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Abstract

Many different rules for decision making have been introduced in the literature. We show that a
notion of generalized expected utility proposed in [F. Chu, J.Y. Halpern, Great expectation. Part I:
On the customizability of generalized expected utility, in: Proc. IJCAI-03, Acapulco, Mexico, 2003]
is a universal decision rule, in the sense that it can essentially all other decision rules. This approach
gives us a general technique for designing new decision rules as well as providing a framework for
comparing decision rules to each other.
 2004 Published by Elsevier B.V.
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1. Introduction

A great deal of effort has been devoted to studying decision making. A standard
formalization describes the choices a decision maker (DM) faces as acts, where an act
is a function from states to consequences. Many decision rules (that is, rules for choosing
among acts, based on the tastes and beliefs of the DM) have been proposed in the literature.
Some are meant to describe how “rational” agents should make decisions, while others aim
at modeling how real agents actually make decisions. Perhaps the best-known approach is
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that of maximizing expected utility (EU). Normative arguments due to Savage [17] suggest

that rational agents should behave as if their tastes are represented by a real-valued utility
function on the consequences, their beliefs about the likelihood of events (i.e., sets of states)
are represented by a probability measure, and they are maximizing the expected utility of
acts with respect to this utility and probability.

Despite these normative arguments, it is well known that EU often does not describe
how people actually behave when they make decisions [15]; thus EU is of limited utility
if we want to model (and perhaps predict) how people will behave. As a result, many
alternatives to EU have been proposed in the literature (see, for example, [7–9,11,13,14,
19,21,24]). Some of these rules involve representations of beliefs by means other than a
(single) probability measure; in some cases, beliefs and tastes are combined in ways other
than the standard way which produces expected utility; yet other cases, such as Maximin
and Minimax Regret [15], do not require a representation of beliefs at all.

In [3], we propose a general framework in which to study and compare decision
rules. The idea is to define a generalized notion of expected utility (GEU), where
a DM’s beliefs are represented by plausibility measures [6] and the DM’s tastes are
represented by general (i.e., not necessarily real-valued) utility functions. We show there
that every preference relation on acts has a GEU representation. Here we show that GEU
is universal in a much stronger sense: we show that essentially all decision rules have
GEU representations. The notion of representing one decision rule using another seems to
be novel. Intuitively, decision rules are functions from tastes (and beliefs) to preference
relations, so a representation of a decision rule is a representation of a function, not a
preference relation.

Roughly speaking, given two decision rules R1 and R2, an R1 representation of R2 is
a function τ that maps inputs of R2 to inputs of R1 that contain the same representation of
tastes (and beliefs) such that R1(τ (x)) =R2(x). Thus, τ models, in a precise sense, a user
of R2 as a user of R1, since τ preserves tastes (and beliefs). We show that a large collection
of decision rules have GEU representations and characterize the collection. Essentially, a
decision rule has a GEU representation iff it is uniform in a precise sense. It turns out that
there are well-known decision rules, such as maximizing Choquet expected utility (CEU)
[19], that have no GEU representations.1 This is because τ is not allowed to modify the
representation of the tastes (and beliefs). We then define a notion of ordinal representation,
in which τ is allowed to modify the representation of the tastes (and beliefs), and is required
to preserve only the ordinal aspect of the tastes (and beliefs). We show that almost all
decision rules, including CEU, have ordinal GEU representations.

We would like to emphasize again that it is important to distinguish the main result of
[3], which shows that every preference relation has a GEU representation, from the results
of this paper, which show that many decision rules have GEU representations and almost
all decision rules have ordinal GEU representations. Representing a decision rule is not
the same as representing a preference relation. Formally, a decision rule R represents a
preference relation � if there exists some input x to R (where x represents the tastes and

1 The CEU decision rule is the appropriate one to use if belief is represented by a Dempster–Shafer belief
function; see Section 2.4 for more discussion.



F.C. Chu, J.Y. Halpern / Artificial Intelligence 159 (2004) 207–229 209

perhaps beliefs of the DM) such that R(x) =�. On the other hand, R1 represents R2 if,

roughly speaking, there is a function τ (rather than some input of R1) such that for all
possible inputs x of R2, R1(τ (x)) =R2(x). That is, τ ◦R1 and R2 behave essentially the
same way as functions on the domain of R2. (Note that we can consider τ a reduction of R2
to R1. Thus we can define and study hierarchies of decision rules, much the same way we
can define and study hierarchies of languages and problems in the theory of computation.
This topic, however, is beyond the scope of the paper.)

There seems to be no prior work in the literature that considers how one decision rule
can represent another. Perhaps the closest results to our own are those of Lehmann [12].
He proposes a “unified general theory of decision” that contains both quantitative and
qualitative decision theories. He considers a particular decision rule that he calls Expected
Qualitative Utility Maximization, which allows utilities to be nonstandard real numbers;
he defines a certain preorder on the nonstandard reals and makes decisions based on
maximizing expected utility (with respect to that preorder). That his framework has EU
as a special case is immediate, since for the standard reals, his preorder reduces to the
standard order on the reals. He argues informally that Maximin is a special case of his
approach, so that his approach can capture aspects of more qualitative decision making as
well. It is easy to see that Lehmann’s approach is a special case of GEU; his rule is clearly
not universal in our sense.

The rest of this paper is organized as follows. We cover some basic definitions in
Section 2: expectation domains, decision problems, GEU, and decision rules (some of
this material is taken from [3]). We show that most decision rules have (ordinal) GEU
representations in Section 3, using Savage’s act framework. In Section 4, we show how
these results can be applied to the lottery framework originally introduced by von Neumann
and Morgenstern [22] and the horse lotteries of Anscombe and Aumann [1]. We conclude
in Section 5 with some discussion of these results. Proofs are deferred to Appendix A.

2. Preliminaries

To make this paper self-contained, much of the material in the first three subsections of
this section is taken (almost verbatim) from [3].

2.1. Plausibility, utility, and expectation domains

Since one of the goals of this paper is to provide a general framework for all of decision
theory, we want to represent the tastes and beliefs of the DMs in as general a framework as
possible. To this end, we use plausibility measures to represent the beliefs of the DMs and
(generalized) utility functions to represent their tastes.

A plausibility domain is a set P , partially ordered by �P (so �P is a reflexive,
antisymmetric, and transitive relation), with two special elements ⊥P and �P , such that
⊥P �P x �P �P for all x ∈ P . (We often omit the subscript P in ⊥P and �P when it is
clear from context.) A function Pl : 2S → P is a plausibility measure iff

(Pl1) Pl(∅) = ⊥,
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(Pl2) Pl(S) = �, and

(Pl3) if X ⊆ Y then Pl(X) � Pl(Y ).

As pointed out in [6], plausibility measures do not generalize only probability, but also a
host of other representations of uncertainty as well. A utility domain is a set U endowed
with a reflexive binary relation �U . Intuitively, elements of U represent the strength of
likes and dislikes of the DM, while elements of P represent the strength of her beliefs.

Once we have plausibility and utility, we want to combine them to form expected utility.
To do this, we introduce expectation domains, which have utility domains, plausibility
domains, and operators ⊕ (the analogue of +) and ⊗ (the analogue of ×).2 More formally,
an expectation domain is a tuple E = (U,P,V,⊕,⊗), where (U,�U) is a utility domain,
(P,�P ) is a plausibility domain, (V ,�V ) is a valuation domain (where �V is a reflexive
binary relation), ⊕ :V × V → V , and ⊗ :P × U → V . We have four requirements on
expectation domains:

(E1) (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z);
(E2) x ⊕ y = y ⊕ x;
(E3) � ⊗ x = x;
(E4) (U,�U) is a substructure of (V ,�V ).

(E1) and (E2) say that ⊕ is associative and commutative. (E3) says that � is the left-
identity of ⊗ and (E4) ensures that the expectation domain respects the relation on utility
values.

The standard expectation domain, which we denote E, is (R, [0,1],R,+,×), where the
ordering on each domain is the standard order on the reals.

2.2. Decision situations and decision problems

A decision situation describes the objective part of the circumstance that the DM faces
(i.e., the part that is independent of the tastes and beliefs of the DM). Formally, a decision
situation is a tuple A = (A,S,C), where

• S is the set of states of the world,
• C is the set of consequences, and
• A is a set of acts (i.e., a set of functions from S to C).

An act a is simple iff its range is finite. That is, a is simple if it has only finitely many
consequences. Many works in the literature focus on simple acts (e.g., [5]). We assume in
this paper that A contains only simple acts; this means that we can define (generalized)
expectation using finite sums, so we do not have to introduce infinite series or integration
for arbitrary expectation domains. Note that all acts are guaranteed to be simple if either S

or C is finite, although we do not assume that here.

2 We sometimes use × to denote Cartesian product; the context will always make it clear whether this is the
case.
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A decision problem is essentially a decision situation together with information about

the tastes (and beliefs) of the DM; that is, a decision problem is a decision situation together
with the subjective part of the circumstance that faces the DM. Formally, a nonplausibilistic
decision problem is a tuple (A,U,u), where

• A= (A,S,C) is a decision situation,
• U is a utility domain, and
• u :C → U is a utility function.

A plausibilistic decision problem is a tuple (A,E,u,Pl), where

• A= (A,S,C) is a decision situation,
• E = (U,P,V,⊗,⊕) is an expectation domain,
• u :C → U is a utility function, and
• Pl : 2S → P is a plausibility measure.

We could have let a plausibilistic decision problem be simply a nonplausibilistic decision
problem together with a plausibility domain and a plausibility measure, without including
the other components of expectation domains. However, this turns out to complicate the
presentation, and these components certainly can be ignored if they are not needed (see
below).

We say that D is standard iff its utility domain is R (and, if D is plausibilistic, its
plausibility measure is a probability measure and its expectation domain is E).

2.3. Expected utility

Let D be a decision problem with S as the set of states, U as the utility domain, and
u as the utility function. Each act a of D induces a utility random variable ua :S → U

as follows: ua(s) = u(a(s)). If in addition D is plausibilistic with P as the plausibility
domain and Pl as the plausibility measure, then each a also induces a utility lottery
�

Pl,u
a : ran(ua) → P as follows: �

Pl,u
a (u) = Pl(u−1

a (u)). Intuitively, �Pl,u
a (u) is the likelihood

of getting utility u when performing act a. If D is in fact standard (so E = E and Pl is a
probability measure Pr), we can identify the expected utility of act a with the expected
value of ua with respect to Pr, computed in the standard way:

EPr(ua) =
∑

x∈ran(ua)

Pr
(
u−1

a (x)
) × x. (2.1)

As we mentioned earlier, since acts are assumed to be simple, this sum is finite. We can
generalize (2.1) to an arbitrary expectation domain E = (U,P,V,⊕,⊗) by replacing +,
×, and Pr by ⊕, ⊗, and Pl, respectively. This gives us

EPl,E(ua) =
⊕

x∈ran(ua)

Pl
(
u−1

a (x)
) ⊗ x. (2.2)

We call (2.2) the generalized EU (GEU) of act a. Clearly (2.1) is a special case of (2.2).
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2.4. Decision rules
Intuitively, a decision rule tells the DM what to do when facing a decision problem in
order to get a preference relation on acts—e.g., compare the expected utility of acts. Just as
we have nonplausibilistic decision problems and plausibilistic decision problems, we have
nonplausibilistic decision rules and plausibilistic decision rules. As the name suggests,
(non)plausibilistic decision rules are defined on (non)plausibilistic decision problems.

We do not require decision rules to be defined on all decision problems. For example,
(standard) EU is defined only on standard plausibilistic decision problems. More formally,
a (non)plausibilistic decision rule R is a function whose domain, denoted dom(R), is a
collection of (non)plausibilistic decision problems, and whose range, denoted ran(R), is
a collection of preference relations on acts.3 If D ∈ dom(R) and a1 and a2 are acts in D,
then we write

a1 �R(D) a2 iff (a1, a2) ∈R(D).

Here are a few examples of decision rules:

• GEU is a plausibilistic decision rule whose domain consists of all plausibilistic
decision problems. Given a plausibilistic decision problem D = (A,E,u,Pl), where
E = (U,P,V,⊕,⊗), we have

a1 �GEU(D) a2 iff EPl,E(ua1) �V EPl,E(ua2)

for all acts a1, a2 in A. Note that GEU would not be a decision rule according to this
definition if plausibilistic decision problems contained only a utility function and a
plausibility measure, and did not include the other components of expectation domains.

• Of course, standard EU is a decision rule (whose domain consists of all standard
plausibilistic decision problems).

• Maximin is a nonplausibilistic decision rule that orders acts according to their worst-
case consequence. It is a conservative rule; the “best” act according to Maximin is
the one with the best worst-case consequence. Intuitively, Maximin views Nature as
an adversary that always picks a state that realizes the worst-case consequence, no
matter what act the DM chooses. The domain of (standard) Maximin consists of
nonplausibilistic decision problems with real-valued utilities. Given an act a and a real-
valued utility function u, let wu(a) = mins∈S ua(s). Then given a decision problem
D = (A,R,u),

a1 �Maximin(D) a2 iff wu(a1) � wu(a2).

Clearly the domain of Maximin can be extended so that it includes all nonplausibilistic
decision problems where the range of the utility function is totally ordered.

• Minimax Regret (REG) is based on a different philosophy. It tries to hedge a DM’s
bets, by doing reasonably well no matter what the actual state is. It is also a non-
plausibilistic rule. As a first step to defining it, given a nonplausibilistic decision

3 Readers familiar with set theory will note that the collection of all decision problems (plausibilistic or
nonplausibilistic) is not a set, but a proper class. We can get around this problem by relativizing to sets, but
this would complicate the presentation. For ease of exposition, we ignore the issue of proper classes in this paper.
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problem D = ((A,S,C),R,u), let u :S → U be defined as u(s) = supa∈A ua(s); that

is, u(s) is the least upper bound of the utilities in state s. The regret of a in state s,
denoted r(a, s), is u(s) − ua(s); note that no act can do better than a by more than
r(a, s) in state s. Let r(a) = sups∈S r(a, s). For example, suppose that r(a) = 2 and
the DM picks a. Suppose that the DM then learns that the true state is s0 and is offered
a chance to change her mind. No matter what act she picks, the utility of the new act
cannot be more than 2 higher then ua(s0). REG orders acts by their regret and thus
takes the “best” act to be the one that minimizes r(a). Intuitively, this rule tries to
minimize the regret that a DM would feel if she discovered what the situation actually
was: the “I wish I had chosen a2 instead of a1” feeling. Thus,

a1 �REG(D) a2 iff r(a1) � r(a2).

Like Maximin, Nature is viewed as an adversary that would pick a state that maximizes
regret, no matter what act the DM chooses. It is well known that, in general, Maximin,
REG, and EU give different recommendations [15].

• The Maxmin Expected Utility rule (MMEU) [8] assumes that a DM’s beliefs are
represented by a set P of probability measures. Act a1 is preferred to a2 if the
worst-case expected utility of a1 (taken over all the probability measures in P) is at
least as large as the worst-case expected utility of a2. Thus MMEU is, in a sense, a
hybrid of EU and Maximin. To view MMEU as a function on decision problems, we
must first show how to represent a set of probability measures as a single plausibility
measure. We do this using an approach due to Halpern [10]. Let the plausibility domain
P = [0,1]P , that is, all functions from P to [0,1], ordered pointwise; in other words,
p �P q iff p(Pr) � q(Pr) for all Pr ∈ P . Thus, in this domain, ⊥ is the constant
function 0 and � is the constant function 1. For each X ⊆ S, let fX ∈ P be the
function that evaluates each probability measure in P at X; that is, fX(Pr) = Pr(X)

for all Pr ∈ P . Let PlP (X) = fX ; it is easy to verify that PlP is a plausibility measure.
We view PlP as a representation of the set P of probability measures; clearly P can
be recovered from PlP . The domain of MMEU consists of all plausibilistic decision
problems of the form D = ((A,S,C), (R, [0,1]P,V ,⊕,⊗),u,PlP ), where P is a set
of probability measures on 2S , and

a1 �MMEU(D) a2 iff inf
Pr∈P

EPr(ua1) � inf
Pr∈P

EPr(ua2).

Note that this definition ignores ⊕, ⊗, and V .
• A nonadditive probability [19] is a function ν that associates each subset of a set S

with a number between 0 and 1 such that ν(∅) = 0, ν(S) = 1, and ν(X) � ν(Y ) if
X ⊆ Y . (Roughly speaking, a nonadditive probability is just a plausibility measure
whose range is [0,1], where ⊥ = 0 and � = 1.) Schmeidler [19] used a notion of
expected utility for nonadditive probability that was defined by Choquet [2]. (Choquet
applied his notion of expectation to what he called capacities; nonadditive probabilities
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generalize capacities.) Given an act a, a real-valued utility function u such that

ran(ua) = {u1, . . . , un} and u1 < · · · < un, and a nonadditive probability ν, define

Eν(ua) = u1 +
n∑

i=2

ν(Xi) × (ui − ui−1), (2.3)

where Xi = u−1
a ({ui, . . . , un}). It is easy to check (2.3) agrees with (2.1) if ν is

a probability measure. The Choquet expected utility (CEU) rule has as its domain
decision problems of the form D = (A,E,u, ν), and it orders acts as follows:

a1 �CEU(D) a2 iff Eν(ua1) � Eν(ua2).

A special case of a nonadditive probability is a Dempster-Shafer belief function [4].
Belief functions also generalize probability. That is, every probability measure is a
belief function, but not every belief function is a probability measure.4 Given a belief
function Bel, it is well-known that there exists a set PBel of probability measures such
that for all X ⊆ S, Bel(X) = infPr∈PBel Pr(X) [4]. Moreover, if we use the CEU rule to
compute expected belief, then it follows from results of Schmeidler [18] that

EBel(ua) = inf
Pr∈PBel

EPr(ua). (2.4)

Let D = (A,E,u,Bel). It is immediate from (2.4) that if DPBel is the decision problem
that results from D by replacing Bel by PlPBel and replacing the plausibility domain
[0,1] in E by [0,1]PBel , then a1 �CEU(D) a2 iff a1 �MMEU(DPBel )

a2.5

3. Representing decision rules

Given a decision rule R and a preference relation �A on the set of acts A, an R
representation of �A is basically a decision problem D ∈ dom(R) such that R(D) = �A

(and the set of acts in D is A). In other words, an R representation of �A makes R relate
acts in A the way �A relates them, so we can model a DM whose preference relation is
�A as a user of R. In [3] we prove the following:

Theorem 3.1. Every preference relation �A has a GEU representation.

We then go on to show how constraints on GEU can be used to capture various postulates
on preference relations, such as Savage’s postulates [17].

In this paper, we go in a somewhat different direction. We start by extending the notion
of representation to decision rules. Intuitively, we want an R1 representation of R2 to allow

4 We assume that the reader is familiar with belief functions; see [20] for details. In any case, a knowledge of
belief functions is not necessary for understanding the results of this paper.

5 It follows from results of Schmeidler [18] that a similar result holds, not just for belief functions, but for
a larger set of nonadditive probability measures. Say that a probability measure Pr dominates a nonadditive
probability ν on S if Pr(X) � ν(X) for all X ⊆ S . The result holds for all ν such that ν = inf{Pr | Pr dominates ν}.
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us to model a user of R2 as a user of R1. We then investigate the extent to which GEU can

represent arbitrary decision rules. To make this precise, we need a few definitions.

Two (plausibilistic) decision problems D1 and D2 are congruent, denoted D1 ∼= D2, iff
they involve the same decision situation, utility domain, and utility function (and, if both
are plausibilistic, the same plausibility domain and plausibility measure as well). Note that
if D1 ∼= D2, then they agree on the tastes (and beliefs) of the DM, so if they are both
nonplausibilistic, then D1 =D2, and if they are both plausibilistic, then they differ only in
the �V , ⊕, and ⊗ components of their expectation domains.

A decision rule transformation τ is a function that maps inputs of one decision rule R2
to the inputs of another rule R1. A decision rule transformation τ is an R1 representation
of R2 iff dom(τ ) = dom(R2) and for all D ∈ dom(R2),

• τ (D) ∼=D and
• R1(τ (D)) =R2(D).

Thus a DM that uses R2 to relate acts based on her tastes (and beliefs) behaves as if she is
using R1, since τ (D) ∼= D and R1(τ (D)) =R2(D).

Note that τ (D) = D is a GEU representation of EU. We now consider some less trivial
examples.

Example 3.2. To see that Maximin has a GEU representation, let

Emax = (
R, {0,1},R ∪ {∞},min,⊗)

,

let Plmax be the plausibility measure such that Plmax(X) is 0 if X = ∅ and 1 otherwise, and
define 1 ⊗ x = x and 0 ⊗ x = ∞. If D = (A,R,u), where A= (A,S,C), then it is easy to
check that EPlmax,Emax(ua) = wu(a). Take τ (D) = (A,Emax,u,Plmax). Clearly τ (D) ∼=D:
the decision situation and utility function have not changed. Moreover, it is immediate that
GEU(τ (D)) = Maximin(D).

Example 3.3. To see that Minimax Regret (REG) has a GEU representation, for
ease of exposition, we take dom(REG) to consist of standard decision problems D =
((A,S,C),R,u) such that MD = sups∈S u(s) < ∞. (If MD = ∞, given the restriction
to simple acts, it is easy to show that all acts have infinite regret.) Let

Ereg = (
R, [0,1],R ∪ {∞},min,⊗)

,

where

x ⊗ y =
{

y − log(x) if x > 0,
∞ if x = 0.

Note that ⊥ = 0 and � = 1. Clearly, min is associative and commutative, and � ⊗ r =
r − log(1) = r for all r ∈ R. Thus, Ereg is an expectation domain.

For ∅ �= X ⊆ S, define MX = sups∈X u(s). Note that MS = MD < ∞; also if X ⊆ Y ,
then MX � MY . Let PlD(∅) = 0 and PlD(X) = eMX−MS . It is easy to verify that PlD is a
plausibility measure. It is also easy to check that

EPlD,Ereg(ua) = MD − r(a)
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for all acts a ∈ A. Let τ (D) = (A,Ereg,u,PlD). Clearly, τ (D) ∼= D, since the decision

situation and utility function have not changed; furthermore, GEU(τ (D)) = REG(D),
since higher expected utility corresponds to lower regret.

Example 3.4. To see that MMEU has a GEU representation, let D ∈ dom(MMEU) such
that D = (A, (R, [0,1]P , V̂ , ⊕̂, ⊗̂),u,PlP ). Let EP = (R, [0,1]P,R

P ,⊕,⊗), where ⊕
is pointwise function addition, ⊗ is scalar multiplication, and

f �RP g iff inf
Pr∈P

f (Pr) � inf
Pr∈P

g(Pr).

Note that we can identify R with the constant functions in R
P , so R can be viewed as

a substructure of R
P . With these definitions, EP is an expectation domain. Let τ (D) =

(A,EP ,u,PlP ). It is immediate from the definition of �
RP that

a �GEU(τ (D)) b iff inf
Pr∈P

EPr(ua) � inf
Pr∈P

EPr(ub).

Thus GEU(τ (D)) = MMEU(D); furthermore, it is clear that τ (D) ∼=D, since the decision
situation, utility function, and plausibility measure have not changed.

Although it can represent many decision rules, GEU cannot represent CEU. We can in
fact characterize the conditions under which a decision rule is representable by GEU.

There is a trivial condition that a decision rule must satisfy in order for it to have a GEU
representation. Intuitively, a decision rule R respects utility if R relates acts of constant
utility according to the relation between utility values. Formally, a decision rule R respects
utility iff for all D ∈ dom(R) with A as the set of acts, S as the set of states, U as the utility
domain, and u as the utility function, for all a1, a2 ∈ A, if uai (s) = ui for all states s ∈ S,
then

a1 �R(D) a2 iff u1 �U u2. (3.1)

We say that R weakly respects utility iff (3.1) holds for all constant acts (but not necessarily
for all acts of constant utility). It is easy to see that GEU respects utility, since � ⊗ u = u

for all u ∈ U and (U,�U) is a substructure of (V ,�V ). Thus if R does not respect utility, it
has no GEU representation. While respecting utility is a necessary condition for a decision
rule to have a GEU representation, it is not sufficient. It is also necessary for the decision
rule to treat acts that behave in similar ways similarly.

Two acts a1, a2 in a decision problem D are indistinguishable, denoted a1 ∼D a2 iff
either

• D is nonplausibilistic and ua1 = ua2 , or
• D is plausibilistic and �

Pl,u
a1 = �

Pl,u
a2 ,

where u is the utility function of D and Pl is the plausibility measure of D. In the
nonplausibilistic case, two acts are indistinguishable if they induce the same utility random
variable; in the plausibilistic case, they are indistinguishable if they induce the same utility
lottery.
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A decision rule R is uniform if it respects indistinguishability. More formally, R is

uniform iff for all D ∈ dom(R) and a1, a2, b1, b2 acts of D such that ai ∼D bi ,

a1 �R(D) a2 iff b1 �R(D) b2.

Intuitively, we can think of utility random variables and utility lotteries as descriptions of
what an act a does in terms of the tastes (and beliefs) of the DM. If R is uniform, we can
view R as relating the acts indirectly by relating their descriptions.

As the following theorem shows, all uniform decision rules that respects utility have
GEU representations.

Theorem 3.5. For all decision rules R, R has a GEU representation iff R is uniform and
R respects utility.

Proof. See Appendix A. �
Most of the decision rules we have discussed are uniform. However, CEU is not, as the

following example shows:

Example 3.6. Let D∗ = ((A,S,C),E,u,Bel), where

• A = {a1, a2}; S = {s1, s2, s3}; C = {1,2,3};
• u(j) = j, for j = 1,2,3;
• a1(sj ) = j and a2(sj ) = 4 − j, for j = 1,2,3; and
• Bel is the belief function such that Bel(X) = 1 if {s1, s2} ⊆ X and Bel(X) = 0

otherwise.

Since u−1
ai

(j) is a singleton, Bel(u−1
ai

(j)) = 0 for i = 1,2 and j = 1,2,3; thus a1 ∼D∗ a2.
On the other hand, by definition,

EBel(ua1) = 1 + Bel(s2, s3)(2 − 1) + Bel(s3)(3 − 2) = 1,

while

EBel(ua2) = 1 + Bel(s1, s2)(2 − 1) + Bel(s1)(3 − 2) = 2.

It follows that CEU is not uniform, and so has no GEU representation.

How reasonable is the assumption of uniformity? That really depends on whether it is
reasonable to identify two acts that are indistinguishable according to our definition. In
the nonplausibilistic case, two acts are indistinguishable if, for all states s, the utility of
their outcomes in state s are the same. If the utility of an act captures everything that is
relevant about an act to the DM, then it does seem reasonable to say that two acts that are
indistinguishable in this sense should be equally preferred by the DM. Arguably, if this
is not the case, then the utility function is not capturing everything about the act that is
important to the DM.

In the plausibilistic case, two acts a1 and a2 are indistinguishable if, roughly speaking,
for each utility u, the likelihood of getting u according to a1 is the same as the likelihood
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of getting u according to a2. However, it does not then in general follow that the likelihood

of getting, say, either u1 or u2 according to a1 is the same as the likelihood of getting either
u1 or u2 according to a2. Decision rules whose input includes a plausibility measure where
the likelihood of a set is not determined by the likelihood of its elements (note that belief
functions are such plausibility measures) and whose behavior depends on the likelihood
of obtaining one of a set of utilities, rather than just the likelihood of obtaining a single
utility (CEU is such a rule) will not, in general, be uniform. Uniformity does not seem so
compelling in this case though.

Can we say anything when uniformity does not hold? In fact, we can. To see why, first
note that Example 3.4 shows that MMEU has a GEU representation. Moreover, as shown
earlier, MMEU produces essentially the same order on acts as CEU restricted to belief
functions. The fact that CEU has no GEU representation does not contradict Theorem 3.5.
There is no decision problem D such that D ∼= D∗ (where D∗ is the decision problem
in Example 3.6) and GEU(D) = CEU(D∗). However, GEU((A,S,C),EPBel ,u,PlPBel) =
CEU(D∗). Of course, ((A,S,C),EPBel ,u,PlPBel) �∼= D∗; PlPBel and Bel are not the same,
and they in fact represent related but different beliefs. (It is easy to show that sets are
partially preordered by PlPBel but totally preordered by Bel.)

The key reason that GEU cannot represent nonuniform decision rules is because they
do not respect the indistinguishability relations imposed by the utility function (and the
plausibility measure). Recall that we require that τ (D) ∼= D because we want a user of
one decision rules to appear as if she were using another, without pretending that she
has different tastes (and beliefs). So we want τ to preserve the tastes (and beliefs) of its
input.

There is a long-standing debate in the decision-theory literature as to whether
preferences should be regarded as ordinal or cardinal. If they are ordinal, then all that
matters is their order. If they are cardinal, then it should be meaningful to talk about the
differences between preferences—that is, how much more a DM prefers one consequence
to another. Similarly, if representations of likelihood are taken to be ordinal, then all that
matters is whether one event is more likely than another. As we show below, if we require
only that τ (D) and D describe the same ordinal tastes (and beliefs), then we can in fact
express almost all decision rules, including CEU, in terms of GEU.

Two utility functions u1 :C → U1 and u2 :C → U2 represent the same ordinal tastes if
for all c1, c2 ∈ C,

u1(c1) �U1 u1(c2) iff u2(c1) �U2 u2(c2).

Similarly, two plausibility measures Pl1 : 2S → P1 and Pl2 : 2S → P2 represent the same
ordinal beliefs iff for all X,Y ⊆ S,

Pl1(X) �P1 Pl1(Y ) iff Pl2(X) �P2 Pl2(Y ).

Finally, two decision problems D1 and D2 are similar, denoted D1 � D2, iff they involve
the same decision situations, their utility functions represent the same ordinal tastes, and
their plausibility measures represent the same ordinal beliefs. Note that D1 ∼= D2 implies
D1 �D2, but the converse is false in general. A decision rule transformation τ is an ordinal
R1 representation of R2 iff dom(τ ) = dom(R2) and for all D ∈ dom(R2),
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• τ (D) �D and

• R1(τ (D)) =R2(D).

We want to show next that almost all decision rules have an ordinal GEU representation.
Doing so involves one more subtlety. Up to now, we have assumed that plausibility domains
are partially ordered. This implies that two plausibility measures that represent the same
ordinal beliefs necessarily induce the same indistinguishability relation (because of anti-
symmetry). Thus, in order to distinguish sets that have equivalent plausibilities when
computing expected utility using ⊕ and ⊗, we need to allow plausibility domains to be
partially preordered. So, for this result, we assume that �P is a reflexive and transitive
relation that is not necessarily antisymmetric (i.e., we could have that p1 �P p2 and
p2 �P p1 but p1 �= p2).

Theorem 3.7. A decision rule R has an ordinal GEU representation iff R weakly respects
utility.

Proof. See Appendix A. �
Theorem 3.7 shows that GEU can ordinarily represent essentially all decision rules.

Thus, there is a sense in which GEU can be viewed as a universal decision rule.

4. Related frameworks

Note that so far we have worked exclusively in the act framework used by Savage [17].
There are some other well-known frameworks in the decision-theory literature; perhaps the
two best-known such frameworks are the lottery framework introduced by von Neumann
and Morgenstern [22], and Anscombe and Aumann’s [1] horse lotteries, which can be
viewed as a combination of the act and lottery frameworks. Since our goal is to provide a
single framework for almost all of decision theory, in this section we briefly discuss how
the act framework can model these, in much the same way as Turing machines can model
other notions of computation. We begin with the lottery framework.

4.1. The lottery framework

As the name suggests, the alternatives in the lottery framework are lotteries, or
probability distributions over consequences. Standard lotteries are functions of the form
� :C → [0,1] such that

∑
c∈C �(c) = 1. A standard lottery is simple iff {c | �(c) > 0},

which is typically called the support of � and is denoted supp(�), is finite. Note that the
support of a standard lottery is nonempty.

In general, we want to allow assignments of plausibilities to sets of consequences.
Given a set of consequences C and a plausibility domain P , a lottery is a plausibility
measure � : 2Q → P , where Q is a nonempty subset of C. We denote Q as supp(�). In
the standard case, we take Q to consist of those consequences c such that �(c) > 0, so∑

c∈supp(�) �(c) = 1. We say that � is degenerate if |supp(�)| = 1, and we say that a lottery
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� is simple iff supp(�) is finite. Just as we focus on simple acts, we focus on simple lotteries

(as did von Neumann and Morgenstern [22]). Though lotteries are functions that assign
plausibility values to consequences, we follow a common convention in the literature that
lists plausibilities first (e.g., see [16,23]). So {(p1, c1), . . . , (pn, cn)} denotes the lottery �

such that supp(�) = {c1, . . . , cn} and �(ci) = pi . (Note that this is the reverse of the usual
notation for functions.)

Many notions we defined in the act framework have counterparts in the lottery
framework. For example, the counterpart of a decision situation is a lottery decision
situation. Formally, a lottery decision situation is a tuple L = (L,C,P ), where

• C is a set of consequences,
• P is a plausibility domain, and
• L is a (nonempty) set of simple lotteries over C.

Note that a lottery decision situation does not contain any information about the tastes of
the DM. A lottery decision problem is essentially a lottery decision situation together with
information about the tastes of the DM. Formally, a lottery decision problem is a tuple
(L,E,u), where

• L= (L,C,P ) is a lottery decision situation,
• E = (U,P,V,⊕,⊗) is an expectation domain, and
• u :C → U is a utility function.

Note that the plausibility domain of the expectation domain is the same as the plausibility
domain of the lottery decision situation.

A standard lottery decision problem is a lottery decision problem with the standard
expectation domain; these are the ones that are studied extensively in the literature. Perhaps
the best-known lottery decision rule is von Neumann and Morgenstern’s expected utility
rule: choosing the lottery that maximizes expected utility—that is, choosing the lottery �

that maximizes

E�(u) =
∑

c∈supp(�)

�(c) × u(c). (4.1)

As in the act framework, we can generalize (4.1) to arbitrary expectation domains:

E�,E(u) =
⊕

c∈supp(�)

�(c) ⊗ u(c). (4.2)

Some other well-known lottery decision rules include disappointment aversion [9], rank-
dependent expected utility [14,24], and cumulative prospect theory [21,23]. The lottery
framework has also been applied to nonprobabilistic representations; for example, Giang
and Shenoy [7] give a representation theorem for lotteries based on possibility measures.

Our goal in this section is to show that the act framework can model the lottery
framework. To facilitate this, we introduce one other notion in the act framework. A plausi-
bilistic decision situation is a tuple (A,P,Pl), where

• A= (A,S,C) is a decision situation,
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• P is a plausibility domain, and

• Pl : 2S → P is a plausibility measure.

Like a lottery decision situation, a plausibilistic decision situation describes the beliefs but
not the tastes of the DM. The difference is, of course, that the belief of the DM is described
by a single plausibility measure as opposed to a set of lotteries. Note that a plausibilistic
decision problem is essentially a plausibilistic decision situation together with a utility
function.

Given a plausibilistic decision situation S = ((A,S,C),P,Pl), each a ∈ A induces a
lottery �Pl

a as follows: supp(�Pl
a ) = ran(a) and �Pl

a (Y ) = Pl(a−1(Y )) for Y ⊆ ran(a). Note
that if a is simple, then �Pl

a is also simple. We say that a plausibilistic decision situation S
induces the lottery decision situation LS = ({�Pl

a | a ∈ A},C,P ).
This mapping from plausibilistic decision situations to lottery decision situations is

clearly not 1-1. It is possible to have S0 �= S1 but LS0 = LS1 , since different acts could
induce the same lotteries (in fact, S0 and S1 may even involve different sets of states).
However, as the following result shows, the mapping from plausibilistic decision situations
to lottery decision situations is onto.

Proposition 4.1. Every lottery decision situation L = (L,C,P ) is induced by some
plausibilistic decision situation SL.

Proof. See Appendix A. �
Corollary 4.2. Every preference relation in the lottery framework can be modeled by a
preference relation in the act framework.

Proof. Let S = ((A,S,C),P,Pl) be a plausibilistic decision situation and let L =
(L,C,P ) be the lottery decision situation it induces. Note that every preference relation
�L on the lotteries in L induces a preference relation �A on the acts in A as follows:

a1 �A a2 iff �Pl
a1

�L �Pl
a2

.

In other words, �A relates acts by the way �L relates the lotteries they induce. Since
every lottery decision situation is induced by some plausibilistic decision situation (by
Proposition 4.1), every preference relation in the lottery framework can be modeled in the
act framework. �

Note that an arbitrary preference relation �A on the acts in A does not correspond to
a preference relation �L on the lotteries in L in general, since �A could treat acts that
induce the same lottery differently. In order for �A to correspond to some �L, it must be
lottery-uniform, in the sense that, for all acts a1, a2, b, if �Pl

a1
= �Pl

a2
, then

a1 �A b iff a2 �A b and b �A a1 iff b �A a2.

It is not hard to see that lottery-uniform preference relations on acts are exactly those
induced by preference relations on the lotteries. It is also not hard to see that not all
preference relations on acts are lottery-uniform. So, some preferences that can be described
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by relating acts in a plausibilistic decision situation S cannot be described by relating the

lotteries in the lottery decision situation S induces.

Turning now to decision problems and decision rules, we say that a plausibilistic
decision problemDA = (A,E,u,Pl) induces the lottery decision problemDL = (L,E,u),
where L is the lottery decision situation induced by the plausibilistic decision situation
of DA, (A,P,Pl). Since every plausibilistic decision problem induces a unique lottery
decision problem, every lottery decision rule RL induces a plausibilistic decision rule RA

as follows:

a1 �RA(DA) a2 iff �Pl
a1

�RL(DL) �Pl
a2

,

where DL is the lottery decision problem induced by DA. Basically, RA relates acts by
relating the lotteries they induce using RL. The domain of RA is {DA | DA induces
some DL ∈ dom(RL)}. Thus every lottery decision rule can be modeled by a plausibilistic
decision rule.

Using these observations, it is not hard to show that analogues of the results in previous
sections also hold in the lottery framework. For example, it is easy to show that GEU when
applied to lotteries yields a lottery decision rule that can represent all preference relation
on lotteries and almost all lottery decision rules. More precisely, lottery GEU can represent
all uniform lottery decision rules, where the notion of uniformity is completely analogous
to the one presented in Section 3. In particular, it follows that lottery GEU can represent
the well-known lottery decision rules mentioned earlier: disappointment aversion, rank-
dependent expected utility, and cumulative prospect theory. They can also represent the
rule considered by Giang and Shenoy based on possibility measures.

To summarize, all lottery decision rules can be modeled by plausibilistic decision rules.
Thus it suffices, from a technical perspective, to focus exclusively on the act framework,
as we have done in this paper, when considering the foundations of decision theory.

4.2. The Anscombe–Aumann framework

Anscombe and Aumann [1] define a framework that is essentially a combination of the
act framework and the lottery framework: basically, it takes the consequences in the act
framework and replaces them by lotteries, so acts (also known as horse lotteries) map
states to lotteries (also known as roulette lotteries). The probabilities that the roulette
lotteries assign to consequences are typically regarded as “objective” (in the sense that
they are determined by the properties of the devices, such as fair coins or unloaded dice,
used to generate them), while the probabilities (if any) associated with the sets of states
are regarded, as in the act framework, as “subjective” (in the sense that these describe the
beliefs of the DM).

We can formalize the AA framework in much the same way we formalized the act and
lottery frameworks. As usual, we begin with decision situations. An AA decision situation
is a tuple H = (H,S,L), where

• S is a set of states of the world,
• L= (L,C,P ) is a lottery decision situation, and
• H is a nonempty set of horse lotteries (i.e., a nonempty subset of LS ).
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A nonplausibilistic AA decision problem is a tuple (H, Ê,u), where
• H = (H,S, (L,C, P̂ )) is an AA decision situation,
• Ê = (Û , P̂ , V̂ , ⊕̂, ⊗̂) is an expectation domain, and
• u :C → Û is a utility function.

Finally, a plausibilistic AA decision problem is a tuple (H, Ê,u,E,Pl), where

• H = (H,S, (L,C, P̂ )) is an AA decision situation,
• Ê = (Û , P̂ , V̂ , ⊕̂, ⊗̂) is an expectation domain (for roulette lotteries),
• u :C → Û is a utility function,
• E = (V̂ ,P,V,⊕,⊗) is an expectation domain (for horse lotteries), and
• Pl : 2S → P is a plausibility measure.

We need two expectation domains, since in general the objective uncertainties and
subjective uncertainties could be expressed in different languages. Note that the utility
domain of E is the valuation domain of Ê, so the expected utility values with respect to the
roulette lotteries are the utility values for E. While the formalization above is somewhat
involved, in the standard setting, Ê = E, and for the plausibilistic case, E = E as well.

In the standard setting, it is quite common to have the utility function map roulette
lotteries, rather than just the (deterministic) consequences, to real numbers—that is, the
domain of u is L rather than C; see, for example, [1,8,19]. This is because a utility function
u defined on C can easily be extended to L by taking u(�) = E�(u). We can similarly
extend u to L in our framework, by taking u(�) = E�,Ê(u). Note that if � is degenerate
with supp(�) = {c}, then

u(�) = E�,Ê(u) = �P̂ ⊗̂u(c) = u(c),

as one would expect.
Once we extend u to L and treat lotteries as consequences, we can essentially view the

AA framework as a special case of the act framework. As usual, a horse lottery h induces
the random variable uh :S → V̂ as follows: uh(s) = u(h(s)). The expected utility of a
horse lottery h is then

EPl,E(uh) =
⊕

x∈ran(uh)

Pl
(
u−1

h (x)
) ⊗ x.

Thus, again, for the purpose of studying the foundations of decision theory, it suffices to
focus on the act framework, since all decision rules in the AA framework can also be
modeled by decision rules in the act framework.

5. Discussion

We have shown that (almost) all decision rules can be represented by GEU. So what
does this result buy us? For one thing, decision rules are typically viewed as compact
representations of how a DM makes decisions. Our results suggest a uniform way of
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representing decision rules that, in many cases of interest, will be compact. (How compact

the representation is depends on how compactly we can describe ⊕, ⊗, and �V . While
natural choices for these functions and relations typically do have a compact description,
this is clearly not the case for all possible choices.) Moreover, our results provide a
general technique for designing new decision rules, as well as providing a framework for
comparing decision rules to each other. (As we observed in the introduction, we can in fact
define a hierarchy on decision rules by treating representations as reductions.) This may be
particularly relevant as we search for rules that are both adequate descriptively, in terms of
describing what people actually do, and computationally tractable.
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Appendix A. Proofs

Theorem 3.5. For all decision rules R, R has a GEU representation iff R is uniform and
R respects utility.

Proof. We first show that if R has a GEU representation, then it is uniform and respects
utility. So, suppose that τ is a GEU representation of R and let D0 ∈ dom(R) be arbitrary.
Suppose that a1, a2, b1, b2 are acts of D0 such that ai ∼D0 bi . It is easy to check that
if D = (A,E,u,Pl) ∼= D0, then EPl,E(uai ) = EPl,E(ubi ). Thus for all plausibilistic D, if
D ∼=D0, then

a1 �GEU(D) a2 iff b1 �GEU(D) b2.

Since τ is a GEU representation of R, τ (D0) ∼=D0 and R(D0) = GEU(τ (D0)). It follows
then that

a1 �R(D0) a2 iff b1 �R(D0) b2;
thus R is uniform.

Now suppose that a1 and a2 are two acts of constant utility, say u1 and u2, respectively,
of D0. Since τ (D0) ∼=D0, ai is still an act of constant utility ui in τ (D0). Note that

a1 �R(D0) a2 iff a1 �GEU(τ (D0)) a2 iff u1 �U u2,

where U is the utility domain of D0, since τ is a GEU representation of R. Thus R respects
utility.

We now show that, if R is uniform and respects utility, then it has a GEU representation.
We begin with the nonplausibilistic case.

Suppose that R is a uniform nonplausibilistic decision rule that respects utility. Fix
some decision problemD = ((A,S,C),U,u) ∈ dom(R). Let E = (U,P,V,⊕,⊗), where
P = (2S,⊆), V = 2S×U , x ⊕ y = x ∪ y , and X ⊗u = X × {u}. Now define same as �V as
follows: x �V y iff
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1. x = y , or

2. x = S × {u} and y = S × {v} for some u,v ∈ U such that u �U v, or
3. x = ua and y = ub for some a, b ∈ A such that a �R(D) b.

We need to check that �V is well defined. To see that clause 3 in the definition of �V

does not introduce any inconsistencies by itself, we need to show that whenever we have
a1, b1, a2, b2 ∈ A such that ua1 = ua2 and ub1 = ub2 , then a1 �R(D) b1 iff a2 �R(D) b2.
Here is where we use the assumption that R is uniform. Note that ua1 = ua2 and ub1 = ub2

implies that a1 ∼D a2 and b1 ∼D b2. Thus a1 �R(D) b1 iff a2 �R(D) b2, since R is
uniform. Note that clause 2 in the definition of �V essentially relates constant utility
random variables; since R respects utility, 2 and 3 are consistent with one another. Thus
�V is well defined. We identify u ∈ U with S × {u}, so we have � ⊗ u = u, and it is
clear that ⊕ is associative and commutative. Given 2, it is easy to see that (U,�U) is a
substructure of (V ,�V ). Thus, E is an expectation domain.

Let Pl(X) = X and τ (D) = ((A,S,C),E,u,Pl). It is clear that τ (D) ∼= D, since the
decision situation and utility function have not changed. Given the definitions of EPl,E(ua),
E, Pl, and u, we have

EPl,E(ua) =
⊕

u∈ran(ua)

Pl
(
u−1

a (u)
) ⊗ u

=
⋃

u∈ran(ua)

u−1
a (u) × {u}

= {
(s, u) | u ∈ ran(ua) and s ∈ u−1

a (u)
}

= ua.

Given the definition of �V and the fact that EPl,E(ua) = ua for all a ∈ A, it is immediate
that GEU(τ (D)) =R(D). Thus τ is a GEU representation of R.

The argument for the plausibilistic case is completely analogous, so we give a sketch
here and leave the details to the reader. The key difference is that, instead of having
P = (2S,⊆) and Pl(X) = X, the plausibility domain and plausibility measure are already
givens. So, instead of making EPl,E(ua) = ua (which is not possible in general, since we
have to use the given plausibility measure), we make EPl,E(ua) = �

Pl,u
a ; that is, EPl,E(ua)

is the utility lottery induced by a instead of the utility random variable induced by a.
Suppose that R is a uniform plausibilistic decision rule that respects utility. Fix

some plausibilistic decision problem D = ((A,S,C),E1,u,Pl) ∈ dom(R). Let E2 =
(U1,P1,V ,⊕,⊗), where U1 is the utility domain of E1, P1 is the plausibility domain
of E1, V = 2P1×U1 , x ⊕ y = x ∪ y , and p ⊗ u = {(p,u)}. Define �V as follows: x �V y

iff

1. x = y , or
2. x = {(�, u)} and y = {(�, v)} for some u,v ∈ U1 such that u �U1 v, or
3. x = �

Pl,u
a and y = �

Pl,u
b for some a, b ∈ A such that a �R(D) b.

Again, we need to check that �V is well defined. As in the nonplausibilistic case, it is
easy to check that 3 does not introduce inconsistencies by itself, since R is uniform. Also,
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since R respects utility, 2 and 3 are consistent with one another. We identify u ∈ U with

{(�, u)}, so �⊗u = u; given 2, it is easy to see that (U,�U) is a substructure of (V ,�V ).
Again, ⊕ is associative and commutative. Thus E2 is an expectation domain.

Let τ (D) = (A,E2,u,Pl). Obviously, τ (D) ∼= D, since the decision situation, utility
function, and plausibility measure have not changed. It is easy to verify that EPl,E2(ua) =
�

Pl,u
a for all a ∈ A. Thus it is immediate that GEU(τ (D)) = R(D), given the definition of

�V , so τ is a GEU representation of R. �
Theorem 3.7. A decision rule R has an ordinal GEU representation iff R weakly respects
utility.

Proof. We first show that if R has an ordinal GEU representation, then it is weakly
respects utility. So, suppose that τ is an ordinal GEU representation of R. Let D1 ∈
dom(R) be arbitrary. Suppose that ac1 ac2 are constant acts in D1 (where aci (s) = ci for
all states s). We need to show that

ac1 �R(D1) ac2 iff u1(c1) �U1 u1(c2),

where u1 is the utility function of D1 and U1 is the utility domain of D1. Let D2 = τ (D1);
since τ is an ordinal GEU representation of R, D2 �D1 and GEU(D2) =R(D1). So

ac1 �R(D1) ac2 iff ac1 �GEU(D2) ac2 iff u2(c1) �U2 u2(c2),

where u2 is the utility function of D2 and U2 is the utility domain of D2. Since D2 �D1,

u2(c1) �U2 u2(c2) iff u1(c1) �U1 u1(c2),

and we see that R weakly respects utility.
Now we show that if R weakly respects utility, then it has an ordinal GEU

representation. As in Theorem 3.5, there are two cases, plausibilistic and nonplausibilistic.
They are almost identical, so we do just the plausibilistic case here.

Suppose that R is a plausibilistic decision rule that weakly respects utility. Fix a
plausibilistic decision problem D = ((A,S,C),E1,u1,Pl1) ∈ dom(R). Let U1 and P1 be
the utility domain and plausibility domain of E1, respectively. Let E2 = (U2,P2,V ,⊕,⊗)

be defined as follows:

• U2 = (U1 × C,�U2), where (u1, c1) �U2 (u2, c2) iff u1 �U1 u2.
• P2 = (P1 × 2S,�P2), where (p1,X1) �P2 (p2,X2) iff p1 �P1 p2. (Note that �P2 is a

partial preorder, although it is not a partial order.)
• V = (2S×U2,�V ), where x �V y iff

1. x = y , or
2. x = S × {(u1, c1)}, y = S × {(u2, c2)}, and (u1, c1) �U2 (u2, c2), or
3. x = {(s, (u1(a(s)), a(s))) | s ∈ S}, y = {(s, (u1(b(s)), b(s))) | s ∈ S}, and

a �R(D) b, for some a, b ∈ A.
• (p,X) ⊗ (u, c) = X × {(u, c)}.
• x ⊕ y = x ∪ y for all x, y ∈ V .

Note that (⊥P1,∅) �P2 (p,X) �P2 (�P1, S), so we have ⊥P2 = (⊥P1,∅) and �P2 =
(�P1, S); thus, P2 is a plausibility domain. Since R weakly respects utility, clauses 1 and
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2 in the definition of �V are consistent with one another. We identify (u, c) ∈ U2 with

S × {(u, c)} in V ; with this identification, � ⊗ (u, c) = (u, c) for all (u, c) ∈ U2, so it
follows from clause 1 in the definition of �V that (U2,�U2) is a substructure of (V ,�V ).
Furthermore, ⊕ is clearly associative and commutative, so E2 is indeed an expectation
domain.

Now we need to define a utility function and a plausibility measure. Let u2(c) =
(u1(c), c) for all c ∈ C and let Pl2(X) = (Pl1(X),X) for all X ⊆ S. Note that

Pl2(X) �P2 Pl2(Y ) iff Pl1(X) �P1 Pl1(Y ). (A.1)

Thus Pl2 is a plausibility measure, since Pl1 is a plausibility measure. Also,

u2(c) �U2 u2(d) iff u1(c) �U1 u1(d). (A.2)

Let τ (D) = ((A,S,C),E2,u2,Pl2). Note that, by (A.1) and (A.2), τ (D) � D; fur-
thermore, it is easy to check that EPl2,E2((u2)a) = {(s, (u1(a(s)), a(s))) | s ∈ S}; so
GEU(τ (D)) =R(D), given the definition of �V . Thus τ is an ordinal GEU representation
of R. �
Proposition 4.1. Every lottery decision situation L = (L,C,P ) is induced by some
plausibilistic decision situation SL.

Proof. We first prove the proposition for the standard case. Suppose thatL = (L,C, [0,1]).
Let S = [0,1). Suppose that � ∈ L and supp(�) = {c�

1, . . . , c
�
k}. Let a� be defined as

follows: a�(s) = c�
k for all s ∈ S such that

∑k−1
i=1 �(c�

i ) � s <
∑k

i=1 �(c�
i ). Let SL =

((AL,S,C), [0,1],Pr), where

• Pr is the uniform distribution on S and
• AL = {a� | � ∈ L}.

It is easy to check that �Pr
a�

= �, so SL induces L.
The construction is more complicated for general plausibility domains, since we must

make sure S is rich enough to allow us to use a single plausibility measure to induce all
the lotteries. Given a lottery decision situation L = (L,C,P ), let SL = {f | f ∈ CL and
f (�) ∈ supp(�)}. Intuitively, each state f assigns to each lottery � some consequence in
supp(�). Let a� be defined by taking a�(f ) = f (�). Now we need to specify a plausibility
measure. The idea is to construct Pl so that Pl(a−1

� (X)) = �(X). Clearly this guarantees
that �Pl

a�
(X) = �(X) for all X ∈ 2supp(�), so that a� induces �.

To make the definition of Pl more concise, let ϕ(�,Y ) be the following statement: there
exists some nonempty X ⊆ supp(�) such that a−1

� (X) ⊆ Y . Given Y ⊆ SL, we define Pl(Y )

as follows:

1. If there does not exist � ∈ L such that ϕ(�,Y ), let Pl(Y ) = ⊥.
2. If there exists a unique � ∈ L such that ϕ(�,Y ), let Pl(Y ) = �(Z), where

Z =
⋃{

X | X ⊆ supp(�) and a−1
� (X) ⊆ Y

}
.

3. If there exist two distinct �1, �2 ∈ L such that ϕ(�1, Y ) and ϕ(�2, Y ), let Pl(Y ) = �.
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Note that for each Y ⊆ SL, exactly one of the three cases applies, so Pl is well defined.

To see that Pl is a plausibility measure, note that clearly Pl(SL) = � (since L �= ∅) and

Pl(∅) = ⊥. Now suppose that Y1 ⊆ Y2. We have three cases:

• Case 1 applies to Y2. Then it must apply to Y1 as well, so Pl(Y1) = ⊥ � Pl(Y2).
• Case 2 applies to Y2; let �2 be the unique lottery such that ϕ(�2, Y2). Since Y1 ⊆ Y2,

for all � ∈ L, ϕ(�,Y1) implies ϕ(�,Y2). Thus, if there is some � ∈ L such that ϕ(�,Y1),
it must be �2. So either case 1 applies to Y1, then we are done as above, or ϕ(�2, Y1).
Since Y1 ⊆ Y2, if a−1

�2
(X) ⊆ Y1 then a−1

�2
(X) ⊆ Y2; thus Z1 ⊆ Z2, where

Zi =
⋃{

X | X ⊆ dom(�2) and a−1
�2

(X) ⊆ Yi

}
,

and so Pl(Y1) = �2(Z1) � �2(Z2) = Pl(Y2).
• Case 3 applies to Y2. Then Pl(Y1) � � = Pl(Y2).

So Pl is a plausibility measure.
Now we want to show that Pl(a−1

� (X)) = �(X) for all X ⊆ supp(�). Clearly this is true
if X = ∅ or X = supp(�). So suppose that X is a nonempty proper subset of supp(�). Note
that ϕ(�, a−1

� (X)), so either case 2 or case 3 of the definition of Pl applies. Suppose that
ϕ(�0, a

−1
� (X)) for some �0 ∈ L. Then there exists some nonempty X0 ⊆ supp(�0) such that

a−1
�0

(X0) ⊆ a−1
� (X). We want to show that �0 = �, so that case 2 applies. Note that there

exists some c ∈ supp(�) − X and there exists some c0 ∈ X0 by assumption. Suppose that
�0 �= �; then there exists some f ∈ SL such that f (�) = c and f (�0) = c0 by construction.
However, it is clear that f ∈ a−1

�0
(X0) and f /∈ a−1

� (X). Since a−1
�0

(X0) ⊆ a−1
� (X), no such

f exists; it follows that �0 = � and so case 2 applies. Thus Pl(a−1
� (X)) = �(X) and so SL

induces L. �
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