jSj (61)

where pi ∈N − {0}, and A= (�i; j); B= (�i; j) are deterministic rational matrices of
dimension (n; d), with indices m6i6m + n− 1; 16j6d.

For any weighted equation, E= (p; S; S ′), we recall the “cost” of this equation is
H (E) =p + 2 Div(S; S ′).

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 51

We associate to every system (61) another system of weighted equations, INV(S),
which “translates the equations of S into equations over the coe�cients (�i; j ; �i; j)
only”. 11 The general idea of the construction of INV consists in iterating the trans-
formation used in the proof of (1)⇒ (2)⇒ (3) in Lemma 30, i.e. the classical idea of
triangulating a system of linear equations. Of course we must deal with the weights
and relate the construction with the deduction system D0.

5.1. Restricted systems

We assume here that

∀j ∈ [1; d]; Sj 6≡ ∅ (62)

and

∀i ∈ [m;m + n− 1]; ∀j ∈ [1; d]; �i; j ; �i; j are �-free: (63)

A system S ful�lling both hypotheses (62), (63) will be called a restricted system
of weighted linear equations.

Let us de�ne INV(S), W(S)∈N∪{⊥};D(S)∈N, by induction on n. W(S) is
the weight of S. D(S) is the weak codimension of S.
Case 1: �m;∗≡ �m;∗

INV(S) = ((W(S); �m; j; �m; j))16j6d;W(S) = pm − 1; D(S) = 0:

Case 2: �m;∗ 6≡ �m;∗; n¿2; pm+1 − pm¿2 ·Div(�m;∗; �m;∗) + 1. Let us consider

u = min{v ∈ X ∗ | ∃j ∈ [1; d]; (�m;∗ � v = �dj)⇔ (�m;∗ � v 6= �dj)}: (64)

(Lemma 25 and the �-freeness assumption (63) ensure the existence of such a word
u.) Let j0 ∈ [1; n] such that (�m; ∗� u= �dj0

)⇔ (�m;∗� u 6= �dj0
).

Subcase 1: �m; j0 � u= �; �m; j0 � u 6= �. Let us consider the equation

(E′
m): pm + 2 · |u|; Sj0

d∑
j=1
j 6=j0

(�m; j0 � u)∗(�m; j � u)Sj

and de�ne a new system of weighted equations S′ = (E′
i)m+16i6m+n−1 by

(E′
i): pi;

∑
j 6=j0

[�i; j + �i; j0 (�m; j0 � u)∗(�m; j � u)] · Sj;

∑
j 6=j0

[�i; j + �i; j0 (�m; j0 � u)∗(�m; j � u)] · Sj:

11 This function INV is an “elaborated version” of the inverse systems de�ned in [47, Eq. (2:8), p. 586,
English version] or [48, Eq. (2:8), p. 677, English version] in the case of a single equation.

52 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

(The above equation is seen as an equation between two linear combinations of the
Si’s, 16i6d, where the j0th coe�cient is ∅ on both sides.) We then de�ne

INV(S) = INV(S′)W(S) = W(S′)D(S) = D(S′) + 1:

Subcase 2: �m; j0 � u 6= �; �m; j0 � u = � (analogous to subcase 1).
Case 3: �m; ∗ 6≡ �m; ∗; n = 1. We then de�ne

INV(S) = ⊥; W(S) = ⊥; D(S) = 0;

where ⊥ is a special symbol which can be understood as meaning “unde�ned”.
Case 4: �m; ∗ 6≡ �m;∗n¿2; pm+1 − pm62 ·Div(�m;∗; �m;∗). We then de�ne

INV(S) = ⊥; W(S) = ⊥; D(S) = 0:

Lemma 56. Let S be a restricted system of weighted linear equations with deter-
ministic rational coe�cients. If INV(S) 6=⊥ then; INV(S) is a system of weighted
linear equations with deterministic rational coe�cients.

Proof. Follows from Lemmas 28, 29 and the formula de�ning S′ from S.

From now on, and up to the end of this section, we simply write “linear equation”
to mean weighted linear equation with deterministic rational coe�cients.

Lemma 57. Let S be a system of linear equations. If INV(S) 6=⊥ then INV(S) =
(�Ej)16j6d ful�lls
(1) { �Ej|16j6d}∪ {Ei|m6i6m + D(S)− 1} |−− Em+D(S);
(2) min{H (Ei) |m6i6m + D(S)}=∞⇒ min{H (�Ej) | 16j6d}=∞.

In what follows, we sometimes write INV(S) to mean the set { �Ej | 16j6d} (i.e. we
do not distinguish between the family of equations INV(S) and the corresponding set
of equations). We also denote by H (INV(S)) the element min{H (�Ej)|16j6d}∈N∪∞.

Proof. See in Fig. 2 the “graph of the deductions” we use for proving point (1). Let
us prove by induction on D(S) the following strengthened version of point (1):

INV(S) ∪ {Ei |m6i6m + D(S)− 1}
〈∗〉
‖−− �−1(Em+D(S)); (65)

where for every integer k ∈Z; �k : {(p; S; S ′)∈A |p¿ − k} → A is the translation
map on the weights: �k(p; S; S ′) = (p+k; S; S ′). if D(S) = 0 : as INV(S) 6=⊥;S must
ful�ll the hypothesis of case 1:

Em =

pm;

d∑
j=1

�m; jSj;
d∑

j=1

�m; jSj

 = Em+D(S)

INV(S) = ((pm − 1; �m; j; �m; j))16j6d:

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 53

Fig. 2. Proof of Lemma 5.2.

Using rules (R7), (R8) we obtain

INV(S)
〈∗〉
‖−−

pm − 1;

d∑
j = 1

�m; jSj;
d∑

j = 1

�m; jSj

 = �−1(Em):

if D(S) = n + 1; n¿0: S must ful�ll case 2.
Suppose case 2, subcase 1 occurs.
Using |u| times (R5) and then (R6) (this is possible because �m; j0 � u 6≡ �), we

obtain a deduction

Em

〈2·|u|+1〉
‖−− E′

m: (66)

Using (R7)–(R9) we get that, for every i∈ [m + 1; m + D(S)],

{Ei ;E′
m}

〈∗〉
‖−−

max{pi; pm + 2|u|};

∑
j 6=j0

(�i; j + �i; j0 (�m; j0 � u)∗(�m; j � u)) · Sj;

∑
j 6=j0

(�i; j + �i; j0 (�m; j0 � u)∗(�m; j � u)) · Sj

:

54 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

The hypothesis of case 2 implies that max{pm+1; pm + 2|u|}=pm+1 and the fact that
INV(S′) is de�ned implies that ∀i∈ [m + 1; m + D(S)]; pi¿pm+1, hence, max{pi;
pm + 2|u|}=pi and the right-hand side of the above deduction is exactly E′

i . Hence,

∀i∈ [m + 1; m + D(S)]; {Ei ;E′
m}

〈∗〉
‖−− E′

i : (67)

Using deductions (66) and (67), we obtain that

{Ei |m6i6m + D(S)− 1}
〈∗〉
‖−− {E′

i |m6i6m + D(S)− 1}: (68)

By induction hypothesis

INV(S′) ∪ {E′
i |m + 16i6m + 1 + D(S′)− 1}

〈∗〉
‖−− �−1(E′

m+1+D(S′))

which is equivalent to

INV(S) ∪ {E′
i |m + 16i6m + D(S)− 1}

〈∗〉
‖−− �−1(E′

m+D(S)): (69)

As pm + 2 · |u|6pm+1−16pm+D(S)−1, we have also the following inverse deduction
(which is similar to deduction (67)):

{E′
m; �−1(E′

m+D(S))}
〈∗〉
‖−− �−1(Em+D(S)): (70)

Combining together deductions (68)–(70), we have proved (65). Using rule (R0), this
last deduction leads to point (1) of the lemma.

Suppose that case 2, subcase 2 occurs: This case can be treated in the same way as
subcase 1 just by exchanging the roles of �̃; �̃.

Let us prove statement (2) of the lemma.
We prove by induction on D(S) the statement:

min{H (Ei) |m6i6m + D(S)} =∞⇒ H (INV(S)) =∞: (71)

if D(S) = 0: As INV(S) 6= ⊥, case 1 must occur. �m;∗≡ �m;∗ implies that H (INV
(S) =∞, hence the statement is true.
if D(S) =p + 1; p¿0: As D(S)¿1 and INV(S) 6= ⊥, case 2 must occur. Using

deductions (66) and (67) established above we obtain that

{Ei |m6i6m + D(S)}
〈∗〉
‖−− {E′

i |m + 16i6m + 1 + D(S′)};

which proves that

min{H (Ei) |m6i6m + D(S)}6min{H (E′
i) |m + 16i6m + 1 + D(S′)}:

(72)

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 55

As D(S′) = D(S)− 1, we can use the induction hypothesis

min{H (E′
i) |m + 16i6m + 1 + D(S′)}=∞⇒ H (INV(S′)) =∞: (73)

As INV(S) = INV(S′), (72) and (73) imply statement (71).

Lemma 58. Let S be a restricted system of linear equations satisfying the hypothesis
of case 2. Then; ∀i∈ [m+1; m+n−1]; ‖�′i;∗‖6‖�i;∗‖+‖�m;∗‖+K0|u|; ‖�′

i;∗‖6‖�i;∗‖+
‖�m;∗‖+ K0|u|:

Proof. The formula de�ning S′ from S show that

�′i;∗ = �i;∗ j0 (
∗
j0
�m;∗); �′

i;∗ = �i;∗ j0 (
∗
j0
�m;∗):

From these equalities and Lemmas 28, 29, 32, the inequalities on the norm follow.

Let us consider the function F de�ned by

F(d; n) = max{Div(A; B) |A; B ∈ DRB1; d〈〈V 〉〉; ‖A‖6n; ‖B‖6n; A 6≡ B}: (74)

For every integer parameters K0; K1; K2; K3; K4 ∈N− {0}, we de�ne integer sequences
(�i; ‘i; Li; si; Si; �i)m6i6m+n−1 by

�m = 0; ‘m = 0; Lm = K2; sm = K3 · K2 + K4; Sm = 0; �m = 0; (75)

�i+1 = 2 · F(d; si + �i) + 1;

‘i+1 = 2 · �i+1 + 3;

Li+1 = K1 · (Li + ‘i+1) + K2;

si+1 = K3 · Li+1 + K4;

Si+1 = si + �i + K0F(d; si + �i);

�i+1 = �i + Si+1 (76)

for m6i6m + n− 2.
These sequences are intended to have the following meanings when K0; K1; K2; K3;

K4 are chosen to be the constants de�ned in Section 6 and equations (Ei) are labelling
nodes of a N-stacking sequence (see Section 8.3):

�i+16 increase of weight between Ei ; Ei+1,
‘i+1¿ increase of depth between Ei ; Ei+1,
 Li+1¿ increase of depth between Em;Ei+1,
si+1¿ size of the coe�cients of Ei+1,
Si+1¿ size of the coe�cients of E

(i+1−m)
i+1 (these systems are introduced below

in the proof of Lemma 59),
�i+1¿ increase of the coe�cients between E

(i−m)
k ; E(i+1−m)

k (for k¿i + 1).

56 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Fig. 3. Proof of Lemma 5.4.

For every linear equation E = (p;
∑d

j=1 �jSj
∑d

j=1 �jSj), we de�ne

|‖E|‖ = max{‖(�1; : : : ; �d)‖; ‖(�1; : : : ; �d)‖}:

Lemma 59. Let S = (Ei)m6i6m+d−1 be a restricted system of d linear equations
such that H (Ei) =∞ (for every i) and
(1) ∀i ∈ [m;m + d− 1]; |‖Ei|‖6si,
(2) ∀i ∈ [m;m + d− 2];W(Ei+1)−W(Ei)¿�i+1.
Then INV(S) 6= ⊥;D(S)6d− 1;∀E ∈ INV(S); |‖E|‖6�m+D(S) + sm+D(S).

Proof. (Fig. 3 might help the reader to follow the de�nitions below). Let us de�ne
a sequence of systems S(i−m) = (E(i−m)

k)m6i6k6m+d−1, where i ∈ [m;m + D(S)], by
induction

• E
(0)
k = Ek for m6k6m + d− 1,

• if case 1 or case 3 or case 4 is realized, D(S) = 0, hence S(i−m) is well-de�ned
for m6i6m + D(S)

• if case 2 is realized then we set : ∀i¿m+1;E(i−m)
k = (E′

k)(i−m−1), for m+16k6m+
d− 1.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 57

Let us prove by induction on i ∈ [m;m + D(S)] that, ∀k ∈ [i; m + d− 1]:

|‖E(i−m)
k |‖6sk + �i: (77)

i = m: In this case

|‖E(i−m)
k |‖ = |‖Ek |‖6sk = sk + �m:

i + 16m + D(S): In this case, by Lemma 58,

|‖E(i+1−m)
k |‖6|‖E(i−m)

k |‖+ |‖E(i−m)
i |‖+ K0|ui|

where

ui = min{v ∈ X ∗ | ∃j ∈ [1; d]; (�(i−m)
i;∗ � v = �dj)⇔ (�(i−m)

i;∗ � v 6= �dj)}: (78)

By de�nition of F and the induction hypothesis

|ui|6F(d; |‖E(i−m)
i |‖)6F(d; si + �i):

Hence,

|‖E(i+1−m)
k |‖6(sk + �i) + (si + �i) + K0F(d; si + �i) = (sk + �i) + Si+1

= sk + �i+1:

Let us notice that D(S) is always an integer and that this proof is valid for m6i6m+
D(S); i6k6m + d− 1.

Let us prove now that INV(S) 6= ⊥. Let us consider the system
(E(D(S))

k)m+D(S)6k6m+d−1. If D(S) =d − 1, as the system (E(D(S))
D(S)) consists of a

single equation, it must ful�ll either case 1 or case 3 of the de�nition of INV.
Using the successive deductions (66) and (67) established in the proof of Lemma 57,

we get

{Ei|m6i6m + d− 1}
〈∗〉
‖−− {E(d−1)

m+d−1}:
Using now the hypothesis that H (Ei) =∞ (for m6i6m + d− 1), we obtain

H (E(d−1)
m+d−1) =∞: (79)

For any system of equations S, let us de�ne the column-support of the system as

csupp(S) =

{
j ∈ [1; d]|

m+n−1∑
i=m

�i; j + �i; j 6= ∅
}
:

Let us consider �= Card(csupp(S(d−1)). One can prove by induction on i that

Card(csupp(S(i−m))6d− i + m;

hence

� = Card(csupp(S(d−1))6d− (d− 1) = 1:

• If �= 1; csupp(S(d−1)) = {j0}, for some j0 ∈ [1; d].

58 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

By Corollary 55, point (C2), and hypothesis (62), the implication

[�(d−1)
m+d−1; j0

Sj0 ≡ �(d−1)
m+d−1; j0

Sj0]⇒ �(d−1)
m+d−1; j0

≡ �(d−1)
m+d−1; j0

holds. Hence, by (79), �(d−1)
m+d−1; j0

≡ �(d−1)
m+d−1; j0

, i.e. S(d−1) ful�lls case 1, so that

INV(S) = INV(S(d−1)) 6=⊥ :

• If �= 0; csupp(S) = ∅.
Then �(d−1)

m+d−1;∗ = �(d−1)
m+d−1;∗ = ∅d. Here also S(d−1) ful�lls case 1.

If D(S)¡d− 1, by hypothesis

W(Em+D(S)+1)−W(Em+D(S))¿�m+D(S)+1 = 2F(d; sm+D(S) + �m+D(S)) + 1:

If �D(S)
m+D(S);∗ ≡ �D(S)

m+D(S);∗, then E
(D(S))
m+D(S) ful�lls case 1 of the de�nition of INV, hence

INV(S) 6=⊥.
Otherwise, let us consider

u = min{v ∈ X ∗ | ∃j ∈ [1; d]; (�(D(S))
m+D(S);∗ � v = �dj)⇔ (�(D(S))

m+D(S);∗ � v 6= �dj)}: (80)

By de�nition of F and inequality (77),

|u|6F(d; |‖E(D(S))
m+D(S)|‖)6F(d; sm+D(S) + �m+D(S)):

Hence pm+D(S)+1 − pm+D(S)¿2 |u| + 1, i.e. the hypothesis of case 2 is realized. This
proves that D(S(D(S)))¿1 while in fact, D(S(D(S))) = 0. This contradiction shows that
this last case (D(S)¡d− 1 and E

(D(S))
m+D(S) not ful�lling case 1 of de�nition of INV) is

impossible. We have proved point (2) of the lemma.

5.2. General systems

We consider now the general case where assumptions (62) and (63) are removed.
Let us suppose that

∃d1 ∈ [1; d]; Sd1 6≡ ∅: (81)

Up to some permutation of the column indices (such a permutation leaves function H
invariant), we can suppose that there exists d̂∈ [1; d] such that

∀j ∈ [1; d̂]; Sj 6≡ ∅; ∀j ∈ [d̂ + 1; d]; Sj ≡ ∅: (82)

We then associate to the original system S a new system Ŝ of n linear equations:

(Êi): pi;
d̂∑

j=1

��(�i; j) · Sj;
d̂∑

j=1

��(�i; j) · Sj;

where m6i6m + n− 1.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 59

We then de�ne

INV(S) = INV(Ŝ); W(S) = W(Ŝ); D(S) = D(Ŝ):

Let us show that Lemmas 56, 57 and 59 remain true in the general case.

Lemma 60 (Preliminary lemma). For every i∈ [m;m + n− 1]

(1) Êi

〈∗〉
||−− Ei ;

(2) Ei

〈∗〉
||−− Êi.

Proof. By (R11), ∀i∈ [m;m + n− 1] ∀j∈ [1; d];

∅
〈∗〉
‖−− (0; �i; j ; ��(�i; j));

whose combination with (R7), (R8) gives, ∀i∈ [m;m + n− 1]:

∅
〈∗〉
‖−−

0;

d∑
j=1

�i; j · Sj;
d∑

j=1

��(�i; j) · Sj

: (83)

Using rule (R3) (for all the triples (0; Sj; Sj); j∈ [1; d̂]) and rule (R′3) (for all the triples
(0; Sj; ∅); j∈ [d̂ + 1; d]), combined with rules (R7), (R8) we get, ∀i∈ [m;m + n− 1],

∅
〈∗〉
‖−−

0;

d∑
j=1

��(�i; j) · Sj;
d̂∑

j=1

��(�i; j) · Sj

: (84)

Using then rules (R1), (R2), deductions (83), (84) and their analogues for the right-
hand sides, we obtain points (1) and (2) of the lemma.

Lemma 61. Let S be a system of linear equations. If INV(S) 6=⊥ then; ∀E∈
INV(S);E is a linear equation.

Proof. As Ŝ is a restricted system, this follows from Lemma 56.

Lemma 62. Let S be a system of linear equations. If INV(S) 6=⊥ then
(1) INV(S) ∪ {Ei |m6i6m + D(S)− 1} |−− Em+D(S);
(2) min{H (Ei) |m6i6m + D(S)} =∞⇒ H (INV(S)) =∞.

Proof. Point (1) follows from Lemma 57 point (1) and from Lemma 60. Point (2)
follows from Lemma 57 point (2) and from Lemma 60, point (2).

60 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Lemma 63. Let S= (Ei)m6i6m+d−1 be a system of d linear equations such that
H (Ei) =∞ (for every i) and

(0) ∃j∈ [1; d]; Sj 6≡ ∅;
(1) ∀i∈ [m;m + d− 1]; |‖Ei |‖6si;
(2) ∀i∈ [m;m + d− 2];W(Ei+1)−W(Ei)¿�i+1.

Then INV(S)6= ⊥;D(S)6d− 1;∀E∈ INV(S); |‖E|‖6�m+D(S) + sm+D(S).

Proof. By hypothesis (0), Ŝ is de�ned and is a restricted system of linear equations.
Moreover, using Lemma 15 for every i∈ [m;m+d−1]; |‖Êi|‖6|‖Ei|‖. Hence Ŝ ful�lls
the hypothesis of Lemma 59 and the conclusion of this previous lemma applied on the
system Ŝ gives

INV(S) 6=⊥; D(S)6d̂− 1; ∀E∈ INV(S); |‖E|‖6�m+D(S) + sm+D(S):

6. Constants

Let us �x a normalized dpda M and an initial equation A0 = (�0; S−
0 ; S+

0)∈N ×
DRB〈〈V 〉〉×DRB〈〈V 〉〉 in the corresponding set of assertions. This short section is devoted
to the de�nition of some integer constants: these integers are constant in the sense that
they are depending only on this dpda M and initial equation A0. The motivation of each
of these de�nitions will appear later on, in di�erent places for the di�erent constants.
The equations below provide merely an overview of the dependencies between these
constants and allow to check that the de�nitions are sound (i.e. there is no hidden loop
in the dependencies).

De�nition 64. For every series S ∈DRB〈〈V 〉〉, we de�ne the valuation of S, �(S) by
�(S) = inf{ |u| | u∈X ∗; S � u= �}:

k0 = max{�([pzq]) |p; q ∈ Q; z ∈ Z; [pzq] 6≡ ∅}; k1 = max{2k0 + 1; 3}; (85)

D1 = 4 · k0 + 3; k2 = (D1 + 5) · k1 + k0 + 1: (86)

k1 is used in the de�nition of strategy TB (Section 7), D1 appears as an upper bound
on the left-defect of series in Lemma 72 and k2 is used in the de�nition of a “security
band” before Lemma 78.

K0 = |Q | + 1: (87)

This constant appeared in Lemma 32.

K1 = k1 · K0 + 1; K2 = 6 · D1 · k2
1 · K0: (88)

These constants K1; K2 appear in Lemma 81.

K3 = 2k0K2
0 ; K4 = (2k2 + k1 + 3) · K2

0 + (k1 + 2) · K0 + 2: (89)

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 61

These constants K3; K4 appear in Lemma 82.

d0 = 2 · |Q | · (Card(X6k1) + 1): (90)

d0 appears as an upper bound on the dimension of the d-space V1 de�ned by Eq. (127)
and used in Lemma 81. We consider now the integer sequences (�i; ‘i; Li; si;
Si; �i)m6i6m+n−1 de�ned by relations (76) of Section 5 where the parameters K0; : : : ; K4

are chosen to be the above constants and m= 1; n=d=d0. Equivalently, they are
de�ned by

�1 = 0; ‘1 = 0; L1 = K2; s1 = K3 · K2 + K4; S1 = 0; �1 = 0; (91)

�i+1 = 2 · F(d0; si + �i) + 1;

‘i+1 = 2 · �i+1 + 3;

Li+1 = K1 · (Li + ‘i+1) + K2;

si+1 = K3 · Li+1 + K4;

Si+1 = si + �i + K0 · F(d0; si + �i);

�i+1 = �i + Si+1 (92)

for 16i6d0 − 1.

D2 = max
{
�d0 + sd0 ; ‖ S−

0 ‖; ‖ S+
0 ‖
}
; (93)

�d0 +sd0 appears in the conclusion of Lemma 63 when we take d=d0 in the hypothesis
and suppose that D(S) has its maximal possible value, i.e. D(S) =d0 − 1. It is used
as an upper bound on the right-defect in the de�nition of the trees � analyzed in
Section 8 (inequation (107)).

N0 = 1 + (k2 + 2)K0 + D2: (94)

N0 appears as a lower bound for the norm in the de�nition of a N -stacking sequence
(Section 8.3, condition (113)).

C2 = Card{U ∈ DRB〈〈V 〉〉; ‖U‖6D2}; (95)

K6 = 6 · [(C2 · |Q||Z |k2+D2+3)|Q| · |Q||Z |D1]2; K5 = (K6 + 1) · k0 · K0: (96)

K5; K6 appear in Lemma 84 and C2 is used in the proof of Lemma 84.

7. Strategies for D0

Let us de�ne strategies for the particular system D0. We de�ne �rst auxiliary strate-
gies Tcut ; T∅; T�; TA; TB; TC and then derive some closed strategies from them. Let us �x
here some total ordering on X : x1¡x2¡ · · ·¡x� and also some total ordering 6 of

62 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

type ! on A (inherited from the usual well-ordering of N by the �xed encoding).
From these orderings one can construct in the usual way an ordering of type ! on the
sets X ∗;A∗ and N∗ × (DRB〈〈V 〉〉)∗:
Tcut: Tcut(A1 · · ·An) =B1 · · ·Bm i� ∃i∈ [1; n− 1];∃S; T;

Ai = (pi; S; T); An = (pn; S; T); pi ¡ pn and m = 0

T∅: T∅(A1A2 · · ·An) = B1 · · ·Bm i� ∃S; T; An = (p; S; T), p¿0; S ≡ T ≡ ∅ and m =
0

T�: T�(A1 · · ·An) = B1 · · ·Bm i� An = (p; S; T); p¿0; S ≡ T ≡ � and m = 0
TA: TA(A1 · · ·An) = B1 · · ·Bm i�

An = (p; S; T); m = |X |;
B1 = (p + 1; S � x1; T � x1); : : : ; Bm = (p + 1; S � xm; T � xm);

where S 6≡ �; T 6≡ �
T+
B : T+

B (A1 · · ·An) =B1 · · ·Bm i� n¿k1 + 1; An−k1 = (�; �U;U ′), (where �U is un-
marked)

U ′ =
∑

q∈Q
[�pzq] · Vq (for some �p ∈ Q; z ∈ Z; Vq ∈ DRB〈〈V 〉〉)

Ai = (� + k1+i − n; Ui; U ′
i) for n − k16i6n, (Ui)n−k16i6n is a derivation,

(U ′
i)n−k16i6n is a “stacking derivation” (see de�nitions in Section 3.4),

U ′
n =

∑
q∈Q

[p�q] · Vq for some p ∈ Q; � ∈ Z+;

m= 1; B1 = (�+k1−1; V; V ′); V =Un; V ′ =
∑

q∈Q′[p�q] · [qeq] ·(�U � uq); where
Q′ = {q∈Q | [�pzq] 6≡ ∅};∀q∈Q′; uq = min(’([�pzq])).

T−
B : T−

B is de�ned in the same way as T+
B by exchanging the left series (S−) and

right series (S+) in every assertion (p; S−; S+).
TC : TC(A1 · · ·An) =B1 · · ·Bm i� there exists d∈ [1; d0]; D∈ [0; d− 1]; S1; S2; : : : ; Sd

∈DRB〈〈V 〉〉; 16�1¡�2¡ · · ·¡�D+1 = n; such that,
(C1) Every equation Ei =A�i = (p�i ; S

−
�i
; S+

�i
), for 16i6D+1, is a weighted equation

over S1; S2; : : : ; Sd.
(C2) S= (Ei)16i6D+1 is such that, INV(S) 6=⊥;D(S) =D and |‖S|‖6sd0 ,
(C3) (�1; �2; : : : ; �D+1; S1; : : : ; Sd)∈N∗×(DRB〈〈V 〉〉)∗ is the minimal vector satisfying

conditions (C1) and (C2) for the given sequence (A1 · · ·An).
(C4) B1 · · ·Bm = �e(INV(S)) (where �e is the obvious extension of �e to pairs of

series and then to sequences of weighted equations; in other words, the result of TC is
INV(S) where the marks have been removed).

Lemma 65. Tcut ; T∅; T�; TA are D0-strategies.

Proof. Tcut: (S1) is true by rule (R0). (S2) is trivially true.
T∅: (S1) is true by rule (R′3). (S2) is trivially true.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 63

T�: (S1) is true by rule (R′3). (S2) is trivially true.
TA: by rule (R4), {Bj | 16j6m} ||−− 4 An, which proves (S1). Suppose H (An) =∞,

i.e. S ≡ T . Then, ∀j∈ [1; m]; S � xj ≡ T � x′j, so that min{H (Bj) | 16j6m}=∞.
(S2) is proved.

Lemma 66. T+
B ; T−

B are D0-strategies.

Prooof. Let us show that T+
B is a D0-strategy. Let us use the notation of the de�nition

of T+
B . Let H= {(�; �U;U ′); (� + k1 − 1; V; V ′)}. Let us show that

H
〈∗〉
‖−− D0

(� + k1 − 1; Un; U ′
n): (97)

Using rule (R5) we obtain ∀q∈Q′,

{(�; �U;U ′)}=

(�; �U;

∑
r∈Q

[�pzr] · Vr)

〈∗〉
‖−− R5(� + 2 · | uq | ; �U � uq; U ′ � u′q)

〈∗〉
‖−− R0(� + 2 · k0; �U � uq; U ′ � u′q)

= (� + 2 · k0; �U � uq; Vq): (98)

By rule (R′3), for every q such that [�pzq] ≡ ∅,

∅ |−− (0; [�pzq]; ∅): (99)

Let us show that, for every q such that [�pzq] ≡ ∅,

∅
〈∗〉
‖−− C(0; [p�q]; ∅): (100)

From the equations [�pzq] ≡ ∅ and [�pzq]� u= [p�q] (for some u∈X k1) we get that
[p�q] ≡ ∅. Hence, by rule (R′3), (100) is true. From this deduction, we obtain

∅
〈∗〉
‖−− C

� + 2k0; U ′

n;
∑

[�pzq]6≡∅
[p�q] · Vq

: (101)

Using rule (R′3), for every q∈Q,

∅ ‖−− R′3(0; [qeq]; �): (102)

Using (102), (98)and (R7)–(R9) we obtain

{(�; �U;U ′)}
〈∗〉
‖−− C

�+2k0;

∑
[�pAq]6≡∅

[p�q] · Vq;
∑

[�pAq]6≡∅
[p�q][qeq] · (�U � uq)

 :

(103)

64 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

By (101), (103) and (R0), (R2) we get

{(�; �U;U ′)}
〈∗〉
‖−− (� + 2k0; U ′

n; V
′): (104)

Let us recall that Un =V . Hence, by (R1), (R2)

{(� + k1 − 1; V; V ′); (� + 2k0; U ′
n; V

′)}
〈∗〉
‖−− C(� + k1 − 1; Un; U ′

n): (105)

By (104), (105) and (97) is proved. Using now (97) and rule (R0), we obtain

H
〈∗〉
‖−− C(� + k1 − 1; Un; U ′

n) |−− R0(� + k1; Un; U ′
n) (106)

i.e. T+
B ful�lls (S1).

Let us suppose now that ∀i∈ [n − k1; n]; Ui≡U ′
i . Then, by (104), U ′

n ≡ V ′ and by
hypothesis V =Un ≡ U ′

n. Hence V ≡ V ′. This shows that T+
B ful�lls (S2).

An analogous proof can obviously be written for T−
B .

Lemma 67. Let (p; S; S ′) be a weighted equation; i.e. p∈N; S; S ′ ∈DRB〈〈V 〉〉. Then
{(p; S; S ′)}

〈∗〉
||−− C{(p; �e(S); �e(S ′))} and {(p; �e(S); �e(S ′))}

〈∗〉
||−− C{(p; S; S ′)}.

Proof. Follows easily from rules (R1), (R2), (R11).

Lemma 68. TC is a D0-strategy.

Proof. By Lemma 62, point (1), combined with Lemma 67, (S1) is proved. By
Lemma 62, point (2), combined with Lemma 67, (S2) is proved.

Let us de�ne the strategy SAB by: for every W =A1A2 · · ·An,

(0) if W ∈ dom(Tcut), then SAB(W) =Tcut(W),
(1) elsif W ∈ dom(T∅), then SAB(W) =T∅(W),
(2) elsif W ∈ dom(T�), then SAB(W) =T�(W),
(4) elsif W ∈ dom(T+

B), then SAB(W) =T+
B (W),

(5) elsif W ∈ dom(T−
B), then SAB(W) =T−

B (W),
(6) elsif W ∈ dom(TA), then SAB(W) =TA(W),
(7) else SAB(W) is unde�ned.

The strategy SABC is obtained by inserting “(3) elsif W ∈ dom(TC), then SABC(W)
=TC(W)” in the above list of cases.

Lemma 69. SABC;SAB are closed.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 65

Proof. Given any true assertion An = (�; S; T) and any word W =A1 · · ·An, at least one
of T�; TA is de�ned on W .

8. Tree analysis

This section is devoted to the analysis of the proof-trees � produced by the strategy
SAB de�ned in Section 7. The main results are Lemmas 83 and 84 whose combination
asserts that if some path (from a node x to a node y) of � is such that its origin
has “small defect and large norm” and its length is “large”, then there exists some
ancestor of y at which TC has a non-empty value. This key technical result will ensure
termination of the strategy SABC (see Section 9).

8.1. Depth and weight

In this section we show that the weight and the depth of a given node are closely
related. Let us say that the strategy T “occurs at” node x i�

T (�(x[0]) · �(x[1]) · · · �(x[|x| − 1])) = �(x);

i.e. the image of the path from � (included) to x (excluded) by the strategy T , is equal
to the label of x.

For short, we say that TB occurs at x i� T+
B or T−

B occurs at x.

Lemma 70. Let � ∈ {−;+}; A1; : : : ; An ∈A such that T�
B (A1 · · ·An) is de�ned. Then;

∀i∈ [n− k1 + 1; n]; ∀�′ ∈{+;−}; Ai 6=T�′
B (A1 · · ·Ai−1).

In other words: if TB occurs at node x of �, it cannot occur at any of its k1 above
immediate ancestors.

Proof. Suppose that ∃i∈ [n−k1 +1; n]; �′ ∈{+;−}; Ai = T�′
B (A1 · · ·Ai−1). Hence �i =

�i−1− 1 ¡ �n−k1 + i, contradicting one of the hypothesis under which T�
B (A1 · · ·An) is

de�ned.

Lemma 70 ensures that, in every branch (xi)i∈ I and for every interval [n + 1; n + 4]
⊆ I , at most one integer j is such that TB occurs at j.

Lemma 71. Let � be a proof-tree associated to the strategy SAB. Let x; x′ ∈ dom(�);
x4 x′. Then |W (x′)−W (x)|6|x′| − |x|62 · (W (x′)−W (x)) + 3.

(We recall the depth of a node x is just its length |x|.) We denote by W (x) the weight
of x which we de�ne as the �rst component of �(x), i.e. the weight of the equation
labelling x.)

66 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Proof. Let x; x′ be such that |x′| = |x|+ 1. Then W (x′)−W (x)∈{−1;+1} hence the
inequality |W (x′)−W (x)|6|x′| − |x| is ful�lled such nodes. The general case follows
by induction on (|x′| − |x|).

Let us prove now the other inequality. We distinguish two cases.
Case 1: |x′| − |x|63. Then |x′| − |x|62 · (W (x′) −W (x)) + 3 (because there is at

most one TB step in a sequence of length 6 3).
Case 2: |x′| − |x|¿4. Let x = x0; x1; : : : ; xq; x′ be the sequence of nodes such that

|x′| − |x|= 4 · q + r; 06r¡4 and ∀i∈ [0; q− 1]; |xi+1| − |xi|= 4.
By Lemma 70, in every set {y∈ dom(�) | xi ≺ y4xi+1} at most one node z is such

that TB occurs at z. Hence W (xi+1)−W (xi)¿2.
It follows that

|x′| − |x| =
q−1∑
i=0

[|xi+1| − |xi|] + |x′| − |xq|

6
q−1∑
i=0

2(W (xi+1)−W (xi)) + |x′| − |xq|

6 2(W (xq)−W (x)) + 2(W (x′)−W (xq)) + 3 (by the �rst case)

6 2(W (x′)−W (x)) + 3:

We recall that (�0; S+
0 ; S−

0) is an initial assertion which has been �xed in
Section 6. We recall the de�nitions of some constants (de�ned in Section 6):

k0 = max{�([pzq]) |p; q ∈ Q; z ∈ Z; [pAq] 6≡ ∅}; k1 = max{2k0 + 1; 3};

D1 = 4k0 + 3; k2 = (D1 + 4) · k1 + k0 + 1;

d0 = 2 · |Q| · (Card(X6k1) + 1); D2 = max{�d0 + sd0 ; ‖S−
0 ‖; ‖S+

0 ‖};
N0 = 1 + (k2 + 2)K0 + D2:

We �x throughout the remaining of this section a tree �=T(SAB; (�0; U−
0 ; U+

0)) (i.e.
� is the proof tree associated to the assertion (�0; U−

0 ; U+
0) by the strategy SAB). We

suppose that

rd(U−
0)6D2; rd(U+

0)6D2; U−
0 ; U+

0 are both unmarked; (107)

U−
0 ≡ U+

0 : (108)

We recall that, formally, � is a map dom(�)→N×DRB〈〈V 〉〉×DRB〈〈V 〉〉 such that
dom(�)⊆{1; : : : ; |X |}∗ is closed under pre�x and under “left-brother” (i.e. w · (i+1)
∈ dom(�)⇒w · i∈ dom(�)). We denote by pr2;3 :N×DRB〈〈V 〉〉×DRB〈〈V 〉〉→
DRB〈〈V 〉〉×DRB〈〈V 〉〉 the projection (�; U; U ′) 7→ (U;U ′). By �s we denote the tree
obtained from � by forgetting the weights: �s = � ◦ pr2;3.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 67

8.2. Linearity

Lemma 72. For every label (�; U−; U+) of �;
(1) ∀�∈{−;+}; U � is (D1; D2)-linear;
(2) if U� is unmarked; then U� is (0; D2)-linear;
(3) ∃�∈{−;+}; U � is unmarked.

Proof. Let x∈ dom(�); �(x) = (�; U−; U+). We denote by x(i) the pre�x of length i of
the node x. For every 06i6|x| we note �(x(i)) = (�i; U−

i ; U+
i) =Ai. (Hence (Ai)06i6|x|

is the sequence of labels on the path from � to x.) We prove points (1)–(3) by induction
on |x| (the depth of node x).
|x|= 0: By hypothesis (107) points (1)–(3) are true.
|x|= n + 1:
Case 1: (�; U−; U+) is the result of the application of T�

B on (�i; U−
i ; U+

i); (�n; U−
n ;

U+
n) where i = n− k1.
Then U−�

i is unmarked (by de�nition of T�
B) and (0; D2)-linear (by induction

hypothesis). It follows that U� is (2k0 + 2; D2)-linear. Moreover, by de�nition of SAB,
U�

n 6≡ ∅, hence U� is marked. On the other hand, there exists some w∈X k1 such that
U−� =U−�

i �w. By induction hypothesis rd(U−�
i)6D2 and by Lemma 32 point (1),

rd(U−�)6D2. Moreover, as no letter [qeq] can be introduced by the action � (see
hypothesis (12) in Section 2.2), U−� is unmarked.
Case 2: (�; U−; U+) = (�n+1; U−

n � x; U+
n � x) for some x∈X . If for every 16i6n,

(�i; U−
i ; U+

i) is not the result of an application of TB, then U−
n+1; U

+
n+1 are both (0; D2)-

linear. Otherwise, there is a maximal integer, m0, such that (�m0 ; U
−
m0
; U+

m0
) is the result

of an application of TB. Let �∈{−;+} such that T�
B occurs at m0. We have

U−�
m0

is unmarked and (0; D2)-linear; (109)

U+�
m0

=
∑
q∈Q

[p!q][qeq]Tq (110)

for some !∈Z+; 16|!|62k0 + 2; (Tq)q∈Q ∈DRBQ;1〈〈V 〉〉, where every Tq is
unmarked and (0; D2)-linear. As U−� =U−�

m0
�w for some w∈X n+1−m0 , property (109)

implies that U−� is unmarked and (0; D2)-linear.
If there exists some i∈ [m0; n+1] such that U+�

i = ��(Tq) then, by hypothesis U+�
i is

unmarked and (0; D2)-linear. It follows that in this case U+� is unmarked and (0; D2)-
linear.

If there exists no i∈ [m0; n + 1] such that U+�
i = ��(Tq) then

∀i ∈ [m0; n + 1]; ∃pi ∈ Q; !i ∈ Z+; U+�
i =

∑
q∈Q

[pi!iq][qeq]Tq:

Let m06i06n+ 1 such that |!i0 | is minimal. If |!n+1|− |!i0 |¿2k0 + 1, then T�
B (A0 : : :

Ai) would be non-empty for some i0¡i¡n + 1, contradicting the maximality of m0.
Hence |!n+1|−|!i0 |62k0 +1, and since |!i0 |6|!m0 |62k0 +2 we have |!n+1|64k0 +3.
Hence U+� is (D1; D2)-linear.

68 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

8.3. N -stacking sequences

We show here that the tree � is somewhat “smooth” in the sense that its labels
cannot be varying in a too chaotic way along a given branch. We shall establish
that every “su�ciently long” branch must contain a “reasonably short factor” (a “N -
stacking sequence”) where at least d0 labels (U;U ′) are belonging to the same d-space
V of dimension 6d0 with coordinates not greater than sd0 (over some �xed generating
family of cardinality 6d0). Let us de�ne now this notion of stacking sequence which
is, roughly speaking, an extension to sequences of pairs (Ui; U ′

i) appearing in �s, of
the notion of stacking derivation (see Section 3.4.2).

For every U;U ′ ∈DRB〈〈V 〉〉 we set

‖|U‖| = max{‖Ũ‖; Ũ ∈ Q(U) and Ũ is unmarked};

‖|(U;U ′)‖| = max{‖|U‖|; ‖|U ′‖|}:

Let x∈ dom(�). We de�ne now a kind of norm on nodes which in some sense “erases”
the short-term variations of ‖|(∗; ∗)‖|:

N(x) = max{‖|�s(x(j))‖|; j ∈ N; |x| − k16j6|x|}:

Let us say that a function f :N→N is k-up Lipschitz i�

∀i; j ∈ dom(f); i6j ⇒ f(j)− f(i)6k(j − i): (111)

Lemma 73. Let (xi)i∈I (where I is a beginning section of N) be some branch of �.
(1) The function N : I→N is (k0 · K0)-up-Lipschitz.
(2) The restriction N : J→N to any interval J ⊆ I such that neither T−

B ; nor T+
B

occur in J; is K0-up-Lipschitz.

(In the above lemma and in the proof below we use the simpli�ed notation N(i) for
the integer N(xi).)

Proof. Let us prove that for every i such that i + 1∈ I ,

N(i + 1)6N(i) + k0K0: (112)

Let �∈{−;+}. Let us consider four cases.
Case 1: U�

i+1 =U�
i � x (for some x∈X;U�

i unmarked). Then, by Lemma 32, ‖U�
i+1‖

6‖U�
i ‖+ K06N(i) + K0:

Case 2: U�
i+1 is obtained by T�

B transformation

U�
i+1 =

∑
q∈Q′

[pi!iq][qeq](U−�
i−k1
� uq);

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 69

where Q′⊆Q; 16|uq|6k0. Then, by Lemma 32 we have

|‖U�
i+1‖| = max

q∈Q′
{‖U−�

i−k1
� uq‖}6 ‖U−�

i−k1
‖+ k0K0

6N(i) + k0K0:

Case 3: U�
i+1 =U�

i � x (for some x∈X;U�
i ; U�

i+1 are marked).

U�
i =

∑
q∈Q

[pi!iq][qeq]Vq

where the Vq are unmarked

U�
i+1 =

∑
q∈Q

([pi!iq]� x)[qeq]Vq;

hence, |‖U�
i+1|‖= maxq∈Q {‖Vq‖}= |‖U�

i |‖6N(i).
Case 4: U�

i+1 =U�
i � x (for some x∈X;U�

i marked, U�
i+1 unmarked).

U�
i =

∑
q∈Q

[pi!iq][qeq]Vq;

where the Vq are unmarked and �-free U�
i+1 =Vq0 , for some q0 ∈Q, hence

|‖U�
i+1|‖ = ‖U�

i+1‖ = ‖Vq0‖6max
q∈Q
{‖Vq‖} = |‖U�

i |‖6N(i):

As in every case, |‖U�
i+1|‖6N(i) + k0K0, inequality (112) and point (1) of the lemma

are proved.
The discussion above also shows that, if TB does not occur in J , then for every

J such that j∈ J; j + 1∈ J , N(j + 1)6N(j) + K0, which proves point (2) of the
lemma.

Let � = (xi)i∈I be a path in �, where I ⊆N is a non-empty interval and i0 = min(I).
We call � a N-stacking sequence i�:

∀i ∈ I; N(xi)¿N(xi0) and N(xi0)¿N0: (113)

From now on and until Lemma 84, we �x a N-stacking sequence � = (xi)i∈I . We call
Card(I)-1 the length of � (denoted |�|). Let us use the simpli�ed notation N(i) for
N(xi) and let us note �s(xi) = (U−

i ; U+
i).

Lemma 74. ∀i∈N; if i + k1 ∈ I; then ∃j∈ [i; i + k1]; |‖(U−
j ; U+

j)|‖¿N(i0).

Proof. This follows from the fact that N(i + k1)¿N(i0).

Lemma 75. Let i∈N; such that i + k1 + 1∈ I . If TB occurs at node xi+1 then
|‖(U−

i+1; U
+
i+1)|‖¿N(i0)− k1K0:

70 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Proof. Suppose that |‖(U−
i+1; U

+
i+1)|‖6N(i0) − k1K0 − 1: Then, TB cannot occur in-

side [i + 1; i + 1 + k1] (see Lemma 70). Hence, by Lemma 73 ∀j∈ [i + 1; i + 1 +
k1]; |‖(U−

j ; U+
j)|‖6N(i0)− 1. Finally, N(i + 1 + k1)6N(i0)− 1, contradicting the fact

that � is N-stacking.

Lemma 76. Suppose that T�
B occurs at node xi+1 where i + k1 + 1∈ I . Then U�

i+1 =∑
q∈Q′ [pi�iq][qeq](U�

i+1� uq); for some pi ∈Q;Q′⊆Q; �i ∈ (Z−{e})∗; 16|�i|; |uq|6
k0; ‖U�

i+1‖¿N(i0)− 2k1K0:

Proof. We distinguish two cases.
Case 1: |‖U�

i+1|‖= max{|‖U−
i+1|‖; |‖U+

i+1|‖}. By lemma 75, |‖U�
i+1|‖¿N(i0)− k1K0.

So, ∃q∈Q′; ‖U�
i+1� uq‖¿N(i0)− k1K0, hence ‖U�

i+1‖¿N(i0)− (k1 + k0)K0¿N(i0)−
2k1K0.
Case 2: |‖U−�

i+1|‖= max{|‖U−
i+1|‖; |‖U+

i+1|‖}. Hence ‖U−�
i−k1
‖¿‖U−�

i+1‖ − k1K0 =
|‖U−�

i+1|‖ − k1K0¿N(i0)− 2k1K0. As U�
i+1 =U−�

i−k1
, the lemma is proved.

We de�ne an integer i1 by

i1 = min{i ∈ [i0 − k1; i0]∩N; |‖(U−
i ; U+

i)‖|¿N(i0)− (k2 − k0)K0}; (114)

if TB does not occur in [i0 − k1; i0];

i1 is the unique element of [i0 − k1; i0] ∩N where TB occurs; (115)

if TB occurs in [i0 − k1; i0]:
Let us notice that, by Lemma 74, i1 is always de�ned (i.e. the set used in the r.h.s.

of de�nition (114) cannot be empty).
For every �∈{−;+}, we de�ne a Q-series [p�!�] and a Q-form �� as follows.
Case 1: U�

i1 is unmarked and ‖U�
i1‖¿N(i0)− (k2 − k0)K0. As rd(U�

i1)6D2, U�
i1 has

a minimal decomposition

U�
i1 = [p�!�

1] ∗ ��
1 with ‖��

1‖6D2:

Using the inequality

‖U�
i1‖¿N(i0)− (k2 + 1)K0¿D2;

we conclude that !�
1 admits a decomposition !�

1 =!�!�
2 such that

U�
i1 = [p�!�] ∗ ��; �� = [!�

2] ∗ ��
1 (116)

with

N(i0)− (k2 + 1)K06‖��‖¡ N(i0)− k2K0; ‖��‖¿D2 + K0; |��|¿1: (117)

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 71

Case 2: U�
i1 is marked and |‖U�

i1 |‖¿N(i0)− (k2 − k0)K0. Hence, U�
i1 can be written

as

U�
i1 =

∑
q∈Q′

[p�
1�

�
1q][qeq](U�

i1 � uq)

for some p�
1 ∈Q; Q′⊆Q; 16|��

1|6D1; |uq|6k0; U �
i1 =U−�

j ; j¡i1:
Let q∈Q′ such that |‖U�

i1 |‖= ‖U�
i1 � uq‖. We have

‖U�
i1‖¿‖U�

i1 � uq‖ − |uq|K0¿N(i0)− (k2 − k0)K0 − k0K0 = N(i0)− k2K0:

From this inequality we conclude, as in case 1, that U�
i1 has a decomposition

U�
i1 = [p�!�] ∗ �� (118)

with

N(i0)− (k2 + 1)K06‖��‖¡ N(i0)− k2K0; ‖��‖¿D2 + K0; |��|¿1: (119)

Case 3: |‖U�
i1 |‖¡N(i0)− (k2 − k0)K0. In this case, [p�!�]; �� are both unde�ned.

Remark 77. If de�nition (114) applies then, the inequality |‖(U−
i1 ; U+

i1)|‖¿N(i0) −
(k2 − k0)K0 implies that there exists at least one �∈{−;+} such that [p�!�]; �� are
both de�ned. If de�nition (115) applies then, Lemma 75 implies the same result.

Let us de�ne now the following families of series and d-spaces:

G�
0 = {��

q � u | q ∈ Q; u ∈ X6k0}∪{��(��
q) | q ∈ Q}; (120)

W� = V((��
q)q∈Q); V � = V(G�

0) (121)

for every �∈{−;+};
W̃ = W−∪W+; Ṽ = V−∪V+; �V = V− + V+; (122)

where, for every d-spaces V1; V2⊆DRB〈〈V 〉〉, V1 + V2 denotes the smallest d-space
containing V1 ∪ V2. We illustrate in Fig. 4 the above de�nitions. The band {U ∈DRB
〈〈V 〉〉|N(i0)− 2k1K06|‖U |‖} is a full security band in the sense that every U�

i in this
band belongs to �V (Lemma 79). The band {U ∈DRB〈〈V 〉〉 | N(i0)−(k2−k0)K06|‖U |‖
¡N(i0)} is a security band in the sense that if [U�

j is in this band, j¡i, U�
i belongs

to the full security band, and U�
j → U�

i], then U�
j belongs to �V (property P(�; i; j)

established in the proof of Lemma 79).

Lemma 78. Let �∈{−;+}; i∈ I; j∈N; i16j6i such that |‖U�
i |‖¿N(i0)−2 ·k1 ·K0

and T�
B does not occur in [j + 1; i]. Then |‖U�

j |‖¿N(i0)− (k2 − k0)K0:

Proof. Let us suppose �; i; j ful�ll the hypothesis of the lemma and let us suppose that
the following inequality is realized:

|‖U�
j |‖¡ N(i0)− (k2 − k0)K0: (123)

72 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Fig. 4. The generating family.

As |‖U�
i |‖¿N(i0)− 2k1K0, the following integers are well de�ned:

i2 = −1 + min{j′ ∈ [j + k1; i] |N(i0)− 4k1K06|‖U�
j′ |‖¡ N(i0)− (4k1 − 1)K0};

i3 = −1 + min{j′ ∈ [i2; i] |N(i0)− 2k1K06|‖U�
j′ |‖}:

As for every j′ ∈ [j; i2−k1]; |‖U�
j′ |‖¡N(i0)−4k1K0, by Lemma 76, T−�

B does not occur
in [j + k1 + 1; i2 + 1]. But |‖U�

i2 |‖ − |‖U�
j |‖¿(k2 − k0 − 4k1 − 1)K0 = (D1 + 1) · k1 ·K0,

hence i2− j¿(D1 + 1) · k1 so that the interval [j + k1; i2] has a length greater or equal
to D1 · k1. Applying Lemma 44 we conclude that U−�

i2 is unmarked. (Let us notice
that U�

i2 is unmarked too, just because |‖U�
i2 |‖¿|‖U�

j |‖ while U�
i2 =U�

j �w for some
w∈X i2−j.)

As ‖U�
i3‖¿‖U�

i2‖+ k1 ·K0 + 1, by Lemma 43 the derivation U�
i2 → U�

i3 must contain
a stacking subderivation

U�
i2+k ↑ (u)U�

i2+k+k1

for some u∈X k1 . As U−�
i2 is unmarked, there exists some j′ ∈ [i2 + k1 + 1; i3 + 1] such

that either T�
B occurs at j′, which contradicts the hypothesis of the lemma, or T−�

B

occurs at j′ which contradicts Lemma 76. (We illustrate our argument in Fig. 5.)

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 73

Fig. 5. U�
j out of security band is impossible.

Lemma 79. Let i¿i1; i + k1 ∈ I; �∈{−;+} such that |‖U�
i |‖¿N(i0)− 2k1K0. Then

U�
i ∈ �V .

Proof. Let us consider the following property P(�; i; j):

{j6i and |‖U�
i |‖¿N(i0)− 2k1K0 and no T�

B occurs in [j + 1; i]} (124)

⇒ {(if U�
j is unmarked then U�

j ∈ W̃) and (ifU�
j is marked then; there

exists some �′ ∈ {−;+} such that; every linear component of

U�
j is in (W�′∩DRBlinD2〈〈V 〉〉)� X 〈1; k 0〉}: (125)

(Here we denote by X 〈m;m′〉 the set {u∈X ∗; m6|u|6m′}.)
We prove by lexicographic induction on the pair (i; j) that

∀i¿i1;∀j¿i1; [∀� ∈ {−;+};P(�; i; j)]: (126)

Let us consider a pair (i; j)∈N×N; i¿i1; j¿i1 and some �∈{−;+}, ful�lling the
left-hand side of the implication P(�; i; j) (i.e. ful�lling condition (124)).
Case 1: j = i1. If U�

j is unmarked, by Lemma 78 |‖U�
j |‖¿N(i0) − (k2 − k0)K0.

Hence U�
j ∈W� (by case 1 of the de�nition of ��).

If U�
j is marked, then, by case 2 of the de�nition of ��, every linear component of

U�
j is in (W� ∩DRBlinD2〈〈V 〉〉)�X 〈1; k 0〉:

74 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Case 2: j¿i1 and T�
B occurs at j:

U�
j =

∑
q∈Q′

[pj!jq][qeq](U�
j � uq)

for some Q′⊆Q; !j ∈ (Z − {e})+; pj ∈Q; |uq|6k0, and U�
j =U−�

j−k1−1.
By Lemma 76

|‖U�
j |‖¿N(i0)− 2 · k1 · K0:

It follows that j− k1− 1¿i1 (by minimality of i1 in the case where TB does not occur
in [i0 − k1; i0]∩N and because two successive occurrences of TB must be at distance
¿k1 + 1 in the case where TB occurs at i1). As (j − k1 − 1; j − k1 − 1)¡(i; j), by
induction hypothesis, P(�; j − k1 − 1; j − k1 − 1) is true: U−�

j−k1−1 is unmarked (by

de�nition of T�
B) and |‖U−�

j−k1−1|‖¿N(i0) − 2 · k1 · K0, hence U−�
j−k1−1 ∈W�′ (for some

�′). It follows that

U�
j is marked and for every q ∈ Q′; U �

j � uq ∈ (W�′∩DRBlinD2〈〈V 〉〉)� X 〈1;k0〉:

Case 3: j¿i1 and T�
B does not occur at j.

Subcase 1: U�
j−1; U

�
j are both marked. U�

j−1� x =U�
j for some x∈X . By

Lemma 72,

U�
j−1 =

∑
q∈Q′

[pj−1!j−1q][qeq]Tq

for some !j−1 ∈ (Z −{e})+; 16|!j−1|6D1; (Tq)q∈Q ∈DRBQ;1〈〈V 〉〉, where every Tq is
unmarked and (0; D2)-linear. It follows that

U�
j =

∑
q∈Q′

([pj−1!j−1q]� x)[qeq]Tq:

By the induction hypothesis P(�; i; j − 1) we get there exists �′ ∈{−;+} such that
∀q∈Q′; Tq ∈ (W�′ ∩DRBlinD2〈〈V 〉〉)�X 〈1; k 0〉. Hence (125) is true for (�; i; j).
Subcase 2: U�

j−1; U
�
j are both unmarked. By induction hypothesis U�

j−1 ∈ W̃ , i.e.

U�
j−1 ∈V({��′

q | q∈Q}) for some �′ ∈{−;+}. By de�nition of ��′ we have

(1) ‖��′‖¿D2 + K0; |��′ |¿1;
(2) rd(U�

j−1)6D2:

Hence, by Lemma 38, ∃!j−1 ∈Z∗; ∃pj−1 ∈Q; U�
j−1 = [pj−1!j−1] ∗��′ . As ‖U�

j−1‖¿
‖��′‖, we must have |!j−1|¿1. Let us apply Lemma 37 on U =U�

j−1; �=��′; H =U�
j ;

u= x; k = 1: One can check that, by Lemma 78 the hypothesis

‖H‖¿1 + k · |Q|+ ‖�‖

is ful�lled. Hence U�
j = ([pj−1!j−1]� x) ∗ ��′, which proves that U�

j ∈ W̃ .
Subcase 3: U�

j−1 is marked while U�
j is unmarked.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 75

By Lemma 72

U�
j−1 =

∑
q∈Q

[pj−1!j−1q][qeq]Tq

for some !j−1 ∈ (Z − {e})+; 16|!j−1|6D1; (Tq)q∈Q ∈DRBQ;1, where every Tq is un-
marked and (0; D2)-linear. It follows that

U�
j = ��(Tq0)

for some q0 ∈Q. By induction-hypothesis there exists �′ ∈{−;+} such that Tq0 ∈
(W�′ ∩DRBlinD2〈〈V 〉〉)�X 〈1; k 0〉; i.e. there exist Tq0 ∈W�′ ∩DRBlinD2〈〈V 〉〉; uq0 ∈X 〈1; k 0〉

such that

Tq0 = Tq0 � uq0 :

(Let us notice that this equality implies that Tq0 = ��(Tq0).)
Tq0 ∈V((��′

q)q∈Q), and by de�nition of ��′ we have
(3) ‖��′‖¿D2 + K0; |��′ |¿1,
(4) rd(Tq0)6D2.
Applying Lemma 38, we obtain that

∃!0 ∈ Z∗; ∃p0 ∈ Q; Tq0 = [p0!0] ∗ ��′:

Using the inequality given by Lemma 78 (for U�
j) and inequality (117) or (119) we

obtain that

‖U�
j ‖¿N(i0)− (k2 − k0)K0 ¿ [N(i0)− (k2 − k0)K0 − 1− k0K0] + 1 + k0 · K0

¿ ‖��′‖+ 1 + k0 · |Q|;

which is equivalent to

‖Tq0 � uq0‖¿‖��′‖+ 1 + k0|Q|:

Hence the hypothesis of Lemma 37 are met by U =Tq0 ; H =Tq0 ; p=p0; h=!0;
�=��′; u= uq0 ; k = k0. Lemma 37 then concludes that

Tq0 = ([p0!0]� uq0) ∗ ��′ where [p0!0]� uq0 = [q′!′];

for some q′ ∈ Q; |!′|¿k0:

As U�
j =Tq0 , this establishes that U�

j ∈W�′, hence that P(�; i; j) is true. Let us ob-
serve �nally that P(�; i; i) shows that, if U�

i is unmarked then U�
i ∈ W̃ ⊆ �V else

U�
i ∈V�′ ⊆ �V . Hence the lemma is proved.

Lemma 80. Suppose i¿i1; i + k1 ∈ I; ‖U�
i ‖¿N(i0) − 2k1K0; U �

i unmarked. Then
∃�′ ∈{−;+}; p∈Q;!∈Z∗; U �

i = [p!]∗��′ with 16|!|62k0(i− i0)+2(k2 +k1k0 +2).

76 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Proof. By property P(�; i; i) established in the proof of Lemma 79, ∃�′ ∈{−;+};
p∈Q;!∈Z∗,

U�
i = [p!] ∗ ��′:

By Lemma 34 point (2), as |��′ |¿1,

‖U�
i ‖= 1 + (|!| − 1)|Q|+ ‖��′‖:

If i¿i0, by Lemma 73

‖U�
i ‖6N(i)6(i − i0)k0K0 + N(i0)6(i + k1 − i0)k0K0 + N(i0):

If i∈ [i1; i0],

‖U�
i ‖6N(i0)6(i + k1 − i0)k0K0 + N(i0):

By inequality (117) or (119),

‖��′‖¿N(i0)− (k2 + 1)K0:

Hence, we get

(|!| − 1)|Q|61 + (|!| − 1)|Q|
= ‖U�

i ‖ − ‖��′‖
6(i + k1 − i0)k0K0 + N(i0)− (N(i0)− (k2 + 1)K0)

= (i + k1 − i0)k0K0 + (k2 + 1)K0:

Hence |!|6(i− i0)k0 ·K0=|Q|+(k2 + k1k0 +2) ·K0=|Q|6(i− i0) ·2k0 +(2k2 +2k1k0 +4)
(because K062|Q|).

Let us de�ne some additional spaces of series

G�
1 = {��

q � u| q ∈ Q; u ∈ X6k1}∪{��(��
q)| q ∈ Q};

V �
1 = V(G�

1); �V1 = V−
1 + V+

1 : (127)

We recall that

K1 = k1K0 + 1; K2 = 6D1k2
1K0:

Lemma 81. Let L¿0 such that (i0 + K1 · L + K2) + k1 ∈ I . Then; there exists i∈
[i0 + L; i0 + K1 · L + K2] such that; U−

i ∈ �V 1; U+
i ∈ �V 1.

Proof. Let us establish that

∃i ∈ [i0 + L; i0 + K1 · L + K2];∃� ∈ {−;+}; T �
B occurs at i: (128)

If ∃�∈{−;+}; T �
B occurs in [i0 + L; i0 + L + D1k1] then (128) is true.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 77

Otherwise, by Lemmas 72 and 44, both U�
i0+L+D1·k1

are unmarked. If some �-stacking
sequence of length k1 occurs in the interval I(i0; L) = [i0 +L+D1k1; i0 +K1L+K2−1],
then some T�′

B occurs at some i∈ [i0 + L + D1k1 + 1; i0 + K1L + K2] and (128) is true.
Let us suppose now that, ∀�∈{−;+}, no �-stacking sequence of length ¿k1 occurs

in the interval I(i0; L).
By Lemma 73 we must then have

|‖(U−
i0+L+D1k1

; U+
i0+L+D1k1

)|‖6N(i0) + (L + D1k1)K0:

For each �∈{−;+} we distinguish two cases.
Case 1: ∃i∈ [i0 +L+D1k1; i0 +K1L+K2−k1]; ‖U�

i ‖6N(i0)−k2K0. By Lemma 43,
as there is no �-stacking sequence of length k1 in I(i0; L):

‖U�
i0+K1L+K2−k1

‖6N(i0)− k2K0 + k1K06N(i0)− 2k1K0: (129)

Case 2: ∀i∈ [i0 +L+D1k1; i0 +K1L+K2−k1]; ‖U�
i ‖¿N(i0)−k2K0. By Lemma 72,

for every i∈ [i0 + L + D1k1; i0 + K1L + K2]; U �
i is (0; D2)-linear.

Using Lemma 40 it follows that all these U�
i are loop-free.

By Lemma 42, for every ‘6(L+D1k1 +3k1)K0, there exists some k�6(L+D1k1)+
(L + D1k1 + 3k1)K0k1 such that

‖U�
i0+k�‖6‖U�

i0+L+D1k1
‖ − ‘:

Taking �‘ = (L + D1k1 + 3k1)K0 we obtain an integer

k�6(L + D1k1) + (L + D1k1 + 3k1)K0k16K1L + K2 − k1 such that

‖U�
i0+k�‖6 ‖U�

i0+L+D1k1
‖ − �‘

6N(i0) + (L + D1k1)K0 − �‘

= N(i0)− 3k1K0:

By Lemma 43, it follows that

‖U�
i0+K1L+K2−k1

‖6(N(i0)− 3k1K0) + k1K0 = N(i0)− 2k1K0: (130)

Inequalities (129) and (130) show that

|‖U−
i0+K1L+K2−k1

; U+
i0+K1L+K2−k1

|‖6N(i0)− 2k1K0

and, �nally,

N(i0 + K1L + K2)6N(i0)− k1K0:

As this inequality would contradict the hypothesis that � is N -stacking, assertion (128)
is proved.

Let us consider an integer i satisfying (128). Suppose that T�
B occurs at i. By Lemma

76, ‖U�
i ‖¿N(i0)− 2k1|Q|. One can check that, by the same argument as in the proof

78 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

of Lemma 79, case 2, necessarily i − k1 − 1¿i1. By the property P(�; i′; j′) (where
we choose i′ = j′ = i− k1 − 1), established in the proof of Lemma 79, U�

i ∈ W̃ . Hence
U�

i ∈ Ṽ ⊆V1 and U−�
i ∈V1.

Let us give now a stronger version of Lemma 81 where we analyze the size of the
coe�cients of the linear combinations whose existence is proved in Lemma 81. We
recall that

K3 = 2k0|Q|2; K4 = (2k2 + k1 + 3) · K2
0 + (k1 + 2) · K0 + 2:

Let us �x a total ordering on G1 =G−
1 ∪G+

1 :

G1 = {�1; �2; : : : ; �d}; where d = Card(G1):

Let us remark that d62 · |Q| · (Card(X6k1) + 1) =d0.

Lemma 82. Let L¿0 such that (i0 + K1L + K2) + k1 ∈ I . There exists i∈ [i0 + L;
i0 +K1 ·L+K2] and; for every �∈{−;+}; there exists a deterministic rational family
(��

i; j)16j6d ful�lling
(1) U�

i =
∑d

j=1 �
�
i; j · �j;

(2) ‖��
i;∗‖6K3 · (i − i0) + K4:

Proof. We have already established property (128), i.e. ∃i∈ [i0 + L; i0 + K1 · L + K2];
∃�∈{−;+}; T �

B occurs at i. Then

U−�
i = �U � u; for some u ∈ X k1 ;

U+�
i =

∑
q∈Q′

[phq][qeq](�U � uq); for some Q′⊆Q; h ∈ Z〈1;k1〉; uq ∈ X 〈1;k0〉;

�U = U−�
i−k1−1 = [r!] ∗ ��′; for some r ∈ Q; ! ∈ Z∗; �′ ∈ {−;+}

and by Lemmas 76 and 80

|!|62k0(i − i0 − k1 − 1) + 2(k2 + k1k0 + 2): (131)

Coe�cients of U−�
i . Let us analyze the coe�cients of U−�

i expressed as a linear
combination of the {��′

q �w | 06|w|6k1}∪ {��(��′
q) | q∈Q}.

Either U−�
i = ([r!]� u) ∗ ��′ and then

‖[r!]� u‖6‖[r!]‖+ K0|u|6 1 + (|!| − 1)|Q|+ |u|K0

6 1 + [2k0(i − i0 − k1 − 1)

+ 2(k2 + k1k0 + 1) + k1] · K0

6 2k0K0(i − i0) + (2k2 + k1 + 3)K0;

or U−�
i = ��(��′

q � u′′) for some q∈Q; u′′ su�x of u and then

‖(∅; : : : ; ∅; �; ∅; : : : ; ∅)‖ = 26k0K0(i − i0) + (2k2 + k1 + 3)K0:

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 79

Coe�cients of U+�
i . Replacing u by uq in the above analysis, we obtain

∀q ∈ Q′; �U � uq =
d∑

j=1

q; j · �j;

where ‖q;∗‖62k0K0(i − i0) + (2k2 + k1 + 3)K0. We can then decompose

U�
i = � · · �;

where � is the deterministic row-vector ([phq1][q1eq1]; : : : ; [phqn][qneqn]); is a de-
terministic matrix of dimension (|Q′|; d); � is a row-vector of dimension (d; 1) whose
components are the elements of G1.

Let us choose ��
i;∗ = � · .

We obtain the upper bound

‖��
i;∗‖6 ‖�‖+ ‖‖

6 ‖([phq1]; : : : ; [phqn]‖+ ‖D‖+ ‖‖
(where D is the diagonal matrix with diagonal coe�cients [qieqi])

6 ‖[ph]‖+ ‖D‖+ ‖‖
6 (k1|Q|+ 1) + (2|Q|+ 1) + 2k0K0|Q|(i − i0) + (2k2 + k1 + 3)K0|Q|
6K3(i − i0) + K4:

Lemma 83. Let us suppose that |�|¿Ld+k1. Then; there exists i06�1¡�2¡ · · ·¡�d

and deterministic rational vectors (��
i; j)16j6d (for every i∈ [1; d]) such that

(0) W (�1)¿1;
(1) ∀i; ∀�; U�

�i
=
∑d

j=1 �
�
i; j�j ∈V1;

(2) ∀i; ∀�; ‖��
i;∗‖6si;

(3) ∀i; W (�i+1)−W (�i)¿�i+1;
where the sequences (�i; ‘i; Li; si; Si; �i) are those de�ned by relations (91) and (92) in
Section 6.

Proof. Let us consider the additional property
(4) �i − i06Li.

We prove by induction on i the conjunction (1)∧ (2)∧ (3)∧ (4).
i = 1: By Lemma (82), there exists �1 ∈ [i0; i0 + K2] such that ∀�∈{−;+};∃ a de-

terministic vector (��
1; j)16j6d, such that

U�
�1

=
d∑

j=1

��
1; j�j

and in addition ‖��
1;∗‖6K3K2 + K4 = s1.

i→ i + 1: Suppose that �1¡�2¡ · · ·¡�i are ful�lling (1)∧ (2)∧ (3)∧ (4). By
Lemma 82, there exists �i+1 ∈ [i0 + Li + ‘i+1; i0 + K1(Li + ‘i+1) + K2] such that

80 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

∀�∈{−;+};∃ a deterministic vector (��
i+1; j)16j6d, such that

U�
�i+1

=
d∑

j=1

��
i+1; j�j (132)

and, in addition,

‖��
i+1;∗‖6K3(K1(Li + ‘i+1) + K2) + K4 = K3Li+1 + K4

= si+1: (133)

By Lemma 71

2(W (�i+1)−W (�i)) + 3¿�i+1 − �i¿‘i+1 = 2�i+1 + 3;

hence,

W (�i+1)−W (�i)¿�i+1: (134)

At last

�i+1 − i06K1(Li + li+1) + K2 = Li+1: (135)

The above properties (132)–(135) prove the required conjunction. It remains to prove
point (0): the integer �1 introduced by Lemma 82 is such that TB occurs at �1, hence

W (�1) = W (�1 − k1 − 1) + k1 − 1

¿W (�1 − k1 − 1) + 2¿1:

We recall that

C2 = Card{U ∈ DRB〈〈V 〉〉; ‖U‖6D2};

K6 = 5 · [(C2 · |Q||Z |k2+D2+3)|Q| · |Q||Z |D1]2; K5 = (K6 + 1) · k0 · K0:

Lemma 84. Let (xi)i∈I be a path in � (we suppose I ⊆N is a non-empty interval).
Let L¿0. One of the following cases is true:

(0) N (i0)¿N0; where i0 = min(I);
(1) |I |6K5 · L + K6;
(2) (xi)i∈I contains a N -stacking sequence of length ¿L.

Proof. Suppose that neither (0) nor (2) is realized. The set {�s(xi) | i∈ I} can contain
at most [(C2 · |Q||Z |k2+D2+3)|Q| · |Q||Z |D1]2 pairs (U−; U+) such that |‖(U−; U+)|‖¡N0

(because, by Lemma 72, they are (D1; D2)-linear). But no pair can appear more than 6
times on a given path, due to the inequality of Lemma 71 and to the rule Tcut. Hence,

Card{i ∈ I |N(i) ¡ N0}6K6:

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 81

Let us consider now an interval J = [i; i + ‘]⊆ I which is a maximal sub-interval of I
on which N takes values in [N0;+∞[. As N is k0K0-up-Lipschitz, and either i = i0 or
N(i − 1)¡N0 we have

N(i) ¡ N0 + k0K0:

As J does not contain any N-stacking sequence of length L,

‘6L · k0 · K0 − 1:

Finally, I contains at most (K6 + 1) maximal sub-intervals J on which N takes values
in [N0;+∞[. It follows that

|I |6Card(I)6K6 + (K6 + 1) · L · k0 · K0 = K5 · L + K6;

i.e. property (1) is realized.

9. Completeness of D0

We show that, up to some slight details, SABC is terminating.

Lemma 85. Let A0 be some true assertion which is supposed unmarked. Then the
tree T(SABC; A0) is �nite.

Proof. Suppose A0 = (�0; S−
0 ; S+

0) is true, unmarked and t =T(SABC; A0) is in�nite.
By Koenig’s lemma, t contains an in�nite branch whose (in�nite) labelling word is

A0A1 · · ·An · · · . Lemma 63 applied to m= 1 and d6d0 and combined with Lemma
23 shows that the equations Bj = (�j; Tj; Uj) produced by TC have size max{‖Tj‖; ‖Uj‖}
6D2, hence that the number of possible results of TC is �nite. Hence TC occurs only a
�nite number of times on this branch (otherwise Tcut would occur on this branch, which
is impossible on an in�nite branch). Let n0 be the last point where TC occurs or n0 = 0
if TC does not occur on this branch. (An0+i)i¿0 is a branch of the tree t′ =T(SAB; An0).
As every result of TC is a weighted linear equation which has size bounded by D2 (by
the above arguments) and which is unmarked (by point (C4) in the de�nition of TC),
if n0 6= 0 then t′ ful�lls hypothesis (107) assumed in Section 8.3.

As A0 is true and the strategies TA; TB; TC preserve truth, An0 is also true. Hence t′

ful�lls hypothesis (108) assumed in Section 8.3.
If n0 = 0, by de�nition of D2 (see Section 6) rd(S−

0)6D2; rd(S+
0)6D2 and by

hypothesis S−
0 ; S+

0 are unmarked. Hence, in this case too, t′ ful�lls hypothesis (107)
assumed in Section 8.3. As A0 is true, hypothesis (107) is ful�lled. Let us now apply
the results of Section 8.3.

By Lemma 84, the branch (An0+i)i¿0 must contain an N-stacking sequence � with
length |�|¿Ld0 + k1. Let us remark that, as T∅ does not occur (otherwise the branch
would be �nite) every equation (�; U−; U+) labelling this branch is such that
U− 6≡ ∅; U+ 6≡∅. By Lemma 83 such an N-stacking sequence contains a subsequence

82 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

(A�1 ; A�2 ; : : : ; A�i ; : : : ; A�d) with d6d0, ful�lling hypotheses (1), (2) of Lemma 63, and
by the above remark it ful�lls hypothesis (81) of Section 5 too. Hence some �nite
pre�x of (An0+i)i¿0 belongs to dom(TC). The priority ordering given in the de�nition
of SABC then implies that either Tcut ; T∅; T� or TC occurs at some n0 + i + 1. But the
three �rst cases cannot occur on an in�nite branch and the fourth one contradicts the
maximality of n0.

Theorem 86. The system D0 is complete.

Proof. By Lemma 65 SABC is a strategy for D0, by Lemma 69 SABC is closed and by
Lemma 85 SABC is terminating on every unmarked true assertion. By a slight variant
of Lemma 50, every unmarked true assertion has a D0-proof. But for every A∈A,
there exists a �nite D0-proof of (0; A; �e(A)). It follows that every true assertion A has
a D0-proof.

Theorem 87. The equivalence problem for deterministic pushdown automata is decid-
able.

Proof. Let M be some dpda. The equivalence relation ≡ on DRB〈〈V 〉〉 (where V
is the structured alphabet associated to the given M) has a recursively enumerable
complement (this is well known). By Theorem 86 and Lemma 46 ≡ is recursively
enumerable too. Hence ≡ is recursive. In addition, the system D0 associated with M

is computable from M, hence the theorem follows.

10. Elimination

The aim of this section is to simplify, as much as we can, the deduction system
D0. We introduce some technical tools (in Sections 10.1, 10.4) and perform successive
simpli�cations (in Sections 10.2, 10.3, 10.5–10.7).

10.1. Congruence closure: properties

Let us study the subset C of the rules of D0, de�ned in Section 4.4. We recall it
consists of all the instances of the meta-rules R0–R3, R′3, R6–R11. We also denote
by ‖−− C⊆Pf(A)×A the set of all instances of these meta-rules. We use here (and
later on, in Section 10.2.2) the following notation: for every p; n ∈ N; S; S ′ ∈ DRB〈〈V 〉〉,

[p; S; S ′; n] = {(p + |u|; S � u; S ′ � u) | u ∈ X6n}: (136)

Next lemma expresses the fact that the “congruence closure”operation commutes with
the right-action �.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 83

Lemma 88. (1) Symmetry: For every p; n ∈ N; S; S ′ ∈ DRB〈〈V 〉〉;

[p; S; S ′; n]
〈∗〉
‖−− C[p; S ′; S; n]:

(2) Composition: For every p; n ∈ N; S; T ∈ DRB〈〈V 〉〉;

[p; S; S ′; n] ∪ [p; S ′; S ′′; n]
〈∗〉
‖−− C[p; S; S ′′; n]:

(6) Star: For every p; n ∈ N; (S; S ′) ∈ DRB1;2〈〈V 〉〉; T ′ ∈ DRB〈〈V 〉〉; S 6≡ �;

[p; S · T ′ + S ′; T ′; n]
〈∗〉
‖−− C[p; S∗ · S ′; T ′; n]:

(7) Sum: For every p; n ∈ N; (S; T); (S ′; T ′) ∈ DRB1;2〈〈V 〉〉;

[p; S; S ′; n] ∪ [p; T; T ′; n]
〈∗〉
‖−− C[p; S + T; S ′ + T ′; n]:

(8) Right-product: For every p; n ∈ N; S; S ′; T ∈ DRB〈〈V 〉〉; if S ≡n S ′ then

[p; S; S ′; n]
〈∗〉
‖−− C[p; S · T; S ′ · T; n]:

(9) Left-product: For every p; n ∈ N; S; T; T ′ ∈ DRB〈〈V 〉〉;

[p; T; T ′; n]
〈∗〉
‖−− C[p; S · T; S · T ′; n]:

(10) �-Reduction: For every p; n ∈ N; S;∈ DRB〈〈V 〉〉;

∅
〈∗〉
‖−− C[p; S; ��(S); n]:

(11) e-Reduction: For every p; n ∈ N; S;∈ DRB〈〈V 〉〉;

∅
〈∗〉
‖−− C[p; S; �e(S); n]:

Sketch of proof. Points (1); (2); (7); (9); (10) can be checked easily.
(8) Right-product: Let u ∈ X ∗; |u|6n. Let us use Lemma 22.
Case 1: ∀u′ 4 u; ��(S � u′) 6= �. Then

[p; S; S ′; n]⊇(p + |u|; S � u; S ′ � u) ‖−− 〈∗〉
C (p + |u|; (S � u) · T; (S ′ � u) · T)

= (p + |u|; (S · T)� u; (S ′ · T)� u):

Case 2: ∃u′; u′′ such that u= u′ · u′′; ��(S � u′) = �. As |u′|6|u|6n and S≡n

S ′; ��(S ′� u′) = � too. Then

∅
〈∗〉
‖−− C (p + |u|; ��(T � u′′); ��(T � u′′))

= (p + |u|; (S · T)� u; (S ′ · T)� u):

84 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

(6) Star: Let u ∈ X ∗; |u|6n. We use the same type of arguments as in the proof of
Lemma 53, point (R6). We remark �rst that

[p; S · T ′ + S ′; T ′; n]⊇
(
p + |u|;

(
Sn+1 · T ′ +

n∑
k=0

Sk · S ′
)
� u; T ′ � u

)

=

(
p + |u|; (Sn+1 � u) · T ′ +

(
n∑

k=0

Sk · S ′
)
� u; T ′ � u

)
:

(137)

Using at �rst (R6) and afterwards (R9), (R7) and (R0), we have

(p; S · T ′ + S ′; T ′)
〈∗〉
‖−− C(p; S∗ · S ′; T ′)

〈∗〉
‖−− C

(
p + |u|; (Sn+1 � u) · S∗ · S ′ +

(
n∑

k=0

Sk · S ′
)
� u; (Sn+1 � u) · T ′

+

(
n∑

k=0

Sk · S ′
)
� u

)

=

(
p + |u|; (S∗ · S ′)� u; (Sn+1 � u) · T ′ +

(
n∑

k=0

Sk · S ′
)
� u

)
: (138)

Composing (138) and (137) by (R2), we obtain

[p; S · T ′ + S ′; T ′; n]
〈∗〉
‖−− C(p + |u|; (S∗ · S ′)� u; T ′ � u):

(11) e-Reduction: Let u ∈ X ∗; |u|6n. Let us use Lemma 19.
Case 1: S � u ∈ {∅; �}. By Lemma 23 S ≡ �e(S) and by Lemma 1 (S � u) ≡

(�e(S)� u) . Hence, by rules, (R′3), (R0)

∅
〈∗〉
‖−− C(p + |u|; S � u; �e(S)� u):

Case 2: S � u= ([qz]� u′′) ∗ �, where u′; u′′ ∈ X ∗; p; q; r ∈Q; !∈Z∗; �∈Z+; z∈Z;
�Q–form such that

S = [p!] ∗ �; u = u′ · u′′; ��([p!]� u′) = [qz] ∗ � and ��([qz]� u′′) = [r�]:

Using the technical hypothesis (12) we obtain

S � u = [r�] ∗ � while �e(S)� u = [r�] ∗ �e(�):

Hence, using (R11) and (R7), (R9),

∅
〈∗〉
‖−− C {(0; �s; �e(�s)) s ∈ Q}

〈∗〉
‖−− C(0; [r�] ∗ �; [r�] ∗ �e(�))

= (0; S � u; �e(S)� u)
〈∗〉
‖−− C(p + |u|; S � u; �e(S)� u):

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 85

Given a subset P ∈ Pf(A), we call congruence closure of P, denoted by Cong(P),
the set

Cong(P) = {A ∈A | P
〈∗〉
‖−− C {A}}: (139)

As well, for every integer q¿0 we de�ne

Congq(P) = {A ∈A | P
〈q〉
||−− C {A}}: (140)

10.2. System D1

We prove here that the new formal system D1 obtained by elimination of meta-rule
(R5) in D0 is recursively enumerable and complete.

10.2.1. Rules
Let D1 = 〈A1; H1; |−− D1

〉 where A1 =A; H1 =H; are the same as in D0, but the
elementary deduction relation ||−− D1 is the relation generated by the subset of meta-
rules R0–R3, R′3, R4–R11, i.e. all the meta-rules of B0 except R5. The deduction
relation |−− D1

is now de�ned by

|−− D1
=

〈∗〉
‖−− D1

◦
[1]
‖−− R0;R3;R′3;R4;R10;R11 ◦

〈∗〉
‖−− D1

:

Lemma 89. D1 is a deduction system.

Proof. As |−− D1 ⊆ |−− D0 ; D1 must ful�ll axiom (A1). As every meta-rule of D0 is
recursively enumerable, this is also true for D1, hence D1 ful�lls axiom (A2).

10.2.2. Completeness
De�nition 90. Let P be a subset of A. P is said consistent i�, ∀n ∈ N;∀�∈ N;∀S; S ′

∈DRB〈〈V 〉〉,

(�; S; S ′) ∈ Cong(P)⇒ [�; S; S ′; n]⊆Cong(P):

Lemma 91. Let A0 ∈A be some true assertion. Let us consider the tree t =T(SABC;
A0). Then; im(t) is consistent.

Proof. Let us note P = im(t) and let us consider the following property Q(�; n; p):

∀S; S ′ ∈ DRB〈〈V 〉〉; (�; S; S ′) ∈ Congp(P)⇒ [�; S; S ′; n]⊆Cong(P): (141)

We prove by lexicographic induction over (�+n; n; p) that, for every triple of integers
(�; n; p), Q(�; n; p) is true. Let (�; n; p) ∈ N3. Let us suppose that

∀(�′; n′; p′) ∈ N3; (�′ + n′; n′; p′) ¡ (� + n; n; p)⇒ Q(�′; n′; p′): (142)

86 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Case 1: p¿1. There exists a subset Q⊆Pf(A), such that

P
〈p−1〉
‖−− C Q and Q

〈1〉
‖−− C{(�; S; S ′)}:

As every rule of C does not decrease the weight, every assertion of Q has a weight
6�. Hence, by induction hypothesis

∀(�′; T; T ′) ∈ Q; [�′; T; T ′; n]⊆Cong(P): (143)

Let us consider the type of rule used in the last step, Q
〈1〉
||−− C{(�; S; S ′)}, of the above

deduction.
R0. (�− 1; S; S ′) ∈ Q.

By (143), [�− 1; S; S ′;Rn]⊆Cong(P): As [�− 1; S; S ′; n]
〈1〉
||−− C[�; S; S ′; n],

[�; S; S ′; n]⊆Cong(P):

R1. (�; S ′; S) ∈ Q.
(analogous to the above case)

R2. (�; S; T); (�; T; S ′) ∈ Q.
By (143), [�; S; T; n]⊆Cong(P) and [�; T; S ′; n]⊆Cong(P): Using then Lemma 88, we
get that

[�; S; S ′; n]⊆Cong(P):

R3, R′3.
In this case,

[�; S; S ′; n]⊆Cong(∅)⊆Cong(P):

R6. (�; S1 · S ′ + T; S ′) ∈ Q; S = S∗
1 · T:

By (143), [�; S1 · S ′ + T; S ′; n]⊆Cong(P): Using then Lemma 88 we get

[�; S; S ′; n] = [�; S∗
1 · T; S ′; n]⊆Cong [�; S1 · S ′ + T; S ′; n]

⊆Cong (P):

R7. (�; S1; S ′
1)∈Q; (�; T; T ′)∈Q; S = S1 + T; S ′ = S ′

1 + T ′ where (S1; T); (S ′
1; T

′)∈
DRB1;2〈〈V 〉〉.

By (143),

[�; S1; S ′
1; n] ∪ [�; T; T ′; n]⊆Cong(P): (144)

Combining Lemma 88 with (144) we get

[�; S; S ′; n] = [�; S1 + T; S ′
1 + T ′; n]⊆Cong([�; S1; S ′

1; n] ∪ [�; T; T ′; n])

⊆Cong(P):

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 87

R8. (�; S1; S ′
1)∈Q; S = S1 · T; S ′ = S ′

1 · T:

By (143), [�; S1; S ′
1; n]⊆Cong(P): Using then Lemma 88 we get

[�; S; S ′; n] = [�; S1 · T; S ′
1 · T; n]⊆Cong([�; S1; S ′

1; n])

⊆Cong(P):

R9. (�; T; T ′)∈Q; S = S1 · T; S ′ = S1 · T ′:
By (143), [�; T; T ′; n]⊆Cong(P): Using Lemma 88, we get

[�; S; S ′; n] = [�; S1 · T; S1 · T ′; n]⊆Cong([�; T; T ′; n])

⊆Cong(P):

R10. S ′ = ��(S):

By Lemma 88 (�-reduction), ∅
〈∗〉
||−−C[�; S; ��(S); n]; hence

[�; S; S ′; n] = [�; S; ��(S); n]⊆Cong(∅)⊆Cong(P):

R11. S ′ = �e(S):

By Lemma 88 (e-reduction), ∅
〈∗〉
||−−C[�; S; �e(S); n]; hence

[�; S; S ′; n] = [�; S; �e(S); n]⊆Cong(∅)⊆Cong(P):

In all cases Q(�; n; p) has been established.
Case 2: n= 0; p= 0. In this case, for every �, property Q(�; n; p) is trivially true.
Case 3: n= 1; p= 0. Given a node x∈ dom(t), let us de�ne the sequence of asser-

tions Wx by

Wx = t(x(0)) · t(x(1)) · · · t(x(|x|)):

(Here x(k) denotes the pre�x of length k of the word x, equivalently, it is the ancestor
of x which has depth k.) Let us say that the strategy T “applies on” node x i�,
Wx ∈ dom(T), x has exactly � sons (with �¿0) x · 1; x · 2; : : : ; x · � and

T (Wx) = t(x · 1) · t(x · 2) · · · t(x · �);

i.e. the strategy T maps the path Wx on the word consisting of the labels of the sons
of x.

In the sequel, we consider a node x∈ dom(t) such that t(x) = (�; S; S ′) and which is
minimal among the set of nodes having the same label:

x = min�{y ∈ dom(t) | t(y) = t(x)}: (145)

As x is minimal by (145) and the strategy SABC is closed, SABC must apply on x.
Subcase 1: Tcut applies on x. There exists x′ ∈ dom(t);∃�′ ∈N, such that

t(x′) = (�′; S; S ′) and �′ ¡ �:

88 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

As (�′ + 1; 1; 0)¡(� + 1; 1; 0), by induction hypothesis we have

[�′; S; S ′; 1]⊆Cong(im(t))

and by means of rule R0:

[�; S; S ′; 1]⊆Cong([�′; S; S ′; 1]):

Hence, the right-hand side of implication (141) is true.
Subcase 2: T∅ to T� applies on x. By rules R1–R′3,

[�; S; S ′; 1]⊆Cong(∅)⊆Cong(im(t)):

Subcase 3: TA applies on x. Then

[�; S; S ′; 1]⊆ im(t)⊆Cong(im(t)):

Subcase 4: T�
B applies on x (for some �∈{−;+}). Let us suppose �= +. Let

x′ = x(|x| − k1) (the pre�x of x having length |x| − k1), t(x′) = (�′; �U;U ′): Then

� = 1 and t(x · 1) = T+
B (Wx):

Let us look at the proof of Lemma 66. As, for every q, �′ + |uq| − 1¡�′ + k06�′ +
2 · k0¡�, deduction (98) can be replaced by a pure C-deduction:

im(t)
〈∗〉
‖−− C(�′ + 2 · k0; �U � uq; Vq):

As deduction (98) was the only one (in the proof of Lemma 66) using rules in B0−C

we conclude that deduction (97) can be replaced by

{t(x′); t(x · 1)} ∪ im(t)
〈∗〉
‖−− C �−1(t(x)): (146)

(We recall �−1 consists in replacing the weight of a given weighted equation by its
predecessor.) Deduction (146) implies that

∃p′ ∈ N; (�− 1; S; S ′) ∈ Congp′(im(t)): (147)

As (�; 1; p′)¡(� + 1; 1; 0), we know from the induction hypothesis that

[�− 1; S; S ′; 1]⊆Cong(im(t));

hence, using (R0),

[�; S; S ′; 1]⊆Cong(im(t)):

Subcase 5: TC applies on x. Then

t(x · 1)t(x · 2) · · · t(x · �) = TC(Wx):

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 89

Let Wx =A1 · · ·A‘ · · ·A|x|+1, �1¡ · · ·¡�i¡�i+1¡ · · · �D+1 = |x|+1, S= (Ei)16i6D+1,
where, for every 16i6D + 1,

Ei = A�i =

�i;

d∑
j=1

�i; j ; Sj

d∑
j=1

�i; jSj

and

TC(Wx) = �e(INV(S));W(S) 6= ⊥;D(S) = D6d− 1:

Let us look at the proof of Lemma 57: the only place where a rule in B0−C is used,
is in deduction (66), when case 2, subcase 1 of the recursive de�nition of INV(S)
occurs. Let us recall that the word u used in the de�nition of E′

1 is

u = min(’(�1;∗)4’(�1;∗)):

Let us notice that �1 + |u|−1¡�1 +2 · |u|¡�26W(S)+1 = �: By induction hypothesis
�1 + |u|;

 d∑

j=1

�i; jSj

� u;

 d∑

j=1

�i; jSj

� u

∈

�1;

d∑
j=1

�i; jSj;
d∑

j=1

�i; jSj; |u|

⊆Cong(im(t)):

Hence deduction (66) can be replaced by

E′
1 ∈ Cong(im(t)): (148)

Similarly, for every i∈ [2; D], as �i + 2 ·Div(�(i−1)
i;∗ �(i−1)

i;∗)¡�i+16W(S) + 1 = �, and

E
(i−1)
i ∈Cong(im(t)),

(E(i−1)
i)′ ∈ Cong(im(t)): (149)

It follows that deduction (65) can be replaced by

INV(S) ∪ im(t)
〈∗〉
‖−− C �−1(t(x)): (150)

Using the fact that �e(INV(S))
〈∗〉
||−−C INV(S) we may conclude that

{t(x · 1); : : : ; t(x · �} ∪ im(t)
〈∗〉
‖−− C �−1(t(x)) = (�− 1; S; S ′): (151)

From (151) and the induction hypothesis, we can conclude, as in subcase 4, that

[�; S; S ′; 1]⊆Cong(im(t)):

90 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Case 4: n¿2; p= 0. Let us suppose that (�; S; S ′)∈ im(t): Let us consider the de-
composition

[�; S; S ′; n] = {(�; S; S ′)} ∪
(⋃

x∈X

[� + 1; S � x; S ′ � x; n− 1]

)
: (152)

As � + 1¡� + n, by induction hypothesis,

∀x ∈ X; (� + 1; S � x; S ′ � x) ∈ Cong(im(t)):

Hence there exists p′ ∈N such that⋃
x∈X

{(� + 1; S � x; S ′ � x)}⊆Congp′(im(t)):

As (� + n; n − 1; p′)¡(� + n; n; 0), the above inclusion together with the induction
hypothesis lead to⋃

x∈X

[� + 1; S � x; S ′ � x; n− 1]⊆Cong(im(t)): (153)

At last, using (152) and (153) we obtain

[�; S; S ′; n]⊆Cong(im(t)):

(End of the induction.)

De�nition 92. Let P⊆A1. P is said self-generating i�, for every (�; S; S ′)∈P,
(1) (S ≡ �)⇔ (S ′ ≡ �),
(2) [�; S; S ′; 1]⊆Cong(P):

Remark 93. This notion of “self-generating set (of weighted equations)” is a natural
adaptation to our d-space of series of the notion of “self-proving set of pairs” de�ned
in [15, p. 162] for the magma M (F ∪�; V).

Lemma 94. Every self-generating subset P is a D1-proof.

Proof. It su�ces to notice that for every (�; S; S ′)∈A1,
• if S ≡ S ′ ≡ � then ∅ |−− D1 (�; S; S

′).
• if S 6≡ �; S ′ 6≡ �, then [�; S; S ′; 1] |−− D1 (�; S; S

′).

Lemma 95. Let �∈N; S; S ′ ∈DRB〈〈V 〉〉. Then; H1(�; S; S ′) =∞ i� there exists a �nite
self-generating set P such that (�; S; S ′)∈P.

Proof. Let us consider some true assertion A1 = (�1; S1; S ′
1)∈A1. Let us de�ne

A0 = (�1; �e(S1); �e(S ′
1)); t = T(SABC; A0); P = {A1} ∪ im(t):

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 91

By Lemma 85, im(t) is �nite, by Lemma 91 im(t) is consistent and by the hypothesis
that A1 is true, every assertion of P is true. It follows that every (�; S; S ′)∈ im(t) ful-
�lls both conditions of De�nition 92. Moreover, owing to meta-rule (R11), A1 ∈Cong
(im(t)). As im(t) is consistent, it follows that [�1; S1; S ′

1; 1]⊆Cong(im(t)). Hence A1

ful�lls also both conditions of De�nition 92. Hence P is a �nite self-generating set
containing A1.

Theorem 96. D1 is a complete deduction system.

Proof. Follows from Lemmas 95 and 94.

10.3. System D2

We exhibit here a deduction system D2 which is simpler than D1 and is still
complete.

10.3.1. Rules
Let us eliminate the weights in the rules of D1: we de�ne a new set of assertions,

A2 by

A2 = DRB〈〈V 〉〉 × DRB〈〈V 〉〉:
We de�ne a binary relation ‖−− ⊆Pf(A2)×A2, the elementary deduction relation,
as the set of all the pairs having one of the following forms:

(R21)

{(S; T)} ‖−− (T; S)

for S; T ∈DRB1; �〈〈V 〉〉,
(R22)

{(S; S ′); (S ′; S ′′)} ‖−− (S; S ′′)

for S; S ′; S ′′ ∈DRB〈〈V 〉〉,
(R23)

∅ ‖−− (S; S)

for S ∈DRB〈〈V 〉〉,
(R′23)

∅ ‖−− (S; T)

for S ∈DRB〈〈V 〉〉; T ∈{∅; �}; S ≡ T ,
(R24)

{(S � x; T � x)|x ∈ X } ‖−− (S; T)

for S; T ∈DRB〈〈V 〉〉; (S 6≡ � ∧ T 6≡ �),

92 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

(R25)

{(S · T ′ + S ′; T ′)} ‖−− (S∗ · S ′; T ′)

for (S; S ′)∈DRB1;2〈〈V 〉〉; T ′ ∈DRB〈〈V 〉〉; S 6≡ �;
(R26)

{(S; S ′); (T; T ′)} ‖−− (S + T; S ′ + T ′)

for (S; T); (S ′; T ′)∈DRB1;2〈〈V 〉〉,
(R27)

{(S; S ′)} ‖−− (S · T; S ′ · T)

for S; S ′; T ∈DRB〈〈V 〉〉,
(R28)

{(T; T ′)} ‖−− (S · T; S · T ′)

for S; T; T ′ ∈DRB〈〈V 〉〉,
(R29)

{(S; ��(S))}
for S ∈DRB〈〈V 〉〉,

(R210)

{(S; �e(S))}
for S ∈DRB〈〈V 〉〉.

We de�ne |−− D2
by : for every P ∈Pf(A2); A∈A2,

P |−− A⇒ P
〈∗〉
‖−− ◦

[1]
‖−− 23;24;29;210 ◦

〈∗〉
‖−− {A};

where ||−− 23;24;29;210 is the relation de�ned by R23, R′23, R24, R29, R210 only. We
de�ne a simpler cost function H2 : A2→N∪{∞} by

∀(S; S ′) ∈A2; H2(S; S ′) = Div(S; S ′):

We let

D2 = 〈A2; H2; |−− D2
〉:

Lemma 97. D2 is a deduction system.

10.3.2. Completeness
Theorem 98. D2 is a complete deduction system.

Proof. Let us consider the map pr2;3 : A1→A2 which erases the weights

∀� ∈ N; S; S ′ ∈ DRB〈〈V 〉〉; pr2;3(�; S; S ′) = (S; S ′):

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 93

One can check that pr2;3 maps any rule of D1 on an elementary deduction of D2: if
(P; A) is a rule of D1 then

pr2;3(P)
〈∗〉
‖−− D2

pr2;3(A):

Moreover, pr2;3 maps the instances of rules (R3), (R′3), (R4) on instances of (R23),
(R′23), (R24). Hence, if P is a �nite self-generating set, then pr2;3(P) is a �nite
D2-proof. As every true assertion in A1 belongs to some �nite self-generating set,
every true assertion in A2 belongs to some �nite D2-proof.

10.4. Deterministic substitutions

Let C0 be the formal system consisting of all the instances of the meta-rules R21,
R22, R23, R25, R26, R27, R28, R29. One can notice that this system is independant
of the automaton M. For every �; �∈N − {0}; S; S ′ ∈DRB�; �〈〈V 〉〉, we shall use the
abbreviation

[S; S ′] = {(Si; j ; S ′
i; j) | 16i6�; 16j6�}:

Lemma 99. Let �1; �2; �3 ∈N− {0}; S; S ′ ∈DRB�1 ; �2〈〈V 〉〉; T; T ′ ∈DRB�2 ; �3〈〈V 〉〉. Then

[S; S ′] ∪ [T; T ′]
〈∗〉
‖−− C0

[S · T; S ′ · T ′]:

Proof. It su�ces to use meta-rules (R26)–(R28) and the basic meta-rules (R21),
(R22).

From now on, we shall use the deduction of the previous lemma as a derived meta-
rule, that will be named “matrix product” (MP).

Lemma 100. Let �; �∈N − {0}; S ∈DRB�; �〈〈V 〉〉; T ∈DRB�; �〈〈V 〉〉; such that (S; T)
∈DRB�; �+�〈〈V 〉〉. Then S∗ · T ∈DRB�; �〈〈V 〉〉.

Let us recall the well-known formula expressing the entries of S∗ as rational
expressions in the entries of S. For every S ∈B2;2〈〈V 〉〉,

S∗ =
(

(S1;1 + S1;2 · S∗
2;2 · S2;1)∗ (S1;1 + S1;2 · S∗

2;2 · S2;1)∗ · S1;2 · S∗
2;2

(S2;2 + S2;1 · S∗
1;1 · S1;2)∗ · S2;1 · S∗

1;1 (S2;2 + S2;1 · S∗
1;1 · S1;2)∗

)
:

(154)

(See [43, Theorem 2:5, p. 618].)

94 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Proof. Let us prove Lemma 100 by induction on �.
Case 1: �= 1. By Lemma 29, (∅; S∗ ·T) = �∗

1 (S; T)∈DRB1;1+�〈〈V 〉〉. It follows that
S∗ · T ∈DRB1; �〈〈V 〉〉.
Case 2: �= 2. By case 1, as (S2;2; S2;1; ∅; T2;1)∈DRB1;3+�〈〈V 〉〉, (S∗

2;2 · S2;1; ∅; S∗
2;2 ·

T2;1)∈DRB1;2+�〈〈V 〉〉: It follows that the matrix

M =

 I1 ∅�1 ∅�1

S∗
2;2 · S2;1 ∅�1 S∗

2;2 · T2;∗
∅1
� I� ∅��

;

is deterministic. By Lemma 13, it follows that the row-vector

(S1;1 + S1;2 · S∗
2;2 · S2;1; T1;∗; S1;2 · S∗

2;2 · T2;∗) = (S1;1; S1;2; T1;∗) ·M (155)

is deterministic. By case 1, the determinism of vector (155) implies that

((S1;1 + S1;2 · S∗
2;2 · S2;1)∗ · T1;∗; (S1;1 + S1;2 · S∗

2;2 · S2;1)∗ · S1;2 · S∗
2;2 · T2;∗) (156)

belongs to DRB1;2·�〈〈V 〉〉. It follows that

(S1;1 + S1;2 · S∗
2;2 · S2;1)∗ · T1;∗ + (S1;1 + S1;2 · S∗

2;2 · S2;1)∗ · S1;2 · S∗
2;2 · T2;∗ (157)

which, by formula (154) is the �rst row of S∗ · T , belongs to DRB1; �〈〈V 〉〉. By similar
arguments one can show that the second row of S∗ · T is rational deterministic too,
and �nally: S∗ ·T ∈DRB2; �〈〈V 〉〉.
Case 3: �¿2. Let us suppose that the lemma is true for every (�′; �′) such that

�′¡�. Let us consider block decompositions

S = (Si; j)i; j∈{1;2}; T = (Ti;k) i∈{1;2}
k∈[1;�]

;

where �1; �2 ∈ [1; � − 1]; �1 + �2 = �, ∀i; j∈{1; 2};∀k ∈ [1; �]; Si; j ∈DRB�i ; �j〈〈V 〉〉; Ti;∗ ∈
DRB�i; �〈〈V 〉〉. Let us consider the same formulas as above and let us replace every
invocation of case 1 by an invocation of the induction hypothesis. We then have
proved that S∗ · T ∈DRB�; �〈〈V 〉〉.

De�nition 101. We call a deterministic rational substitution B〈〈V 〉〉→B〈〈V 〉〉 any sub-
stitution � whose componentwise extension as a map B1; Q〈〈V 〉〉→B1; Q〈〈V 〉〉
ful�lls

∀q ∈ Q; ∀z ∈ Z; �([qz]) ∈ DRB1;Q〈〈V 〉〉:

Lemma 102. Let �∈N−{0}; S ∈DRB1; �〈〈V 〉〉. Let � :B〈〈V 〉〉→B〈〈V 〉〉 be a determin-
istic rational substitution. Then �(S)∈DRB1; �〈〈V 〉〉:

Let us recall that �nite automata can be equivalently seen as matrices (see [1,43]; this
way of treating automata goes back to [11]). In the context of deterministic rational

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 95

vectors it can be seen that S ∈DRB1; �〈〈V 〉〉 i� there exist matrices A∈DRB1; �〈〈V 〉〉;
B∈DRB�; �〈〈V 〉〉; C ∈DRB�; �〈〈V 〉〉 such that

A = ��1; ∀(i; j) ∈ [1; �]× [1; �]; Bi; j ∈ V; ∀(j; k) ∈ [1; �]× [1; �]; Ci; j ∈ {∅; �}

and

S = A · B∗ · C: (158)

Proof of Lemma 102. As � is a substitution, formula (158) implies

�(S) = �(A) · �(B)∗ · �(C): (159)

As � is deterministic, every row-vector of (�(B); �(C)) is deterministic, with �nite
entries. Hence, by Lemma 100, �(B)∗ · �(C) is rational deterministic too. Moreover
�(A) =A is rational deterministic. By Lemma 13 �(A) · �(B)∗ · �(C)∈DRB1; �〈〈V 〉〉, and
by formula (159), �(S)∈DRB1; �〈〈V 〉〉.

Lemma 103. Let �; �∈N − {0}; S; S ′ ∈DRB�; �〈〈V 〉〉; T; T ′ ∈DRB�; �〈〈V 〉〉; such that
(S; T); (S ′; T ′)∈DRB�; �+�〈〈V 〉〉. Then

[S; S ′] ∪ [T; T ′]
〈∗〉
‖−− C0

[S∗ · T; S ′∗ · T ′]:

Proof. We prove that the lemma is true for �∈N−{0}; �= 1 by induction on �. We
generalize then to arbitrary �.
Basis: �= �= 1.
Subcase 1: S ≡ S ′ ≡ �. Let us �rst show that under this hypothesis:

��(S) = ��(S ′) = � (160)

and

��(S∗ · T) = ��(T); ��(S ′∗ · T ′) = ��(T ′): (161)

By Lemma 15, ��(S)≡ � too. Let us consider the type of the series S1 = ��(S). S1 = ∅ is
impossible (because ∅ 6≡ �). Suppose S1 = [pz] ∗� where pz ∈QZ is an �-free
mode. Either ∀q∈Q; [p; z; q] · �q≡∅, and then S1≡∅, which is impossible, or
∃q∈Q;∃u∈X +; ([p; z; q] · �q) � u= �, and then S1 6≡ � which is impossible too. The
only remaining possibility is that S1 = �. Hence (160) is established. Let us use now
some formulas established in the proof of Lemma 15:

S = v · ��(S) +
∑

w∈D(v)

w · (S • w); (162)

96 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

where ��(v) = � and, for every w∈D(v), ��(w) = ∅. We then have

��(S∗ · T) = ��

v +

∑
w∈D(v)

w · (S • w)

∗

· T

= ��

v∗ · T + v∗ ·

 ∑

w∈D(v)

w · (S • w)

 · S∗ · T

= ��(v∗ · T) + ��

v∗ ·

 ∑

w∈D(v)

w · (S • w)

 · S∗ · T

 :

But ��(v∗ · T) = ��(T) and ��(v∗ · (
∑

w∈D(v) w · (S • w)) · S∗ · T) =
∑

w∈D(v) ∅ · ��((S •
w) · S∗ · T) = ∅. Hence

��(S∗ · T) = ��(T);

i.e. (161) is established.
Using (R29), formula (161) and (R29) (with the basic rules (R21) and (R22)) we

obtain

[S; S ′] ∪ [T; T ′]⊇{(T; T ′)}
〈∗〉
‖−− C0

(��(T); ��(T ′))

= (��(S∗ · T); ��(S ′∗ · T ′))
〈∗〉
‖−− C0

(S∗ · T; S ′∗ · T ′):

Subcase 2: S 6≡ �; S ′ 6≡ �. Let us notice that S ′ · (S ′∗ · T ′) + T ′ = S ′∗ · T ′. Hence,
using (R26) and (R27):

[S; S ′] ∪ [T; T ′]
〈∗〉
‖−− C0

(S · (S ′∗ · T ′) + T; S ′ · (S ′∗ · T ′) + T ′)

= S · (S ′∗ · T ′) + T; S ′∗ · T ′): (163)

Using then (R25) we have

(S · (S ′∗ · T ′) + T; S ′∗ · T ′)
〈∗〉
‖−− C0

(S∗ · T; S ′∗ · T ′): (164)

Combining together (163) and (164) we have

[S; S ′] ∪ [T; T ′]
〈∗〉
‖−− C0

(S∗ · T; S ′∗ · T ′):

First induction step: �= 2; �= 1. By the basis case we know that

{(S2;2; S ′
2;2); (S2;1; S ′

2;1)}
〈∗〉
‖−− C0

(S∗
2;2 · S2;1; S ′∗

2;2 · S ′
2;1): (165)

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 97

Using rule (MP):

[S1;∗; S ′
1;∗] ∪ {(S∗

2;2 · S2;1; S ′∗
2;2 · S ′

2;1)}
〈∗〉
‖−− C0

(S1;1 + S1;2 · S∗
2;2 · S2;1; S ′

1;1 + S ′
1;2 · S ′∗

2;2 · S ′
2;1): (166)

By the basis case we know that

{(S2;2; S ′
2;2); (T2;1; T ′

2;1)}
〈∗〉
‖−− C0

(S∗
2;2 · T2;1; S ′∗

2;2 · T ′
2;1): (167)

Using rule (MP) we get

{(S1;2; S ′
1;2); (S∗

2;2 · T2;1; S ′∗
2;2 · T ′

2;1)}
〈∗〉
‖−− C0

(S1;2 · S∗
2;2 · T2;1; S ′

1;2 · S ′∗
2;2 · T ′

2;1): (168)

The vector

(S1;1 + S1;2 · S∗
2;2 · S2;1; S1;2 · S∗

2;2 · T2;1)

is a projection of the deterministic vector given in (155), hence is deterministic too.
As well, the vector

(S ′
1;1 + S ′

1;2 · S ′∗
2;2 · S ′

2;1; S
′
1;2 · S ′∗

2;2 · T ′
2;1)

is deterministic. Using the basis case we have

[(S1;1 + S1;2 · S∗
2;2 · S2;1; S1;2 · S∗

2;2 · T2;1); (S ′
1;1 + S ′

1;2 · S ′∗
2;2 · S ′

2;1; S
′
1;2 · S ′∗

2;2 · T ′
2;1)]

〈∗〉
‖−− C0

(S1;1 + S1;2 · S∗
2;2 · S2;1)∗ · S1;2 · S∗

2;2 · T2;1;

(S ′
1;1 + S ′

1;2 · S ′∗
2;2 · S ′

2;1)∗ · S ′
1;2 · S ′∗

2;2 · T ′
2;1): (169)

As well

[(S1;1 + S1;2 · S∗
2;2 · S2;1; T1;1); (S ′

1;1 + S ′
1;2 · S ′∗

2;2 · S ′
2;1; T

′
1;1)]

〈∗〉
‖−− C0

((S1;1 + S1;2 · S∗
2;2 · S2;1)∗ · T1;1; (S ′

1;1 + S ′
1;2 · S ′∗

2;2 · S ′
2;1)∗ · T ′

1;1)

(170)

The vector

(U1; U2) = ((S1;1 + S1;2 · S∗
2;2 · S2;1)∗ · T1;1; (S1;1 + S1;2 · S∗

2;2 · S2;1)∗ · S1;2 · S∗
2;2 · T2;1)

has been shown deterministic in (156). As well the vector (U ′
1; U

′
2) obtained by ex-

changing (S; T) with (S ′; T ′) in the de�nition of (U1; U2) is deterministic. By rule
(R26) we have

[U1; U ′
1] ∪ [U2; U ′

2]
〈∗〉
‖−− C0

(U1 + U2; U ′
1 + U ′

2) = ((S∗ · T)1;1; (S ′∗ · T ′)1;1): (171)

98 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Combining together deductions (165)–(171) we have shown that

[S; S ′] ∪ [T; T ′]
〈∗〉
‖−− C0

((S∗ · T)1;1; (S ′∗ · T ′)1;1):

Exchanging the S-indices in the previous arguments leads to

[S; S ′] ∪ [T; T ′]
〈∗〉
‖−− C0

((S∗ · T)2;1; (S ′∗ · T ′)2;1):

Hence,

[S; S ′] ∪ [T; T ′]
〈∗〉
‖−− C0

[S∗ · T; S ′∗ · T ′]:

General induction step: �¿2; �= 1. Let us suppose that the lemma is true for every
(�′; �′) such that �′¡�; �′ = 1. Let us consider block decompositions

S = (Si; j)i; j∈{1;2}; T = (Ti;1)i∈{1;2};

where �1; �3 ∈ [1; � − 1]; �1 + �3 = �, ∀i; j∈{1; 2}; Si; j ∈DRB�i ;�j〈〈V 〉〉; Ti;1 ∈DRB�i ;1

〈〈V 〉〉. Let us consider the same formulas as above and let us replace every invo-
cation of the “basis case” by an invocation of the “induction hypothesis”. We then
have proved that

[S; S ′] ∪ [T; T ′]
〈∗〉
‖−− C0

[S∗ · T; S ′∗ · T ′]:

Arbitrary integers: (�; �)∈N− {0}×N− {0}. By the above case: ∀k ∈{1; �},

[S; S ′] ∪ [T∗;k ; T ′
∗;k]

〈∗〉
‖−− C0

((S∗ · T)∗;k ; (S ′∗ · T ′)∗;k);

hence

[S; S ′] ∪ [T; T ′]
〈∗〉
‖−− C0

[S∗ · T; S ′∗ · T ′]:

Lemma 104. Let �∈N − {0}; S ∈DRB1;�〈〈V 〉〉 and let � :B〈〈V 〉〉→B〈〈V 〉〉 be a deter-
ministic rational substitution and let �∈N. Then

{([qzr]; �([qzr]) | q; r ∈ Q; z ∈ Z}
〈∗〉
‖−− C0

(S; �(S)):

Proof. Let us use the same notation as in the proof of Lemma 102. By Lemma 103,

[B; �(B)] ∪ [C; �(C)]
〈∗〉
‖−− C0

(B∗ · C; �(B)∗ · �(C)):

As A= �(A) , the above deduction combined with (MP) gives

[B; �(B)] ∪ [C; �(C)]
〈∗〉
‖−− C0

(A · B∗ · C; �(A) · �(B)∗ · �(C)): (172)

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 99

But the special form of matrices B; C is such that

[B; �(B)] ∪ [C; �(C)]⊆{([qzr]; �([qzr])) | q; r ∈ Q; z ∈ Z};
and the result of deduction (172) is just (S; �(S)). Hence the conclusion of the lemma
is true.

10.5. System D3

We prove here that the formal system D3 obtained by elimination of meta-rule
(R210) in D2 is still complete.

Let D3 = 〈A3; H3; |−− D3
〉 where A3 =A2; H3 =H2 and ‖−− D3

is de�ned below.

10.5.1. Rules
We de�ne the elementary deduction relation ||−−D3 as the set of all the instances of

the the meta-rules (R21)–(R23), (R′23), (R24)–(R29) (i.e. all the meta-rules of D2

except R210). The deduction relation |−−D3 is now de�ned by

|−− D3
=

〈∗〉
‖−− D3

◦
[1]
‖−− (R23);(R′23);(R24);(R29)◦

〈∗〉
‖−− D3

Let us notice that every rule of C0 is a rule of D3.

Lemma 105. D3 is a deduction system.

10.5.2. Completeness
Theorem 106. D3 is a complete deduction system.

Proof. It su�ces to prove that every instance of R210 is provable in D3. Let S ∈DRB
〈〈V 〉〉. As �e is a deterministic substitution, by Lemma 104,

{([qzr]; �e([qzr]) | q; r ∈ Q; z ∈ Z}
〈∗〉
‖−− C0

(S; �e(S)):

Every pair ([qzr]; �e([qzr]) is the right-hand side of an instance of (R′23). Hence,

∅
〈∗〉
‖−− C0

(S; �e(S)):

As
〈∗〉
||−−C0 ⊆

〈∗〉
||−−D3 , the theorem is proved.

10.6. System D4

We exhibit here a deduction system D4 which is simpler than D3 and is still
complete.

Let us consider

D4 = 〈A4; H4; |−− D4
〉;

where A4 = A3; H4 = H3 and |−− D4 is de�ned below.

100 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

10.6.1. Rules
We de�ne the elementary deduction relation ‖−−D4

as the set of all the instances
of meta-rules (R21)–(R29) of D3 union all the instances of new meta-rule

(R′′23) ∅‖ − − ([qzr]; �)

for q; r ∈Q; z ∈Z; [qzr] ≡ �.
In other words, D4 is obtained from D3 by replacing meta-rule (R′23) by the weaker

meta-rule (R′′23).
We then de�ne |−−D4

by: for every P ∈Pf(A4); A∈A4,

P |−− D4
A⇐⇒ P

〈∗〉
‖−− D4

◦
[1]
‖−− (R23);(R′23);(R24);(R29) ◦

〈∗〉
‖−− D4

{A}:

Let us notice that every rule of C0 is a rule of D4. As |−−D4
⊆ |−−D3

, H4 =H3 and the
new rule (R′′23) is recursively enumerable, it is clear that D4 is a deduction system.

10.6.2. Strategies
Let us de�ne strategies for the system D4. We shall de�ne new auxiliary strategies

T 0
∅ ; TA;∅ and then derive some “compound” strategies from them.
Let us denote by A∅ the set: A∅ =DRB〈〈V 〉〉× {∅}.
T 0
∅ :

T 0
∅ (A1A2 · · ·An) =B1 · · ·Bm i�

An = (∅; ∅) and m = 0:

TA;∅:
TA;∅(A1 · · ·An) =B1 · · ·Bm i�
(e1) An = ([pzq]; ∅) for some p; q∈Q; z ∈Z and (B1; B2; : : : ; Bm) is the smallest

element of A∗
∅ ful�lling conditions (e2∧ e3) below:

(e2) ∀j∈ [1; m]; Bj = ([pj; zj; qj]; ∅); H4(Bj) =∞ and
(e3) ∀x∈X , for every word w∈ supp([pzq]� x);∃j∈ [1; m]; [pjzjqj] is a factor of w.

Lemma 107. T 0
∅ ; TA;∅ are D4-strategies.

Proof. T 0
∅ : ∅ |−− (∅; ∅) which proves (S1) and min{H4(Bj) | 16j6m}= min{H4(∅; ∅)}

=∞, which proves (S2).
TA;∅: By (e3), using (R26)–(R28), ∀x∈X ,

{Bj; 16j6m}
〈∗〉
‖−− D4

([pzq]� x; ∅):

Using (R24) we obtain that

{Bj; 16j6m} |−− D4
([pzq]; ∅);

hence (S1) is ful�lled.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 101

By (e2),

min{H (Bj) | 16j6m} =∞;

which establishes (S2).

Let us consider the following strategy S∅: for every W ∈A+
4 ,

(1) if W ∈ dom(T 0
∅) then, S∅(W) =T 0

∅ (W),
(2) elsif W ∈ dom(TA;∅) then, S∅(W) =TA;∅(W),
(3) else S∅(W) is unde�ned.

10.6.3. Completeness
In order to show the completeness of system D4 it remains to show that every rule

in (R′23) is provable in D4.

Lemma 108. Let p; q∈Q; z ∈Z . [pzq]≡∅ i� there exists a �nite D4-proof of
([pzq]; ∅).

Proof. Let us suppose [pzq] ≡ ∅. Let A= ([pzq]; ∅) and t =T(S∅; A). The de�nitions
of T 0

∅ ; TA;∅ show that the labels of t belong to the �nite set V ×{∅}. Hence every
branch of t has a length 6Card(V ×{∅}), showing that t is a �nite tree.

Let us consider the label of a leaf x of t: t(x) = ([p′z′q′]; ∅). Let Wx =A1A2 · · ·An

be the word labelling the branch ending at x. Suppose that H4(A) =∞. Then, by
Lemma 48, H4(An) =∞. It follows that

∀x ∈ X; [p′z′q′]� x 6= �;

hence, ∀x∈X; ∀w∈ supp([p′z′q′]� x); ∃p′′; q′′ ∈Q; ∃z′′ ∈Z such that

[p′′z′′q′′] ≡ ∅ and w∈V ∗ · [p′′z′′q′′] · V ∗: (173)

By (173) there exists some B1; B2; : : : ; Bm ful�lling conditions (e2); (e3). Hence Wx ∈
dom(TA;∅). This proves that, every leaf x of t is such that Wx ∈ dom(S∅). By Lemma 48,
P is a �nite D4-proof, containing A.

Lemma 109. Let S ∈DRB〈〈V 〉〉;
(1) S ≡ ∅ if and only if there exists some D4-proof of (S; ∅).
(2) S ≡ � if and only if there exists some D4-proof of (S; �).

Proof. (1) Let us consider the unique substitution �∅ :DRB〈〈V 〉〉→DRB〈〈V 〉〉 such that:
for every p; q∈Q; z ∈Z ,

�∅([pzq]) = ∅ (if [pzq] ≡ ∅); �∅([pzq]) = [pzq] (if [pzq] 6≡ ∅):
One can easily check that �∅ is a deterministic substitution and that, for every S ∈DRB
〈〈V 〉〉,

S ≡ ∅ ⇔ �∅(S) = ∅: (174)

102 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Let us prove point (1) of the lemma. Let S ∈DRB〈〈V 〉〉 such that S ≡ ∅. By (174)
�∅(S) = ∅. By Lemma 104

{([pzq]; �∅([pzq]) |p; q ∈ Q; z ∈ Z}
〈∗〉
‖−− C0

(S; ∅):

By Lemma 108, for every p; q∈Q; z ∈Z , there exists a �nite D4-proof, P[pzq] of
([pzq]; �∅([pzq])). It follows that (

⋃
p; q∈Q; z∈ Z P[pzq])∪{(S; ∅)} is a �nite D4-proof of

(S; ∅).
(2) Let us prove point (2) of the lemma. Let S ∈DRB〈〈V 〉〉 such that S ≡ �. We

have shown (in the proof of Lemma 103, equation (160)) that, under this hypothesis,
��(S) = �. Using rule (R29), we have: ∅ |−− D4 (S; ��(S)) = (S; �).

Theorem 110. D4 is a complete deduction system.

Proof. Follows from Theorem 106 and Lemma 109.

10.7. System D5

We prove here that the formal system D5 obtained by elimination of meta-rule (R29)
in D4 is still complete.

Let D5 = 〈A5; H5; |−− D5〉 where A5 =A4; H5 =H4 and ||−−D5 , is de�ned below.

10.7.1. Rules
The rules of D5 are exactly the rules of D4, except (R29). Let us recall this set of

rules.
(R51)

{(S; T)} ‖−− (T; S)

for S; T ∈DRB〈〈V 〉〉,
(R52)

{(S; S ′); (S ′; S ′′)} ‖−− (S; S ′′)

for S; T ∈DRB〈〈V 〉〉,
(R53)

∅ ‖−− (S; S)

for S ∈DRB〈〈V 〉〉,
(R′′53)

∅ ‖−− ([qzr]; �)

for q; r ∈Q; z ∈Z; [qzr] ≡ �,

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 103

(R54)

{(S � x; T � x) | x ∈ X } ‖−− (S; T)

for S; T ∈DRB〈〈V 〉〉; (S 6≡ � ∧ T 6≡ �),
(R55)

{(S · T ′ + S ′; T ′)} ‖−− (S∗ · S ′; T ′)

for (S; S ′)∈DRB1;2〈〈V 〉〉; T ′ ∈DRB〈〈V 〉〉; S 6≡ �,
(R56)

{(S; S ′); (T; T ′)} ‖−− (S + T; S ′ + T ′)

for (S; T); (S ′; T ′)∈DRB1;2〈〈V 〉〉,
(R57)

{(S; S ′)} ‖−− (S · T; S ′ · T)

for S; S ′; T ∈DRB〈〈V 〉〉,
(R58)

{(T; T ′)} ‖−− (S · T; S · T ′)

for S; T; T ′ ∈DRB〈〈V 〉〉.
We de�ne |−−D5

by for every P ∈Pf(A5); A∈A5,

P |−− D5
A⇔ P

〈∗〉
‖−− D5

◦
[1]
‖−− 53;54 ◦

〈∗〉
‖−− D5

{A}:
where ||−−53;54 is the relation de�ned by (R53); (R′′53); (R54) only.

10.7.2. Completeness

Lemma 111. Let S ∈DRB〈〈V 〉〉. Then ∅
〈∗〉
||−−D5 (S; ��(S)).

Proof. Let us use the notation of the proof of Lemma 15. Let S ∈DRB〈〈V 〉〉.
Case 1: ��(S) = ∅. The de�nitions of ��, � and ⊗ (see Section 2.3.5) are such that

∀x ∈ X; S � x = ��(��(S)⊗ x) = ��(∅) = ∅:
Hence, for every x∈X ,

(S � x; ��(S)� x) = (∅; ∅):
Using rules (R53) and then (R54) we have

∅ |−− D5
{(S � x; ��(S)� x) | x ∈ X } |−− D5

{(S; ��(S))}:
Case 2: ��(S) 6= ∅. By Eqs. (26), (25), we know that

S = v · ��(S) +
∑

w∈D(v)

w · (S •w): (175)

104 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

The form of v shows that, using rules (R′′53), (R57), (R58):

∅
〈∗〉
‖−− D5

(v; �) (176)

Similarly, the form of the elements of D(v) shows that

∀w ∈ D(v); {([pj+1; zj+1; q′j+1]; ∅) | 06j6n− 1; q′j+1 ∈ Q; q′j+1 6= qj+1}
〈∗〉
‖−− D5

(w; ∅): (177)

Let {w1; : : : ; wp} be a bijective enumeration of the elements of D(v). The row-vector
(v; w1; : : : ; wp) is deterministic. By (175) and (MP) we get

{(v; �); (w1; ∅); : : : ; (wp; ∅)}
〈∗〉
‖−− C0

(S; ��(S)):

Using (176), (177) and the above deduction we obtain

{([pj+1; zj+1; q′j+1]; ∅) | 06j6n− 1; q′j+1 ∈ Q; q′j+1 6= qj+1}
〈∗〉
‖−− D5

(S; ��(S)):

(178)

By Lemma 108 there exists a �nite D4-proof P0, such that

P0⊇{([pj+1; zj+1; q′j+1]; ∅) | 06j6n− 1; q′j+1 ∈ Q; q′j+1 6= qj+1}:
Moreover, the proof of Lemma 107 does not use rule (R29). Hence P0 can be chosen
so as to be a D5-proof. By (178), P0 ∪{(S; ��(S))} is a D5-proof.

Theorem 112. D5 is a complete deduction system.

Proof. Follows from Theorem 110 and Lemma 111.

11. Coe�cients in a group H

We extend here the completeness results to H -pushdown automata, where H is any
abelian group.

11.1. De�nitions and basic properties

11.1.1. Finite H-automata
Let (H; ·) be some group. We call a �nite H -automaton over the alphabet W any

5-tuple

M = 〈W;Q; �; h0; q0; Q′〉
such that Q is the �nite set of states, �⊆Q×H ×W ×Q is the �nite set of transitions,
h0 ∈H is the initial output, q0 ∈Q is the initial state and Q′⊆Q is the set of �nal

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 105

states. As H is embedded in the semi-ring K =B〈〈H 〉〉 such an automaton can be seen
as a �nite automaton with multiplicities in K and the series recognized by M, S(M),
is de�ned as usual. It can be de�ned, for example, as

S(M) = h0 · A · B∗ · C
where A∈K1; Q〈〈W 〉〉; B∈KQ;Q〈〈W 〉〉, and C ∈KQ;1〈〈W 〉〉 are given by

A = �Qq0
; Bq;q′ =

∑
(q;h;v;q′) ∈ �

h · v;

Cq;1 = ∅ (if q =∈ Q′); Cq;1 = � (if q ∈ Q′):

M is said W-deterministic i�,

∀q ∈ Q; ∀v ∈ W; Card({(h; r) ∈ H × Q | (q; h; v; r) ∈ �})61: (179)

11.1.2. Finite m-H-automata
Let m; n∈N − {0} be positive integers. By B〈〈H 〉〉n;m〈〈W 〉〉 we denote the set of

matrices of dimension (n; m) with entries in the semi-ring B〈〈H 〉〉〈〈W 〉〉. We call a �nite
m-H -automaton over the alphabet W any 5-tuple

M = 〈W;Q; �; h0; q0; (Q′
j)16j6m〉;

such that 〈W;Q; �; h0; q0; Q〉 is a �nite H -automaton and for every j∈ [1; m], Q′
j ⊆Q.

For every j∈ [1; m] we denote by Mj the �nite H -automaton

Mj = 〈W;Q; �; h0; q0; Q′
j〉:

The vector recognized by M, S(M), is de�ned by

S(M) = (S(M1); : : : ; S(Mj); : : : ; S(Mm)):

M is said W-deterministic i� it ful�lls the above condition (179).

11.1.3. Pushdown H-automata
We call a pushdown H-automaton on the alphabet X any 6-tuple

M = 〈X; Z; Q; �; q0; z0〉;
where Z is the �nite stack-alphabet, Q is the �nite set of states, q0 ∈Q is the ini-
tial state, z0 is the initial stack-symbol and � :QZ × (X ∪{�})→Pf(H ×QZ∗), is the
transition mapping. Let q; q′ ∈Q;!;!′ ∈ Z∗; z ∈Z; h∈H; f∈X ∗ and a∈X ∪{�}; we
note (qz!; h; af) 7→M (q′!′!; h · h′; f) if (h′; q′!′)∈ �(qz; a). 7→∗ M is the reexive
and transitive closure of 7→M. For every q!; q′!′ ∈QZ∗ and h∈H; f∈X ∗, we note

q!
(h;f)−→Mq′!′ i�

(q!; 1H ; f) ∗7→M(q′!′; h; �):

106 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

M is said deterministic i� it ful�lls conditions (5) and (6) of Section 2.1. A H -dpda
M is said normalized i�, for every qz ∈QZ; x∈X :

q′!′ ∈ �2(qz; x)⇒|!′|62; and q′!′ ∈ �2(qz; �)⇒|!′| = 0; (180)

where �2 :QZ × (X ∪{�})→Pf(QZ∗), is the second component of the map �. Given
some �nite set F ⊆QZ∗ of con�gurations, the series recognized by M with �nal
con�gurations F is de�ned by

S(M; F) =
∑
c∈F

∑
q0z0

hw→Mc

h · w:

Intuitively, one can see the coe�cient Sw ∈K〈〈X 〉〉 of a word w in the series S(M; F)
either as the “multiplicity” with which the word w is recognized, or as the “output”
of the automaton M on the “input” w. Notice that, from this last point of view, when
M is deterministic and (H; ·) = (Z;+), M can be named a deterministic pushdown
transducer from words to integers.

For the same technical reasons as in the boolean case, we suppose that Z contains
a special symbol e subject to the property:

∀q ∈ Q; �(qe; �) = {(1H ; q)} and im(�3)⊆Pf(Q(Z − {e})∗): (181)

11.1.4. Right-actions
Similarly as in Section 2.3 we �x some H -dpda M and consider the structured

alphabet (V;ˆ) associated with M.

11.1.4.1. Action •. A �-right-action of the monoid H ×W ∗ over B〈〈H 〉〉〈〈W 〉〉 is de�ned
by ∀S ∈B〈〈H 〉〉〈〈W 〉〉; ∀h∈H; ∀w∈W ∗; T = S • (h; w) is the series:

∀v ∈ W ∗; Tv = h−1 · Sw·v:

In words, S • (h; w) is the left-quotient of S by the monomial h ·w. (From now on, we
identify the pair (h; w)∈H ×W ∗ with the monomial h · w∈B〈〈H 〉〉〈〈W 〉〉.)

11.1.4.2. Action ⊗. Let us consider the set PM of all the pairs of one of the following
forms:

([p; z; q]; h · x · [p′; z1; p′′][p′′; z2; q]); (182)

where p; q; p′; p′′ ∈Q; x∈X; (h; p′z1z2)∈ �(pz; x)

([p; z; q]; h · x · [p′; z′; q]); (183)

where p; q; p′ ∈Q; x∈X; (h; p′z′)∈ �(pz; x)

([p; z; q]; h · a); (184)

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 107

where p; q; ∈Q; a∈X ∪{�}; (h; q)∈ �(pz; a). We de�ne a �-right-action ⊗ of the
monoid H × (X ∪{e})∗ over the semi-ring (B〈〈H 〉〉)〈〈V 〉〉 by for every p; q∈Q, z ∈Z;
x∈X; h∈H; k ∈B〈〈H 〉〉,

[p; z; q]⊗ x =
∑

([p; z; q];m)∈PM

m • (1H ; x); (185)

[p; z; q]⊗ e = h i� ([p; z; q]; h) ∈ PM; (186)

[p; z; q]⊗ e = ∅ i� ({[p; z; q]} × H · V ∗) ∩ PM = ∅; (187)

k ⊗ x = ∅; k ⊗ e = ∅: (188)

The action is extended to all monomials by for every k ∈B〈〈H 〉〉; �∈V ∗; y∈X ∪{e},
(k · [p; z; q] · �)⊗ y = k · ([p; z; q]⊗ y) · � (189)

and for every S ∈B〈〈H 〉〉〈〈V 〉〉; h∈H ,

S ⊗ h = h−1 · S: (190)

11.1.4.3. Action �. We de�ne a map �� :B〈〈H 〉〉〈〈V 〉〉→B〈〈H 〉〉〈〈V 〉〉 as the unique �-
additive map such that

��(∅) = ∅; ��(�) = �

and for every p∈Q; z ∈Z; q∈Q; �∈V ∗; k ∈B〈〈H 〉〉; S ∈B〈〈H 〉〉〈〈V 〉〉,
��([p; z; q] · �) = ��(([p; z; q]⊗ e) · �) if pz is �-bound

(the notion of �-bound mode is de�ned here as in Section 2:2);

��([p; z; q] · �) = [p; z; q] · � if pz is �-free

and

��(k · S) = k · ��(S):

The right-action � of the monoid H ×X ∗ over the semi-ring B〈〈H 〉〉〈〈V 〉〉 is then the
unique monoid-action ful�lling: for every S ∈B〈〈H 〉〉〈〈V 〉〉; h∈H; x∈X ,

S � hx = ��(��(S)⊗ hx):

11.1.4.4. Case where H is abelian. Let us consider the case where H is abelian. Let
’ : B〈〈H 〉〉 ∪V →B〈〈H 〉〉〈〈X 〉〉 de�ned by

∀k ∈ B〈〈H 〉〉; ’(k) = k; ∀v ∈ V; ’(v) =
∑

v�(h·u)=�

h · u:

As H is supposed abelian, ’(B〈〈H 〉〉) is included in the center of B〈〈H 〉〉) and by
property (15) there exists a unique �-additive semi-ring homomorphism ’̃ :B〈〈H 〉〉

108 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

〈〈V 〉〉→B〈〈H 〉〉〈〈X 〉〉 which extends ’. Let us denote by the same letter the original
’ and its extension ’̃.

Lemma 113. For every S ∈B〈〈H 〉〉〈〈V 〉〉; h∈H; u∈X ∗;
(1) ’(S) =’(��(S));
(2) ’(S � (h; u)) =’(S) • (h; u) (i.e. ’ is a morphism of right-actions).

11.2. Deterministic rational series

11.2.0.5. W -determinism. Let H be a group, let W be an alphabet. Let S ∈B〈〈H 〉〉
〈〈W 〉〉. We de�ne an equivalence relation ∼ over B〈〈H 〉〉〈〈W 〉〉 by: for every S; T ∈
B〈〈H 〉〉〈〈W 〉〉,

S ∼ T ⇔ ∃h ∈ H; S = h · T:

This equivalence is compatible with left-product by elements of H and with right-action
•: if S ∼T then, for every h∈H; u∈W ∗

h · S ∼ h · T and S • (h; u) ∼ T • (h; u): (191)

Therefore, the left-product by elements of H (resp. the right-action of H ×W ∗) over
B〈〈H 〉〉〈〈W 〉〉 induce a left-product by elements of H (resp. a right-action of H ×W ∗)
over B〈〈H 〉〉〈〈W 〉〉=∼. For every S ∈B〈〈H 〉〉〈〈W 〉〉, by Q(S) we denote the set of residuals
of S:

Q(S)) = {S • (h; u) | h ∈ H; u ∈ W ∗}:

Let us denote by (H 0; ·; 1H) the submonoid of (B〈〈H 〉〉; ·; 1H) consisting of the empty
series and all the singletons {h} for h∈H . H 0 can be seen as the monoid obtained by
“adjoining a zero” to the group H . We sometimes use the symbol 0 for the element
∅∈H 0 and we identify every h∈H with the corresponding {h}∈H 0. By H0〈〈W 〉〉 we
denote the subset of series in B〈〈H 〉〉〈〈W 〉〉 whose coe�cients are all in H 0.

Proposition 114. Let S ∈B〈〈H 〉〉〈〈W 〉〉. The following properties are equivalent:
(1) S is recognized by some W -deterministic �nite H -automaton
(2) ∀u∈W ∗; (Su ∈H 0) and Q(S)=∼ is �nite.

This proposition is established in [74, Proposition 4, p. 93]. Though this author
assumed H is a free group, his proof remains valid for any group H . For sake of
completeness we restate his arguments.

Proof. (1)⇒ (2): Let us suppose that M= 〈W;Q; �; h0; q0; Q′〉 is a deterministic
�nite H -automaton such that S = S(M). One can check that the W -determinism of
the automaton implies that every coe�cient Su belongs to H 0. Let us set

∀q ∈ Q; Sq = �Qq · B∗ · C

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 109

(where B; C are the matrices considered in Section 11.1.1). It should be clear that,
∀h∈H; u∈W ∗, either S • (h; u) = ∅ or ∃q∈Q; S • (h; u)∼ Sq. Hence

Card(Q(S)= ∼)6Card(Q) + 1:

(2)⇒ (1): Let us suppose that Card(Q(S)=∼) = n¡∞: Let us denote by Q;Q′ the
sets

Q = {[S • u]∼ | ∃u′ ∈ W ∗; Su·u′ 6= 0};
Q′ = {[S • u]∼ | Su 6= 0}:

We choose a total ordering over W and consider its short-lex extension to W ∗. For
every c∈Q we de�ne

s(c) = min{u ∈ W ∗; c • u ∈ Q′}
(the letter s stands for “su�x”). One can notice that ∀c∈Q(S)=∼; |s(c)|6n − 1 and
that, if c∈Q′ then s(c) = �.

We de�ne

c0 = [S�]∼;

h0 = Ss(c0) (if c0 ∈ Q); h0 = 1H (if c0 =∈ Q):

We let � be the set of all the 4-tuples (c; h; v; c′)∈Q×H ×W ×Q such that

c = [S • u]∼; c′ = [S • uv]∼; h = (Su·s(c))−1 · Suv·s(c′)

for some u∈W ∗; v∈W .
Let us remark that, if S • u= g ·(S • u′) (for some u; u′ ∈W ∗; g∈H), then, by (191),

c′ = [Su′·v]∼; Su·s(c) = g · Su′·s(c); Suv·s(c′) = g · Su′v·s(c′);

so that

h = (Su·s(c))−1 · Suv·s(c′) = (Su′·s(c))−1 · (Su′v·s(c′)):

Hence condition (179) is ful�lled by �. Let us consider the deterministic �nite H -
automaton M= 〈W;Q; �; h0; q0; Q′〉 associated with the above values of W;Q; �; h0;
q0; Q′. We prove by induction on the integer p that for every path

c0; (h1; v1); c1; : : : ; (hi; vi); ci; : : : ; (hp; vp); cp (192)

in the automaton M, the “labels” of the path

h = h0 · h1 · · · hi · · · hp ∈ H; u = v1 · · · vi · · · vp ∈ W ∗

ful�ll the relation

h = Su·s(cp): (193)

If p= 0: h= h0; u= �. As (192) is a path in M, c0 is assumed to belong to Q, hence,
by de�nition of h0, h0 = Ss(c0) = S�·s(c0).

110 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

If p=m + 1: h= h′ · hp; u= u′ · vp, where, by induction hypothesis,

h′ = Su′·s(cm): (194)

By the de�nition of �,

hp = (Su′·s(cm))−1 · Su·s(cp): (195)

Multiplying relations (194), (195), we obtain, as required:

h = h′ · hp = Su′·s(cm) · (Su′·s(cm))−1 · Su·s(cp) = Su·s(cp):

Applying invariant (193) to the case where cp ∈Q′ we have: if (h; u) labels any path in
M, ending in a state c∈Q′, then h= Su. Moreover, one can check that the projection
of M on W ∗ (i.e. the boolean automaton obtained by sending every coe�cient in H
to the boolean constant 1) recognizes exactly supp(S). It follows that

S = S(M):

De�nition 115. Let S ∈B〈〈H 〉〉〈〈W 〉〉: S is said W -deterministic rational i� it ful�lls one
of points (1), (2) of Proposition 114.

11.2.0.6. Length and norm. Let us suppose now that H admits a presentation over a
�nite alphabet Ŷ :’H : Ŷ ∗→H is a surjective monoid-homomorphism. We suppose the
presentation ’H is “symmetric” in the following sense:

• Ŷ =Y ∪ �Y ; Y ∩ �Y = ∅,
• a map y 7→ �y, from Ŷ to Ŷ is given; this map is an involution (i.e. ��y =y) , which

�xes no letter of Ŷ , and which sends Y on �Y (hence �Y on Y),
• ∀y∈ Ŷ ; ’H (y · �y) = 1H .

For every h∈H , the length of h, relative to the presentation ’H , is de�ned by

‘(h) = min{|u| | u ∈ Ŷ ∗; ’H (u) = h}:
One can notice that the map (h; h′) 7→ ‘(h−1 · h′) is a distance over H . Let us denote
by F(W) the free-group over the alphabet W . It has a standard presentation over the
symetric alphabet Ŵ =W ∪ �W :

F(W) ≈ Ŵ
∗
= ∗↔

T
;

where T is the set of relations

T = {(w · �w; �) |w ∈ W} ∪ {(�w · w; �) |w ∈ W}:
(The notion of length over F(W) relative to this standard presentation is de�ned as
above for H;’H .)

Let us notice that the distance (u; v) 7→ ‘(u−1 · v) = d(u; v) restricted to W ∗⊆ F(W)
can be equivalently de�ned by

d(u; v) = |u|+ |v| − 2 · |gcp(u; v)|;

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 111

where gcp(u; v) is the greatest common pre�x of u; v. Let us consider a W -deterministic,
�nite, H -automaton M= 〈W;Q; �; h0; q0; Q′〉. We de�ne the length of M, �k(M), the
initial length of M, k0(M) and the norm of M, ‖M‖ as

�k(M) = sup{‘(h) | ∃q ∈ Q; v ∈ W; r ∈ Q; (q; h; v; r) ∈ �}; k0(M) = ‘(h0);

‖M‖ = Card(Q):

(The sup is taken in N∪{∞}. Notice that, when �= ∅; �k(M) = 0.) Similarly, we
de�ne the length of a pushdown H -automaton M= 〈X; Z; Q; �; q0; z0〉, by

�k(M) = sup{‘(h) | ∃q ∈ Q; z ∈ Z; a ∈ X ∪ {�}; r ∈ Q;! ∈ Z∗; (h; r!) ∈ �(qz; a)}:

Let us consider now a series S ∈H0〈〈W 〉〉. We de�ne the length of S, �‘(S), the initial
length of S, ‘0(S), and the norm of S, ‖S‖ by

�‘(S) = inf{� ∈ R+ | ∀u; v ∈ W ∗; Su 6= 0⇒ ‘((Su)−1 · Sv))6� · ‘(u−1 · v)};

‘0(S) = ‘(Su0); where u0 is the minimum word of supp(S);

‖S‖ = Card(Q(S)= ∼):

(One can check that �‘(∅) = 0 and we de�ne ‘0(∅) = 0.) In general �‘(S), ‖S‖ belong
to N∪{∞} and ‘0(S) belongs to N.

Lemma 116. Let S; T ∈H0〈〈W 〉〉. If S ∼T then �‘(S) = �‘(T) and ‖S‖= ‖T‖.

Lemma 117. Let M be some W -dfa and let S(M) = S ∈H0〈〈W 〉〉. Then �‘(S)6
�k(M); ‘0(S)6k0(M) + �k(M) · ‖M‖; ‖S‖6‖M‖+ 1:

Lemma 118. For every W -deterministic rational series S ∈B〈〈H 〉〉〈〈W 〉〉; there exists
some W -dfa M such that S(M) = S and: �k(M)62 · �‘(S) · ‖S‖; k0(M)6‘0(S);
‖M‖6‖S‖:

Proof. Let us consider the W -dfa M constructed in the proof of Lemma 114 and let
(c; h; v; c′)∈ �. By de�nition

h = (Su·s(c))−1 · Suv·s(c′);

where u∈W ∗; v∈W . Hence,

‘(h)6 �‘(S)(|s(c)|+ |v|+ |s(c′)|)6 �‘(S)(‖S‖ − 1 + 1 + ‖S‖ − 1)

6 2 · �‘(S) · ‖S‖:

112 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

11.2.0.7. ˆ-Determinism. We use here the relation ∼ de�ned at the beginning of
Section 11.2. Let us notice that ∼ induces an equivalence relation ∼ on H 0 with
only two classes H and {0}.

De�nition 119. Let S ∈B〈〈H 〉〉〈〈W 〉〉. S is said left-ˆ-deterministic i� either
(1) S ∼∅ or
(2) S ∼ � or
(3) ∃w0 ∈W ∗; Sw0 6= 0 and ∀w; w′ ∈W ∗,

Sw ∼ Sw′ ∼ 1H

⇒ [∃A; A′ ∈ W;w1; w′
1 ∈ W ∗; A ˆ A′; w = A · w1 and w′ = A′ · w′

1]:

A left-ˆ-deterministic series S is said to have the type ∅ (resp. �, [A]ˆ) if case (1)
(resp. (2), (3)) occurs.

De�nition 120. Let S ∈B〈〈H 〉〉〈〈W 〉〉. S is said ˆ-deterministic i�, for every u∈W ∗,
S • u is left-ˆ-deterministic.

Let us notice that, if S is ˆ-deterministic, then every coe�cient Su belongs to H 0

and supp(S) is deterministic in the sense of De�nition 2. We denote by DH0〈〈W 〉〉 the
set of ˆ-deterministic series in B〈〈H 〉〉〈〈W 〉〉.

A �nite H -automaton M= 〈W;Q; �; h0; q0; Q′〉 will be said ˆ-deterministic if and
only if, for every q∈Q; A; A′ ∈W; h; h′ ∈H; r; r′ ∈Q:

((q; h; A; r) ∈ � and (q; h′; A′; r′) ∈ �)⇒ A ˆ A′: (196)

11.2.0.8. Full determinism.

Proposition 121. Let S ∈B〈〈H 〉〉〈〈W 〉〉. The following properties are equivalent:
(1) S is both W -deterministic rational and ˆ-deterministic.
(2) Q(S)=∼ is �nite and S is ˆ-deterministic.
(3) S is W -deterministic rational and supp(S) is deterministic.
(4) S is recognized by some �nite H -automaton which is both W -deterministic and

ˆ-deterministic.

De�nition 122. Let S ∈B〈〈H 〉〉〈〈W 〉〉. S is said fully deterministic rational (deterministic
rational, for short) i� it ful�lls one of points (1)–(4) of Proposition 121.

As point (2) of Proposition 121 is very close to the de�nition used in the boolean
case (De�nition 2), we shall mostly use point (2) as the main de�nition of deterministic
rational series in the sequel. We denote by DRH0〈〈W 〉〉 the set of Deterministic Rational
series with coe�cients in H 0 and undeterminates in W .

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 113

11.3. Vectors, matrices

We recall that, for every n; m∈N − {0}, B〈〈H 〉〉n;m〈〈W 〉〉 denotes the set of matri-
ces of dimension (n; m) with entries in B〈〈H 〉〉〈〈W 〉〉. The external product k ∈B〈〈H 〉〉;
S ∈B〈〈H 〉〉n;m〈〈W 〉〉 7→ k · S ∈B〈〈H 〉〉n;m〈〈W 〉〉 is de�ned, as usual by

∀i ∈ [1; n]; ∀j ∈ [1; m]; (k · S)i; j = k · Si; j :

11.3.0.9. W -deterministic rational matrices. The equivalence relation ∼ is adapted to
B〈〈H 〉〉1; m〈〈W 〉〉 by

S ∼ T ⇔ ∃h ∈ H; S = h · T:
It is then extended to B〈〈H 〉〉n;m〈〈W 〉〉 by

S ∼ T ⇔ ∀i ∈ [1; n]; Si;∗ ∼ Ti;∗:

The right-action • is extended compentwise to B〈〈H 〉〉n;m〈〈W 〉〉 by for every S ∈
B〈〈H 〉〉n;m〈〈W 〉〉; h∈H; u∈W ∗,

(S • (h; u))i; j = Si; j • (h; u):

For every S ∈B〈〈H 〉〉n;m〈〈W 〉〉 we de�ne the set of residuals of S, Q(S) and the set of
row-residuals of S, Qr(S), by

Q(S) = {S • (h; u) | h ∈ H; u ∈ W ∗}; Qr(S) =
⋃

16i6n

Q(Si;∗):

Proposition 123. Let m¿1; S ∈B〈〈H 〉〉1; m〈〈W 〉〉. The following properties are equivalent:
(1) S is recognized by some W -deterministic �nite m-H -automaton
(2) ∀j∈ [1; m]; ∀u∈W ∗; ((Sj)u ∈H 0) and Q(S)=∼ is �nite

De�nition 124. Let S ∈B〈〈H 〉〉1; m〈〈W 〉〉. S is said W -deterministic rational i� it ful�lls
one of points (1) and (2) of Proposition 123.

11.3.0.10. Length and norm. Let us consider a W -deterministic, �nite,
m-H -automaton M= 〈W;Q; �; h0; q0; (Q′

j)16j6m〉. We de�ne the length of M, �k(M),
the initial length of M, k0(M) and the norm of M, ‖M‖ as

�k(M) = max{‘(h) | ∃q ∈ Q; v ∈ W; r ∈ Q; (q; h; v; r) ∈ �}; k0(M) = ‘(h0);

‖M‖ = Card(Q):

Let us consider now a vector S ∈H0
1; m〈〈W 〉〉. We de�ne the length of S, �‘(S), the initial

length of S, ‘0(S), and the norm of S, ‖S‖ by

�‘(S) = inf{� ∈ R+ | ∀i; j ∈ [1; m]; ∀u; v ∈ W ∗; Si;u 6= 0

⇒ ‘((Si;u)−1 · Sj;v))6� · ‘(u−1 · v)};
‘0(S) = ‘(Su0);

114 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

where Sj; u denotes the coe�cient of Sj on the word u and u0 is the minimum word of
∪m

j=1 supp(Sj). We de�ne ‘0(∅m) = 0 and

‖S‖ = Card(Q(S)= ∼):

The three following lemmas can be proved in a similar way as Lemmas 116–118.

Lemma 125. Let S; T ∈H0
1; m〈〈W 〉〉. If S ∼T then �‘(S) = �‘(T) and ‖S‖= ‖T‖.

Lemma 126. Let M be some m-W -dfa and let S(M) = S ∈H0
1; m〈〈W 〉〉. Then

�‘(S)6 �k(M); ‘0(S)6k0(M) + �k(M) · ‖M‖; ‖S‖6‖M‖+ 1:

Lemma 127. For every W -deterministic rational vector S ∈B〈〈H 〉〉1; m〈〈W 〉〉; there ex-
ists some m-W -dfa M such that S(M) = S and: �k(M)62 · �‘(S) · ‖S‖; k0(M)6‘0(S);
‖M‖6‖S‖:

Let us consider now a matrix S ∈H0
n;m〈〈W 〉〉. We de�ne the length of S, �‘(S), the

initial length of S, ‘0(S), and the norm of S, ‖S‖ by

�‘(S) = max{ �‘(Si;∗); 16i6n}; ‘0(S) = max{‘0(Si;∗); 16i6n}

and

‖S‖ = Card(Qr(S)= ∼):

In general, �‘(S); ‖S‖ belong to N∪{∞} and ‘0(S) belongs to N.

11.3.0.11. ˆ-deterministic matrices.

De�nition 128. Let m¿1; S ∈B〈〈H 〉〉1; m〈〈W 〉〉. S is said left-ˆ-deterministic i� either
(1) ∀j∈ [1; m]; Sj ∼∅ or
(2) ∃j0 ∈ [1; m]; Sj0 ∼ � and ∀j 6= j0; Sj ∼∅ or
(3) ∃j0 ∈ [1; m]; Sj0 6∼ ∅ and ∀w; w′ ∈W ∗; ∀i; j∈ [1; m]; (Si)w ∼ (Sj)w′ ∼ 1H ⇒

[∃A; A′ ∈W; w1; w′
1 ∈V ∗; A ˆ A′; w =A · w1 and w′ =A′ · w′

1]:

A left-ˆ-deterministic series S is said to have the type ∅ (resp. �, [A]ˆ) if case (1)
(resp. (2), (3)) occurs.

De�nition 129. Let m¿1; S ∈B1; m〈〈H 〉〉〈〈W 〉〉. S is said ˆ-deterministic i�, for every
u∈W ∗, S • u is left-ˆ-deterministic.

Let us notice that, if S is ˆ-deterministic, then every coe�cient Sj; u belongs to H 0

and supp(S) is deterministic in the sense of De�nition 5. We denote by DH0
1; m〈〈W 〉〉

the set of ˆ-deterministic vectors in B〈〈H 〉〉1; m〈〈W 〉〉.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 115

A �nite m-H -automaton M= 〈W;Q; �; h0; q0; (Q′
j)16j6m〉 will be said ˆ-deterministic

if and only if it ful�lls condition (196).

11.3.0.12. Deterministic rational matrices.

Proposition 130. Let m¿1; S ∈B〈〈H 〉〉1; m〈〈W 〉〉. The following properties are equivalent:
(1) S is both W -deterministic rational and ˆ-deterministic.
(2) Q(S)=∼ is �nite and S is ˆ-deterministic.
(3) S is W -deterministic rational and supp(S) is deterministic.
(4) S is recognized by some �nite m-H -automaton which is both W -deterministic

and ˆ-deterministic.

De�nition 131. Let m¿1; S ∈B〈〈H 〉〉1; m〈〈W 〉〉. The vector S is said fully determinis-
tic rational (deterministic rational, for short) i� it ful�lls one of points (1)–(4) of
Proposition 130.

De�nition 132. Let n; m¿1; S ∈B〈〈H 〉〉n;m〈〈W 〉〉. The matrix S is said fully determin-
istic rational (deterministic rational, for short) i� every row-vector Si;∗, for 16i6n,
is fully deterministic rational.

We denote by DRH0
n;m〈〈W 〉〉 the set of Deterministic Rational matrices of dimension

(n; m), with coe�cients in B〈〈H 〉〉〈〈W 〉〉.

11.3.1. Ordering
We de�ne a partial ordering on B〈〈H 〉〉〈〈W 〉〉 by: for every S; T ∈B〈〈H 〉〉〈〈W 〉〉,

S v T ⇔ (∀u ∈ W ∗; Su = 0 or Su = Tu):

Given S; T ∈B〈〈H 〉〉〈〈W 〉〉 such that S vT we de�ne T − S ∈B〈〈H 〉〉〈〈W 〉〉 by

∀u ∈ W ∗; (T − S)u = Tu (if Su = 0); (T − S)u = 0 (if Su = Tu):

One can easily check the following

Fact 133. Let S; T ∈B〈〈H 〉〉〈〈W 〉〉 such that S vT .
(1) If T is ˆ-deterministic; then S is ˆ-deterministic.
(2) If T is ˆ-deterministic; then (S; T − S) is a ˆ-deterministic vector.

11.4. Algebraic properties

Let us �x now some abelian group (H; ·). We adapt here the main results concerning
Bn;m〈〈W 〉〉 obtained in Section 3 to the matrices in H0

n;m〈〈W 〉〉. Most of the proofs are so
close to the proofs given in Section 3 that we just mention the corresponding lemma
of Section 3 and leave to the reader the necessary adaptations. Some new statements
concerning the functions �‘; ‘0 are introduced.

116 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

11.4.1. Residuals
Lemma 134. Let S ∈DH0

1; m〈〈W 〉〉; T ∈B〈〈H 〉〉m; s〈〈W 〉〉; u∈W ∗ and U = S · T . Exactly
one of the following cases is true:
(1) ∃ j; Sj • u 6∈H 0

in this case U • u= (S • u) · T .
(2) ∃ j0;∃u′; u′′; u= u′ · u′′; Sj0 • u′ = h∈H ;

in this case U • u= h · Tj0 ;∗ • u′′.
(3) ∀j;∀u′4u; Sj • u= ∅; Sj • u′ 6∈H ;

in this case U • u= ∅s = (S • u) · T .

(See Lemma 11.)

Lemma 135. Let S ∈DRH0
1; m〈〈V 〉〉; such that; for every j∈ [1; m]; Sj 6= ∅. Let T; T ′ ∈

B〈〈H 〉〉m; s〈〈W 〉〉. If S · T ∼ S · T ′ then T ∼T ′.

Proof. Suppose that S · T = h · S · T ′ (where S; T; T ′ ful�ll the above hypotheses). Let
uj ∈ supp(Sj) (for every j∈ [1; m]). For every j∈ [1; m];

(S · T) • uj = (h · S · T ′) • uj

which, by Lemma 134, case 2, can be rewritten as

hj · Tj;∗ = h · hj · T ′
j;∗

(where Sj • uj = hj ∈H). Multiplying by h−1
j the above equality, we obtain

∀j ∈ [1; m]; Tj;∗ = h · T ′
j;∗;

hence T ∼T ′.

Lemma 136. Let n; m∈N− {0}; S ∈H0〈〈W 〉〉; u∈W ∗;
(1) �‘(S • u)6 �‘(S).
(2) ‘0(S • u)6‘0(S) + �‘(S) · (|u|+ 2 · ‖S‖).
(3) ‖S • u‖6‖S‖.

Proof. Points (1) and (3) are obvious. Let us prove point (2). If S • u= ∅, the
inequality is clearly true. Let us suppose now that S • u 6= ∅; min(supp(S)) = u0,
min(supp(S • u)) = u′0.

(S • u)u′0 = Su0 · (S−1
u0
· Su·u′0)

and

‘(u−1
0 · u · u′0)6‘(u) + ‘(u0) + ‘(u′0)6‘(u) + 2 · ‖S‖:

It follows that

‘((S • u)u′0)6‘0(S) + �‘(S)(‘(u) + 2‖S‖):

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 117

11.4.2. Product
Lemma 137. For every S ∈DH0

n;m〈〈W 〉〉; T ∈DH0
m; s〈〈W 〉〉; S · T ∈DH0

n; s〈〈W 〉〉.

(See Lemma 13.)

Lemma 138. Let S ∈DH0
n;m〈〈W 〉〉; T ∈H0

m; s〈〈W 〉〉. Then ‖S · T‖6‖S‖+ ‖T‖.

(See Lemma 14.)

Lemma 139. Let S ∈DH0〈〈W 〉〉; T ∈H0〈〈W 〉〉. Then
(1) �‘(S · T)6max{ �‘(S); �‘(T)},
(2) ‘0(S · T)6‘0(S) + ‘0(T):

Proof. In order to prove the �rst inequality we consider h= (S ·T)−1
u·v · (S ·T)u·w where

u; v; w∈W ∗; gcp(v; w) = � and (S ·T)u·v 6= 0; (S ·T)u·w 6= 0. As supp(S) is deterministic,
one of the following two cases must occur:
Case 1: u · v1 ∈ supp(S); u · w1 ∈ supp(S); v= v1 · v2; w =w1 · w2: Using the com-

mutativity of H we have

‘(h) = ‘((Suv1Tv2)
−1 · (Suw1Tw2)) = ‘((S−1

uv1
· Suw1) · (T−1

v2
· Tw2))

6 �‘(S)(|v1|+ |w1|) + �‘(T)(|v2|+ |w2|)
6max{ �‘(S); �‘(T)} · (|v|+ |w|) = max{ �‘(S); �‘(T)} · ‘((uv)−1 · (uw)):

Case 2: u1 ∈ supp(S); u2 · v∈ supp(T); u2 · w∈ supp(T); u= u1 · u2:

‘(h) = ‘(T−1
u2v · Tu2w)6 �‘(T)(|v|+ |w|)6max{ �‘(S); �‘(T)} · ‘((uv)−1 · (uw)):

This ends the proof of the �rst inequality. The second inequality is straightforward.

Lemma 140. Let n; m; s∈N− {0}; S ∈DH0
n;m〈〈W 〉〉; T ∈DH0

m; s〈〈W 〉〉. Then
(1) �‘(S · T)6max{ �‘(S); �‘(T)}+ 2 · ‘0(T) + 2 · �‘(T) · ‖T‖.
(2) ‘0(S · T)6‘0(S) + ‘0(T):

Proof. Let us prove point (1). We treat �rst the
Case 1: n= 1; s= 1. Let us consider u; v; w∈W ∗; h∈H such that

h= (S · T)−1
u·v · (S · T)u·w

and gcp(v; w) = �; (S · T)u·v 6= 0; (S · T)u·w 6= 0.
As supp(S) is deterministic, one of the following two cases must occur:
Subcase 1.1: i; j∈ [1; m]; u · v1 ∈ supp(Si); u ·w1 ∈ supp(Sj); v= v1 · v2; w =w1 ·w2:

Using the commutativity of H we have

‘(h) = ‘((Si;uv1Ti;v2)
−1 · (Sj;uw1Tj;w2)) = ‘((S−1

i;uv1
· Sj;uw1) · (T−1

i;v2
· Tj;w2))

6 �‘(S)(|v1|+ |w1|) + ‘(Ti;v2) + ‘(Tj;w2): (197)

118 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Let us consider a general series U ∈H0〈〈W 〉〉 and a word w′ ∈W ∗: Let u0 =
min(supp(U)) and w′ = u′ · u′′ with |u′|= |u0|. By de�nition of the length of a
series we then have

‘(Uw′)6 ‘(u0) + �‘(U) · ‘(u−1
0 · w′)

6 ‘0(U) + �‘(U)[‘(w′) + ‘(u0)];

and, as every �nite automaton recognizes at least one word of length smaller or equal
to its number of states ‘(u0)6‖U‖, hence

‘(Uw′)6 �‘(U)‘(w′) + ‘0(U) + �‘(U) · ‖U‖: (198)

Applying inequality (198) to the series Ti; Tj in inequality (197) we get

‘(h)6 �‘(S)(|v1|+ |w1|) + �‘(Ti)‘(v2) + ‘0(Ti) + �‘(Ti) · ‖Ti‖
+ �‘(Tj)‘(w2) + ‘0(Tj) + �‘(Tj) · ‖Tj‖

6max{ �‘(S); �‘(T)} · (|v|+ |w|) + 2 · ‘0(T) + 2 · �‘(T) · ‖T‖:
Subcase 1.2: i∈ [1; m]; u1 ∈ supp(Si); u2 · v∈ supp(Ti); u2 ·w∈ supp(Ti); u= u1 · u2:

Using the commutativity of H we have

‘(h) = ‘(T−1
i;u2v · Ti;u2w)6 �‘(T)(|v|+ |w|)6max{ �‘(S); �‘(T)} · (|v|+ |w|):

Let us now consider the
Case 2: n= 1; s¿1. For every T ∈DH0

m; s〈〈W 〉〉 we de�ne �T ∈DH0
m;1〈〈W 〉〉 by

∀j ∈ [1; m]; �T j =
s∑

k=1

Tj; k :

By the above case 1,

�‘(S · �T)6max{ �‘(S); �‘(�T)}+ 2 · ‘0(�T) + 2 · �‘(�T) · ‖ �T‖: (199)

But one can easily check the following relations:

�‘(S · T) = �‘(S · �T); �‘(T) = �‘(�T); ‘0(�T) = ‘0(T); ‖ �T‖6‖T‖:
By (199) and the above relations:

�‘(S · T)6 �‘(S · �T)6max{ �‘(S); �‘(�T)}+ 2 · ‘0(�T) + 2 · �‘(�T) · ‖ �T‖
6max{ �‘(S); �‘(T)}+ 2 · ‘0(T) + 2 · �‘(T) · ‖T‖:

Case 3: n¿1; s¿1. For every i∈ [1; n], by case 2, we have

�‘(Si:∗ · T)6max{ �‘(Si:∗); �‘(T)}+ 2 · ‘0(T) + 2 · �‘(T) · ‖T‖;
hence,

�‘(Si:∗ · T)6max{ �‘(S); �‘(T)}+ 2 · ‘0(T) + 2 · �‘(T) · ‖T‖:

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 119

It follows that, the maximum of the numbers �‘(Si:∗ · T) (for 16i6n) is smaller than
max{ �‘(S); �‘(T)}+ 2 · ‘0(T) + 2 · �‘(T) · ‖T‖.

Let S ∈DH0
1; m〈〈W 〉〉. S is said totally unitary i�, for every j∈ [1; m]; u∈W ∗; (Sj)u

∈{0; 1H}. S is said special totally unitary i� it is totally unitary and, for every
16i¡j6m, there exists u∈W ∗; v; v′ ∈W; Si; u·v = Sj; u·v′ = 1H .

Lemma 141. Let S; U ∈DH0
1; m〈〈W 〉〉; T ∈H0

m; s〈〈W 〉〉; such that S is special totally uni-
tary and U is totally unitary. Then �‘(U · T)6 �‘(S · T):

Proof. Let us treat �rst the
Case 1: s= 1. Let us consider u; v; w∈W ∗; h∈H such that

h = (U · T)−1
u·v · (U · T)u·w

and gcp(v; w) = �; (U · T)u·v 6= 0; (U · T)u·w 6= 0.
As in the proof of Lemma 140, we consider two subcases.
Subcase 1.1: i; j∈ [1; m]; u · v1 ∈ supp(Ui); u · w1 ∈ supp(Uj); v= v1 · v2; |v1|¿1;

w =w1 · w2; |w1|¿1: Then, as U is totally unitary:

‘(h) = ‘((Ui;uv1Ti;v2)
−1 · (Uj;uw1Tj;w2)) = ‘(T−1

i;v2
· Tj;w2):

As S is special totally unitary, there exists u′ ∈W ∗; �i; �j ∈W ,

‘(T−1
i;v2
· Tj;w2) = ‘((Si;u′�iTi;v2)

−1 · (Sj;u′�jTj;w2))

= ‘((S · T)−1
i;u′�i·v2

· (S · T)j;u′�j·w2)6 �‘(S · T) · (1 + |v2|+ 1 + |w2|)
6 �‘(S · T) · (|v|+ |w|):

Subcase 1.2: i∈ [1; m]; u1 ∈ supp(Si); u2 · v∈ supp(Ti); u2 ·w∈ supp(Ti); u= u1 · u2:
Then

‘(h) = ‘(T−1
i;u2v · Ti;u2w):

Let us consider some u′ ∈ supp(Si) (such a word does exist, by de�nition of “totally
unitary”):

‘(h) = ‘((SiTi)−1
u′u2v · (SiTi)u′u2w)6 �‘(S · T)(|v|+ |w|):

In both subcases we have checked that

�‘(U · T)6 �‘(S · T):

Case 2: s¿1. As in the proof of Lemma 140, case 2, considering �T ∈DH0
m;1〈〈W 〉〉

we see that

�‘(U · T) = �‘(U · �T)6 �‘(S · �T) = �‘(S · T):

120 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

11.4.3. W=V
Let (W;ˆ) be the structured alphabet (V;ˆ) associated with a given H -dpda M.

As the monoid (B; ·; 1) is embedded in (H 0; ·; 1H), all the particular series, vectors
and matrices ([p!q]; [p!]; [!]; �mj ; : : :) introduced in Section 3.1.4 embed in the cor-
responding set of series, vectors, matrices with coe�cients in H 0. The notions of
Q-form, Q-�-form, Q-product are de�ned analogously.

Lemma 142. Let �∈N− {0}; S ∈DH0
1; �〈〈V 〉〉.

(1) there exists v∈V ∗ such that ��(S)∼ S • v; ��(S) = S ⊗ e|v| and |v|6‖S‖ − 1.
(2) ��(S)≡ S.

(See Lemma 15.)

Corollary 143. (1) ∀�∈N− {0};∀S ∈DH0
1; �〈〈V 〉〉; ‖��(S)‖6‖S‖.

(2) ∀�∈N− {0}; ∀S ∈DH0
1; �〈〈V 〉〉; ��(S)∈DH0

1; �〈〈V 〉〉:
(3) ∀�∈N− {0}; ∀S ∈DRH0

1; �〈〈V 〉〉; ��(S)∈DRH0
1; �〈〈V 〉〉:

Lemma 144. Let �∈N−{0}; S ∈DH0
1; �〈〈V 〉〉; u∈X +. One of the three following cases

must occur:
(1) S � u∼∅�;
(2) S � u∼ ��

j for some j∈ [1; �];
(3) ∃u1; u2 ∈X ∗; v1 ∈V ∗; q∈Q; z ∈Z; h1 ∈H;�Q-�-form such that

u = u1 · u2; ��(S)� u1 = S • (h1; v1) = [qz] ∗ � and S � u = ([qz]� u2) ∗ �:

(See Lemma 19.)

Corollary 145. (1) ∀S ∈DH0
1; �〈〈V 〉〉; u∈X ∗; S � u∈DH0

1; �〈〈V 〉〉:
(2) ∀S ∈DRH0

1; �〈〈V 〉〉; u∈X ∗; S � u∈DRH0
1; �〈〈V 〉〉:

Lemma 146. Let S ∈DH0
1; �〈〈V 〉〉; u∈X ∗.

(1) �‘(S � u)6 �‘(S).
(2) if S is �-free then

‘0(S � u)6‘0(S) + ‖S‖ · �k(M) · |u|+ K0 · �k(M) · |u|2:
(3) ‖S � u‖6‖S‖+ K0 · |u|.

Proof. Let us prove point (1). We consider the 3 cases distinguished in Lemma 144.
If case 1 or 2 occurs, then clearly �‘(S � u) = 06 �‘(S).

Let us suppose that case 3 occurs. One can notice that [qz]; [qz]� u2 are special
totally unitary vectors. By Lemma 141, we have

�‘(S � u) = �‘(([qz]� u2) ∗ �)6 �‘([qz] ∗ �);

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 121

and by Lemma 136, point (1):

�‘([qz] ∗ �) = �‘(S • v1)6 �‘(S):

The two above inequalities prove point (1) of the lemma.
Let us prove point (2). Suppose that S is �-free and |u|= 1, i.e. u= x∈X . Then

‘0(S ⊗ x)6‘0(S) + �k(M); ‖S ⊗ x‖6‖S‖+ K0: (200)

By Lemma 142, there exists v∈V ∗; |v|6‖S ⊗ x‖ − 1 such that

��(S ⊗ x) = (S ⊗ x)⊗ e|v|:

Hence,

‘0(��(S ⊗ x)) = ‘0(S ⊗ xe|v|)

6 ‘0(S) + |xe|v|| · �k(M)

6 ‘0(S) + ‖S ⊗ x‖ · �k(M)

6 ‘0(S) + (‖S‖+ K0) · �k(M): (201)

Suppose now that |u|¿1. Applying |u| times inequality (201), we get

‘0(S � u)6 ‘0(S) +
|u|∑
i=1

(‖S‖+ i · K0) · �k(M)

= ‘0(S) + ‖S‖�k(M) · |u|+ K0 �k(M) · |u|(|u|+ 1)=2

6 ‘0(S) + ‖S‖�k(M) · |u|+ K0 �k(M) · |u|2:

This proves point (2) of the lemma.
Let us prove point (3). Applying Corollary 143 point (1) and |u| times the second

inequality of (200), we obtain point (3):

Remark 147. In fact, inequality (2) can be strengthened into the following:

‘0(S � u)6‘0(S) + (‖S‖+ K0 · |u|+ |u|) · �k(M):

But the proof would be more delicate while the result is not needed for our purposes.

Lemma 148. Let S ∈DH0
1; m〈〈W 〉〉; T ∈H0

m; s〈〈W 〉〉; u∈X + and U = S · T . Exactly one
of the following cases is true:
(1) S � u =∈{∅m}∪ {h · �mj | h∈H; 16j6m}

in this case U � u= (S � u) · T .
(2) ∃j0;∃u′; u′′; u= u′ · u′′; h∈H; ��(S � u′) = h · �mj0

;
in this case U � u= h · ��(Tj0 ;∗� u′′).

122 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

(3) ∀j;∀u′ 4 u; S � u= ∅m and ��(S � u′) 6∼ �mj ;
in this case U � u= ∅s = (S � u) · T .

(See Lemma 22.)

Lemma 149. For every S ∈DH0
1; �〈〈V 〉〉;

(1) �e(S)∈DH0
1; �〈〈V 〉〉;

(2) �‘(�e(S))¿ �‘(S):
(3) ‖�e(S)‖6‖S‖;
(4) S ≡ �e(S):

Proof. Points (1); (3); (4) can be proved as in Lemma 23. Let us prove point (2). Let
u; v∈V ∗; Su 6= 0. Let us note T = �e(S),

‘(S−1
u · Sv) = ‘(T−1

�e(u) · T�e(v))6 �‘(T) · ‘(�e(u)−1 · �e(v))

6 �‘(T) · ‘(u−1 · v) = �‘(�e(S)) · ‘(u−1 · v)
(we use the fact that w 7→ �e(w) is contracting).

11.4.4. Equivalence on row-vectors
Lemma 150. Let �∈N−{0}; S; S ′ ∈DB1; �〈〈V 〉〉. Then S ≡ S ′ if and only if; ∀h∈H;
∀u∈X ∗; ∀j∈ [1; �]; ��(S � (h; u)) = ��

j ⇔ ��(S ′� (h; u)) = ��
j :

(See Corollary 26.)

De�nition 151. For every �∈N − {0}; S; S ′ ∈B1; �〈〈V 〉〉 we de�ne Div(S; S ′) =
inf{|u|; u∈X ∗;∃j∈ [1; �];∃h∈H (��(S � (h; u)) = ��

j)⇔ (��(S ′� (h; u)) 6= ��
j)}:

(See the alternative de�nition (38) in the boolean case.)

11.5. Operations on row-vectors

Given A; B∈H0
1; m〈〈W 〉〉 and 16j06m we de�ne the vector C =A�j0 B as follows:

if A= (a1; : : : ; aj; : : : ; am); B= (b1; : : : ; bj; : : : ; bm) then C = (c1; : : : ; cj; : : : ; cm), where

cj = aj + aj0 · bj if j 6= j0; cj = ∅ if j = j0:

Let us notice that A�j0 B∈B〈〈H 〉〉1; m〈〈W 〉〉 but need not belong to H0
1; m〈〈W 〉〉 in general.

Lemma 152. Let A; B∈H0
1; m〈〈W 〉〉 and 16j06m:

(1) if A; B are left-deterministic; then A�j0 B is left-deterministic.
(2) if A; B are deterministic; then A�j0 B is deterministic.
(3) if A; B are deterministic; then ‖A�j0 B‖6‖A‖+ ‖B‖:

(See Lemma 28.)

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 123

Lemma 153. Let A∈DH0
1; m〈〈W 〉〉 and 16j06m. Then �∗

j0
(A)∈DH0

1; m〈〈W 〉〉 and ‖�∗
j0

(A)‖6‖A‖:

(See Lemma 29.)

11.6. Deterministic spaces

The notions of d-space, linear combination, generating set are de�ned as in Sec-
tion 3.2 but where B is replaced by H 0 everywhere.

Lemma 154. Let S1; : : : ; Sj; : : : ; Sm ∈DRH0〈〈V 〉〉. The following are equivalent:
(1) ∃�̃; �̃∈DRH0

1; m〈〈V 〉〉; �̃ 6≡ �̃; such that
∑

16j6m �j · Sj ≡
∑

16j6m �j · Sj;
(2) ∃j0 ∈ [1; m]; ∃̃∈DRH0

1; m〈〈V 〉〉;∀h∈H; ̃ 6≡ h · �mj0
; such that Sj0 ≡

∑
16j6m j · Sj;

(3) ∃j0 ∈ [1; m]; ∃̃ ′ ∈DRH0
1; m〈〈V 〉〉; ′j0

≡∅; such that Sj0 ≡
∑

16j6m ′j · Sj;
(4) ∃j0 ∈ [1; m]; such that V((Sj)16j6m)≡V((Sj)16j6m; j 6=j0):

(See Lemma 30.)

11.7. Height, defect and linearity

Here also, the de�nitions of height and defect of a deterministic rational series
(or Q-series) are those of Section 3.3 where B is replaced by H 0.

Lemma 155. Let S ∈DRH0〈〈V 〉〉; x∈X; d; d′ ∈N.
(1) rd(S � x)6rd(S)
(2) S is (d; d′)-linear ⇒ S � x is (d + 1; d′)-linear

(See Lemma 32.)

Lemma 156. Let B; A∈Z; �∈DH0
Q;1〈〈V 〉〉. If ‖[A] ∗ �‖¿‖�‖ then; ∀q∈Q; [[qBA] ∗

�]∼ =∈Qr([A] ∗ �)=∼.

The proof is analogous to the proof of Lemma 33. We use Lemma 135 to conclude
in case 1 that [A] ∗ �∼�.

Lemma 157. Let !∈Z+; A′; A∈Z; p∈Q; �∈DH0
Q;1〈〈V 〉〉. If ‖[A] ∗ �‖¿‖�‖; then

(1) ‖[!A] ∗ �‖= |Q| · |!|+ ‖[A] ∗ �‖
(2) ‖[pA′!A] ∗ �‖= 1 + |Q| · |!|+ ‖[A] ∗ �‖.

(See Lemma 34.)

Lemma 158. Let U = [p!] ∗ �;U ′ =U � u where p∈Q; !∈Z∗; |!|¿1; � is a
Q- form; |�|¿1; u∈X ∗; |u|6k. Let us suppose that ‖U ′‖¿1 + k|Q| + ‖�‖. Then
U ′ = ([p!]� u) ∗ � where [p!]� u= [q!′] for some q∈Q; |!′|¿k:

124 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

(See Lemma 37.)

Lemma 159. Let D¿0. Let �= (�q)q∈Q be a Q-form and let S ∈V((�q)q∈Q) such
that
(1) ‖�‖¿D + |Q|; |�|¿2;
(2) rd(S)6D.
Then; ∃!∈Z∗;∃p∈Q; S = [p!] ∗ �.

The proof of Lemma 38 can be adapted in the following way. One proves �rst that

∃q ∈ Q; ∃u ∈ supp(�q); ∃u′; u′′ ∈ V ∗; u = u′ · u′′ and S • u′∼	q: (202)

is impossible. Eq. (48) is then established in the same way. All the remaining of the
proof is still valid (provided “u∈ �q” is replaced by “u∈ supp(�q)”, everywhere).

11.7.1. Derivations
The notions of derivations and sub-derivations are adapted in a straightforward way

to the case of series in DRH0〈〈V 〉〉.
For every u∈X ∗ we de�ne the binary relation ↑ (u) over DH0〈〈V 〉〉 by for every

S; S ′ ∈DH0〈〈V 〉〉; S ↑ (u)S ′⇔∃z ∈Z; !∈Z+; p; q∈Q; h∈H; 	∈DH0
Q;1〈〈V 〉〉 such that

S = [pz] ∗	; [pz]� u = h · [q!]; S ′ = h · [q!] ∗	:

A derivation S0; S1; : : : ; Sn is said to be stacking i� it is the derivation associated to a
pair (S; u) such that S = S0 and S0 ↑ (u)Sn.

De�nition 160. A vector S ∈DRH0
1; �〈〈V 〉〉 is said loop-free if and only if for every

v∈V+, S • v 6∼ S.

Lemma 161. Let S ∈DRH0
1; �〈〈V 〉〉; u∈X ∗; such that ‖S � u‖¿‖S‖. Then S � u is

loop-free.

(See Lemma 41.)

Lemma 162. Let S ∈DRH0〈〈V 〉〉; w∈X ∗; such that
(1) S is �-free and loop-free;
(2) ∀v4w; ‖S � v‖¿‖S‖. Then the derivation S w→ S �w is stacking.

(See Lemma 42.)

Lemma 163. Let S; S ′ ∈DRH0〈〈V 〉〉; w∈X ∗; k ∈N; such that S �w = S ′ and ‖S ′‖¿
‖S‖+ k ·K0 + 1. Then the derivation S w→ S ′ contains some stacking sub-derivation of
length k.

(See Lemma 43.)

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 125

Lemma 164. Let S; S ′ ∈DRH0〈〈V 〉〉; w∈X ∗; k; d; d′ ∈N; such that S is �-free; (d; d′)-
linear and
(1) the derivation S w→ S ′ contains no stacking sub-derivation of length k.
(2) |w|¿d · k.
Then S ′ is (0; d′)-linear.

(See Lemma 44.)

11.8. Formal system H0

We de�ne here a particular deduction system H0 “Taylored for the equivalence
problem for H -dpda’s”.

Given a �xed H -dpda M over the terminal alphabet X , we consider the variable
alphabet V associated to M (see Section 11.1.4) and the set DRH0〈〈V 〉〉 (the set of
Deterministic Rational series over V ∗, with coe�cients in H 0). The set of assertions
is de�ned by

A = N× DRH0〈〈V 〉〉 × DRH0〈〈V 〉〉;
i.e. an assertion is here a weighted equation over DRH0〈〈V 〉〉.

The “cost-function” J :A→N∪{∞} is de�ned by

J (n; S; S ′) = n + 2 · Div(S; S ′):

(We recall Div(S; S ′) is introduced in De�nition 151.) Here also

�(n; S; S ′) = 1⇔ S ≡ S ′:

We de�ne a binary relation ||−− ⊂Pf(A)×A, the elementary deduction relation, as
the set of all the pairs having one of the following forms:
(H0)

{(p; S; T)} ‖−− (p + 1; S; T)

for p∈N; S; T ∈DRH0〈〈V 〉〉,
(H1)

{(p; S; T)} ‖−− (p; T; S)

for p∈N; S; T ∈DRH0〈〈V 〉〉,
(H2)

{(p; S; S ′); (p; S ′; S ′′)} ‖−− (p; S; S ′′)

for p∈N; S; S ′; S ′′ ∈DRH0〈〈V 〉〉,
(H3)

∅ ‖−− (0; S; S)

for S ∈DRH0〈〈V 〉〉,

126 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

(H′3)

∅ ‖−− (0; S; T)

for S ∈DRH0〈〈V 〉〉; T ∈{∅; �}; S ≡T ,
(H4)

{(p + 1; S � x; T � x) | x ∈ X } ‖−− (p; S; T)

for p∈N; S; T ∈DRH0〈〈V 〉〉; (∀h∈H; S 6≡ h; ∧T 6≡ h),
(H5)

{(p; S; S ′)} ‖−− (p + 2; S � x; S ′ � x)

for p∈N; S; T ∈DRH0〈〈V 〉〉; x∈X;
(H6)

{(p; S · T ′ + S ′; T ′)} ‖−− (p; S∗ · S ′; T ′)

for p∈N; (S; S ′)∈DRH0
1;2〈〈V 〉〉; T ′ ∈DRH0〈〈V 〉〉; (∀h∈H; S 6≡ h);

(H7)

{(p; S; S ′); (p; T; T ′)} ‖−− (p; S + T; S ′ + T ′)

for p∈N; (S; T); (S ′; T ′)∈DRH0
1;2〈〈V 〉〉,

(H8)

{(p; S; S ′)} ‖−− (p; S · T; S ′ · T)

for p∈N; S; S ′; T ∈DRH0〈〈V 〉〉;
(H9)

{(p; T; T ′)} ‖−− (p; S · T; S · T ′)

for p∈N; S; T; T ′ ∈DRH0〈〈V 〉〉,
(H10)

∅ ‖−− (0; S; ��(S))

for S ∈DRH0〈〈V 〉〉;
(H11)

∅ ‖−− (0; S; �e(S))

for S ∈DRH0〈〈V 〉〉:
Though we did not prove this result formally, it should be clear that the operations

+; · and �∗
1 over DRH0

m〈〈V 〉〉 correspond to some computable functions on determin-
istic �nite m-H -automata and that the equality in DRH0

m〈〈V 〉〉 corresponds to some
computable predicate on pairs of deterministic �nite m-H -automata (i.e. the equiva-
lence problem for deterministic �nite m-H -automata is decidable). Hence, modulo an

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 127

encoding of ∪m¿1DRH
0
m〈〈V 〉〉 into integers, based on deterministic �nite m-H -automata,

the above set of rules is recursively enumerable. Let us de�ne |−− by: for every
P ∈Pf(A); A∈A,

P ‖−− A⇔ P
〈∗〉
‖−− ◦ ‖−− [1]

0;3;4;10;11 ◦
〈∗〉
‖−− {A}:

where ‖−− 0;3;4;10;11 is the relation de�ned by (H0); (H3); (H′3); (H4); (H10); (H11)
only. We let

H0 = 〈A; J; ‖−− 〉:

Lemma 165. H0 is a deduction system.

11.9. Triangulations

Let S1; S2; : : : ; Sd be a family of deterministic rational series over the structured al-
phabet V , with coe�cients in H 0 (i.e. Si ∈DRH0〈〈V 〉〉). We recall V is the alphabet
associated with some dpda M as de�ned in Section 11.1.4. Let us consider a sequence
S of n “weighted” linear equations:

(Ei): pi;
d∑

j=1

�i; jSj;
d∑

j=1

�i; jSj; (203)

where pi ∈N − {0}, and A= (�i; j); B= (�i; j) are deterministic rational matrices of
dimension (n; d), with indices m6i6m + n− 1; 16j6d.

For any weighted equation, E= (p; S; S ′), we recall the “cost” of this equation is
J (E) =p + 2Div(S; S ′).

Let us adapt the construction of the system INV(S) to the case of series with
coe�cients in H 0. We assume a total ordering 6, is given on X and we denote also
by 6 its short-lex extension to X ∗. We denote by 6H some well-ordering on H .

11.9.1. Restricted systems
We assume here that

∀j ∈ [1; d]; Sj 6≡ ∅; (204)

∀i ∈ [m;m + n− 1]; ∀j ∈ [1; d]; �i; j ; �i; j are �-free (205)

and

∀i ∈ [m;m + n− 1]; �i;∗ is unitary: (206)

(We recall it means that ‘0(�i;∗) = 0.) A system S ful�lling the three hypotheses
(204)–(206) will be called a restricted system of weighted linear equations.

128 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Let us de�ne INV(S), W(S)∈N∪{⊥};D(S)∈N, by induction on n. W(S) is
the weight of S. D(S) is the weak codimension of S.
Case 1: �m;∗≡ �m;∗

INV(S) = ((W(S); �m; j; �m; j))16j6d; W(S) = pm − 1; D(S) = 0:

Case 2: �m;∗ 6≡ �m;∗; n¿2; pm+1 − pm¿2 · Div(�m;∗; �m;∗) + 1. Let us consider

(h; u) = min{(k; v) ∈ H × X ∗ | ∃j ∈ [1; d]; (�m;∗ � (k; v) = �dj)

⇔ (�m;∗ � (k; v) 6= �dj)}: (207)

(Lemma 150 and the �-freeness assumption (205) ensure the existence of such a pair
(h; u)). Let j0 ∈ [1; n] such that (�m;∗� u= �dj0

)⇔ (�m;∗� u 6= �dj0
:)

Subcase 1: �m; j0 � (h; u) = �; �m; j0 � (h; u) 6= �: Let us consider the equation

(E′
m): pm + 2 · |u|; Sj0 ;

d∑
j=1
j 6=j0

(�m; j0 � (h; u))∗(�m; j � (h; u))Sj

and de�ne a new system of weighted equations S′ = (E′
i)m+16i6m+n−1 by

(E′
i): pi;

∑
j 6=j0

[�i; j + �i; j0 (�m; j0 � (h; u))∗(�m; j � (h; u))] · Sj;

∑
j 6=j0

[�i; j + �i; j0 (�m; j0 � (h; u))∗(�m; j � (h; u))] · :

(The above equation is seen as an equation between two linear combinations of the
Si’s, 16i6d, where the j0th coe�cient is ∅ on both sides.) We then de�ne

INV(S) = INV(S′);W(S) = W(S′); D(S) = D(S′) + 1:

Subcase 2: �m; j0 � (h; u) 6= �; �m; j0 � (h; u) = �: (analogous to subcase 1).
Case 3: �m;∗ 6≡ �m;∗; n= 1. We then de�ne

INV(S) = ⊥; W(S) = ⊥; D(S) = 0;

where ⊥ is a special symbol which can be understood as meaning “unde�ned”.
Case 4: �m;∗ 6≡ �m;∗; n¿2; pm+1 − pm62 · Div(�m;∗; �m;∗): We then de�ne

INV(S) = ⊥; W(S) = ⊥; D(S) = 0:

Let us consider the function F de�ned by

F(d; n) = max{Div(A; B) |A; B ∈ DRB1; d〈〈V 〉〉; ‖A‖6n; ‖B‖6n; A 6≡ B}:
For every integer parameters K0; K1; K2; �K3; �K4; K0

3 ; K
0
4 ; K3; K4 ∈N− {0}, we de�ne in-

teger sequences (�i; ‘i; Li; �si; s0
i ; si; Si; �i)m6i6m+n−1 by

�m = 0; ‘m = 0; Lm = K2; (208)

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 129

�sm = �K3 · K2 + �K4; s0
m = K0

3 · K2 + K0
4 ; (209)

sm = K3 · K2 + K4; Sm = 0; �m = 0; (210)

�i+1 = 2 · F(d; si + �i) + 1;

‘i+1 = 2 · �i+1 + 3;

Li+1 = K1 · (Li + ‘i+1) + K2;

�si+1 = �K3 · Li+1 + �K4;

s0
i+1 = K0

3 · Li+1 + K0
4 ;

si+1 = K3 · Li+1 + K4;

Si+1 = si + �i + K0F(d; si + �i);

�i+1 = �i + Si+1 (211)

for m6i6m + n− 2.
These sequences are intended to have the following meanings when K0; K1; K2; �K3; �K4;

K0
3 ; K

0
4 ; K3; K4 are chosen to be the constants de�ned in Section 11.10 and Eqs. (Ei)

are labelling nodes of a N-stacking sequence (see Section 11.12.1):
�i+16increase of weight between Ei ;Ei+1,
‘i+1¿increase of depth between Ei ;Ei+1,
Li+1¿increase of depth between Em;Ei+1,
�si+1¿length of the coe�cients of Ei+1,
s0
i+1¿initial length of the coe�cients of Ei+1,
si+1¿norm of the coe�cients of Ei+1,
Si+1¿norm of the coe�cients of E

(i+1−m)
i+1 (these systems were introduced in the

proof of Lemma 59),
�i+1¿increase of the norm of the coe�cients between E

(i−m)
k ;E(i+1−m)

k (for
k¿
i+1).
For every linear equation E= (p;

∑d
j=1 �jSj;

∑d
j=1 �jSj), we de�ne

�1(E) =

p; h−1

0 ·
d∑

j=1

�jSj; h−1
0 ·

d∑
j=1

�jSj

;

where h0 is the coe�cient of the smallest word u0 of ∪d
j=1supp(�j)

�‘(E) = max{ �‘(�1; : : : ; �d); �‘(�1; : : : ; �d)};

‘0(E) = ‘0(h−1
0 · (�1; : : : ; �d));

|‖E|‖ = max{‖(�1; : : : ; �d)‖; ‖(�1; : : : ; �d)‖}:

130 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

(Notice that �1(E) is left-unitary and that for every system S; INV(S) = INV
(�1(S)).) We de�ne the constant

�K2 = max{ �‘(�e(INV(S))) |S system of d0 equations such that; �‘(S)6 �sd0 ;

‘0(S)6s0
d0
; |‖S|‖6sd0}: (212)

Let us check that the integer �K2 is well de�ned.
For given integers M 0; �M;M , the set

{S ∈ DRH0
1;d〈〈V 〉〉 | ‘0(S)6M 0; �‘(S)6 �M; ‖S‖6M}

is �nite (by Lemma 127). It follows that the set of pairs

{(�; �) ∈ DRH0
1;d〈〈V 〉〉 | ‘0(�) = 0; ‘0(�)6M 0;

�‘(�)6 �M; �‘(�)6 �M; ‖�‖6M; ‖�‖6M}
is �nite. Hence, the set of left-unitary equations E= (p;

∑d
j=1 �jSj;

∑d
j=1 �jSj) such

that

‘0(E)6M 0; �‘(E)6 �M; ‖|E‖|6M

is �nite. But INV(S) = INV(�1(S)) and the map E 7→ �1(E) preserves the three maps
‘0; �‘; ‖| ∗ ‖|.We can conclude that the set in the right-hand side of (212) is �nite. This
shows that �K2 is a well-de�ned integer.

Lemma 166. Let S= (Ei)m6i6m+d−1 be a restricted system of d linear equations
such that J (Ei) =∞ (for every i) and
(1) ∀i∈ [m;m + d− 1]; �‘(Ei)6 �si;
(2) ∀i∈ [m;m + d− 1]; ‘0(Ei)6s0

i ;
(3) ∀i∈ [m;m + d− 1]; |‖Ei|‖6si;
(4) ∀i∈ [m;m + d− 2];W(Ei+1)−W(Ei)¿�i+1:
Then INV(S) 6=⊥;D(S)6d− 1; and for every E ∈ INV(S);
(5) �‘(E)6 �‘(�e(E))6 �K2;
(6) |‖E|‖6�m+D(S) + sm+D(S).

Sketch of proof. The proof of Lemma 59 can be adapted in the following way. The
word ui introduced in (78) must be now de�ned by

(hi; ui) = min{(k; v) ∈ H × X ∗ | ∃j ∈ [1; d]; (�(i−m)
i;∗ � (h; v) = �dj)

⇔ (�(i−m)
i;∗ � (h; v) 6= �dj)}: (213)

It follows that, for example

�(i−m)
i;∗ � (hi; ui) = �dj (214)

while

�(i−m)
i;∗ � (hi; ui) 6= �dj : (215)

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 131

But, if �(i−m)
i;∗ � (hi; ui) = h · �dj ; for some h∈H , then Sj ≡ h · Sj which, by hypothesis

(204), implies that h= 1H . Hence, hypotheses (214) and (215) imply that

supp(�(i−m)
i;∗)� ui = �dj and supp(�(i−m)

i;∗)� ui 6= �dj

and �nally

|ui|6F(d; |‖supp(E(i−m)
i)|‖)6F(d; |‖E(i−m)

i |‖)6F(d; si + �i):

(the case where �; � are exchanged in (214), (215) leads to the same upper-bound
on |ui|).
As well, the word u introduced in (80) is now de�ned by

(h; u) = min{(k; v) ∈ H × X ∗ | ∃j ∈ [1; d]; (�(D(S))
m+D(S);∗ � (h; v) = �dj)

⇔ (�(D(S))
m+D(S);∗ � (h; v) 6= �dj)} (216)

and by the same trick as above about the supports we obtain

|u|6F(d; |‖E(D(S))
m+D(S)|‖)6F(d; sm+D(S) + �m+D(S)):

The remaining of the proof is unchanged.

11.9.2. General systems
We consider now the general case where assumptions (204)–(206) are removed.

We only suppose that

∃d1 ∈ [1; d]; Sd1 6≡ ∅: (217)

Under the same assumption (82) we construct similarly a system Ŝ of n linear equa-
tions:

(Êi): �1

pi;

d̂∑
j=1

��(�i; j) · Sj;
d̂∑

j=1

��(�i; j) · Sj

where m6i6m + n− 1.
We then de�ne

INV(S) = INV(Ŝ); W(S) = W (Ŝ); D(S) = D(Ŝ):

Lemma 167. Let S= (Ei)m6i6m+d−1 be a system of d linear equations such that
J (Ei) =∞ (for every i) and
(0) ∃j∈ [1; d]; Sj 6≡ ∅;
(1) ∀i∈ [m;m + d− 1]; �‘(Ei)6 �si;
(2) ∀i∈ [m;m + d− 1]; ‘0(Ei)6s0

i ;
(3) ∀i∈ [m;m + d− 1]; |‖Ei|‖6si;
(4) ∀i∈ [m;m + d− 2]; W(Ei+1)−W(Ei)¿�i+1:

132 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Then INV(S) 6=⊥;D(S)6d− 1, and for every E∈ INV(S);
(5) �‘(E)6 �K2;
(6) |‖E|‖6�m+D(S) + sm+D(S).

Sketch of proof. Applying Lemma 166 on the restricted system Ŝ we obtain
Lemma 167.

11.10. New constants

Let us �x a normalized H -dpda M and an initial equation

A0 = (�0; S−
0 ; S+

0) ∈ N× DRH0〈〈V 〉〉 × DRH0〈〈V 〉〉:
The constants k0; k1; D1; k2; K0; K1; K2; K3; K4; d0 are still de�ned by the formulas (85)–
(89) of Section 6. In addition we introduce

�K3 = 4 · K0 · k0 · k1 · �k(M); �K4 = (4 · K0 · k1 · k2 + 4 · K0 · k2
0 + 6 · k0) · �k(M):

(218)

K0
3 = �K3; K0

4 = (4 · K0 · k1 · k2 + K0 · k2
1 + 4 · K0 · k2

0 + 3 · k1 + 6 · k0) · �k(M):

(219)

We still consider the same function F as in Section 6 (see the trick in the proof of
Lemma 166). We recall it is de�ned by

F(d; n) = max{Div(A; B) |A; B∈DRB1; d〈〈V 〉〉; ‖A‖6n; ‖B‖6n; A 6≡B}: We consider
now the integer sequences (�i; ‘i; Li; �si; s0

i ; si; Si; �i)m6i6m+n−1 de�ned by relations (211)
of Section 11.9 where the parameters K1; : : : ; K4 are chosen to be the above constants
and m= 1; n=d=d0. Equivalently, they are de�ned by

�1 = 0; ‘1 = 0; L1 = K2; (220)

�s1 = �K3 · K2 + �K4; s0
1 = K0

3 · K2 + K0
4 ; (221)

s1 = K3 · K2 + K4; S1 = 0; �1 = 0: (222)

�i+1 = 2 · F(d0; si + �i) + 1;

‘i+1 = 2 · �i+1 + 3;

Li+1 = K1 · (Li + ‘i+1) + K2;

�si+1 = �K3 · Li+1 + �K4;

s0
i+1 = K0

3 · Li+1 + K0
4 ;

si+1 = K3 · Li+1 + K4;

Si+1 = si + �i + K0F(d0; si + �i);

�i+1 = �i + Si+1 (223)

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 133

for 16i6d0 − 1. The constants D2; N0 are still de�ned by formulas (93), (94) of
Section 6. We recall the two following constants introduced in Section 11.9:

�K2 = max{ �‘(�e(INV(S))) |S system of d0 equations such that

�‘(S))6 �sd0 ; ‘
0(S)6s0

d0
; |‖S|‖6sd0}; (224)

�L2 = max{ �‘(S−
0); �‘(S+

0); �K2}: (225)

Let 	 :DRH0〈〈V 〉〉→DRH0〈〈V 〉〉=∼ be the canonical projection. For every integers
D;N; L∈N, we consider the set

C(D;N; L) = 	{S ∈ DRH0〈〈V 〉〉 | �‘(S)6L; ‖S‖6N}
∪(Q × Z6D)×	{S ∈ DRH0

Q;1〈〈V 〉〉 | �‘(S)6L; ‖S‖6N}: (226)

We introduce the new constants:

K8 = 5 · (Card(C(D1; N0; �L2)))2; K7 = (K8 + 1) · k0 · K0: (227)

11.11. Strategies for H0

By some slight adaptations of the strategies devised for the system D0 (see
Section 7), we obtain strategies for the particular system H0.

Tcut: Tcut(A1 · · ·An) =B1 · · ·Bm i� ∃i∈ [1; n− 1];∃Si; S ′
i ; Sn; S ′

n ∈DRH0〈〈V 〉〉; h∈H

Oi v Si; O′
i v S ′

i ; On v Sn; O′
n v S ′

n;

Oi ≡ O′
i ≡ On ≡ O′

n ≡ ∅;
Ai = (pi; Si; S ′

i); An = (pn; Sn; S ′
n); pi ¡ pn;

Si − Oi = h · (Sn − On); S ′
i − O′

i = h · (S ′
n − O′

n); and m = 0

T∅: T∅(A1A2 · · ·An) =B1 · · ·Bm i� ∃S; T; An = (p; S; T); p¿0; S ≡T ≡∅ and m= 0
TH : TH (A1 · · ·An) =B1 · · ·Bm i� An = (p; S; T); p¿0;∃h∈H; S ≡T ≡ h and m= 0
TA: TA(A1 · · ·An) =B1 · · ·Bm i�

An = (p; S; T); m = |X |; B1 = (p + 1; S � x1; T � x1); : : : ;

Bm = (p + 1; S � xm; T � xm);

where ∀h∈H; S 6≡ h; T 6≡ h
T+
B : T+

B (A1 · · ·An) =B1 · · ·Bm i� n¿k1 + 1; An−k1 = (�; �U;U ′), (where �U is un-
marked)

U ′ =
∑
q∈Q

[�pzq] · Vq (for some �p ∈ Q; z ∈ Z; Vq ∈ BH0〈〈V 〉〉);

Ai = (�+k1 + i−n; Ui; U ′
i) for n−k16i6n, (Ui)n−k16i6n is a derivation, (U ′

i)n−k16i6n

is a “stacking derivation” (see de�nitions in Section 3.4),

U ′
n =

∑
q∈Q

h · [p�q] · Vq; for some h ∈ H; p ∈ Q; � ∈ Z+;

134 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

m= 1; B1 = (� + k1 − 1; V; V ′); V =Un; V ′ =
∑

q∈Q′ h · [p�q] · [qeq] · (�U � (hq; uq));
where Q′ = {q∈Q | [�pzq] 6≡ ∅}; ∀q∈Q′; (hq; uq) = min(’([�pzq])).

T−
B : T−

B is de�ned in the same way as T−
B by exchanging the left series (S−) and

right series (S+) in every assertion (p; S−; S+).
TC : TC(A1 · · ·An) =B1 · · ·Bm i� there exists d∈ [1; d0]; D∈ [0; d − 1]; S1; S2; : : : ;

Sd ∈DRH0〈〈V 〉〉; 16�1¡�2¡ · · ·¡�D+1 = n; such that,
(C1) every equation (Ei) = (p�i ; S

−
p�i

; S+
p�i

), for 16i6D+1, is a weighted equation over
S1; S2; : : : ; Sd,

(C2) S= (Ei)16i6D+1 is such that, INV(S) 6=⊥; D(S) =D and �‘(S)6 �sd0 ; ‘0(S)6
s0
d0
; |‖S|‖6sd0 ,

(C3) (�1; �2; : : : ; �D+1; S1; : : : ; Sd)∈N∗× (DRH0〈〈V 〉〉)∗ is the minimal vector satisfying
conditions (C1,C2) for the given sequence (A1 · · ·An) and

(C4) B1 · · ·Bm = �e(INV(S)).

The strategies SAB;SABC are then de�ned from the above elementary strategies as in
Section 7.

Lemma 168. Tcut ; T∅; TH ; TA; T+
B ; T−

B ; TC are H0-strategies. Moreover; SAB;SABC are
closed H0-strategies.

(See all the lemmas of Section 7.)

11.12. Tree analysis

We adapt here the statements of Section 8. We �x throughout the remaining of this
subsection a tree

� = T(SAB; (�0; U−
0 ; U+

0))

(i.e. � is the proof tree associated to the assertion (�0; U−
0 ; U+

0) by the strategy SAB).
We suppose that, for every �∈{−;+}

�‘(U�
0)6 �L2; rd(U�

0)6D2 (228)

and

U−
0 ; U+

0 are both unmarked: (229)

Lemma 169. For every label (�; U−; U+) of �;
(1) ∃�∈{−;+}; U � is unmarked.
(2) If U� is unmarked; then �‘(U�)6 �L2 and rd(U�)6D2.
(3) If U� is marked; then U� =

∑
q∈Q [p!q][qeq]Vq for some p∈Q; !∈Z+;

Vq
∈DRH0〈〈V 〉〉; with |!|6D1; �‘(Vq)6 �L2; rd(Vq)6D2.

Sketch of proof. Analogous to Lemma 72. We use the fact that, for every S ∈DRH0

〈〈V 〉〉; u∈X ∗; �‘(S � u)6 �‘(S).

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 135

11.12.1. N -stacking sequences
The maps U 7→ ‖|U‖|; x 7→ N(x) are de�ned as in Section 8.3. Let � = (xi)i∈I be

a path in �, where I ⊆N is a non-empty interval and i0 = min(I). As in Section 8.3,
� is called an N-stacking sequence i�

∀i ∈ I; N(xi)¿N(xi0) and N(xi0)¿N0: (230)

From now on and until Lemma 174, we �x an N-stacking sequence � = (xi)i∈I . We call
Card(I)−1 the length of � (denoted |�|). We use the simpli�ed notation N(i) for N(xi)
and we note �s(xi) = (U−

i ; U+
i). All the de�nitions and properties (114)–(122), all the

Lemmas 73–81 and de�nition (127) remain unchanged. Let us �x a total ordering
on G1:

G1 = {�1; �2; : : : ; �d}; where d = Card(G1):

Let us remark that d62 · |Q| · (Card(X6k1) + 1) =d0:

Lemma 170. Let L¿0 such that (i0 +K1L+K2) + k1 ∈ I . There exists i∈ [i0 +L; i0 +
K1 · L + K2] and; for every �∈{−;+}; there exists a deterministic rational family
(��

i; j)16j6d ful�lling
(1) U�

i =
∑d

j=1 �
�
i; j · �j (for every �∈{−;+});

(2) �‘(��
i;∗)6 �K3 · (i − i0) + �K4 (for every �∈{−;+});

(3) ‘0(�−
i;∗; �

+
i;∗)6K0

3 · (i − i0) + K0
4 ;

(4) ‖��
i;∗‖6K3 · (i − i0) + K4 (for every �∈{−;+}).

Proof. We follow the lines of the proof of Lemma 82 but the new upper bounds
(2), (3) require new arguments. We know that there exists i∈ [i0 + L; i0 + K1 · L +
K2]; �∈{−;+}, such that T�

B occurs at i. Up to a left-translation of both sides by h−1
0

(where h0 is the coe�cient of min(supp(U�
i−k1−1)) in U−�

i−k1−1), we can suppose that
U−�
i−k1−1 is unitary. Hence,

�U = U−�
i−k1−1 = [r!] ∗ ��′ for some r ∈ Q; ! ∈ Z∗; �′ ∈ {−;+}; (231)

U+�
i−k1−1 =

∑
q∈Q

[�pzq] · Vq for some �p∈Q; z ∈ Z; �′ ∈ {−;+}; Vq ∈DRH0〈〈V 〉〉;

(232)

U−�
i = �U � u for some u ∈ X k1 ; (233)

U+�
i =

∑
q∈Q′

hi · [p�q][qeq](�U � (hq; uq))

for some Q′⊆Q; hi ∈ H; � ∈ Z∗; hq ∈ H; uq ∈ X 〈1;k〉; (234)

where

hi · [p�q] = [�pzq]� u and (hq; uq) = min{’([�pzq])}:

136 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Let us analyze the coe�cients of U−�
i ; U+�

i expressed as a linear combination of the
set {��′

q � w | 06|w|6k1} ∪ {��(��′
q) | q∈Q}.

(C1) Coe�cients of U−�
i

1.1. Suppose that U−�
i = ([r!]� u) ∗ ��′ , with r ∈Q; !∈Z∗.

Using Lemma 146, point (1) we obtain

�‘([r!]� u)6 �‘([r!]) = 0

and by Lemma 146, point (2) we have

‘0([r!]� u)6|Q||!| �k(M)k1 + K0 �k(M)k2
1 :

1.2. Suppose that U−�
i = h · ��(��′

q � u′′) with q∈Q; u= u′ · u′′; u′; u′′ ∈X ∗. We then
have

�‘(∅; : : : ; h; : : : ; ∅) = 0;

and by Lemma 146 point (2)

‘0(∅; : : : ; h; : : : ; ∅) = ‘(h) = ‘0([r!]� u′)6|Q||!| �k(M)k1 + K0 �k(M)k2
1 :

In any case, we have proved that

�‘(�−�
i;∗) = 0; (235)

‘0(�−�
i;∗)6K0k2

1
�k(M) + K0k1 �k(M) · |!|: (236)

(C2) Coe�cients of U+�
i

In order to deal with matrices we �x some total orderings of the sets Q and G�′
1 :

Q = {q1; q2; : : : ; qn}; where n = Card(Q);

G�′
1 = {�1; �2; : : : ; �m}; where m = Card(G�′

1):

Let us consider the following matrices A∈DRH0
1; n〈〈V 〉〉; B∈DRH0

n;m〈〈V 〉〉 where

a1; j = hi · [p�qj] · [qjeqj]
bj;l = [r!qk]� (hqj ; uqj); if qj ∈ Q′; [r!]� uqj 6∈ {∅n}
∪{h′ · �nk′ | h′ ∈ H; 16k ′6n}; �l = ��′

qk ;
bj;l = h if qj ∈ Q′; uqj = u′j · u′′j ; [r!]� (hqj ; u

′
j) = h · �nk and �l = ��(��′

qk � u′′j):
bj;l = ∅ if (j; l) does not ful�ll any of the two above conditions:

Then

U−�
i = A · B · ��

where ��∈DRH0
m;1〈〈V 〉〉 is the column-vector de�ned by

��‘;1 = �‘ (for 16‘6m):

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 137

2.1. Upper-bounds for A
As A ∼∑n

j=1 [p�qj][qjeqj], which is unitary,

�‘(A) = 0: (237)

Using Lemma 146 point (2) we obtain

‘0(A) = ‘0([�pz]� u)60 + 3 �k(M)k1 + K0 �k(M)k2
1 = (K0 · k2

1 + 3k1) · �k(M):

(238)

2.2. Upper-bounds for B
We analyze B row by row. We distinguish three types of rows Bj;∗.
2.2.1. [r!]� (hqj ; uqj) = h′j · [s!′

j] for some h′j ∈H; s∈Q; !′
j ∈Z∗. In this case

‘0([r!]� (hqj ; uqj))6 ‘(hqj) + ‘0([r!]� uqj)

= ‘0([�pzqj]� uqj) + ‘0([r!]� uqj)

6 (K0 · k2
0 + 3k0) · �k(M) + K0k0 �k(M) · |!|+ K0 �k(M)k2

0

6 (2K0 · k2
0 + 3k0) · �k(M) + (K0k1 �k(M)) · |!|

Hence, for every row-index j ful�lling case 2.2.1, we have

�‘(Bj;∗) = 0; ‘0(Bj;∗)6(2K0 · k2
0 + 3k0) · �k(M) + (K0k1 �k(M)) · |!|: (239)

2.2.2. [r!]� (hqj ; u
′
j) = h ·�nk for some u′j4uqj ; h∈H; k ∈ [1; n]. By the same calculations

as in the above subcase:

�‘(Bj;∗) = 0; ‘0(Bj;∗)6(2K0 · k2
0 + 3k0) · �k(M) + (K0k1 �k(M)) · |!|:

2.2.3. Bj;∗ = ∅n
In this last case, we clearly have

�‘((Bj;∗) = 0; ‘0(Bj;∗) = 0:

(C3) Upper-bounds for (�−
i;∗; �

∗
i;∗)

Using the de�nition of (�+�
i;∗), Lemma 140 and the fact that �‘(A) = �‘(B) = 0, we obtain:

�‘(�+�
i;∗) = �‘(A · B)6max{ �‘(A); �‘(B)}+ 2 · ‘0(B) + 2 · �‘(B) · ‖B‖

= 2 · ‘0(B):

By Lemmas 76 and 80

|!|62k0(i − i0 − k1 − 1) + 2(k2 + k1k0 + 2): (240)

138 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Combining the upper bounds (239) and (240) we get

�‘(�+�
i;∗)6 (4K0 · k2

0 + 6k0) · �k(M) + (2K0k1 �k(M)) · |!|
6 [(4K0 · k2

0 + 6k0) · �k(M) + (4K0k1 �k(M)) · k2]

+(4K0k0k1 �k(M)) · (i − i0)

= �K3(i − i0) + �K4: (241)

Let us give now an upper bound for ‘0(�+�
i;∗). By Lemma 140

‘0(�+�
i;∗)6 ‘0(A) + ‘0(B)

6 (K0 · k2
1 + 3k1) · �k(M) + (2K0 · k2

0 + 3k0) · �k(M) + (K0k1 �k(M)) · |!|
6 �K3(i − i0) + �K4 + (K0 · k2

1 + 3k1) · �k(M)

= K0
3 (i − i0) + K0

4 : (242)

Inequations (235) and (241) establish point (2) of the lemma.
As the right-hand side of (236) is smaller than the second line of (242), (242) is

su�cient to establish point (3) of the lemma.
Point (4) can be established as in Lemma 82.

Lemma 171. Let us suppose that |�|¿Ld + k1. Then; there exists i06�1¡�2¡
· · ·¡�d and deterministic rational vectors (��

i; j)16j6d (for every i∈ [1; d]) such that
(0) W (�1)¿1;
(1) ∀i;∀�; U�

�i
=
∑d

j=1 ��
i; j�j ∈V1;

(2) ∀i;∀�; �‘(��
i;∗)6 �si;

(3) ∀i; ‘0(�−
i;∗; �

+
i;∗)6s0

i ;
(4) ∀i;∀�; ‖��

i;∗‖6si;
(5) ∀i; W (�i+1)−W (�i)¿�i+1.

Sketch of proof. Points (0); (1); (4); (5) can be proved as for Lemma 83. Points
(2); (3) are obtained by replacing every invocation of Lemma 82 by an invocation of
Lemma 170.

The adaptation of Lemma 84 turns out to be more technical. Let us prove two
auxiliary lemmas.

Lemma 172. Let m¿1; S ∈ DRH0〈〈V 〉〉; � ∈ DRH0
1; m〈〈V 〉〉; T; T ′ ∈DRH0

m;1〈〈V 〉〉 such that
S ≡ ∑m

i=1 �i ·Ti; S ≡ ∑m
i=1 �i ·T ′

i and ∀i∈ [1; m]; Ti∼T ′
i ; �i 6≡ ∅; T ′

i 6≡ ∅. Then; T =T ′.

Proof. Suppose that

S ≡
m∑
i=1

�i · Ti; Ti = hi · T ′
i (∀i ∈ [1; m]):

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 139

As �i 6≡ ∅, there exists ui ∈X ∗ such that �i� ui ∈H . For every i∈ [1; m]:

S � ui ≡ (�i � ui) · Ti ≡ (�i � ui) · T ′
i :

Hence Ti≡T ′
i i.e. hi · T ′

i ≡T ′
i . As T ′

i 6≡ ∅, this implies hi = 1H , hence T =T ′.

Let us consider the map

� : DRH0〈〈V 〉〉 → DRH0〈〈V 〉〉= ∼ ∪(Q × Z∗ × DRH0
Q;1〈〈V 〉〉= ∼;

de�ned by

�(S) = (p;!; [�]∼); if S is marked and S = [p!e] ∗ � where � is unmarked;

�(S) = [S]∼; otherwise:

(Notice that, in particular, when S is unmarked, �(S) = [S]∼:)

Lemma 173. Let (xi)i∈I be a path in � (we suppose I ⊆N is a non-empty interval).
Suppose that i; j∈ I; i¡j¡max(I) and �(U−

i) =�(U−
j); �(U+

i) =�(U+
j). Then;

∃h ∈ H; ∃O�
k v U�

k (for all � ∈ {−;+}; k ∈ {i; j})
such that

O�
i ≡ O�

j ≡ ∅ and U�
i − O�

i = h · (U�
j − O�

j) (for all � ∈ {−;+}):

Proof. Case 1: U−
i ; U−

j ; U+
i ; U+

j are unmarked. As �(U�
i) =�(U�

j), for all �∈
{−;+}, there exists h+; h− ∈H such that

U−
i = h− · U−

j ; U+
i = h+ · U+

j :

As U−
i ≡U+

i we have h− · U−
j ≡ h+ · U+

j : Hence

(h+)−1 · h− · U−
j ≡U+

j : (243)

As j¡max(I), we know that

U−
j 6≡ ∅; U+

j 6≡ ∅ (244)

otherwise T∅ would apply on xj and xj would be a leaf of �, contradicting the hypothesis
“j¡max(I)”. Assertions (243), (244) imply that (h+)−1 ·h− = 1H . Taking h= h+ = h−

and O�
k = ∅ (for all �; k), the required property is true.

Case 2: U−
i ; U−

j are unmarked while U+
i ; U+

j are marked. Owing to Lemma 169
and to the de�nition of � , this means that

U−
i = h− · U−

j (245)

and

U+
i = [p!] ∗ �; U+

j = [p!] ∗ �′; � ∼ �′

140 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

for some p∈Q; !∈Z∗; �; �′ ∈DRH0
Q;1〈〈V 〉〉. Let us de�ne the subsets of states

Q′ = {q ∈ Q | [p!q] 6≡ ∅ and �q 6≡ ∅}; Q′′ = Q − Q′

and the series

O−
i = O−

j = ∅; O+
i =

∑
q∈Q′′

[p!q]�q; O+
j =

∑
q∈Q′′

[p!q]�′
q:

Let us notice that, by (245),

U−
i ≡

∑
q∈Q′

[p!q]�q and U−
i ≡

∑
q∈Q′

[p!q](h− · �′
q)

where, for every q∈Q′,

[p!q] 6≡ ∅; �q 6≡ ∅; �′
q 6≡ ∅; �q ∼ h− · �′

q:

By Lemma 172 we get

∀q ∈ Q′; �q = h− · �′
q: (246)

By (245) (resp. (246)) we have

U−
i − O−

i = h− · (U−
j − O−

j) (resp:U+
i − O+

i = h− · (U+
j − O+

j)):

Taking h= h−, the required property is true.
Case 3: U−

i ; U−
j are marked while U+

i ; U+
j are unmarked. Same proof as for

case 2.

Lemma 174. Let (xi)i∈I be a path in � (we suppose I ⊆N is a non-empty interval).
Let L¿0. One of the following cases is true:
(0) N(i0)¿N0, where i0 = min(I);
(1) |I |6K7 · L + K8;
(2) (xi)i∈I contains a N -stacking sequence of length ¿L.

Proof. Suppose that neither (0) nor (2) is realized. By Lemma 169, the set {�(�s(xi))|
i∈ I} is included in the set C(D1; N0; �L2) (the sets C(D;N; L) were de�ned in
Section 11.10 by Eq. (226)). Hence,

Card{(�(U−
i); �(U+

i)) | i∈ I; N(i) ¡ N0}6K8=5: (247)

By Lemma 71, if i06i¡j6max(I) and j − i¿4, then �j − �i¿1. It follows that, if
i06i¡j¡max(I); j − i¿4 and �(U�

i) =�(U�
j) (for �∈{−;+}), by Lemma 173,

�(x0)�(x1) · · · �(xi) · · · �(xj) ∈ dom(Tcut);

which is impossible because xj is not a leaf (this is implied by “j¡max(I)”). Hence,
for every i∈ I ,

Card{j ∈ I | j¿i; �(U−
i) = �(U−

j); �(U+
i) = �(U+

j)}65: (248)

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 141

Upper bounds (247) and (248) together show that

Card{i ∈ I |N(i) ¡ N(i0)}65 · K8=5 = K8:

As in the proof of Lemma 84, we conclude that

|I |6Card(I)6K8 + (K8 + 1) · L · k0 · K0 = K7 · L + K8

i.e. property (1) is realized.

11.13. Completeness of H0

By the same arguments (mutatis mutandis) as in Section 9, one can prove succes-
sively the three next statements.

Lemma 175. Let A0 be some true assertion which is supposed unmarked. Then the
tree T(SABC; A0) is �nite.

Theorem 176. The system H0 is complete.

Theorem 177. The equivalence problem for deterministic pushdown H -automata is
decidable.

12. Examples

In order to make pratically feasible the computation of proofs (in D0, and, after
erasure of the weights, in D5), we introduce some variants of the strategies de�ned in
Section 7 and used for the completeness proof:
• We apply Tcut on Ai = (pi; S; T); An = (pn; S ′; T ′), with pi¡pn, provided that �e(S) =

�e(S ′); �e(T) = �e(T ′).
• We introduce a new strategy Teq de�ned by

Teq(A1A2 · · ·An) =B1 · · ·Bm i� ∃S; T; An = (p; S; T); p¿0; �e(S) = �e(T) and m= 0.
• We allow T+

B , applied on A1 · · ·An, to give the result described in Section 7 but
where the �xed integer k1 is replaced by any integer k ′1 provided that

k ′1¿1 + 2 ·max{|uq|; q ∈ Q′}:
(Hence T�

B , for �∈{−;+}, become now binary relations, which need not be func-
tional in general.)
• We remove the minimality condition in point (C3) of the de�nition of TC . (Hence

TC becomes a binary relation too.)
• In case 1 of the de�nition of INV, we do not require any more that �m;∗ ≡ �m;∗.

Hence INV;W;D are also binary relations. The drawback of this modi�cation is that
point (2) of Lemma 57 is not valid any more but point (1) remains valid since
our proof of point (1) does not use the hypothesis that, in case 1, �m;∗ must be

142 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

equivalent to �m;∗. It follows that, when one uses such a modi�ed TC , if the result
obtained is a �nite closed tree t, i.e. a tree where every leaf x is such that the word
W labelling its branch has an image � by Tcut ∪ T∅ ∪ T� ∪ Teq, then the set of labels
of t is a proof. 12

• We de�ne a generalized version of TC , that we name T ′
C where, in case 2 of the

de�nition of INV, one can choose two (or more) words u; u′ such that

∃j ∈ [1; d]; (�m;∗ � u = �dj)⇔ (�m;∗ � u 6= �dj);

such that u (resp. u′) correspond to di�erent values j0 (resp. j′0) of the index j. One
can then consider the two equations

(E′
m): pm + 2 · |u|; Sj0 ;

d∑
j=1
j 6=j0

(�m; j0 � u)∗(�m; j � u)Sj

(E′′
m): pm + 2 · |u′|; Sj′0 ;

d∑
j=1
j 6=j0

(�m; j0 � u′)∗(�m; j � u′)Sj

and then eliminate both series Sj0 ; Sj′0 in the other equations.
We also allow to stop the development of a branch at a node x, with label (p; S; T)
when there exists another node y in the tree with label (p′; S; T) where p′¡p. (As y
needs not be an ancestor of x, � needs not belong to Tcut(Wx) in general.)

12.1. Example 1

12.1.1. The automaton
Let M= 〈X; Z; Q; �; q0;
〉 with X = {x; a; b; c; t; �t}, Z = {
; A; B; D; T}, Q = {q0; q1;

q2; �q} and � consists of the transitions:

q0

x→ q0A
; q0A

a→ q1; q0A
c→ q2;

q1

b→ q1
; q1

c→ q1D; q1D
d→ �q;

q2

d→ �q; q0A

t→ q0TA; q0T
�t→ q0;

q0T
t→ q0TT:

q1

x→ q1A
; q1A

a→ q1B; q1B
b→ q1;

q1A
c→ q2; q1B

x→ q1A; q1B
c→ q2;

q1A
t→ q1TA; q1T

�t→ q1; q1T
t→ q1TT:

12.1.2. The equivalence proof
A �nite proof of the assertion [q0
 �q] ≡ [q1
 �q] is exhibited in Figs. 6–8. It can

be considered as a proof in the deduction system D0, where the weight of the root-
assertion is 0 and all the other weights can be deduced (just add 1 at each TA-node,
substract 1 at each TB or TC node). By the results of Section 10, as it is represented,

12 We chosed to treat with full rigor only the simpler functional strategies used in our completeness proof.
The adaptations made here are done just for the practical purpose of giving examples, which was not the
main goal of this work. Any real implementation of our proof-system should include such non-functional
strategies and will require the corresponding rigorous proofs.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 143

Fig. 6. Proof of Example 1: the top part.

it is a D5-proof. The boldface numbers are just labels used for distinguishing some
important nodes (they are not part of the proof in the technical sense of Section 4.3
or Section 10.7). Let us compute explicitly the steps TC(1) and T+

B (2) appearing in
Fig. 6.

Computation of TC(1). Let us stick to the notation of Sections 7 and 5 (concerning the
computation of INV). Here n= 5; d= |Q|= 4; S1 = [q1
 �q]; S2 = [q2
 �q]; S3 = [q0
 �q];
S4 = [�q
 �q]; D = 1; �1 = 2; �2 = 5 = n; and

E1 = (1; [q0A
 �q]; [q1A
 �q]);

E2 = (4; [q0T 3A
 �q]; [q1T 3A
 �q]):

144 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Fig. 7. Proof of Example 1: the left-down part.

Fig. 8. Proof of Example 1: the right-down part.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 145

which can be rewritten as

E1 =

1;

∑
q∈Q

[q0Aq] · [q
 �q];
∑
q∈Q

[q1Aq] · [q
 �q]

;

E2 =

4;

∑
q∈Q

[q0T 3Aq] · [q
 �q];
∑
q∈Q

[q1T 3Aq] · [q
 �q]

:

One can check that, for q∈Q−{q1; q2}; [q
 �q] ≡ ∅: Hence the new system Ŝ (de�ned
in Section 5.2) consists of the equations:

Ê1 = (1; [q0Aq1] · S1 + [q0Aq2] · S2; [q1Aq1] · S1 + [q1Aq2] · S2);

Ê2 = (4; [q0T 3Aq1] · S1 + [q0T 3Aq2] · S2; [q1T 3Aq1] · S1 + [q1T 3Aq2] · S2):

Let u= a. The right-action of a on equation Ê1 gives the equation

(3; S1; [q1Bq1] · S1 + [q1Bq2] · S2);

which, as [q1Bq1] 6≡ �, leads to

Ê
′
1 = (3; S1; [q1Bq1]∗[q1Bq2] · S2):

“Plugging” Ê′
1 into Ê2 we obtain:

Ê
′
2 = (4; ([q0T 3Aq1][q1Bq1]∗[q1Bq2] + [q0T 3Aq2]) · S2;

([q1T 3Aq1][q1Bq1]∗[q1Bq2] + [q1T 3Aq2]) · S2):

Let us choose case 1 of the de�nition of INV (see the adaptation de�ned above;
intuitively, this means that we guess that the coe�cients on both sides of Ê′

2 are
equivalent). Hence,

INV(S) = (3; [q0T 3Aq1][q1Bq1]∗[q1Bq2] + [q0T 3Aq2];

[q1T 3Aq1][q1Bq1]∗[q1Bq2] + [q1T 3Aq2]);

W(S) = 3; D(S) = 1:

Computation of T+
B (2). Let us stick to the notation of Section 7. Here n= 8; k ′1 = 3,

�U = [q0T 3Aq1][q1Bq1]∗[q1Bq2] + [q0T 3Aq2];

U ′ = [q1T 3Aq1][q1Bq1]∗[q1Bq2] + [q1T 3Aq2]

=
∑
q∈Q

[q1Tq] · ([qT 2Aq1][q1Bq1]∗[q1Bq2] + [qT 2Aq2]);

U8 = [q0T 6Aq1][q1Bq1]∗[q1Bq2] + [q0T 6Aq2];

U ′
8 =

∑
q∈Q

[q1T 4q] · ([qT 2Aq1][q1Bq1]∗[q1Bq2] + [qT 2Aq2]):

146 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

The assertions A5; A6; A7; A8 consist of the four equations:

[q0T iAq1][q1Bq1]∗[q1Bq2] + [q0T iAq2]

≡ [q1T iAq1][q1Bq1]∗[q1Bq2] + [q1T iAq2] for i ∈ [3; 6]:

One can check that (U ′
5; U

′
6; U

′
7; U

′
8) is a stacking derivation. We also have:

Q′ = {q1}; uq1 = �t:

�U � uq1 = [q0T 2Aq1][q1Bq1]∗[q1Bq2] + [q0T 2Aq2];

hence, the result of T+
B is

V = [q0T 6Aq1][q1Bq1]∗[q1Bq2] + [q0T 6Aq2];

V ′ = [q1T 4q1][q1eq1] · ([q0T 2Aq1][q1Bq1]∗[q1Bq2] + [q0T 2Aq2]):

12.2. Example 2

This example is more advanced in the sense that the automaton considered here is
not real time any more and there is an occurrence of application of T ′

C which transforms
a system of two equations over four non-null series into two new equations.

12.2.1. The automaton
Let M= 〈X; Z; Q; �; q1; A〉 with X = {x; a; b}, Z = {
; A; B}, Q = {q1; q2; q3; q′3; �q3; q4;

q5; �q} and � consists of the transitions:

q1A
a→ q3; q1A

b→ q5; q1A
x→ q1AA;

q3A
a→ q3; q5A

�→ q5; q5

�→ q3;

q3

a→ q′3
; q′3

a→ �q3
; �q3

a→ q3;

q2A
a→ q4AA; q2A

b→ �q; �qA �→ �q;
�q
 �→ q3; q2A

x→ q2AA; q4A
a→ q4;

q4

a→ q3:

12.2.2. The equivalence proof
A �nite proof of the assertion [q1A
:] ≡ [q2A
:] is exhibited in Figs. 9 and 10. The

expression [q!:] (for every q∈Q;!∈Z∗), denotes the polynomial
∑

q′∈Q [q!q′]. Let
us compute explicitly the steps T ′

C(1); TC(3) appearing in Fig. 9 and TC(2) appearing
in Fig. 10.

Computation of T ′
C(1). Here

n = 4; d = |Q| = 8; �1 = 1; �2 = 4 = n; D = 1;

S1 = [q3
:]; S2 = [q5
:]; S3 = [q4
:]; S4 = [�q
:];

S5 = [q1
:]; S6 = [q2
:]; S7 = [q′3
:]; S8 = [�q3
:]

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 147

Fig. 9. Proof of Example 2: the top part.

and the system of equations S consists of the two equations:

E1 = (0; [q1A
:]; [q2A
:]);

E2 = (3; [q1A4
:]; [q2A4
:]):

148 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Fig. 10. Proof of Example 2: the bottom part.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 149

Owing to the equivalences:

S5 = [q1
] ≡ ∅; S6 = [q2
] ≡ ∅ and [q!q′3] ≡ ∅;
[q! �q3] ≡ ∅ (for every q ∈ Q; ! ∈ A+)

one can simplify 13 the equations Ê1; Ê2 into

Ê1 = (0; [q1Aq3] · [q3
:] + [q1Aq5] · [q5
:]; [q2Aq4] · [q4
:] + [q2A �q] · [�q
:]);

Ê2 = (3; [q1A4q3] · [q3
:] + [q1A4q5] · [q5
:]; [q2A4q4] · [q4
:] + [q2A4 �q] · [�q
:]):

Let u = a; u′ = b. The right-action of u (resp. u′) on equation Ê1 gives the equations:

Ê′
1 = (2; [q3
:]; [q4AAq4] · [q4
:]);

Ê′′
1 = (2; [q5
:]; [�q
:]):

“Plugging” Ê′
1 ; Ê′′

1 into Ê2 we obtain

Ê′
2 = (3; ([q1A4q3][q4AAq4]) · [q4
:] + [q1A4q5] · [�q
:]; [q2A4q4] · [q4
:]

+ [q2A4 �q] · [�q
:]):

Let us choose case 1 of the de�nition of INV:

INV(S) = {(2; [q1A4q3][q4AAq4]; [q2A4q4]); (2; [q1A4q5]; [q2A4 �q])}:

Computation of TC(3). Here

n = 5; d = 16; D = 0; �1 = 5 = n;

in principle there are 16 series S1; : : : ; S16 corresponding to the set {[qA3q5]; q∈Q}
∪ {[qA3 �q]; q∈Q}. Let

S1 = [q5A3q5]; S2 = [�qA3 �q]:

The system of equations S consists of one equation:

E1 = (2; [q1A4q5]; [q2A4 �q]):

After simpli�cation we obtain

Ê1 = (2; [q1Aq5] · [q5A3q5]; [q2A �q] · [�qA3 �q]):

But one can easily check that: ��(S1) = ��(S2) = �. The following equation is then
provable from ∅ within the system D0:

E′
0 = (0; S1; S2):

13 Here again, we use a small simpli�cation-trick which does not fully correspond to the simpli�cation
explained in Section 5.2. We claim that, owing to rule (R′3), Lemma 60 remains valid with this slightly
more powerful simpli�cation.

150 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

“Plugging” Ê′
0 into Ê1 we obtain

Ê1 = (2; [q1Aq5] · S1; [q2A �q] · S1):

Chosing case 1 of the de�nition of INV:

INV(S) = (1; [q1Aq5]; [q2A �q]):

Computation of TC(2). Here

n = 8; d = 16; D = 1; �1 = 5; �2 = 8 = n;

the system of equations S consists of two equations:

E1 = (2; [q1A4q3][q4AAq4]; [q2A4q4]);

E2 = (5; [q1A7q3][q4AAq4]; [q2A7q4]):

After simpli�cation we obtain

Ê1 = (2; [q1Aq3] · ([q3A3q3][q4AAq4]) + [q1Aq5] · ([q5A3q3][q4AAq4]); [q2A4q4]);

Ê2 = (5; [q1A4q3] · ([q3A3q3][q4AAq4]) + [q1A4q5] · ([q5A3q3][q4AAq4]);

[q2A2q4] · [q4A5q4] + [q2A2 �q] · [�qA5q4]):

Let us note

S1 = [q3A3q3][q4AAq4]; S2 = [q5A3q3][q4AAq4]; S3 = [q4A5q4];

S4 = [�qA5q4]:

With these notations,

Ê2 = (5; [q1A4q3] · S1 + [q1A4q5] · S2; [q2A2q4] · S3 + [q2A2 �q] · S4):

As S2 ≡ S4 ≡ ∅, Ê2 can be simpli�ed as

(5; [q1A4q3] · S1; [q2A2q4] · S3): (249)

Let u = a. The right-action of u on equation Ê1 gives

Ê′
1 = (4; S1; S3):

“Plugging” Ê′
1 into Eq. (49) we obtain

Ê′
2 = (5; [q1A4q3] · S3; [q2A2q4] · S3):

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 151

Let us choose case 1 of the de�nition of INV:

INV(S) = {(4; [q1A4q3]; [q2A2q4])}:

12.3. Example 3

Let us consider the subgroup H of (Q− {0}; ·) de�ned by

H = {2n | n ∈ Z}:
(Of course, up to isomorphism, H is just the additive group of integers. We choose
this de�nition of H in order to use the multiplicative notation, as we did throughout
Section 11.)

12.3.1. The automaton
Let M= 〈X; Z; Q; �; q0;
〉 with X = {a; b; c}, Z = {
; A; B}, Q = {q0; q1; qa; qb; �q0; �q1;

�qa; �qb} and � consists of the transitions:

q0

a→ 2 · q0A
; q0

b→ 2−1 · q0B
;

q0A
a→ 2 · q0AA; q0A

b→ 2−1 · q0;

q0B
a→ 2 · q0; q0B

b→ 2−1 · q0BB;
q0

c→ q1; q0A
c→ qa; q0B

c→ 2 · qb;
qaA

�→ qa; qa

�→ q1;

qbB
�→ 2 · qb; qb

�→ q1;

�q0

a→ �q0A
; �q0

b→ �q0B
;

�q0A
a→ �q0AA; �q0A

b→ �q0;

�q0B
a→ �q0; �q0B

b→ �q0BB;
�q0

c→ �q1; �q0A
c→ 2 · �qa; �q0B

c→ �qb;
�qaA

�→ 2 · �qa; �qa

�→ �q1;

�qbB
�→ �qb; �qb

�→ �q1:

12.3.2. The equivalence proof
A �nite proof of the assertion [q0
q1] ≡ [�q0
 �q1] is exhibited in Figs. 11–13.
One can also check directly that ’([q0
q1]) =’([�q0
 �q1]) = S where

S =
∑

u∈{a;b}∗

|u|a¿|u|b

2|u|a−|u|b · u · c +
∑

u∈{a;b}∗

|u|a¡|u|b

u · c:

Computation of T+
B (1). Let us stick to the notation of Section 7. Here n = 5; k ′1 = 3,

�U = 2 · [q0A
q1]; U ′ = [�q0A
 �q1] =
∑
q∈Q

[�q0Aq][q
 �q1];

U5 = 24 · [q0A4
q1]; U ′
5 = [�q0A

4
 �q1];

152 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Fig. 11. Proof of Example 3: the top part.

Q′ = { �q0; �qa}: (h �q0
; u �q0

) = (1; b); (h �qa
; u �qa

) = (2; c)

�U � (1; b) = 2 · [q0A
q1]� b = [q0
q1];

�U � (2; c) = 2 · [q0A
q1]� (2; c) = [qa
q1];

hence, the result of T+
B is

V = 24 · [q0A4
q1]; V ′ = [�q0A
4 �q0][�q0e �q0][q0
q1] + [�q0A

4 �qa][�qae �qa][qa
q1]:

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 153

Fig. 12. Proof of Example 3: the left-down part.

Computation of TC(2). Easy (D = 0), hence left to the reader.

Computation of TC(3). Here n= 10; d= 2 · |Q|= 16; S1 = [q0A3q0]; S2 = [�q0A
3 �q0]; : : : ;

D = 1; �1 = 7; �2 = 10 = n; and

E1 = (2; 24 · [q0A4q0]; [�q0A
4 �q0]);

E2 = (5; 27 · [q0A7q0]; [�q0A
7 �q0]):

One can check that, for q∈Q − {q0}; [qA3q0]≡∅ and for q∈Q − { �q0}; [qA3 �q0]≡∅.
Hence the new system Ŝ (de�ned in Section 5.2) consists of the equations:

Ê1 = (2; 24 · [q0Aq0] · S1; [�q0A �q0] · S2);

Ê2 = (5; 27 · [q0A4q0] · S1; [�q0A
4 �q0] · S2):

154 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Fig. 13. Proof of Example 3: the right-down part.

Let h= 23; u= b. The right-action of (23; b) on equation Ê1 gives the equation:

Ê
′
1 = (4; S1; 2−3 · S2);

“Plugging” Ê′
1 into Ê2 we obtain

Ê
′
2 = (5; 24 · [q0A4q0] · S2; [�q0A

4 �q0] · S2):

Let us choose case 1 of the de�nition of INV. We obtain

INV(S) = (4; 24 · [q0A4q0]; [�q0A
4 �q0])

W(S) = 4; D(S) = 1:

Computation of TC(4). Here n= 10; d= 2 · |Q|= 16; S1 = [q0A3qa]; S2 = [�q0A
3 �qa];

S3 = [qaA3qa]; S4 = [�qaA
3 �qa]; : : : ; D = 1; �1 = 7; �2 = 10 = n, and

E1 = (2; 24 · [q0A4qa]; [�q0A
4 �qa]);

E2 = (5; 27 · [q0A7qa]; [�q0A
7 �qa]):

One can check that, for q∈Q−{q0; qa}; [qA3qa]≡∅ and for q∈Q−{ �q0; �qa}; [qA3 �qa]
≡∅. Hence the new system Ŝ (de�ned in Section 5.2) consists of the equations

Ê1 = (2; 24 · [q0Aq0] · S1 + 24 · [q0Aqa] · S3; [�q0A �q0] · S2 + [�q0A �qa] · S4);

Ê2 = (5; 27 · [q0A4q0] · S1 + 27 · [q0A4qa] · S3; [�q0A
4 �q0] · S2 + [�q0A

4 �qa] · S4):

Let h= 23; u= b; h′ = 24; u′ = c. The right-action of (23; b) on equation Ê1 gives the
equation:

Ê
′
1 = (4; S1; 2−3 · S2):

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 155

The right-action of (24; c) on equation Ê1 gives the equation:

Ê
′′
1 = (4; S3; 2−3 · S4):

“Plugging” Ê′
1 ; Ê

′′
1 into Ê2 we obtain

Ê
′
2 = (5; 24 · [q0A4q0] · S2 + 24 · [q0A4qa] · S4; [�q0A

4 �q0] · S2 + [�q0A
4 �qa] · S4):

Let us choose case 1 of the de�nition of INV. We obtain

INV(S) = {(4; 24 · [q0A4q0]; [�q0A
4 �q0]); (4; 24 · [q0A4qa]; [�q0A

4 �qa])}
W(S) = 4; D(S) = 1:

The remaining computation of TC(7) is analogous with that of TC(2), the computation
of T+

B (5) is analogous with that of T+
B (1).

13. Applications and perspectives

We describe here some immediate applications of our main result (Theorem 87). 14

13.1. Applications

13.1.1. Formal languages: words
Corollary 178. The equivalence problem is decidable for LR-regular grammars.

This follows from Theorem 87 and the reduction given in [51]. This result extends
Theorem 87 because the class of LR-regular languages strictly contains the class of
deterministic context-free languages. The class of LR-regular languages is in turn a
subclass of the class of non-ambiguous context-free languages; the equivalence-problem
for this last class remains open.

13.1.2. Formal languages: trees
Corollary 179. The equivalence problem is decidable for simple deterministic tree
grammars.

This follows from Theorem 87 and the reduction given in [13, Theorem 4:17].

13.1.3. Program schemes
Corollary 180. The equivalence problem for monadic recursion schemes (with inter-
preted if-then-else); is decidable.

This follows from Theorem 87 and the reduction given in [28].

14 They are immediate in the sense that they follow from reductions constructed in previous works; but of
course, most of these reductions are by no means “immediate”.

156 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

Corollary 181. The equivalence problem for recursive polyadic program schemes
(with completely uninterpreted function symbols) is decidable.

This follows from Theorem 87 and the reduction given in [12, Theorem 3:25] or the
reduction given in [26, Corollary 4:4].

13.1.4. Equational graphs
Corollary 182. The bisimulation problem for rooted deterministic equational graphs
is decidable.

This follows from Theorem 87 and the reduction given in [6, Proposition 5:9].
This kind of reduction was initiated in [2]. The extension of Corollary 182 to rooted
equational graphs of �nite out-degree (which may be non-deterministic) is established
in [68].

13.1.5. Term rewriting
Corollary 183. The bisimulation problem for pre�x transition graphs of term deter-
ministic context-free grammars is decidable.

This follows from Theorem 87 and the reduction given in [6, Corollary 5:7].
Corollary 183 is interesting because the class of graphs involved is strictly more gen-
eral than the class of rooted deterministic equational graphs (the transition graphs of
term deterministic context-free grammars may have in�nite tree-width, hence they need
not be equational, see [6, p. 15]), though the associated languages remain exactly the
deterministic context-free languages.

13.1.6. Thue systems
We recall a semi-Thue system over an alphabet X is a subset of X ∗ ×X ∗. We

denote by ∗↔
S

the smallest congruence of the monoid (X ∗; ·) which contains S. For

every subset K ⊆X ∗, [K] ∗↔
S

denotes the smallest subset of X ∗ which is saturated by

∗↔
S

and contains K :

[K] ∗↔
S

= {u ∈ X ∗;∃k ∈ K; k ∗↔
S
u}:

We denote by IRR(S)⊆X ∗, the set of all irreducible words (mod S).
(See [5,67].)

Corollary 184. Let X be some �nite terminal alphabet. Given a dpda A over X; a
�nite semi-Thue system S; which is assumed conuent and noetherian; and a rational
subset K ⊆ IRR(S); one can decide whether L(A) = [K] ∗↔

S

or not.

This follows from Theorem 87 and the reduction given in [65, Theorem III.3].

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 157

Corollary 185. Let X be some �nite alphabet. Given a �nite semi-Thue system S;
which is assumed left-basic; conuent; strictly length-reducing and a word w∈X ∗;
one can decide whether S is conuent over w.

This follows from Theorem 87 and the reduction given in [66, Theorem 5.17].
Let us notice that the same decision-problem becomes undecidable if we remove the
hypothesis “left-basic” in Corollary 185 ([53] or [66, Proposition 5:32]) and becomes
solvable in P-time if we strengthen the hypothesis “left-basic” into “basic” [73, Theorem
3.7].

13.2. Perspectives

13.2.1. Other applications
Some other applications of Theorem 87 seem plausible and interesting:

1. It is known that two graphs �; �′ are bisimilar i� they have a common quo-
tient: �→�′′←�′. In view of Corollary 182 it is natural to ask whether the
“quotient-problem” for two rooted deterministic equational graphs (i.e. �→�′?)
is decidable. We think it is decidable (work in preparation); the generalisation to
non-deterministic rooted equational graphs of �nite out-degree is open.

2. Corollary 181 might be seen as a result over any algebraic structure, provided that
this structure is isomorphic to the magma of in�nite trees (the free-interpretation
introduced in [52]). In particular, it is possible to �nd a nice free-interpretation
whose domain is Fp[[X1; : : : ; Xn]], the ring of formal power series with n commuta-
tive undeterminates and coe�cients in the �nite �eld Fp (for a prime p), and with
polynomial operators [46].

13.2.2. Extensions
We hope to extend the main ideas of this work to other equivalence problems.

3. Let us recall that the complexity of the equivalence problem is unknown even
for the subclass of strict-real-time dpda’s (i.e. the dpda’s without �-transition and
recognizing by empty stack only). It is not known if the equivalence problem
for this subclass is primitive recursive ([54, comment p. 11] or [59, last line
of �rst paragraph, p. 689] or [75, conclusion]). Concerning our proof, nothing
is said about the function F(d; n) introduced in Section 5 by Eq. (74). As the
constants D2; N0; C2; K5; K6 are depending on F (see Section 6), our proof just
shows decidability of the equivalence problem.

It would be interesting to explore more closely the complexity of this problem,
by experimental means (Section 12 shows the possibility of computing examples
of reasonable size) and by theoretical means too.

In contrast, let us mention that the equivalence problem for dpda’s without �-
transition and with one state only (the so-called “simple” dpda’s) has been �nally
shown to be decidable in polynomial time [35] and the equivalence problem for
2-tape deterministic �nite automata is also decidable in polynomial time [25].

158 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

4. Let K be a commutative �eld, M be a K-dpda (i.e. a dpda with outputs in the
multiplicative group K−{0}) and V the associated alphabet. It seems plausible that
the equivalence between two rational series S; S ′ ∈K〈〈V 〉〉 which are ˆ-deterministic
but not necessarily V -deterministic, remains decidable. Notice that, in this case,
the supports of ’(S); ’(S ′) need not be context-free languages.

5. One could investigate which groups (or even monoids) H have the property that
the equivalence problem for deterministic pushdown transducers X ∗→H , remains
decidable. The case where H is a free group of rank ¿2 is particularly interesting.
A positive result for free groups (work in preparation) will of course imply the
decidability of the equivalence problem for deterministic pushdown transducers
X ∗→Y∗. Partial results in this last direction were proved in [20,37,77].

6. The extension of Corollary 182 to rooted equational graphs of �nite out-degree is
done in [68]. The general case of rooted equational graphs (without restriction on
the out-degree) is open (this problem is raised in [6,75]).

7. One can think of generalizing our results to automata with a more general kind
of “storage type”. For example, various notions of pushdowns of pushdowns are
de�ned in [22,23,45,81,82]) and might be studied from this point of view.

8. One can think of generalizing our results on polyadic recursion schemes (Corol-
lary 181) to higher-level recursion-schemes (such general schemes are de�ned for
example in [21,27]; from this point of view, recursive schemes appear to be just
the level 1 recursion-schemes). A link with perspective 7 above can be expected
(such a link is explicitely conjectured by J. Gallier in [27, p. 773]).

9. Let us recall that the isomorphism problem for equational graphs has been solved
in [16,18] while our Corollary 181 amounts to solve the isomorphism problem for
algebraic ordered trees. It is tempting to try to unify both results into a decidability
result for algebraic graphs. This class of graphs has to be de�ned properly; it might
be the in�nite graphs which are the values of some “in�nite algebraic term” in
the magma of graphs (see [3,17] for a de�nition of this magma). A link with
perspectives 7 and 8 is expected too.

10. We feel that the proof of Theorem 87, its generalization to coe�cients in H 0

(Theorem 177) and the main result of [68] demonstrate the usefulness of the notion
of deterministic space. The author introduced this notion as a systematization of
previous ideas from [34,47,48] (the central idea of [75] is not far either).

In turn, it might be fruitful for further generalizations, to develop a systematic,
general study of deterministic spaces. The paragraph “dimension” of Section 3.3
of [68] goes this way. A comparison with the classical notion of left vector space
over a division-ring (which is central in the elegant work of [32]) would perhaps
shed new light on deterministic spaces.

Acknowledgements

I thank L. Boasson and J.M. Autebert for supervising my �rst works on Eq(D,D),
B. Courcelle for initiating me to the classical equivalence algorithms, to his notion of

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 159

decision systems and for numerous discussions along the years, M. Oyamaguchi for
discussions, M.S. Paterson for his hospitality and interest, J.E. Pin and W. Thomas
for pointing to me Meitus’ works, D. Caucal and C. Stirling for useful informations,
H. Comon and J.P. Jouannaud for stimulating me to read Meitus’ work in details,
J. Karhum�aki for his encouragements, M. Nivat for his support, J. Engelfriet,
L.P. Lisovik, Y. Matiyasevich for discussions, O. Burkart, C. Stirling and P. Gloess for
pointing to mistakes in [70], F. Moller, V. Bruyere and M. Margenstern for inviting
me to expose preliminar versions of this work respectively at INFINITY97, JM98 and
MCU98 and the two (courageous) anonymous referees who pointed to some innacu-
racies in the initial manuscript.

I am also indebted to the CNRS and to my collegues of Bordeaux 1 university who
allowed me to have my full time for research during the academic years 1996=1998.
Note added in proof. Since the manuscript was submitted, some progress has been
made on the subject:
• a short exposition of the result and methods of [68] has been given in [72],
• the equivalence problem for deterministic pushdown transducers from a free monoid

into a free group has been solved positively in [74] (this is a partial solution of our
perspective 5 of Section 13.2),
• C. Stirling has found [76] some nice simpli�cations in the proof of Theorem 87:
◦ Instead of the generating set G1 that we build in Section 8, he constructs a gen-

erating set G of the form {S�
0 � u | 06|u|6K}, for some suitable �∈{−;+};

K∈N. As this de�nition is not “geometric” anymore (it does not use the notions
of “height” or “defect”), it is possible to make the initial deterministic grammar
proper and reduced. Consequently, all the technicalities concerning ��, in particuliar
the distinction between ⊗ and �, can be avoided.
◦ Instead of manipulating directly rational series, C. Stirling prefers to introduce an-

other alphabet of “second-level undeterminates” representing such series. In this
way, he essentially avoids the consideration of the norm of series.

Let us mention that, after minor adaptation, the improvements of [76] can be applied
to [72,74] as well.

References

[1] J.M. Autebert, L. Boasson, J. Berstel, Context-free languages, in: G. Rozenberg, A. Salomaa (Eds.),
Handbook of Forma Languages, Springer, Berlin, 1996.

[2] J. Baeten, J. Bergstra, J. Klop, Decidability of bisimulation equivalence for processes generating
context-free languages, J. ACM 40 (1993) 653–682.

[3] M. Bauderon, B. Courcelle, Graph expressions and graph rewritings, Math. Systems Theory 20 (1987)
83–127.

[4] C. Beeri, An improvement on Valiant’s decision procedure for equivalence of deterministic �nite-turn
pushdown automata, Theoret. Comput. Sci. 3 (1976) 305–320.

[5] R.V. Book, F. Otto, String Rewriting Systems Texts and Monographs in Computer Science, Springer,
Berlin, 1993.

[6] D. Caucal, Bisimulation of context-free grammars and of pushdown automata, in: Modal Logic and
Process Algebra, CSLI Lectures Notes, vol. 53, 1995, pp. 85–106.

160 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

[7] C. Cho�rut, A generalization of Ginsburg and Rose’s characterisation of gsm mappings, Proc. ICALP
79, Lecture Notes in Computer Science, Springer, 1979, pp. 88–103.

[8] N. Chomsky, Three models for the description of a language, Symp. on Information Theory; IRE Trans.
Inform. Theory IT-2 (1956).

[9] N. Chomsky, Context-free grammars and pushdown storage, Tech. Report no. 65, Research Laboratory
of Electronics, Massachusetts Institute of Technology, 1962.

[10] N. Chomsky, M.P. Schutzenberger, The algebraic theory of context-free languages, in: P. Bra�ort,
D. Hirschberg (Eds.), Computer Programming and Formal Systems, North-Holland, Amsterdam, 1963,
pp. 118–161.

[11] J.H. Conway, Regular Algebra and Finite Machines, Chapman & Hall, London, 1971.
[12] B. Courcelle, A representation of trees by languages, I, Theoret. Comput. Sci. 6 (1978) 255–279.
[13] B. Courcelle, A representation of trees by languages, II, Theoret. Comput. Sci. 7 (1978) 25–55.
[14] B. Courcelle, An axiomatic approach to the Korenjac–Hopcroft algorithms, Math. Systems Theory

(1983) 191–231.
[15] B. Courcelle, Fundamental properties of in�nite trees, Theoret. Comput. Sci. 25 (1983) 95–169.
[16] B. Courcelle, The monadic second-order logic of graphs II: in�nite graphs of bounded width, Math.

Systems Theory 21 (1989) 187–221.
[17] B. Courcelle, Graph rewriting: and algebraic and logic approach, in: J. van Leeuwan (Ed.), Handbook

of Theoretical Computer Science, vol. B, 1990, pp. 193–242.
[18] B. Courcelle, The monadic second-order logic of graphs IV: De�nability properties of equational graphs,

Ann. Pure Appl. Logic 49 (1990) 193–255.
[19] B. Courcelle, Recursive applicative program schemes, in: J. van Leeuwen (Ed.), Handbook of

Theoretical Computer Science, Elsevier, Amsterdam, 1990, pp. 461–490.
[20] K. Culik II, J. Karhum�aki, Synchronizable deterministic pushdown automata and the decidability of

their equivalence, Acta Inform. 23 (1986) 597–605.
[21] W. Damm, The IO- and OI-hierarchies, Theoret. Comput. Sci. 20 (1982) 95–207.
[22] J. Engelfriet, Iterated pushdown automata and complexity classes, Proc. 15th STOC (1983) 365–373.
[23] J. Engelfriet, H. Vogler, Pushdown machines for the macro tree transducer, Theoret. Comput. Sci. 42

(1986) 251–368.
[24] E.P. Friedman, Equivalence problems for deterministic context-free languages and monadic recursion

schemes, J. Comput. System Sci. 14 (1977) 344–359.
[25] E.P. Friedman, S.A. Greibach, A polynomial algorithm for deciding the equivalence problem for 2-tape

deterministic �nite state acceptors, SIAM J. Comput. 11 (1) (1982) 166–183.
[26] J.H. Gallier, Dpda’s in ‘atomic normal form’ and applications to equivalence problems, Theoret. Comput.

Sci. 14 (1981) 155–186.
[27] J.H. Gallier, n-rational algebras I. Basic properties and free algebras, SIAM J. Comput. 13 (4) (1984)

750–775.
[28] S.J. Garland, D.C. Luckham, Program schemes, recursion schemes, and formal languages, J. Comput.

System Sci. 7 (1973) 119–160.
[29] S. Ginsburg, S. Greibach, Deterministic context-free languages Inform. Control (1966) 620–648.
[30] S. Ginsburg, H.G. Rice, Two families of languages related to ALGOL J. Assoc. Comput. Mach. (1961)

350–371.
[31] L.G. Haines, Generation and recognition of formal languages, Ph.D. Thesis, Massachusetts Institute of

Technology, 1965.
[32] T. Harju, J. Karhum�aki, The equivalence problem of multitape �nite automata, Theoret. Comput. Sci.

78 (1991) 347–355.
[33] M.A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.
[34] M.A. Harrison, I.M. Havel, A. Yehudai, On equivalence of grammars through transformation trees,

Theoret. Comput. Sci. 9 (1979) 173–205.
[35] Y. Hirshfeld, M. Jerrum, F. Moller, A polynomial algorithm for deciding bisimilarity of normed

context-free processes, Theoret. Comput. Sci. 158 (1–2) (1996) 142–159.
[36] I.I. Ianov, The logical schemes of algorithms, Problems Cybernet. (USSR) 1 (1960) 82–140.
[37] O.H. Ibarra, L. Rosier, On the decidability of equivalence problem for deterministic pushdown

transducers, Inform. Process. Lett. 13 (1981) 89–93.
[38] P. Jancar, Bisimulation is decidable for one-counter processes, Proc. ICALP 97, Springer, Berlin, 1997,

pp. 549–559.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 161

[39] D.M. Kaplan, Regular expressions and the equivalence of programs, J. Comput. Systems Sci. 3 (1969)
361–386.

[40] A.J. Korenjac, J.E. Hopcroft, Simple deterministic languages, Proc. 7th Annu. IEEE Switching and
Automata Theory Conf., 1966, pp. 36–46.

[41] S.C. Kleene, Representation of events in nerve sets and �nite automata, in: C.E. Shannon, J. McCarthy,
(Eds.), Automata Studies, North-Holland, Amsterdam, 1956, pp. 3–42.

[42] D.E. Knuth, On the translation of languages from left to right, Inform. and Control 8 (1965) 607–639.
[43] W. Kuich, Semirings and formal power series: their relevance to formal languages and automata, in:

G. Rozenberg, A. Salomaa (Eds.), Handbook of Forma Languages, Springer, Berlin, 1996,, pp. 609–677.
[44] D.C. Luckham, D.M. Park, M.S. Paterson, On formalised computer programs, J. Comput. Systems Sci.

4 (1970) 220–249.
[45] A.N. Maslov, Multilevel stack automata, Problemi Peredachi Inform. (1976) 55–62.
[46] Y.V. Matiyasevich, personal communication, 1995.
[47] Y.V. Meitus, The equivalence problem for real-time strict deterministic pushdown automata, Kibernetika

5 (1989) 14–25 (English translation in Cybernet. Systems Anal. (1990) 581–594) (in Russian).
[48] Y.V. Meitus, Decidability of the equivalence problem for deterministic pushdown automata, Kibernetika

5 (1992) 20–45 (English translation in Cybernet. Systems Anal. (1993) 672–690) (in Russian).
[49] R. Milner, Equivalences on program schemes, J. Comput. Systems Sci. 4 (1970) 205–219.
[50] P. Naur, Report on the algorithmic language Algol60, Comm. ACM 3 (1960).
[51] A. Nijholt, The equivalence problem for LL- and LR-regular grammars, J. Comput. System Sci. 24 (2)

(1982) 149–161.
[52] M. Nivat, On the Interpretation of Recursive Polyadic Program Schemes, Symposia Mathematica, vol.

15, Academic press, New York, 1975.
[53] F. Otto, On deciding the conuence of a �nite string-rewriting system on a given congruence class,

J. Comput. System Sci. 35 (1987) 285–310.
[54] M. Oyamaguchi, Some results on Equivalence and Subclass Containment Problems for DPDA’s, Proc.

5th IBM Symp. on Mathematical Foundations of Computer Science, 1980, p. 35.
[55] M. Oyamaguchi, The equivalence problem for real-time d.p.d.a’s, J. Assoc. Comput. Mach. 34 (1987)

731–760.
[56] M. Oyamaguchi, Y. Inagaki, N. Honda, The equivalence problem for real-time strict deterministic

languages, Inform. and Control 45 (1980) 90–115.
[57] M.S. Paterson, Equivalence problems in a model of computation, Ph.D. Thesis, University of Cambridge,

England, 1967.
[58] H. Rogers, Theory of Recursive Functions and E�ective Calculability, Mc Graw-Hill: Series in Higher

Mathematics, Mc Graw-Hill, New York, 1967.
[59] V.Yu. Romanovskii, Equivalence problem for real-time strict deterministic pd-automata, Kibernetika (5)

(1980) 49–59 (English translation in Cybernet. Systems Anal. (1981) 689–700.
[60] V.Yu. Romanovskii, Equivalence problem for real-time deterministic pushdown automata, Kibernetika

(2) (1986) 13–23 (English translation in Cybernet. Systems Anal. (1986) 162–175).
[61] B.K. Rosen, Program equivalence and context-free grammars, J. Comput. System Sci. 11 (1975) 358–

374.
[62] D.J. Rosenkrantz, R.E. Stearns, Properties of deterministic topdown grammars, Inform. and Control 17

(1970) 226–256.
[63] J. Rutledge, On Ianov’s program schemata, J. Assoc. Comput. Mach. (1964) 1–9.
[64] M.P. Schutzenberger, On context-free languages and push-down automata, Inform. and Control 6 (1963)

246–264.
[65] G. S�enizergues, Church–Rosser controlled rewriting systems and equivalence problems for deterministic

context-free languages, Inform. and Comput. 81 (3) (1989) 265–279.
[66] G. S�enizergues, Some decision problems about controlled rewriting systems, Theoret. Comput. Sci. 71

(1990) 281–346.
[67] G. S�enizergues, Formal languages and word-rewriting, in: H. Comon, J.P. Jouannaud (Eds.), Term

Rewriting, Advanced Course, Lecture Notes in Computer Science, vol. 909, Springer, Berlin, 1994, pp.
75–94.

[68] G. S�enizergues, �(A) ∼ �(B)? Tech. Rep. no. 1183-97, LaBRI, Universit�e Bordeaux I, can be accessed
at URL, http:==www.labri.u-bordeaux.fr/∼ges/, 1997.

162 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

[69] G. S�enizergues, L(A)=L(B)? in: Proc. INFINITY 97, pp. 1–26. Electronic Notes in Theoretical Computer
Science, vol. 9, URL: http:==www.elsevier.nl=locate=entcs=volume9.html, 1997.

[70] G. S�enizergues, L(A) = L(B)? Tech. Rep. no. 1161-97, LaBRI, Universit�e Bordeaux I, can be accessed
at URL, http:==www.labri.u-bordeaux.fr=, 1997.

[71] G. S�enizergues, The equivalence problem for deterministic pushdown automata is decidable, Proc.
ICALP 97, Lecture Notes in Computer Science, vol. 1256, Springer, Berlin, 1997, pp. 671–681.

[72] G. S�enizergues, Decidability of bisimulation equivalence for equational graphs of �nite out-degree, in: R.
Motwani (Ed.), Proc. FOCS’98, IEEE Computer Society Press, Silverspring, MD, 1998,, pp. 120–129.

[73] G. S�enizergues, A polynomial algorithm testing partial conuence of basic semi-Thue systems, Theoret.
Comput. Sci. 192 (1998) 55–75.

[74] G. S�enizergues, T (A)=T (B)?, Proc. ICALP 99, Lecture Notes in Computer Science, vol. 1644, Springer,
Berlin, 1999, pp. 665–675, Full proofs in Technical Report 1209-99 of LaBRI, T (A) = T (B)?; pp. 1–
61.

[75] C. Stirling, Decidability of bisimulation equivalence for normed pushdown processes, Proc. CONCUR
96, Lecture Notes in Computer Science, vol. 1119, Springer, Berlin, 1996, pp. 217–232.

[76] C. Stirling, Decidability of dpda’s equivalence, Tech. Rep., Edinburgh ECS-LFCS-99-411, 1999,
pp. 1–25, Theoret. Comput. Sci., submitted.

[77] E. Tomita, K. Seino, A direct branching algorithm for checking the equivalence of two deterministic
pushdown transducers, one of which is real-time strict, Theoret. Comput. Sci. (1989) 39–53.

[78] L.G. Valiant, Decision procedures for families of deterministic pushdown automata, Ph.D. Thesis,
University of Warwick, 1973.

[79] L.G. Valiant, The equivalence problem for deterministic �nite-turn pushdown automata, Inform. and
Control 25 (1974) 123–133.

[80] L.G. Valiant, M.S. Paterson, Deterministic one-counter automata, J. Comput. System Sci. 10 (1975)
340–350.

[81] H. Vogler, Iterated linear control and iterated one-turn pushdowns, Math. Systems Theory 19 (1986)
117–133.

[82] D.J. Weir, Linear iterated pushdowns, Comput. Intelligence 10 (4) (1994) 431–439.

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 163

Index

Q-product, 19
alphabet

structured, 14
variable, 9

assertion, 41
center of K′, 11
congruence closure, 50
consistent

set of assertions, 85
constant

C2; K5; K6; 61
D2; 61
N0, 61
k0; k1; D1; k2; K0; K1; K2; K3; K4; d0,

60
context-free grammar

deterministic, 9
cost function, 41

deduction relation, 41
deduction system, 41

C, 50, 82
C0, 93

MP: derived rule, 93
D0, 46
D1, 85
D2, 91
D3, 99
D4, 99
D5, 102

is complete, 104
complete, 42

derivation, 38
stacking, 38

divergence, 28, 45
dummy symbol

[p; e; q]; 10
e, 10

equivalence problem
for H -dpda

164 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

is decidable, 141
for dpda

historical acc., 3
is decidable, 82

form
Q-: : :: (Q; 1) column-vector, 19

generating set, 30

height
linear, 32

inverse system
of equations: INV(S), 50

linear combination, 30
linear decomposition, 32

minimal, 32
linear independence, 30
linearity

(d; d′): almost a con�g., 33
Lipschitz

k-up, 68

marked: contains dummy s., 33
matrix

deterministic, 15
left-deterministic, 15

mode, 10

�-bound, 10
�-free, 10

monoid
right-action, 12

left-quotient, 12
residual, 12

norm
of matrix, 18
pseudo-: : :

of equations, 68
of series, 68

polynomials
formal, 11

proof (in a ded. system), 41

G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166 165

proof-tree, 43
in�nite

analysis, 65
pushdown automaton, 9

deterministic, 9
normalized, 9

right-defect, 32

security band, 71
full, 71

self-generating
set of ass., 90

series
Q-: : ::(1; Q) row-vector, 19
deterministic, 14
formal, 10

boolean, 12
left-deterministic, 14
loop-free, 38

space
deterministic, 30

staking
N-: : : sequence, 68

strategy
applying on

a node, 87
for D0

T ′
C , 142

Tcut ; T∅; T�; TA; TB; TC; 62
occurs at

node, 65
strategy (for a ded. system), 43

closed, 44
terminating, 44

substitution, 11

SYMBOLS
[p!]: row-vector, 19
F(d; n): max. of divergence, 55
G: grammar, 9
[p!q]: series, 20

j: binary op. on vectors, 28

166 G. S�enizergues / Theoretical Computer Science 251 (2001) 1–166

∗
j : unary op. on vectors, 29

Cong(P): congr. closure, 85
D(S): co-dimension, 51
INV(S): inverse system 51
N(x): max of pseudo-norm, 68
W(S): weight, 51
Bn;m〈〈 W 〉〉: (n; m) matrices, 15
DB〈〈 W 〉〉: deterministic series, 15
DRBn;m〈〈 W 〉〉: det. rat. matrices, 18
K〈〈 W 〉〉: polynomials, 11
K〈〈 W 〉〉: series, 10
Q(S): set of residuals, 12
Qr(M): row residuals,

18
RBn;m〈〈 W 〉〉: rational matrices,

18
•: residual right-action, 12
∅nm: empty matrix, 19
�ni : unitary vector, 19
�: dpda right-action, 13
�e: erases the marks, 31
��: �-reduction map, 13
’: language substitution, 13
G�

0: gen. family, 71
G�

1: gen. family, 76
G1: gen. family, 78
M: dpda, 12

vector
loop-free, 38

weighted equation, 45

