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SUMMARY

Influenza virus remains a threat because of its ability
to evade vaccine-induced immune responses due
to antigenic drift. Here, we describe the isolation,
evolution, and structure of a broad-spectrum hu-
man monoclonal antibody (mAb), MEDI8852, effec-
tively reacting with all influenza A hemagglutinin
(HA) subtypes. MEDI8852 uses the heavy-chain
VH6-1 gene and has higher potency and breadth
when compared to other anti-stem antibodies.
MEDI8852 is effective in mice and ferrets with a
therapeutic window superior to that of oseltamivir.
Crystallographic analysis of Fab alone or in complex
with H5 or H7 HA proteins reveals that MEDI8852
binds through a coordinated movement of CDRs
to a highly conserved epitope encompassing a hy-
drophobic groove in the fusion domain and a large
portion of the fusion peptide, distinguishing it from
other structurally characterized cross-reactive anti-
bodies. The unprecedented breadth and potency
of neutralization by MEDI8852 support its develop-
ment as immunotherapy for influenza virus-infected
humans.

INTRODUCTION

Influenza virus infection remains a serious threat to global

health and the world economy. Annual epidemics result in a

high number of hospitalizations, with an estimated 3–5 million

cases of severe disease and 250,000–500,000 deaths globally,

and higher mortality rates are possible during pandemics

(Wright et al., 2007). Given the emergence of anti-viral drug-
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resistance, short treatment windows for antivirals and the

lack of cross-protective vaccines, there is an unmet medical

need for new therapeutic options that can effectively treat influ-

enza infection.

There are three types of influenza viruses, A, B, and C

causing disease in humans, and influenza A and B are respon-

sible for frequent seasonal epidemics. However, influenza A

infections account for the majority of hospitalizations and

are the only type to cause pandemics (Wright et al., 2007). Influ-

enza A is subtyped by its two major surface proteins, hemag-

glutinin (HA) and neuraminidase (NA). HA is the main target of

neutralizing antibodies that are induced by infection or vaccina-

tion. The globular HA head domain mediates binding to the

sialic acid receptor, while the HA stem mediates the subse-

quent fusion between the viral and cellular membranes that is

triggered in endosomes by the low pH (Skehel and Wiley,

2000). Genetically, there are 16 influenza A subtypes of HA,

which form two structurally and antigenically distinct groups

(Nobusawa et al., 1991; Russell et al., 2004). In addition, two

new HA analogs recovered from bats, H17 and H18, have

been included in this classification (Tong et al., 2012, 2013).

Currently, H1 and H3 HA subtypes are associated with human

disease and viruses containing H5, H7, H9, and H10 HAs are

associated with sporadic human infections due to direct trans-

mission from avian species.

The majority of influenza virus neutralizing antibodies elicited

by vaccination or infection bind to the globular head of HA and

recognize homologous strains within a given subtype (Russell

et al., 2008). These antibodies neutralize virus infectivity by

blocking sialic acid receptor binding either directly (Knossow

and Skehel, 2006; Schmidt et al., 2013) by interacting with the

receptor binding site at the tip of the molecule or indirectly, by

projecting over the binding site thereby rendering it inaccessible

(Fleury et al., 1999; Xiong et al., 2015). These antibodies are

involved in the selection of viruses with variant HAs in the
by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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process of antigenic drift, necessitating the annual re-develop-

ment of influenza vaccines.

In the past 8 years, several laboratories have described a new

class of influenza-neutralizing antibodies that target conserved

sites in the HA stem that showed different levels of cross-reac-

tivity toward group 1 (Corti et al., 2010; Sui et al., 2009; Throsby

et al., 2008;Wrammert et al., 2011), group 2 (Dunand et al., 2015;

Ekiert et al., 2011; Friesen et al., 2014; Tan et al., 2014) and

groups 1 and 2 viruses (Corti et al., 2011; Dreyfus et al., 2012; Na-

kamura et al., 2013; Wu et al., 2015). Anti-stem antibodies are

less potent at direct viral neutralization as compared to anti-

head antibodies, but were shown to induce potent antibody-

dependent cellular cytotoxicity (ADCC) of infected cells in vitro

and in vivo (Corti et al., 2011; Dilillo et al., 2016; DiLillo et al.,

2014), while anti-head antibodies were not or less effective at

mediating ADCC. In general, the human antibody response

to the HA stem region is more frequent against group 1 as

compared to group 2 HAs and is dominated by VH1-69 anti-

bodies (Pappas et al., 2014; Sui et al., 2009; Wrammert et al.,

2011). Although subdominant, the group 1 stem response was

shown to be recalled after heterologous boosts by the new

pandemic H1N1 virus in 2009 (Corti et al., 2011; Wrammert

et al., 2011). The antibody response to the HA stem region of

group 2 HAs is less frequent, possibly due to the presence of a

conserved glycan bound to N38 in HA1 that may shield the ac-

cess to the most conserved sites in the HA stem and to the

lack of exposure to heterologous group 2 viruses (i.e., H7) or to

new pandemic H3N2 viruses. Finally, antibodies capable of re-

acting with the HA stem region of both group 1 and 2 subtypes

are extremely rare and usually do not show complete coverage

of all subtypes. It has been hypothesized that such broadly

cross-reactive antibodies might have potential as therapeutic

agents and studies on their mechanism of action, epitope spec-

ificity, and ontogeny could also inform the design of cross-pro-

tective influenza virus vaccines (Corti and Lanzavecchia, 2013;

Yewdell, 2013).

A problem related to the development of anti-stem anti-

bodies as immunotherapeutics is their variable neutralizing

potency against viruses belonging to different subtypes and

the existence of natural escape mutants. In view of the limita-

tions of group 1 and group 2 antibodies isolated so far, we

searched for an antibody capable of potently neutralizing

group 1 and 2 influenza A viruses within a narrow range of

antibody concentrations. In this study, we isolated and opti-

mized an antibody, named MEDI8852, that exhibited unprece-

dented breadth and potency, being able to neutralize a diverse

panel of representative viruses spanning >80 years of anti-

genic evolution. Unlike other broadly neutralizing stem-reac-

tive antibodies, MEDI8852 is unique in that it uses a rare

VH (VH6-1) and carries a low level of somatic mutations. Crys-

tallographic analysis of the Fab alone or in complex with H5

and H7 HA proteins reveals that MEDI8852 binds a highly

conserved epitope on H5 and H7 that is markedly different

from other structurally characterized stem-reactive neutral-

izing antibodies. The characterization of this unique epitope

and the breadth and potency of neutralization exhibited by

MEDI8852 support its development for immunotherapy in

influenza virus-infected humans.
RESULTS

Isolation, Genetic Description, and Optimization of
MEDI8852
Four broadly reactive antibodies were isolated from the memory

B cells of a selected donor based on influenza A HA protein

cross-reactivity as previously reported (Traggiai et al., 2004;

Pappas et al., 2014). These antibodies (FY1, FY5, FY6, and

FY18) belong to the same lineage carrying VH6-1*01/D3-3*01/

JH3*02 and VK1-39*01/JK1*01 gene segments (Figure 1A). We

reconstructed the genealogical trees of this lineage and pro-

duced the unmutated common ancestor (UCA), the four clonally

derived antibodies, and three antibodies representing the evolu-

tionary branching points (BP) of the lineage (Figure 1B). Purified

antibodies were tested for neutralizing activity against multiple

viruses of different group 1 and 2 subtypes (Figure 1C). Interest-

ingly, the UCA antibody exhibited neutralizing activity against

group 1 viruses, but not group 2 viruses, albeit with lower

potency as compared to some of the mutated antibodies. Of

note, the first BP (BP1) gained neutralization activity toward early

group 2 H3N2 viruses (HK/68 and VC/75). Two antibodies (i.e.,

FY1 and FY5) of this lineage acquired neutralization activity

against group 2 viruses through two independent pathways of

somatic mutations. The same analysis was extended to the line-

age of FI6, a previously described antibody cross-neutralizing

group 1 and group 2 viruses (Corti et al., 2011). Isolation of five

additional antibodies from this lineage allowed the reconstruc-

tion of a complex genealogy tree (Figure S1). Similarly to what

was observed for the FY1 lineage, the FI6-UCA antibody ex-

hibited neutralizing activity against group 1 viruses only and

evolved through two independent pathways of somatic muta-

tions that led to the group 1-specific FI370 and FI6038 antibodies

and to the group 1 and 2 cross-reactive antibodies FI6, FI2013

and FI4013. Taken together, these findings suggest that in

both lineages, the UCA was initially selected by a group 1 virus

and developed to a branching point characterized by cross-

reactivity toward a limited number of group 2 viruses. From

this point, the final antibody may have been selected further for

binding to group 1 only (e.g., FY6 and FI370) or group 2 HAs

(e.g., FY1 and FI6). These results are consistent with a model

in which the development of cross-reactive group 1 and 2 anti-

bodies is started by group 1 HAs and then further selected

through boosts by group 2 HAs.

The FY1 antibody was chosen as the lead, based on its po-

tency, breadth, and low somatic mutations for further in vitro

optimization through parsimonious mutagenesis of the comple-

mentarity determining regions (CDRs) combined with reversion

of unnecessary somatic mutations in the frameworks. The opti-

mization focusing on affinity binding resulted in a 14-fold and

5-fold improved Fab affinity to H3 HA and H1 HA proteins deter-

mined by surface plasmon resonance, respectively (Table S2).

The resulting antibody was named MEDI8852 (VH and VL se-

quences shown in Figure 1A) and was compared side by side

with the parental FY1 antibody for binding and neutralization of

a large panel of influenza A viruses. MEDI8852 showed higher

binding activity as compared to FY1 against the group 1 HA pro-

teins of H1, H2, H5, H6, and H9 subtypes and group 2 HA pro-

teins of H3 and H7 subtypes, with a mean half-maximal effective
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Figure 1. Developmental Pathway of the MEDI8852 Lineage

(A) Alignment of VH and VL amino acid sequences of four mutated antibodies with their UCA and branchpoint (BP) configurations and MEDI8852. Amino acid

substitutions are highlighted in red. Residue positions are according to Kabat numbering. Dots indicate identical residues. Boxes indicate CDRborders according

to IMGT (solid line) and Kabat (dashed line).

(B) Genealogy trees of VH (left) and VL (right) nucleotide sequences generated using dnaml. The number of mutations is indicated on the brancheswith amino acid

substitutions in parentheses.

(C) Neutralization of influenza A viruses. IC50 values were determined against a panel of 25 influenza A isolates. Values above 50 mg/ml were scored as negative

(dashed line). Average IC50 values were obtained from at least two independent experiments. Full viral strains designations are listed in Table S1.

See also Figure S1.
concentration (EC50) of 0.064 mg/ml versus 0.124 mg/ml for

MEDI8852 and FY1, respectively (Figure 2B; Table S2). In addi-

tion, we investigated the binding of FY1 and MEDI8852 to the

remaining HAs including the 1918 H1N1 pandemic strain and

two recently identified HA analogs recovered from bats (H17

and H18) (Tong et al., 2012, 2013), by flow cytometric analysis

of cell-surface expressed HAs (Figure 2C). Of note, MEDI8852

bound to all HAs and gained reactivity against H12 HA over the

parental FY1 antibody.

To examine if the higher potency and breadth of binding

activity of MEDI8852 as compared to FY1 translated into potent

and broad antiviral activity, we measured neutralizing activity

of both antibody variants in MDCK cells against a diverse

panel of seasonal H1N1 and H3N2 viruses and emerging,

potentially epidemic viruses, isolated over a period spanning

>80 years (1933–2014). All seasonal influenza viruses tested

were neutralized by FY1 and MEDI8852 with median IC50 values

of 1.33 mg/ml and 0.51 mg/ml, respectively, resulting in nearly

a 3-fold increase in overall potency (Figure 2D). However,

both antibodies exhibited comparable activity in neutralizing

group 1 and group 2 viruses with similar IC50 values (1.03 and

2.02 mg/ml for FY1 and 0.34 and 0.61 mg/ml for MEDI8852

against 18 H1N1 and 18 H3N2 viruses, respectively) (Figure 2D).
598 Cell 166, 596–608, July 28, 2016
The increase in overall activity of MEDI8852 compared to FY1

was also apparent when tested against 13 non-seasonal influ-

enza viruses including H5 and H7 viruses isolated from recent

human infections. MEDI8852 neutralized these viruses having

an overall median IC50 of 1.21 mg/ml (range 4.05–0.41 mg/ml)

versus FY1 with a median IC50 of 3.59 mg/ml (range 11.05–

0.76 mg/ml) (Figure 2E). These results indicate that the optimiza-

tion of MEDI8852 resulted in a 3-fold increase in the potency of

neutralization and the ability to bind to all HA subtypes of influ-

enza A viruses.

To extend the evaluation, we directly compared the in vitro

neutralization activity and breadth of MEDI8852 with the previ-

ously published cross-group neutralizing mAbs FI6v3, CR9114,

and 39.29 (Corti et al., 2011; Dreyfus et al., 2012; Nakamura

et al., 2013), using a diverse panel of seasonal and non-sea-

sonal influenza strains from group 1 and group 2 (Figure 2F).

As reported previously, these antibodies neutralized group 1

and group 2 viruses although they exhibited distinct differences

in both potency and breadth. Among all the antibodies tested,

MEDI8852 is the only one that demonstrated neutralizing activ-

ity against all the viruses tested with a median IC50 0.99 mg/ml

(range 8.75–0.09 mg/ml). CR9114 failed to neutralize the human

H2N2 A/Japan/57 virus. Both FI6v3 and 39.29 were unable to



FY1 MEDI8852

10-1

100

101

102

IC
50

(
g/

m
l)

WSN/33
PR/34
FM/47
NJ/76
KW/86
TX/91

BJ/95
SZ/95

NC/99

SI/2006
SD/2007

CA/2009
BR/2010
HK/2010
NH/2010
NY/2012
WA/2012
BO/2013

HK/68
VC/75
LA/87
SG/93
WH/95
SY/97
PA/99
CA/2004
WI/2005
PT/2009
VC/2011
BR/2011
NY/2012
TX/2012
AM/2013
SW/2013
NC/2014
PU/2014

H6N1 HK/97
H6N2 AB/85
H5N1 VT/2004

H2N3 MO/2006

H7N7 NT/2003

H9N2 HK/97

H5N1 HK/2003

H2N2 JP/57

H7N3 BC/2004
H7N9 AN/2013

H3N2v MN/2010
H3N2v IN/2011

H9N2 HK/99

CR9114 39.29 FI6v3 MEDI8852
10-2

10-1

100

101

102

IC
50

 (
g/

m
l)

H6N1 HK/97
H6N2 AB/85
H5N1 VT/2004

H2N3 MO/2006

H7N7 NT/2003

H9N2 HK/97

H5N1 HK/2003

H2N2 JP/57

H7N9 AN/2013

H1N1 BO/2013
H1N1 WA/2012
H1N1 HK/2010 

H3N2 SW/2013
H3N2 PU/2014
H3N2 NY/2012
H3N2 BR/2011

H1N1 CA/2009

H1N1 PR/34

H1N1 SI/2006
H1N1 SD/2007

H3N2 PT/2009
H3N2 WI/2005
H3N2 HK/68

H9N2 HK/99

FY1 MEDI8852
101

102

103

104

105

M
FI

H8 ON/68
H11 ME/74
H12 AL/76
H13 MA/77
H16 SW/99
H17 GU/09
H18 PU/10
H4 CZ/56
H10 GE/49
H14 AS/82

H1 SC/18

H15 AU/79

Mock

H1N1 H3N2

10-2

10-1

100

EC
50

(
g/

m
l)

H9

H2
H5

H7

H1

H3

H6

Group 1

Group 2

FY1 MEDI8852

FY1 MEDI8852
10-1

100

101

102

IC
50

 (
g/

m
l)

A B C

D E

F

0.1

H3H4 H14

H10

H7

H15

H12
H8

H9

H16

H13
H11

H6 H1
H5

H2

Group 2

Group 1

Figure 2. MEDI8852 Binds to All Influenza A

HA Subtypes and Exhibits Neutralization

of Influenza A Seasonal and Non-seasonal

Viral Strains

(A) Phylogenetic tree of influenza A HAs. Group 1

and group 2 colored in red and blue are further

subdivided into 3 clades (H8, H9, and H12;

H1, H2, H5, and H6; H11, H13, and H16) and 2

clades (H3, H4, and H14; H7, H10, and H15),

respectively.

(B) ELISA binding average EC50 values of FY1 and

MEDI8852 to purified recombinant HA proteins.

(C) Binding of FY1 and MEDI8852 to surface-

expressed HA proteins as determined by flow

cytometry. Shown are MFI values.

(D and E) FY1 and MEDI8852 neutralization IC50

values were determined against a panel of 36

seasonal influenza A isolates (D) and 13 non-

seasonal influenza viruses (E).

(F) Neutralization average IC50 values ofMEDI8852,

39.29, FI6v3, and CR9114were determined from at

least two independent experiments using a panel of

24 seasonal and non-seasonal influenza viruses

and plotted as a single symbol. Full viral strains

designations are listed in Tables S1 and S2.
neutralize the contemporary human isolate H7N9 A/Anhui/

2013, and 39.29 was incapable of neutralizing the A/

Netherlands/2003 H7N7 virus, both H9N2 viruses, and a

contemporary H3N2 virus, A/Palau/2014, at the highest con-

centration tested (50 mg/ml). In addition to better overall

breadth of neutralization, MEDI8852 exhibits equal or greater

neutralization potency than the other cross-reactive mono-

clonal antibodies with a median IC50 of 0.99 mg/ml, compared

to 2.13, 7.57, and 1.76 mg/ml for CR9114, 39.29, and FI6v3,

respectively, when the non-neutralized viruses are excluded

from the analysis.

MEDI8852 Mechanisms of Antiviral Activity
The cross-subtype neutralizing antibodies reported to date

inhibit HA-mediated membrane fusion activity in vitro (Corti

et al., 2011; Dreyfus et al., 2012; Nakamura et al., 2013). Activa-

tion of fusion requires cleavage of the precursor, HA0, and expo-

sure of the cleaved HA to the low pH of endosomes. In assays

of these two processes, we have shown that MEDI8852 inhibits

the host cell protease cleavage of both H1 (group 1) and H3

(group 2) HA0 that would prevent membrane fusion (Figure 3A),

and MEDI8852 binding to cleaved HA also prevents its low

pH-induced conformational change, which is required for mem-

brane fusion by stabilizing the pre-fusion conformation (Figures

3B and 3C).
In addition, we have shown that

MEDI8852 mediates the lysis of in-

fected cells by human primary NK cells

(ADCC), the antibody-dependent cellular

phagocytosis (ADCP) of MDCK cells

expressing H1 or H3 HAs by human

monocyte-derived macrophages and

the complement-dependent cytotoxicity
(CDC) of influenza-infected MDCK cells in the presence of com-

plement (Figures 3D, 3E, 3F, and S2).

Prophylactic and Therapeutic Efficacy of MEDI8852 in
Mice and Ferrets
We evaluated the antiviral activity of MEDI8852 in mice chal-

lenged with a lethal dose of three different influenza A viruses,

A/California/7/2009 H1N1 (CA/2009 H1), A/Wilson Smith N/33

H1N1 (WSN/33 H1), and a reassortant A/Hong Kong/8/68

H3N1 (rHK/68 H3). A dose-ranging study was conducted in

which MEDI8852 was administered at the time of virus chal-

lenge. Mice (100%) receiving MEDI8852 at 3 or 1mg/kg survived

challenge with CA/2009 H1, while 60% and 20% of mice sur-

vived that received 0.3 and 0.1 mg/kg of MEDI8852, respectively

(Figure 4A). Consistent with the survival data, lung viral titers

were significantly reduced compared to control antibody-treated

animals when MEDI8852 was administered at 3 mg/kg (Fig-

ure 4B). In addition, we observed that the two highest doses

of MEDI8852 significantly protected lung function in mice

compared to the control antibody as measured by pulse oxime-

try (Figure S3A).

To evaluate the therapeutic utility of MEDI8852, we adminis-

tered MEDI8852 at different time points following infection with

WSN/33 H1 or rHK/68 H3 virus. At a dose of 10 mg/kg, survival

rates of 90%–100% were achieved even when treatment was
Cell 166, 596–608, July 28, 2016 599
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Figure 3. MEDI8852’s Antiviral Mechanisms

of Action

(A) HA cleavage inhibition assay of uncleaved HA0

recombinant proteins of A/New Caledonia/20/99

(H1N1) or A/Hong Kong/8/68 (H3N2), pre-treated

with MEDI8852 or a non-relevant isotype control

antibody, MPE8v3, after digestion with TPCK-

trypsin for 0, 5, 10, 20, or 40 min.

(B) Inhibition of low pH-activated conformational

change in HA showing SDS PAGE gels of H5

HA with and without MEDI8852, incubated at

decreasing pH values and neutralized after

digestion with TPCK- trypsin.

(C) Fusion inhibition assay using MEDI8852 (solid)

or MPE8v3 (open) incubated with A/Puerto Rico/8/

34 (H1N1) virus (red) or A/Aichi/2/68 (H3N2) virus

(blue) and human red blood cells and exposed

to low pH to induce viral fusion. Percent fusion

inhibition was calculated based on the amount of

hemoglobin present in the supernatant.

(D) ADCC activity on A549 cells infected with

A/Puerto Rico/8/34 (H1N1) and incubated with

MEDI8852 (red) or MPE8v3 (black) antibody in

the presence of human NK cells, antibody-dependent killing was measured in quadruplicate by LDH release.

(E) ADCP activity on MDCK cells expressing H1 HA from A/South Dakota/06/2007 that were labeled CFSE and incubated with MEDI8852 (red), or an irrelevant

control, R347 (black) antibody in the presence of violet-labeled human macrophages in duplicate. Percent phagocytosis was determined by the amount of total

macrophages that were labeled with violet and CFSE.

(F) CDC activity on MDCK cells infected with A/Puerto Rico/8/34 (H1N1) and incubated with a serial dilution of MEDI8852 (red) or MPE8v3 (black) antibody in the

presence of rabbit complement. Antibody-dependent killing was measured in triplicate by LDH release. Error bars represent two times the SD at each antibody

concentration.

See also Figure S2.
delayed until day 4 post infection with WSN/33 H1, or day 3 post

infection with rHK/68 H3 (Figures 4C and 4E). Significant survival

benefits were also seen with 1 and 3 mg/kg doses when admin-

istered on days 1, 2, or 3 post infection, albeit lower survival rates

than the 10 mg/kg (Table S3). MEDI8852 treatment of 10 mg/kg

at all times post infection resulted in significantly decreased viral

titers, compared to control antibody treated and untreated

animals, with a clear trend for greater reductions with earlier

treatment (Figures 4D and 4F).

To further investigate MEDI8852’s therapeutic potential, we

determined the therapeutic window for treating ferrets infected

with the highly pathogenic avian influenza virus, A/Vietnam/

1204/2004 H5N1 (VT/2004 H5N1). In these studies, ferrets

were infected intranasally with 1 LD90 of VT/2004 and then

treated with a single intravenous (i.v.) dose of 25 mg/kg of

MEDI8852 at 1, 2, or 3 days post infection. We also used as a

comparator, the anti-influenza drug oseltamivir at 25 mg/kg

twice a day (b.i.d.) (Figure 4G). As expected, all control animals

showed signs of infection including fever peaking from days 1–

3 post infection and 100%mortality by day 7 post infection (Fig-

ures 4G and 4H). In comparison, ferrets treated with MEDI8852

or oseltamivir on day 1 post infection were completely protected.

When treatment was delayed until 2 or 3 days post infection,

MEDI8852 provided complete protection with 100% survival

while oseltamivir only partially protected animals with survival

rates of 71% and 29%, respectively. In addition, MEDI8852

treatment resulted in a period of fever reduction following

administration, which was not observed in oseltamivir or control

antibody-treated animals (Figure 4H). Similar efficacy and thera-

peutic window results were seen when MEDI8852 and oseltami-
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vir treatments were compared in a lethal murine model (Figures

S3B and S3C).

The Structures of Complexes Formed between
MEDI8852 Fab and H5, Group 1, and H7, Group 2, HAs
To provide insight into the structural basis for MEDI8852 breadth

and potency, we have determined the structures of the

MEDI8852 Fab fragment at 1.9 Å and of its complexes with H5

and H7 HA proteins at 3.7 Å and 3.75 Å resolution, respectively

(Figures 5A and S4A). The structures of the HA proteins in both

complexes are similar to those of the apo structures determined

before (Russell et al., 2004; Xiong et al., 2015). MEDI8852 makes

similar contacts with both H5 and H7 HAs, by binding in a very

similar orientation to both HAs (Figures 5B–5D), each Fab inter-

acting with just one protomer of the HA trimer. Overall, the inter-

actions bury 1,750 and 1,646 Å2 from solvent for the H5 and H7

complexes, respectively, consistent with their high binding affin-

ity (Table S2). MEDI8852 contacts the fusion domain of HA and

interacts with three regions of HA2, a central hydrophobic

groove, the fusion peptide and helix A, andwith specific residues

in the HA1 component of the fusion domain (Figure 6). The loca-

tion of MEDI8852 in the complex with the HA proteins is consis-

tent with the in vitro assays showing that MEDI8852 stabilized

the pre-fusion conformation inhibiting fusion as well as blocking

the proteolytic cleavage of the HA precursor on the neighboring

subunit (Figure 3).

Although the structures of the complexes were determined at

intermediate resolution, the interfaces between the HAs and

MEDI8852 Fab are well-ordered and the electron density maps

in these areas are among the clearest of the overall complexes



0 2 4 6 8 10 12 14
0

20

40

60

80

100

Days Post Infection

C
A/

20
09

 H
1

Su
rv

iv
al

 (%
)

Ctl. mAb

3 mpk
1 mpk 
0.3 mpk  
0.1 mpk 
0.03 mpk 

MEDI8852
Day 0 Tx

Naive 

*
*
*

4

5

6

7

8

Lo
g

TC
ID

50
/g *

0 2 4 6 8 10 12 14
0

20

40

60

80

100

Days Post Infection

Ctl. mAb

Day 1
Day 2
Day 3
Day 4

MEDI8852
10 mpk

Naive

W
SN

/3
3 

H
1

Su
rv

iv
al

 (%
)

*
*
*
*

3
4
5
6
7
8
9

10

Lo
g 

TC
ID

50
/g

 
*

* *
*

0 2 4 6 8 10 12 14
0

20

40

60

80

100

Days Post Infection

Day 2
Day 3
Day 4

Ctl. mAb

Day 1

Naive

MEDI8852
10 mpk

rH
K/

68
 H

3
Su

rv
iv

al
 (%

)

*
*
*

3
4
5
6
7
8
9

Lo
g 

TC
ID

50
/g

 

*
*

*

*

0 2 4 6 8 10 12
0

20

40

60

80

100

Days Post Infection

A/
VT

/2
00

4 
H

5N
1

Su
rv

iv
al

 (%
)

MEDI8852
25 mpk

Ctr. mAb
(Day 1)

Day 1
Day 2
Day 3

Oseltamivir
25 mpk (2x)

* 0 1 2 3 4 5
36
37
38
39
40
41

Te
m

pe
ra

tu
re

 (°
C

)

(MEDI8852)

0 1 2 3 4 5
36
37
38
39
40
41

Days  Post Infection

Te
m

pe
ra

tu
re

 ( °
C

) (Oseltamivir)

A B

C D

E F

G

H

Figure 4. MEDI8852 Provides Dose-Depen-

dent Protection from Lethal Influenza

Infection in Mice and Ferrets Even When

Treatment Was Delayed

(A) Kaplan-Meier survival curves.

(B) Lung viral titers on day 5 post infection deter-

minedbyTCID50assayaftermicewere treatedwith

MEDI8852 at 3, 1, 0.3, 0.1, and 0.03 mg/kg (single

i.p. dose) and then infected with CA/2009 H1.

(C) Kaplan-Meier survival curves.

(D) Lung viral titers on day 5 post infection in mice

infected with WSN/33 H1 virus, on study day 0,

then treated with MEDI8852 or irrelevant control

antibody, R347 (single i.p. dose) at 10 mg/kg at

various days post infection.

(E) Kaplan-Meier survival curves.

(F) Lung viral titers on day 5 post infection in mice

infected with rHK/68 H3 virus, on study day 0, then

treatedwithMEDI8852 at 10mg/kg or R347 (single

i.p. dose) at various days post infection.

(G) Kaplan-Meier survival curves of ferrets in-

fected with 1LD90 of A/Vietnam/1203/2004 H5N1

virus on study day 0. Treatment with MEDI8852 at

25 mg/kg (closed symbols solid line), oseltamivir

at 25 mg/kg (open symbol dashed line), or R347

(open symbol solid line) was initiated at the indi-

cated day post infection.

(H) Temperature of ferrets treated with MEDI8852,

or oseltamivir at various days post infection. Dotted

linedesignates theaveragenormal temperatureof a

ferret at 38.5�C. Error bars represent the SE of the

mean for each determination. *For murine studies,

significance was determined compared to control

antibody treatment with p < 0.005 for survival (log-

rank test) and p < 0.05 for lung viral titers (Student’s

t test); for ferret survival studies, significance was

determined by comparing to oseltamivir on the

indicated initiationdaywithp<0.05 for survival (log-

rank test).

See also Figure S3 and Table S3.
(unbiased omit electron density maps are shown in Figures S4B

and S4C). We can, therefore, have confidence in our description

of the inter-molecular contacts: hydrogen bonds described in

the text should be regarded as potential interactions, however,

given the limitations of defining the exact geometry of these in-

teractions. The principal contact areas involve three CDRs,

CDRH3, CDRH2, and CDRL1, with minor interactions with

CDRH1 and CDRL3 (Figure 6A). CDRH3 makes extensive con-

tacts with the bottom of a hydrophobic groove between helix A

of HA2 and the fusion domain component of HA1 (Figures 6B

and 6C). Phe100A(CDRH3) inserts into this groove made by HA2

residues Ile45, Val48, Thr49, and Val52 of helix A, Trp21 of the

fusion peptide, and Thr309 of HA1. Val100C(CDRH3) binds in a

lower position in the same groove and interacts with the main

chain of HA2 residues 19–21 of the fusion peptide as well as

with the side chains of Trp21 and of HA1 His8 (Figure 6B).

Asn100D(CDRH3) also makes hydrophobic contact with Val18 in
the fusion peptide (Figure 6C). The

CDRH2 loop interacts, through VH germ-

line-encoded residues, with HA2 residues
15–19 of the fusion peptide (Figure 6C). In particular, HA2 Val18

is almost completely protected from solvent by Tyr56(CDRH2) and

Arg52B(CDRH2). There is also van der Waals interaction between

the Ca of HA2 Gly16 and Tyr52(CDRH2). Tyr52(CDRH2) is positioned

within hydrogen bonding distance of Gly16. Arg50(CDRH2) forms a

salt bridge with HA2 Asp19. Arg50(CDRH2) also contributes to a

polar patch on the antibody surface that includes Arg96(CDRL3)
and Asp58(CDRH2) and Asp100F(CDRH3). Finally, CDRL1 interacts

with the N-terminal region of helix A of HA2 (Figure 6D).

Ser30(CDRL1) and Ser31(CDRL1) are in hydrogen bonding distance

of HA2 Gln42, while Tyr32(CDRL1) and Leu29(CDRL1) make hydro-

phobic contacts with the aliphatic moiety of HA2 Lys38 of

helix A. The side chain of Tyr32(CDRL1) stacks against HA2

Gln42 of helix A and its hydroxyl group is in hydrogen bonding

distance of the main chain of HA2 Asp19 of the fusion peptide.

The epitope recognized by MEDI8852 is highly conserved be-

tween both HA proteins, consistent with the antibody’s broad
Cell 166, 596–608, July 28, 2016 601



Figure 5. MEDI8852 Binds to a Unique Site

within the H5 and H7 HA Proteins

(A) Overview of MEDI8852 in complex with H5

hemagglutinin. One HA protomer and the cognate

MEDI8852 Fab fragment are highlighted in color,

the other two copies in the trimer are colored gray.

The HA1 polypeptide is colored blue, the HA2

polypeptide is colored red, with the fusion peptide

at the N terminus of HA2 highlighted in yellow. The

heavy chain of the MEDI8852 Fab is colored or-

ange, the light chain is colored green.

(B) Overlay ofMEDI8852 bound to group 1 (H5) and

group 2 (H7) HAs. The antibodies are shown in

cartoon representation together with Helices A

and B of the HA. The components are colored

according to (A) and the view orientation is

approximately that shown by the black arrow in (A).

(C and D) H5 (C) and H7 (D) HAs are shown in

surface representation. Only theHA residues in the

MEDI8852 binding epitope that differ between H5

and H7 are labeled. The CDR loops of MEDI8852

that are in contact with HA are shown in cartoon

and stick representation and colored by element.

See also Figures S4, S7, and Table S4.
activity against group 1 and group 2 influenza viruses (Figures

5C, 5D, and S5). However, the membrane proximal fusion do-

mains of both group 1 and group 2 HAs have a few distinct struc-

tural differences such as glycosylation status of HA1 position 38,

which could potentially affect the binding of some antibodies

(Corti et al., 2011; Ekiert et al., 2009; Sui et al., 2009). In the H7

complex with MEDI8852, the bulky carbohydrate chain attached

to HA1 Asn38 changes its orientation to allow antibody binding,

as observed before in the FI6 Fab-H3 HA complex (Corti et al.,

2011). Another notable feature of the MEDI8852 complex with

H7 HA is the involvement of HA2 Tyr38 in an aromatic stacking

interaction with Tyr32(CDRL1). Interestingly, the tyrosine at posi-

tion 38 is not conserved across all HA subtypes only in H7,

H10, and H15. The arginine in H6, H9, H11, and H12 could

engage in a similar stacking interaction although the leucine,

lysine, and glutamine found in the remaining HA proteins could

not interact in the same way. Thus, the high and similar affinities

with which MEDI8852 reacts with these HAs, suggests that the

differences in glycosylation at HA1 38 and the side chain at

HA2 38 make a minor contribution to the overall energetics of

binding (Figure 2B; Table S2).

Conformational Rearrangements in MEDI8852 on
Complex Formation
The availability of a high-resolution structure of MEDI8852 Fab

and of well-ordered interfaces in the structures of the complexes

formed with H5 and H7 HAs enables us to analyze conforma-

tional changes in the Fab upon HA binding, particularly in the
602 Cell 166, 596–608, July 28, 2016
CDRH3 and CDRL1 loops. The loop

formed by residues 97–100F of CDRH3

undergoes a largely rigid-body rota-

tion, pivoted around Gly96(CDRH3) and

Ala100G(CDRH3) (Figure 7A) to facilitate

interactions with HA. As a consequence,
the side chain of Phe100A(CDRH3) moves by �5 Å, to insert

into the hydrophobic groove of the epitope, near HA2 48. In addi-

tion, residues 27–32(CDRL1) are restructured, with an average

displacement of�10 Å between apo and bound forms. The reor-

ientation of the side chains of Tyr32(CDRL1) and Leu29(CDRL1) en-

ables them to interact with HA2 Tyr38 in the H7 complex.

Ser30(CDRL1) and Ser31(CDRL1) in the complex form a helical

structure that places them in hydrogen bonding distance with

Gln42 of HA2.

There are five mutations found in the vitro optimization of

FY1 to MEDI8852 that are not in direct contact with HA, but

are contained within CDR loops (Figures 6E and 6F). The

mutated residues are seen to stabilize the conformations that

the loop regions adopt in complex with HAwhile the parental res-

idues (FY1) do not appear to be able to make similar stabilizing

interactions (Figure S6). Thus, the optimization process of FY1

to MEDI8852 results in the selection of amino acid substitutions

that stabilize the induced fit conformation that the CDR loops

adopt in complex with HA.

Comparison of the Epitope of MEDI8852 with Those of
Other Broadly Neutralizing Antibodies
We have compared the mode of interaction of MEDI8852 with

other broadly neutralizing antibodies that recognize the mem-

brane proximal fusion domain of HA. The cross-group neutral-

izing antibodies 39.29, FI6v3, and CR9114 (Corti et al., 2011;

Dreyfus et al., 2012; Nakamura et al., 2013), as well as the group

1-neutralizing antibodies F10 andCR6261 (Ekiert et al., 2009; Sui



Figure 6. Binding Epitope of MEDI8852 on H5 HA

(A) HA is shown in surface representation and residues that are contacted by MEDI8852 are highlighted in color (blue for HA1, red for HA2 and yellow for fusion

peptide residues). Secondary structure elements of HA are shown in cartoon representation. The hydrophobic groove on HA is outlined in gray. The CDR loops of

MEDI8852 that are in contact with HA are shown in cartoon representation and colored orange and green for the heavy and light chains, respectively. The colored

boxes indicate the three parts of the binding epitope that are shown in more detail in (B), (C), and (D).

(B) Interactions of MEDI8852 with the hydrophobic groove of H5 HA. HA is drawn in surface representation, with the main chain shown in cartoon representation

and amino acids that are in contact with MEDI8852 shown in stick representation. W21, which adopts different rotamers in group1 and group 2 influenza viruses,

is coloredmagenta.MEDI8852 is also shown in cartoon representation, with contact residues shown in stick representation. Hydrogen bonds and salt bridges are

indicated by dashed lines.

(C) Interactions of MEDI8852 with the fusion peptide of H5 HA. Shown in the same style as in (B).

(D) Interactions of MEDI8852 with the base of helix A of H5 HA. Shown in the same style as in (B).

(legend continued on next page)

Cell 166, 596–608, July 28, 2016 603



et al., 2009), all recognize helix A of HA2 and the adjacent hydro-

phobic groove (Figure 7B, blue box). In contrast, the group

2-neutralizing antibodies CR8020 and CR8043 (Ekiert et al.,

2011; Friesen et al., 2014) recognize a different region of the

fusion peptide and a small b sheet below it in the fusion domain

(Figure 7B, red box). The epitope of MEDI8852, uniquely among

the cross-group neutralizing antibodies reported to date, repre-

sents a combination of both regions. A structural comparison of

HA-bound MEDI8852 overlapped with the antibodies CR8020

and CR9114 is shown in Figures S7A and S7B, which reveals

that the overall orientation of MEDI8852 is such that it sits slightly

higher on the HA than the CR8020 antibody and lower than

CR9114. The nearest paratope residue of MEDI8852 is �20 Ǻ
from the membrane proximal end of the HA.

MEDI8852 and 39.29 antibodies bind similarly to residues in

the hydrophobic groove and adjacent helix A in the fusion

domain. Both antibodies contain the four amino acid sequence

ValPheGlyVal/Ile in their otherwise dissimilar CDRH3 loops.

These tetrapeptides superpose in the complexes with an all-

atom root-mean-square deviation (RMSD) of 0.7 Å, indicating

that they interact with their cognate HAs in a similar way (Fig-

ure 7C). However, other contacts made by these antibodies

with HA are quite different between MEDI8852 and 39.29, re-

flecting the fact that the two antibodies are not particularly similar

in sequence and are derived from different germline sequences

(VH6-1*01 and VK 1-39*01 for MEDI8852 versus VH3-30*01

and VK3-15*01 for 39.29). MEDI8852 contacts the base of helix

A and the fusion peptide with its CDRL1 and CDRH2 loops,

respectively (Figure 6). By contrast, contacts made by the heavy

chain of 39.29 Fab mainly involve CDRH3. 39.29 appears to bury

helix A using all three light chain CDR loops. As a consequence,

the 39.29-HA interaction buries a total of 2,287 Å2, while

MEDI8852 achieves similar affinity with a smaller buried surface

of 1,646 Å2.

MEDI8852 is the second cross-group neutralizing antibody for

which structures of complexes with both group1 and group 2

HAs have been reported. The first was FI6v3, which, although

it recognizes both group 1 and group 2 HAs, has higher in vivo

neutralizing activity against group 1 viruses (Corti et al., 2011).

The cross-group binding of FI6v3 has been attributed to its

long and flexible HCDR3, which can accommodate the differ-

ences in conformation and environment of HA2 Trp21 observed

between group 1 and group 2 viruses. There is a much more sig-

nificant rearrangement between FI6v3 bound to H1 HA (group 1)

versus H3 HA (group 2) than there is between MEDI8852 in its

complexeswith H5HA (group 1) andH7HA (group 2) which over-

lap very closely (Figures 5B and S7C). MEDI8852, therefore,

binds in a very similar way to HAs of both groups. This greater

structural conservation of the binding interface is likely respon-

sible for its broader neutralizing ability.
(E) Location of mutations found during affinity maturation of FY1 to MEDI8852. Th

from the direction of HA. Regions of the heavy and light chains in contact with HA a

stick representation. Residues that differ between the parental and affinity-matu

(F) Sequences of MEDI8852 variable region framework and CDR residues. CDRs

chains respectively. Residues in contact with HA are colored red and residues cha

residues of FY1 indicated.

See also Figure S6.
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DISCUSSION

There is an unmet medical need for effective treatments against

severe influenza. The potential of broadly infectivity-neutralizing

antibodies used therapeutically to address this need has pro-

vided a stimulus for their isolation and characterization. Among

the antibodies considered to date, the anti-HA human mono-

clonal antibodyMEDI8852 has demonstrated significant breadth

of its infectivity-neutralizing capacity. MEDI8852 reacts with HAs

of all influenza antigenic subtypes, potently neutralizes diverse

virus strains with numerous HA subtypes, and can block infec-

tion and lethality caused by influenza viruses when administered

up to 4 days after challenge with the virus in mice and up to

3 days post challenge in ferrets with the highly pathogenic

H5N1 virus. This potential ability to overcome the unpredictable

characteristics of influenza, namely the antigenic shift, that re-

sults in disease during pandemic periods, and the antigenic drift,

that occurs with the emergence of antigenically novel viruses, is

a major advantage for a candidate anti-influenza therapeutic

antibody.

The mechanisms of MEDI8852-mediated neutralization of

infection involve processes at the beginning and the end of the

infection cycle. Binding of the antibody to HAs on the infecting

virus inhibits HA-mediated membrane fusion that is required

for the initiation of infection. At the end of infection, antibody

binding to precursor HA0 can block its cleavage and prevent

the formation and spread of newly made infectious virus. Addi-

tionally, binding of MEDI8852 to HAs displayed on the surfaces

of infected cells results in their recognition and lysis by other

components of the immune system: NK cells, macrophages,

and complement. These multiple mechanisms exhibited by

MEDI8852 presumably combine to ensure the observed effec-

tiveness of antibody treatments in infected mice and ferrets.

The epitope recognized by MEDI8852 is consistent with the

ways it blocks HA function in membrane fusion and with the

locations of epitopes that have been described previously for

influenza group-specific cross-reactive antibodies and for

more broadly reactive antibodies. However, the regions of HA

that interact with MEDI8852 are a combination of those previ-

ously assigned to group 1 specificity (primarily a hydrophobic

groove and the adjacent helix A of HA) (Ekiert et al., 2009; Sui

et al., 2009) or group 2 specificity (a separate part of the fusion

peptide, near its N terminus) (Ekiert et al., 2011; Friesen et al.,

2014). The structural characterization of MEDI8852 bound and

unbound structures also highlight the coordinated movement

of the CDRH3 and the CDRL1 to insert into the hydrophobic

grove of the HA, as well as the rearrangement of the orientation

of the glycan attached to Asn38 of the H7 virus to allow antibody

binding. Importantly, structures of the complexes formed by

MEDI8852 with H5 and H7 HAs indicate that the locations and
e variable domains of MEDI8852 are shown in cartoon representation, viewed

re colored orange and green, respectively. Interacting sidechains are shown in

rated antibody are shown in sphere representation.

(according to Kabat) are highlighted in orange and green for the heavy and light

nged during affinity maturation from FY1 are colored cyan, with corresponding



Figure 7. MEDI8852 Binds to a Unique Site within the H5 and H7 HA Proteins through CDR-H3 and CDR-L1 Conformational Rearrangements

upon Complex Formation

(A) Conformational rearrangements inMEDI8852 on complex formation. Conformational change of the CDRH3 andCDR-L1 loops uponHA engagement. The apo

structure of MEDI8852 is shown in blue, the bound structure is shown in orange and green for the heavy and light chains, respectively. The beginning and end of

the moving regions are indicated with black ovals. HA (H7) is shown as a gray surface. The apo structure does not make interactions with HA and does not fit into

its surface features—the conformational change is necessary for productive HA engagement.

(B) Epitopes of different broadly neutralizing antibodies on the HA surface. Residues of HA that are in contact with the heavy chain are colored orange, residues

that are in contact with the light chain are colored green, and residues that are in contact with both chains are colored yellow. The blue box encases the part of the

MEDI8852 epitope (helix A and hydrophobic groove) that can also be found in other broadly neutralizing antibodies as well as group 1 specific ones. The red box

encases the part of the MEDI8852 epitope that can also be found in group 2 specific antibodies (middle of fusion peptide).

(C) Comparison of the structures of the conserved CDRH3 tetra-peptide in the complexes between MEDI8852 and H7 HA (left panel) and 39.29 and H3 HA (right

panel). In both cases the tetra-peptide is shown in stick representation with other loops of the antibody shown as coil, colored as in panel A. The HAs are shown in

surface representation.

See also Figure S7.
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orientations of the bound antibodies are very similar, and this

structurally conserved ability to interact with both regions of

HA presumably results in effective cross-reactivity.

The comparison of the structures of the complexes formed by

MEDI8852 with H5 and H7 HAs with the previously reported

complex formed between the cross-reactive monoclonal anti-

body 39.29 and H3 HA (Nakamura et al., 2013) indicated that

the two antibodies had the amino acid sequences, V-F-G-V-

MEDI8852 and V-F-G-I- 39.29, in their HCDR3 loops that occu-

pied equivalent positions in the complexes. Conceivably, the

structure of this shared component of the antibodies might be

used in the preparation of immunogens or to select candidate

molecules on the basis of their affinity for the tetra-peptides.

Of note, a recent paper described the development of a compu-

tationally designed protein binding to Helix A in the stem region

of group 1 HAs that showed in vitro and in vivo antiviral efficacy

(Koday et al., 2016).

The reconstructionof thedevelopmental pathwayofMEDI8852,

as well as of FI6, suggests that the generation of such broadly

reactive antibodies may require a stepwise stimulation by group

1 HAs, followed by the selection of mutated variants by group 2

HAs. Indeed, the MEDI8852 donor was born in the 1950s

and it is possible that this lineage was primed by H2N2 and

further matured through multiple H3N2 exposures. This hypoth-

esis is further strengthened by the observation that the UCA

mAb neutralized with high potency the strain H2N2 JP/57 (i.e.,

IC50 = 0.6 mg/ml). The UCA and mutated antibodies of the

MEDI8852 and FI6 lineages represent useful tools to design

stem-based immunogens that can be used in a heterologous

prime-boost mode to prime the group 1 reactive naive B

cells and selectively expand those that also cross-react with

group 2 HAs.

Based on the results reported, MEDI8852 is currently being

evaluated for safety and efficacy in adults with uncomplicated

influenza infection in an outpatient setting (https://.clinicaltrials.

gov: NCT02603952) prior to conducting studies in patients hos-

pitalized with influenza caused by type A strains.

EXPERIMENTAL PROCEDURES

Monoclonal Antibody Isolation and Ex Vivo Affinity Maturation

Monoclonal antibodies were isolated from memory B cells, as previously

described (Pappas et al., 2014; Traggiai et al., 2004) from blood donors who

had given written informed consent, following approval by the Cantonal Ethical

Committee of Cantone Ticino, Switzerland. FY1 antibody was further modified

to revert the non-germline framework amino acid changes and its affinity was

improved through parsimonious mutagenesis of CDRs (Supplemental Experi-

mental Procedures).

Recombinant HA Protein and Binding Assays

Recombinant HA proteins were expressed and purified as previously

described (Benjamin et al., 2014). The binding of antibodies to HAs was

measured by ELISA or by staining HA transfected cells using flow cytometry

(Supplemental Experimental Procedures).

Viruses and Microneutralization Assay

Wild-type influenza strains and cold-adapted (ca) live-attenuated influenza

vaccine viruses (complete viral strain designations shown in Table S1) were

propagated in embryonated chicken eggs, titered, and used to infect MDCK

cells to determine neutralizing activity as described in the Supplemental

Experimental Procedures.
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In Vitro Fusion and HA Cleavage Assays

Antibody-mediated fusion inhibition was tested using a low pH-induced red

blood cell fusion model adapted from protocol described in Wang et al.

(2010). The ability of MEDI8852 to inhibit the low pH-activated conformational

change in trypsin-digested H5 HA was analyzed by SDS/PAGE. The ability of

antibody to block the HA0 cleavage by TPCK-treated trypsin wasmeasured by

western blot analysis (Supplemental Experimental Procedures).

Measurement of Fc-Effector Function

ADCC activity wasmeasured with the LDH release assay using primary human

NK cells as effector cells and H1N1 or H3N2 influenza virus infected A549 cells

as a target. ADCP activity wasmeasured by flow cytometry using fluorescently

labeled monocyte-derived macrophages and H1 or H3 HA-expressing MDCK

as target cells. CDC activity was measured with the LDH release assay using

rabbit complement on influenza H1N1-infected MDCK cells (Supplemental

Experimental Procedures).

Therapeutic Efficacy Studies in Mice and Ferrets

All animal studies were approved and conducted in accordance with

MedImmune’s Institutional Animal Care and Use Committee (murine studies)

and Southern Research Institute’s Institutional Animal Care and Use Commit-

tee (ferret studies) and performed in Association for the Assessment and

Accreditation of Laboratory Animal Care (AAALAC)-certified facilities.

MEDI8852 or R347 control mAbwas administered as a single intraperitoneal

(i.p.) dose at various days post infection, depending on the virus strain. For

oseltamivir comparison studies, mice were administered 25 mg/kg oseltamivir

bymouth (PO) b.i.d. for 5 days, or a single 10mg/kg dose i.v. of MEDI8852 with

vehicle PO b.i.d. for 5 days. Viral loads in the lungs were measured by TCID50

assay on day 5 post infection. Five- to six-month-old ferrets were challenged

intranasally with A/Vietnam/1203/04 (H5N1) virus and treated with a single

25 mg/kg i.v. dose of MEDI8852 (or R347 control) or oseltamivir at 25 mg/kg

BID for 5 days initiated at different days post infection. Bio-metric data sys-

tems chip was used for temperature monitoring. (Supplemental Experimental

Procedures).

HA-MEDI8852 Complex Preparation, Crystallization, and Structure

Determination

H5 and H7 HAs were purified from the virus membrane andmixed with purified

MEDI8852 antibody Fab fragments and incubated overnight at 4�C for com-

plex formation. Complexes were further purified by size-exclusion chromatog-

raphy and concentrated for crystallization. Crystals were frozen by direct

immersion in liquid nitrogen and diffraction datasets were collected at 100 K

at the IO2 and IO4 beamlines at the diamond light source (Harwell). Structures

were solved by molecular replacement and refined using standard proto-

cols. Macromolecular structures have been deposited under the accession

numbers PDB: 5JW5 (apo MEDI8852), PDB: 5JW4 (H5 complex), and PDB:

5JW3 (H7 complex). Crystallographic statistics are summarized in Table S4

(Supplemental Experimental Procedures).

ACCESSION NUMBERS

The accession number for the coordinates and structure factors reported in

this paper is PDB: 5JW5 (apo MEDI8852, 5JW4 (H5 complex), and 5JW3

(H7 complex). The accession number for the sequences for all of the anti-

bodies reported in this paper is GenBank: KX398429-KX398468.
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seven figures, and four tables and can be found with this article online at
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