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In this paper, we introduce two algorithms to address the two-echelon capacitated location-routing

problem (2E-CLRP). We introduce a branch-and-cut algorithm based on the solution of a new

two-index vehicle-flow formulation, which is strengthened with several families of valid inequalities.

We also propose an adaptive large-neighbourhood search (ALNS) meta-heuristic with the objective of

finding good-quality solutions quickly. The computational results on a large set of instances from the

literature show that the ALNS outperforms existing heuristics. Furthermore, the branch-and-cut

method provides tight lower bounds and is able to solve small- and medium-size instances to

optimality within reasonable computing times.

& 2012 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

The single-sourcing two-echelon capacitated location-routing

problem (2E-CLRP) is an important combinatorial optimization
problem arising in freight distribution. The problem can be stated
as follows. Given three disjoint sets of nodes representing plat-
forms (first-echelon facilities), satellites (second-level facilities),
and customers, one must decide the location of a subset of
platforms and a subset of satellites, as well as construct vehicle
routes to visit each customer exactly once using a vehicle routed
from an open satellite, which is also visited exactly once using a
vehicle route from an open platform, at minimum total cost. The
utilization of open facilities is limited by echelon-specific capa-
cities. Vehicles belong to two homogeneous fleets, each operating
at a particular echelon and with echelon-specific capacities. Fig. 1
illustrates the network layout of the 2E-CLRP.

The 2E-CLRP has been formally introduced by Boccia et al. [4],
together with a classification of the different 2E-CLRP problem
classes. The authors also proposed two-index and three-index
vehicle-flow formulations, as well as a set-partitioning formulation.
The third model is not included in their experimental analyses. The
first two models contain a polynomial number of variables and
constraints and are addressed using a general-purpose optimization
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solver. These models are shown to be effective for dealing with very
small instances with up to 10 customers, 5 satellites and 3 platforms
within reasonable computing times. For larger instances, the authors
report average gaps above 25%. A tabu search procedure was
proposed by Boccia et al. [3] based on the decomposition of the
2E-CLRP into four subproblems, a capacitated facility location
problem (CFLP) and a multiple depot vehicle routing problem
(MDVRP) addressing a single-echelon CLRP for each level.

Thus, to the best of our knowledge, only two articles address

the 2E-CLRP [3,4] (a few others use the name but locate on one

level only). No exact procedure has been introduced to effectively

deal with medium- and large-size instances. Moreover, a single

meta-heuristic has been proposed so far and its performance, in

terms of solution quality, appears impaired by the extreme

decomposition used. Our goal is to contribute filling these gaps

by introducing an exact procedure to deal with medium- and

large-size instances and a new meta-heuristic procedure to

quickly find good 2E-CLRP solutions. The main contributions of

this paper can be summarized as follows:
i.
 We propose exact and meta-heuristic solution methods based
on the same principle of handling the 2E-CLRP as the super-
position of two Capacitated Location Routing Problems (CLRPs),
one at each echelon. This allows to better address the inter-
dependencies between location and routing decisions and,
thus, enhance the solution quality, as opposed to previous
contributions. This also provides the means to address the
2E-CLRP through efficient algorithms for the CLRP applied to
each echelon, their respective solutions being combined
through simple and efficient rules.

www.elsevier.com/locate/caor
www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2012.04.003
dx.doi.org/10.1016/j.cor.2012.04.003
dx.doi.org/10.1016/j.cor.2012.04.003
mailto:claudio.contardo@cirrelt.ca
mailto:vera.hemmelmayr@wu.ac.at
mailto:teodorgabriel.crainic@cirrelt.ca
dx.doi.org/10.1016/j.cor.2012.04.003
dx.doi.org/10.1016/j.cor.2012.04.003
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


Platforms

Satellites

Customers

1st level

2nd level

Fig. 1. 2E-CLRP network layout.
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ii.
 We introduce a new two-index vehicle-flow formulation of
the 2E-CLRP, which is shown to provide tight lower bounds.
iii.
 We develop an efficient branch-and-cut algorithm based on
the new formulation, providing the means to solve medium-
size instances with up to 50 customers and 10 satellites, and
to compute tight gaps for larger instances.
iv.
 We introduce a new Adaptive Large Neighbourhood Search

(ALNS) meta-heuristic solution method, which outperforms
the previously proposed heuristic methods from the literature
and yields tight upper bounds that lie, on average, no further
than a 3.06% from the lower bounds obtained with the exact
method.

The solution methods introduced in this paper are comple-
mentary in scope. While the exact algorithm provides insightful
information about the structure of the 2E-CLRP and optimal
solutions for small- to medium-size instances, the very high
two-tiered combinatorial nature of the problem makes it difficult
to scale for larger instances for which even finding a feasible
solution of reasonable quality can be prohibitive. Alternatively,
the proposed ALNS provides high-quality solutions quickly. More-
over, the methods validate each other through the lower bounds
obtained with the branch-and-cut method and the upper bounds
obtained with the meta-heuristic. The remainder of the paper is
organized as follows. Section 2 briefly surveys literature on the
2E-CLRP and related problems. Section 3 defines the notation and
provides a mathematical formulation of the 2E-CLRP. The branch-
and-cut algorithm is described in Section 4 and the ALNS in
Section 5. Computational results are presented and analyzed in
Section 6. We conclude in Section 7.
2. Literature review

The Introduction reviewed the very limited literature directly
targeting the 2E-CLRP. We turn to a brief overview of contribu-
tions to other logistic problems the 2E-CLRP generalizes.

The capacitated location-routing problem (CLRP) is the particu-
lar case where the location of a single platform of infinite capacity
is known in advance and the costs on the first echelon can be
neglected. The problem is to find the optimal satellite locations
and to build vehicle routes around those satellites to satisfy the
customer demand. Recent algorithms for solving the CLRP include
exact methods [2,1,7,6] and heuristics [17–19,15,10,8]. Belenguer
et al. [2] introduce a two-index vehicle-flow formulation, which
they strengthen with several families of valid inequalities. Their
computational experiments show that instances containing up to
50 customers and 5 facilities can be solved to optimality within
reasonable computing times. Contardo et al. [7] introduced three
new flow formulations from which they derived new valid
inequalities. The authors also proposed new improved separation
routines for the inequalities introduced in [2]. These refinements
allow us to solve larger instances with up to 100 customers and
5 facilities. Baldacci et al. [1] introduced a set-partitioning
formulation for the problem, strengthened with new families of
valid inequalities. Their algorithm is able to solve to optimality
instances containing up to 199 customers and 14 facilities.
Contardo et al. [6] strengthened this set-partitioning formulation
with new valid inequalities. Their method is able to solve all
instances solved by Baldacci et al. [1] plus four more instances.

Prins et al. [19] developed a GRASP (greedy randomized
adaptive search procedure) for the CLRP, and then a memetic
algorithm with population management [18], which yielded
better results. Their cooperative Lagrangian relaxation-granular
tabu search method [17] outperformed the previous two. Pirk-
wieser and Raidl [15] introduced the first hybrid meta-heuristic
for the CLRP combining meta-heuristics (in this case a VNS) and
integer-linear programming techniques. Their method yielded
improved results compared to previous methods. Hemmelmayr
et al. [10] introduced an ALNS for the 2E-CVRP and also tested it
on CLRP instances. Their computational experiments showed that,
even though not initially developed for the CLRP, their method
obtained very competitive results compared to the previous
methods from the literature. Finally, Contardo et al. [8] intro-
duced a hybrid meta-heuristic combining a GRASP with integer-
programming methods based on column generation. Their
method yielded very good results, obtaining the tightest gaps on
several instances from the literature.

The two-echelon capacitated vehicle routing problem (2E-CVRP)
is also a particular case of the 2E-CLRP, where the location of a
single platform is known in advance and the satellites are
uncapacitated with no setup costs. A fleet of trucks is routed
from the depot to the satellites, and then from these satellites
smaller trucks are used to deliver the commodities to the final
customers. Several models and algorithms have been designed for
the 2E-CVRP with multiple-sourcing at the first echelon, both
exact [14,13] and heuristic [9,10]. Perboli et al. [14] designed a
branch-and-cut algorithm based on a three-index formulation of
the problem. A third index is added to the vehicle-flow variables
at the second echelon to specify the satellite serving a node. The
formulation is strengthened with subtour-elimination and some
flow-conservation constraints. Their algorithm is able to solve to
optimality instances containing up to 21 customers. Perboli and
Tadei [13] strengthen the previous formulation with new cuts,
including capacity cuts, which allows their algorithm to scale and
solve instances with up to 50 customers. Crainic et al. [9]
developed multi-start heuristics for the solution of the 2E-CVRP,
where an intensification phase, aiming to improve feasible solu-
tions by local search, is followed by a diversification phase to
avoid local optima. Hemmelmayr et al. [10] developed an ALNS
meta-heuristic for the 2E-CVRP and the CLRP which is shown to
provide better solutions than previous approaches. The algorithm
is based on the destroy-and-repair principle in which two sets of
operators (destroy operators and repair operators) are alternated.

Nguyen et al. [12] introduced a GRASP complemented with a
path relinking method to address a hybrid class of 2E-CVRPs with
single-sourcing at both echelons, in which location decisions are
restricted to satellites, the location of a single platform being
known in advance. In their method, a GRASP is used to build a set
of solutions P. Then, for each pair of solutions S,TAP, a path-
relinking method tries to build better solutions by applying
different operators to S with the goal of obtaining T. A learning
process is used to guide the GRASP by restricting the opening of
satellites to those which seem more promising during the first
iterations. In Nguyen et al. [11], the same authors provide a multi-
start iterated local search with tabu list and path relinking. The
new algorithm outperforms their previous approach and they also
report results on the instances by Boccia et al. [3]. In the iterated
local search, two search spaces are considered: 2E-CVRP solutions
and a giant tour covering the main depot and the customers.
A path-relinking procedure is presented that can be used for
intensification or post-optimization.
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3. Mathematical formulation

The 2E-CVRP is defined on a graph with three disjoint sets of
nodes, P (the platforms), S (the satellites), and C (the customers).
To each platform pAP, we associate a fixed cost H1

p and a capacity
K1

p . Similarly, to each satellite sAS, we associate a fixed cost H2
s

and a capacity K2
s . Finally, we associate a demand dc 40 to each

customer cAC. We distinguish two echelons, one containing
nodes in P [ S and the other containing nodes in S [ C.

At the first echelon, we consider an undirected graph
G1
¼ ðV1,E1

Þ, with V1
¼P [ S and E1

¼ ffu,vg : u,vAV1, u and v

not both in P}. Similarly, at the second echelon, we consider an
undirected graph G2

¼ ðV2,E2
Þ with V2

¼ S [ C and E2
¼ ffu,vg :

u,vAV2, u and v not both in S}. Two fleets of vehicles are used,
one at each echelon. At each echelon, the fleet is homogeneous
with vehicle capacities of Q1 and Q2 for the first and second
echelons, respectively. A routing cost ge40 is associated to edge
eAE1

[ E2.
Recall that Boccia et al. [4] introduced a three-index vehicle-

flow formulation with a cubic number of variables (in terms of the
number of nodes). The formulation presents a very high number
of symmetries, however, and provides weak lower bounds, mak-
ing it of little use within a branch-and-bound framework. The
bounds provided by the two-index formulation proposed in the
same article proved even weaker. Small-size instances only were
consequently solved to optimality using these formulations. We
therefore introduce a new two-index vehicle-flow formulation for
the 2E-CLRP, which is shown to provide tighter gaps in much
shorter computational times for medium- to large-size instances,
compared the previous formulations [4].

The main observation is that the 2E-CLRP can be decomposed
into two different CLRPs, one at each echelon, connected through
the satellite nodes. This observation is used in formulating the
model and designing the exact and meta-heuristic algorithms. In
particular, as detailed in the next section, the new formulation
inherits most of the cuts valid for the CLRP [2,7].

Let wp be a binary variable equal to 1 iff platform pAP is
selected for opening. Similarly, let zs be a binary variable equal to
1 iff satellite sAS is chosen for opening. For first-echelon edges,
let ue and ve be the binary variables equal to 1 iff edge eAE1 is
used exactly once and twice (for single-customer routes), respec-
tively. Analogously for second-echelon edges, let xe and ye be the
binary variables equal to 1 iff edge eAE2 is used once and twice,
respectively. Finally, let gsZ0 be the continuous variable captur-
ing the volume of commodity shipped to/from satellite sAS.

Define the following vertex subsets: (1) dk
ðIÞDEk, the edge

subset at echelon kAf1;2g that contains one endpoint in I, for any
vertex set IDVk;(2) ðJ:kIÞ, the edge subset of Ek,kAf1;2g with one
endpoint in J and the other in I, for two disjoint vertex subsets
JDVk and IDVk;(3) Ek

ðIÞ, the subset of edges in Ek,kAf1;2g with
both endpoints in IDVk. Then, for a given edge set FDE1, let
uðFÞ ¼

P
eA Fue and vðFÞ ¼

P
eA Fve;similarly for FDE2, x(F), and

y(F). Also, for a given satellite subset S0DS, let gðS0Þ ¼
P

sAS0gs

and zðS0Þ ¼
P

sAS0zs. Finally, for any customer set UDC, let
dðUÞ ¼

P
cAUdc , rðUÞ ¼ ddðUÞ=Q2

e, and U ¼ C\U, while for any
satellite subset S0, S0 ¼ S\S0. The quantity r(U) represents a lower
bound on the number of second-echelon vehicles needed to serve
the customers in U. A valid formulation of the 2E-CLRP is the
following:

min
X
pAP

H1
pwpþ

X
sAS

H2
s zsþ

X
eAE1

geueþ2
X

eAd1
ðPÞ

geveþ
X

eAE2

gexeþ2
X

eAd2
ðSÞ

geye

ð1Þ

uðd1
ðsÞÞþ2vðP:1fsgÞ ¼ 2zs, sAS ð2Þ
xðd2
ðcÞÞþ2yðS:2fcgÞ ¼ 2, cAC ð3Þ

uðd1
ðTÞÞþ2vðP:1TÞZ2

gðTÞ

Q1

� �
, TDS, 9T9Z2 ð4Þ

xðd2
ðUÞÞþ2yðS:2UÞZ2rðUÞ, UDC, 9U9Z2 ð5Þ

upsþvpsrwp, sAS, pAP ð6Þ

xscþysc rzs, sAS, cAC ð7Þ

uðP:1fsgÞþvðP:1fsgÞrzs, sAS ð8Þ

xðS:2fcgÞþyðS:2fcgÞr1, cAC ð9Þ

uððP\fpgÞ [ T :1TÞþ2vðP\fpg:1TÞZ2
gðTÞ�K1

p

Q1

 !
, pAP, TDS ð10Þ

xððS\fsgÞ [ U :2UÞþ2yðS\fsg:2UÞZ2
dðUÞ�gs

Q2

� �
, sAS, UDC ð11Þ

uðd1
ðTÞÞZ2ðuðfpg:1P0Þþuðfp0g:1P\P0ÞÞ,

TDS, 9T9Z2

p,p0AT , P0 �P ð12Þ

xðd2
ðUÞÞZ2ðxðfcg:2S0Þþxðfc0g:2S\S0ÞÞ,

UDC, 9U9Z2

c,c0AU, S0 � S ð13Þ

0rgsrK2
s zs, sAS ð14Þ

gðSÞ ¼ dðCÞ ð15Þ

wpAf0;1g, pAP ð16Þ

zsAf0;1g, sAS ð17Þ

ueAf0;1g, eAE1
ð18Þ

vpsAf0;1g, pAP, sAS ð19Þ

xeAf0;1g, eAE2
ð20Þ

ysc Af0;1g, sAS, cAC ð21Þ

Constraints (2) and (3) are the degree constraints for the
satellite nodes and the customer nodes at the first and second
echelons, respectively. Constraints (4) and (5) are the capacity
constraints at both echelons that ensure the connectivity for the
tours and make sure that the vehicle capacities are respected.
Constraints (6) and (7) ensure that edges incident to a platform
(for the first level) or to a satellite (for the second level) may only
be used when the corresponding facility is opened. Constraints
(8) and (9) are the so-called path elimination constraints for
single satellite or single customer routes, respectively. They forbid
routes that start at one facility, visit one customer or satellite and
go back to a different facility. Constraints (10) and (11) are the
facility capacity inequalities for the first and second echelon,
respectively. Constraints (12) and (13) are the path elimination
constraints that forbid routes that start at one facility and end
at another facility. These constraints are complementary to
constraints (8) and (9). Constraints 14 ensure that flows going
through satellites do not exceed their capacities. These con-
straints are complementary to constraints (10) to forbid routes
from serving a demand higher than the platform capacities.
Finally, Constraints (15) ensure that the total volume of com-
modity going through satellites coincides with the total demand.

This formulation includes Oð9E19þ9E29Þ variables and an expo-
nential number of constraints. Therefore, constraints must be
added dynamically in a branch-and-cut fashion within the exact
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solver. Note that the use of flow variables g at constraints (4),
(10), and (11) links the use of the satellites at the two echelons. In
the following section, we introduce a branch-and-cut method
using formulation (1)–(21). We introduce separation algorithms
to dynamically add cuts, as well as new valid inequalities to
strengthen the formulation, thus providing tighter lower bounds.
Fig. 2. Violation of a FLI.
4. Branch-and-cut method

We have developed a branch-and-cut algorithm based on the
previously introduced formulation, which we strengthen with the
use of several families of valid inequalities. The branch-and-cut
algorithm is based on a relaxation of the original model in which
integrality is dropped as well as some constraints that are
dynamically included by the use of separation algorithms. The
solution of the resulting linear problem provides a lower bound
on the optimal solution of the 2E-CLRP. If the solution of such
program is not integer, a branching decision splits the problem
into two complementary subproblems, and the same procedure is
applied to each of them in a recursive manner. If a node is proven
to be infeasible or its associated lower bound is larger than the
value of the incumbent solution, it is discarded.

Inspired by the success of the branch-and-cut methods for the
CLRP by Belenguer et al. [2] and Contardo et al. [7], the algorithm
introduced in this paper is based on the decomposition of the
2E-CLRP into two CLRPs, one for each echelon. Indeed, the key
observation is that flow variables ðgsÞsAS at the first echelon
correspond to satellite demands, while at the second echelon they
correspond to the satellite capacities. Hence, each echelon can be
seen as a CLRP by giving variables ðgsÞsAS the proper role. There-
fore, we derive valid inequalities for the 2E-CLRP from those for
the CLRP and make use of the separation algorithms described in
the previously mentioned papers. In the following, we describe
the valid inequalities used in this article, including some derived
from the CLRP, plus some newly introduced. We also describe the
separation algorithms used at each echelon, the node-selection
strategy, the branching strategy, and the general separation
strategy used through the search tree.

4.1. Valid inequalities

In this section, we introduce valid inequalities for the 2E-CLRP.
They are subdivided into those specific for the first echelon and
those specific for the second echelon. We introduce some new
families of valid inequalities, and also derive valid inequalities
from the two-index vehicle-flow formulation of the CLRP, which
have been introduced by Belenguer et al. [2] and Contardo
et al. [7]. They include lifted cover inequalities (LCIs), co-circuit
constraints (CoCCs), flow-assignment inequalities (FAIs), y-capa-
city cuts (y-CCs), strengthened facility capacity inequalities
(SFCIs), strengthened effective facility capacity inequalities (SEF-
CIs), location-routing comb inequalities (LRCIs), y-generalized
large multistar inequalities (y-GLMs), strengthened comb
inequalities (SCIs), and framed capacity inequalities (FrCIs). For
details on the inequalities as well as the separation algorithms
used to identify violated inequalities, we refer to [2,7].

4.1.1. First-echelon inequalities

Note that variables g on this echelon may be seen as the actual
satellite demands. Therefore, all the inequalities valid for the CLRP
are also valid for the first echelon of the 2E-CLRP when taking
these quantities as demands. However, many of them become
non-linear, such as those containing expressions combining the
rounding operator d�e with the flow variables g, or those contain-
ing products of the demands g with vehicle-flow variables u, v
(e.g., several types of multistar inequalities) and thus cannot be
introduced into the problem without losing linearity. We have
then restricted the inclusion of valid inequalities at the first
echelon to LCI, CoCC, and FAI, plus the two following families of
valid inequalities:

uððP\P0Þ [ S0 :1S0Þþ2vðP\P0:1S0ÞZ2
gðS0Þ�

P
pAP 0K

1
pwp

Q 1

 !
, S0DS, P 0 �P

ð22Þ

ustþvðP : sÞrzs, s,tAS ð23Þ

We call the first lifted facility capacity inequalities (LFCIs).
They are a generalization of constraints (10) and can safely
replace them. The second ones are called flow-location inequal-
ities (FLIs). They forbid a node to be linked at the same time to
another satellite and to a platform using a single-satellite edge.
Fig. 2 illustrates how such a constraint may be violated. In the
figure, the left-hand side of constraint (23) is equal to 1.25, which
is greater than 1, the maximum allowable value for the right-
hand side.

4.1.2. Second-echelon inequalities

Satellite capacities on the second echelon are given by the flow
variables g. One still has, however, that no more than K2

s units of
flow can be delivered from any given satellite sAS. Therefore, all
the inequalities valid for the two-index vehicle-flow formulation
of the CLRP are valid on the second echelon (the ones restricted to
the variables z, x and y). Note that when replacing K2

s by gs in
those inequalities, many of them become non-linear and thus
cannot be added without losing the linearity of the problem. We
then make use of the following inequalities: y-CC, SFCI, SEFCI,
LRCI, y-GLM, CoCC, LCI, SCI, FAI, and FrCI.

Additionally, we add the following family of location-routing
generalized large multistar inequalities (LRGLMs). Let U � C be a
customer subset, S0DS be a facility subset and cAC\U be a
customer not in U. Let us define ZðS0,U,cÞ ¼ 1

2xðS0 : fcgÞþ
yðS0 : fcgÞþxðU : fcgÞ. The following inequality is valid for the
2E-CLRP:

xððS\S0Þ [ U :2UÞþ2yðS\S0:2UÞZ
2

Q2
dðUÞ�gðS0Þþ

X
c=2U

dcZðS0,U,cÞ

0
@

1
A
ð24Þ

The validity of these inequalities can be derived from the
validity proof of the LRGLM introduced in Contardo et al. [7], by
replacing the satellite capacities ðK2

s ÞsAS by the tighter capacities
ðgsÞsAS . The dominance with respect to the original LRGLM comes
from the inclusion of constraints (14).



C. Contardo et al. / Computers & Operations Research 39 (2012) 3185–3199 3189
4.2. Separation algorithms

For the separation of the inequalities directly translated from
the CLRP, we make use of the separation algorithms introduced in
Belenguer et al. [2] and Contardo et al. [7]. Note that for a given
satellite subset S0DS the degree constraints (2) in the first
echelon imply the following identity:

uðd1
ðS0ÞÞþ2vðP:1S0Þþ2uðE1

ðS0ÞÞ ¼ 2zðS0Þ ð25Þ

which differs from the classical identity of other vehicle routing
problems in that the right-hand side of the expression above is
replaced by 29S09. As a consequence, separation algorithms must
be adapted to make use of the right expression when necessary.

For the separation of the LFCI (22), we also make use of the
separation algorithms for the SFCI, by setting the satellite
demands to ðgsÞsAS . The FLI (23) are inspected for violation one
by one at each iteration, as they are polynomial in number.
Finally, for the LRGLM (24), we use the separation algorithms
for the LRGLM for the CLRP as described in Contardo et al. [7], by
replacing the actual satellite capacities ðzsK

2
s ÞsAS used in the

original inequalities by the stronger ones ðgsÞsAS .

4.3. Node selection strategy

As our objective is to obtain the tightest possible lower bound
for the problem, we use a best-bound strategy. Thus, after the
exploration of the current node and the creation of the two
children subproblems, the next node to explore is the uninspected
node with the smallest lower bound.

4.4. Branching strategy

The branching strategy is a hybrid mixing branching on
variables and on cutsets. For the branching on cutsets, we add
additional slack variables to the problem and the y-capacity cuts
on the second echelon are added as identities. We then branch on
these slack variables, similar to Belenguer et al. [2] and Contardo
et al. [7]. The branching is performed in the following order:
(1) location variables w, (2) location variables z, (3) cutsets on the
second echelon, (4) vehicle-flow variables u, v and (5) vehicle-
flow variables x, y.

4.5. Separation strategy

We distinguish between first and second echelon inequalities.
We decided following preliminary computational experiments, to
separate inequalities on the second echelon in the first place.
Then, when we are no longer able to identify any violated
inequality on the second echelon, we run the separation algo-
rithms on the first echelon.

We implemented a dynamic separation strategy as explained
in Contardo et al. [7]. We differentiate between the cuts that are
needed to impose feasibility of integer solutions and those which
can be seen as cuts to strengthen the problem. For each of the
latter, we consider a counter representing the number of times
the corresponding family of cuts has been successfully separated
and added to the problem. We keep track of this counter during
the branching tree. At certain depths (as suggested by Contardo
et al. [7] for the CLRP, we first check at depth 10, and then at
multiples of 5), we deactivate from a branch (and thus from all its
children) the cuts for which the counter is zero, and for the
remaining ones we reset the counter to zero. Using this strategy,
we rapidly deactivate cuts that do not seem promising during
certain branches of the tree, but we keep them where they seem
to be useful. As a matter of fact, we have observed that cuts are
rarely added after depth 25 in the branching tree.
5. Adaptive large neighbourhood search

ALNS was proposed by Ropke and Pisinger [20] for the pickup
and delivery problem. It extends the large neighbourhood search
algorithm of Shaw [22] and is also inspired by the ruin-and-
recreate principle [21]. A general ALNS for several classes of
routing problems was developed in Pisinger and Ropke [16],
where the authors show that ALNS can outperform existing
solution methods. In ALNS, there are two types of operators.
Destroy operators that remove a certain number of elements
from a solution and repair operators that reinsert these elements
in the partial solution. ALNS works with an adaptive weight
adjustment, where each operator is chosen based on its past
success.

The ALNS we propose for the 2E-CLRP is based on the same
decomposition principle detailed in the branch-and-cut section.
An ALNS is thus called recursively to solve the CLRP on each
echelon. Similar to the branch-and-cut, we initiate with the
second echelon. Then, whenever the second echelon is solved
and the new solution leads to a change in the satellite configura-
tion, the first echelon is solved again by calling the ALNS
procedure.

The ALNS called at each echelon is based on a previously
proposed solution method for the 2E-CVRP and the CLRP [10],
with a different strategy to determine the solution serving as the
new incumbent. This strategy is detailed in Section 5.3, when we
refer to the large destroy operators. Parameters were also mod-
ified to achieve best performance for the new problem as
described in Section 6.2.

The same destroy and repair operators are used to address the
CLRP on either the first or the second level. In the following, in
order not to overload the presentation, we describe the operators
in terms of the second echelon only. When the operators are used
on the first level, the platforms correspond to satellites and the
satellites correspond to customers.

We introduce a two-stage algorithm that deals with two types
of destroy operators. There are large-impact, large, operators, DL,
that change the current configuration of opened satellites
and small-impact, small, operators, DS, that remove only a
certain number of customers, but do not explicitly open or close
satellites. The operators from set DL are called every o iterations
without improvements. For these operators, the algorithm starts
from the best found solution. Only if the new solution is within
Z% of the best found solution, it can serve as the new incumbent
with a probability of Y. Moreover, a solution yielded by these
operators is accepted, even if it is not improving. The goal of this
procedure is to provide the means for the algorithm to explore
different configurations of satellites with the small operators of
set DS. After a certain number of non-improving iterations, the
configuration is changed and the algorithm starts from either the
incumbent or the best found solution.

The customers that were removed by the destroy operators are
then inserted by means of an insertion operator to minimize the
objective function value. After the destroy and repair operators
are executed, the first level is improved by recursively calling
again the ALNS to solve the first-level CLRP. For the instances
containing only one platform (like those used in Nguyen et al.
[12]), a simplified procedure based on moving and swapping
single satellites is executed. In these instances, the first level is
not a CLRP and hence it is not necessary to call the ALNS to solve a
CLRP at every iteration.

The destroy and repair operators are selected by a roulette
wheel mechanism. Every operator j has a score pj. This score is
updated by adding s, every time operator j finds a new global best
solution. The probability of being selected in the roulette wheel is
based on pj=

Pp
k ¼ 1 pk, where p is the number of operators
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considered. Algorithm 1 displays the pseudocode for our ALNS
procedure detailed in the rest of this section.

Algorithm 1. Basic steps of the ALNS algorithm.
procedure ALNS-2ECLRP
s,s0,sn’InitialSolution,InitializeScoresðpÞ
repeat

if o iterations without improvement then
N�’ChooseDestroyOperatorðDL,pÞ
if f ðs0Þoð1þZÞf ðsnÞ then

s0’sn with probability ð1�YÞ
else

s0’sn

end if
else

N�’ChooseDestroyOperatorðDS,pÞ
end if

Nþ’ChooseRepairOperatorðR,pÞ

s0’DestroyAndRepairðs0,N�,Nþ Þ
solve the first-level CLRP by ALNS-2ECLRP
if o iterations without improvement then

s0’LocalSearchðs0Þ

s’s0

else if f ðs0Þoð1þyÞf ðsnÞ then
s0’LocalSearchðs0Þ

endif
if f ðs0Þo f ðsÞ then

s’s0

end if
if f ðsÞo f ðsnÞ then

sn’s

end if
Update scores p

until the stopping condition is met
return sn

end procedure
5.1. Search space

We allow the exploration of infeasible solutions during the
search. More precisely, violations of the constraints on vehicle,
satellite, and platform capacities are penalized by a weighted
penalty function. The objective function is f ðsÞ ¼ cðsÞþadðsÞþbeðsÞ,
where c(s) corresponds to the routing cost and the opening cost of
satellites or platforms, d(s) represents violations of the vehicle
capacity, and e(s) represents violations of the satellite or platform
capacity. The parameters a and b are the corresponding weights,
which are adjusted dynamically during the search. If a violation
occurs, the corresponding weight is multiplied by a factor d41, if
the solution is feasible, it is divided by d. The weights are
restricted to an interval ½i;k� that guarantees that the search
starts with a reasonably high weight and also prevents the weight
from going to infinity.
5.2. Initial solution

For the initial solution, we open the configuration of satellites
that yields the lowest cost and can serve the total customer
demand. Then, customers are randomly assigned to a satellite with
a bias towards the shortest distance and vehicle routes are
constructed by means of the Clarke and Wright [5] Savings
Algorithm. To construct a first level solution, a random platform
is opened and satellites are assigned to it, no matter if platform
capacity is violated. The vehicle routes at that platform are build
with the Clarke and Wright [5] Savings Algorithm.

5.3. Destroy and repair operators

We use eight destroy operators and four repair operators in our
algorithm, based on the ones in Hemmelmayr et al. [10]. Three of
the destroy operators explicitly open or close a satellite. These are
Satellite Removal, Satellite Opening, and Satellite Swap. They are the
large operators of set DL. Satellite Removal chooses one random
satellite. This satellite is closed by removing all the customer
routes originating from it. Furthermore, the satellite is removed
from the first level routes. In the Satellite Opening operator, a
random satellite is opened. The q customers that have the mini-
mum distance to this satellite are removed from their current
routes. Satellite Swap closes one satellite and opens another one.
The satellite that will be closed is chosen randomly and the
customer routes originating from it are removed. The satellite that
will be opened is chosen randomly with a probability that is
inversely proportional to the distance to the closed satellite.

The destroy operators from the set DS remove only a limited
number of customers, but do not explicitly change the satellite
configuration. However, they can close satellites if all the custo-
mers of a satellite are removed and no customer is inserted at this
satellite any more. It can also happen that a satellite is opened by
the diversification mechanism in Route Removal. The operator
Random Removal is a very simple operator that removes q random
customers. Worst Removal selects the q ‘‘worst’’ customers. These
are the customers that are in the most expensive insertion
positions, i.e., the positions where the difference between the cost
with the customer in the solution compared to the cost without the
customer in the solutions is large. We normalize this gain by
dividing it by the average cost of the ingoing arcs. Moreover, a
perturbation factor d is added, dA ½0:8,1:2�. This value has been
chosen following the recommended settings used by Hemmelmayr
et al. [10]. In the Related Removal operator, a random seed customer
and the q�1 customers that are nearest to the seed customer are
removed. In the Route Removal, one route is removed. All custo-
mers that were contained in the removed route are put in the
customer pool. In order to avoid cycling, it is forbidden to open a
new route at the corresponding satellite. Another route is opened
at a random satellite. This mechanism prevents the rare cases
where all satellites are closed, because all customers are served by
a single route originating from the only open satellite. Moreover, it
is important for diversification. Route Redistribution is the largest
destroy operator that removes between 1 and 3 random routes.
The routes are selected based on the distance of the customers that
are served by that route between their current satellite and any
other open satellite. This selection mechanism reflects the idea that
customers close to several satellites may benefit more from a
reassignment than those that are only close to one satellite.
A perturbation factor dA ½0:8,1:2� is also added.

Finally, we use four insertion operators. Their goal is to select a
satellite among the set of open satellites, a route, and an insertion
position for every customer that has to be inserted. The opening of
a new route is considered too, unless this is forbidden because the
Route Removal operator was applied to the considered satellite in
the same iteration. In Greedy Insertion, the customers are inserted
in a random order into the position that minimizes the total
insertion cost over all satellites and routes. There are two versions
of Greedy Insertion. Greedy Insertion Perturbation uses an additional
perturbation factor d, dA ½0:8,1:2�, that provides diversification. In
the Greedy Insertion Forbidden operator, the satellite from which
the customer has just been removed, cannot be selected for
insertion in the same iteration. Greedy Insertion Perturbation and
Greedy Insertion Forbidden guarantee that the insertion position is
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not determined too greedily based on second-level insertion cost.
Regret Insertion uses a more sophisticated insertion scheme.
Customers for which the difference between the best and the next
best insertion positions is large, are favoured for insertion. In a
regret-k heuristic, customer i is chosen for insertion from the set of
untreated customers U, according to i :¼ arg maxiAUð

Pk
h ¼ 2 Df h

i �

Df 1
i Þ, where Df h

i is the cost of inserting customer i at the h-th
cheapest position. When a customer is inserted, the insertion
positions of the remaining customers, that have not been inserted
yet, have to be recomputed.

5.4. Local search

The goal of local search is to improve the CLRP solution on the
second level. It is performed after the Satellite Removal, Satellite Swap

or Satellite Opening operators and for promising solutions. Promising
solutions are solutions for which the objective value is within Z% of
the best found solution. The following operators are used within the
local search framework: split, move, swap, 2-opt, and 2-opt*. They
are performed sequentially, in a first improvement manner. For
more details on each of these operators, we refer to [10].
Table 1
Aggregated results of the proposed ALNS.

Set GRASPþPR MS-ILSþPR ALNS

Gapmin tavg Gapmin tavg Gapavg Gapmin tavg

Prodhon 1.15 14.2 0.88 178.3 0.73 0.21 465.82

Nguyen 1.60 13.1 0.80 112.20 0.45 0.12 191.97

I1
a – – 3.15 917.10 0.53 0.00 839.60

I2
a – – 2.72 928.00 0.60 0.00 913.70

I3
a – – 1.68 935.10 0.49 0.00 909.85

Average 1.44 426.71 0.11 538.25

# of BKS 8/84 14/84 70/84 (133/147)b

a Restricted to instances containing 50 or more customers.
b All instances included.
6. Computational results

Our methods were coded in Cþþ, compiled with the Intel Cþþ
compiler v11.0, and run on an Intel Xeon E5462, 3.0 GHz proces-
sor with 16 GB of memory. For the solution of linear and integer
problems, we used CPLEX 12.2.

6.1. Test instances

We have tested our methods on several sets of standard
instances from the literature. Nguyen et al. [12] introduced two
sets of instances that contain only one platform at the first level,
i.e., 9P9¼ 1. The first set is an extension of the set ‘‘Prodhon’’ from
the CLRP and contains 30 instances with 20–200 customers and
5–10 satellites. The second set contains 24 newly generated
instances and is referred to as set ‘‘Nguyen’’. The number of
customers in these instances ranges from 25 to 200 and the
number of satellites from 5 to 10. The last three sets of instances
are instances used by Nguyen et al. [11], generated by Sterle [23]
according to the specifications explained in Boccia et al. [3] and
contain a total of 93 instances. Note that these sets do not
correspond to the instances sets used in Boccia et al. [3,4], which
were not available from the authors, but have been regenerated.
The three sets of instances, I1,I2, and I3, differ in the location of the
satellites and platforms. The number of customers in the
instances ranges from 8 to 200, the number of satellites ranges
from 3 to 20, and the number of platforms ranges from 2 to 5. In
total, our experiments are run on 147 instances.

6.2. Parameter settings

For the branch-and-cut method, the parameters associated to
the separation of each family of inequalities are set as in Contardo
et al. [7] for both echelons. The search strategy is set to best-bound
to guide the search towards the best possible lower bound. Finally,
we use as initial cut-off value the best known upper bound
according to Tables 4–6 as described in the next subsection.

For the ALNS, the parameters were set according to the
experimental tests. The parameters for solution acceptance were
set to the following values. The threshold Z, which defines that
incumbent solutions that have an objective function value within
Z% of the value of the best solution found, can be accepted, was
set to 1%. The probability of acceptance, Y, was set to 0.5. For the
CLRP, values for o in the range [100; 2000] yielded the best
performance. To solve the 2E-CLRP, o was set to 1000. The
number of customers to remove is a random integer between r
and t. We set r to 1 and t to d0:69C9e. For the weighted penalty
function, d was set to 1.1, i to 5 and k to 10,000. The parameter
that is added to the score pj every time a new best solution is
found, s, was set to 1. As a stopping condition, we choose the
number of iterations. We decided that 500,000 iterations offer a
good trade-off between runtime and solution quality. A regret-3
heuristic was used in Regret Insertion and y, which is the threshold
that identifies promising solutions that are selected for local
search, was set to 0.2.
6.3. Numerical results

In the calibration phase of the ALNS, we tested the performance
of the method under several different parameter settings. Some of
these settings yielded the best results for some instances, without
always providing good overall results. We report in Tables 4–6 in
the Appendix the best results obtained by the ALNS during this
testing phase, and highlight those in which we observe an improve-
ment of the current best known solutions as reported in Nguyen
et al. [12,11]. From now on, we refer to the best known results as the
results reported in those tables. Note that in order to make fair
comparisons to other methods and to assess the performances of
our algorithms, these values are only taken as references.

Due to the randomness incorporated in the ALNS, we have
performed 10 runs of our method on each instance. We compare
in Table 1 the ALNS meta-heuristic we propose against the
methods GRASPþPR [12] and MS-ILSþPR [11]. In these papers,
the authors do not report the average solution quality of their
algorithms, but only the best solutions found after five runs for
each instance. For the sets I1,I2 and I3, Nguyen et al. [11] only
report results for the instances with 50 and more customers,
which we also include in our comparison. In this table, headers
gapavg and gapmin correspond to the average and the minimum
gaps, respectively, for each algorithm, when available. The gap
between a solution of value z and a best known solution of value
zn is computed as ðz�znÞ=zn � 100. Header tavg stands for the
average CPU time spent, in seconds, by each method (times are
not scaled and comparisons based on time should be considered
with care). The results reported by Nguyen et al. [12,11] are based
on experiments run on an Intel Pentium IV CPU running at
3.4 GHz with 1 GB of total RAM.

As one can see from the results obtained, our method is robust
and clearly outperforms the previous heuristics of Nguyen et al.
[12,11]. Indeed, our ALNS provides solutions on average more than
10 times better (in terms of the gaps with respect to the best known
solutions) than the solutions obtained by MS-ILSþPR. Although it is
not possible to make a fair comparison with method GRASPþPR
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(due to the smaller number of instances reported in that paper), the
differences between GRASPþPR and MS-ILSþPR suggest that when
comparing to ALNS the differences should be even larger. Moreover,
out of the 84 instances considered in the comparison, our method
was able to find the best known solutions in a total of 70 instances,
against 8 for GRASPþPR and 14 for MS-ILSþPR.

To better evaluate the strength of the formulation and branch-
and-cut method we propose, we also implemented the three-
index formulation introduced by Boccia et al. [4]. In such a
formulation, a third index is added to the vehicle-flow variables
to take into account the vehicle performing each particular trip.
This formulation contains Oð9S99E19þ9C99E29Þ variables and con-
straints but, as indicated previously, presents many symmetries
when the fleet is homogeneous, providing weak bounds in large
computing times, as shown by our computational results.

We report in Table 2 the aggregated results obtained by our
branch-and-cut algorithm and by our implementation of the
three-index vehicle-flow formulation (both methods run on the
same machine). Header #opt stands for the number of instances
that were solved to optimality. Headers gaplr and tlr correspond to
the gap (in %) and the CPU time (in seconds) spent for the solution
of the linear relaxation of the problem. Analogously, columns gap

and t stand for the gap and CPU time spent after a maximum of
two hours of computation. Given a lower bound zlb and an upper
bound zub the gap is computed as ðzub�zlbÞ=zub � 100. Finally,
Table 2
Aggregated results of the B&C algorithm.

Set B&C

#opt Gaplr tlr Gap

Prodhon 8/30 7.22 963.27 3.55

Nguyen 11/24 8.87 508.23 3.07

I1 17/31 11.33 574.65 2.96

I2 19/31 8.41 186.97 2.47

I3 20/31 9.31 80.15 1.85

Average 9.05 457.08 2.76

Optimality 75/147

a Instances with 150 or more customers could not be loaded into memory.

Table 3
Sensitivity analysis of the B&C algorithm.

Instance zUB With UB

LB #N t

I1-20�8�3 848.31 848.31 31,055 1412.3

I2-20�8�3 758.06 758.06 682 6.0

I3-20�8�3 643.89 643.89 67 1.6

I1-50�10�5 1132.63 1104.98 4373 7411.6

I2-50�10�5 1256.44 1222.10 4165 7420.7

I3-50�10�5 1207.31 1179.15 3565 7469.8

I1-100�10�5 2124.90 1958.10 53 7480.9

I2-100�10�5 2231.21 2072.44 192 7413.8

I3-100�10�5 2178.35 2057.15 225 7518.3

I1-150�10�5 1883.44 1711.06 16 7425.6

I2-150�10�5 1728.05 1553.03 52 7575.3

I3-150�10�5 1274.44 1198.77 152 7474.7

ppw-20�5-1a 89,075 89,075 203 2.7

ppw-50�5-1a 130,843 128,870 5354 7326.0

ppw-100�10-1a 353,133 325,164 99 7468.4

ppw-200�10-1a 549,718 484,115 2 7266.7

25-5MN 78,947 78,947 13 0.9

50-5MN 123,484 123,484 164 46.4

100-10MN 201,275 192,108 1362 7467.1

200-10MN 324,006 294,931 7 7356.7

Average 2590 5277.3
Column gapn corresponds to the optimality gap between the final
lower bound and the average solution value found by the ALNS.

As shown in Table 2, our algorithm can solve more and larger
instances than the previous three-index formulation of Boccia
et al. [4]. For the instances that remain unsolved, our branch-and-
cut method provides much tighter gaps in lower computing
times. Also, it is possible to establish a comparison between our
ALNS and the branch-and-cut algorithm. Indeed, if we consider
the average upper bounds provided by the ALNS and the lower
bounds obtained with the branch-and-cut method, they are at an
average distance of 3.06%, which leaves little space for further
improvements and also validates both algorithms introduced in
this paper.

In Table 3, we report a sensitivity analysis of the branch-and-
cut method with respect to the quality of the initial upper bound.
In this table, we report results restricted to a small number of
instances. We have chosen 20 instances from the three sets,
containing small, medium and large instances. We tested and
compared two different settings. In the columns With UB, we
report the results obtained by our branch-and-cut method under
the default setting when the best known solutions are taken as
initial cut-off values. Under the header Without UB, we report the
same results but without considering any initial cut-off value. In
both cases, we report the final lower bound, the number of nodes
inspected, the total CPU time, as well as the final gap with respect
3-Index modela

t Gapn #opt Gap t

5644.80 4.21 0/30 21.83 7200

4190.05 3.47 0/24 23.45 7200

3400.84 3.11 6/31 19.24 5905.62

3007.53 2.65 6/31 17.55 5629.40

2668.83 2.01 6/31 17.05 5639.27

3750.33 3.06 19.64 6266.69

18/147

Without UB

Gap LB #N t Gap

1 0.00 848.31 38,489 2409.29 0.00

5 0.00 758.06 1161 18.08 0.00

7 0.00 643.89 102 2.72 0.00

4 2.44 1103.60 4178 7415.68 2.56

6 2.73 1221.99 3935 7419.09 2.74

7 2.33 1176.75 3527 7465.06 2.53

1 7.85 1959.88 58 7508.93 7.77

9 7.12 2073.91 216 7473.96 7.05

5 5.56 2056.28 198 7503.27 5.60

7 9.15 1711.04 16 7401.28 9.15

0 10.13 1550.90 53 7577.74 10.25

9 5.94 1198.88 188 7535.21 5.93

7 0.00 89,075 175 3.73 0.00

8 1.51 128,999 4333 7337.29 1.41

6 7.92 323,051 71 7464.60 8.52

8 11.93 484,115 2 7271.33 11.93

3 0.00 78,947 36 1.11 0.00

7 0.00 123,484 160 109.48 0.00

3 4.55 192,174 908 7518.53 4.52

3 8.97 294,931 7 7369.34 8.97

3 4.41 2891 5340.29 4.45



Table 4
Best known results for the set Prodhon.

Instance zn znBKS Gap

ppw-20�5-1a 89,075 89,075 0.00

ppw-20�5-1b 61,863 61,863 0.00

ppw-20�5-2a 85,290 84,478 �0.95

ppw-20�5-2b 60,838 60,838 0.00

ppw-50�5-1a 134,855 130,843 �2.98

ppw-50�5-1b 101,530 101,530 0.00

ppw-50�5-2a 132,159 131,825 �0.25
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to the best known solution. As shown in this table, the impact of
adding a cut-off value to the algorithm is not important (the final
gap decreases from 4.45% to 4.41%), the improvement being
marginal with respect to the situation without an initial cut-off
value. This shows the robustness of our method which produces
almost the same lower bound even if no upper bound is known in
advance. However, the algorithm following a best-bound strategy
does not always find a feasible solution, which also demonstrates
the need of a heuristic such as the ALNS we introduce in
this paper.
ppw-50�5-2b 110,547 110,332 �0.19

ppw-50�5-2BIS 122,654 122,599 �0.04

ppw-50�5-2bBIS 105,776 105,696 �0.08

ppw-50�5-3a 128,379 128,379 0.00

ppw-50�5-3b 104,006 104,006 0.00

ppw-100�5-1a 320,130 318,761 �0.43

ppw-100�5-1b 258,205 256,878 �0.51

ppw-100�5-2a 234,179 231,305 �1.23

ppw-100�5-2b 195,426 194,729 �0.36

ppw-100�5-3a 245,944 244,194 �0.71

ppw-100�5-3b 195,254 194,110 �0.59

ppw-100�10-1a 358,939 353,133 �1.62

ppw-100�10-1b 302,584 297,167 �1.79

ppw-100�10-2a 306,303 305,154 �0.38

ppw-100�10-2b 264,389 263,876 �0.19

ppw-100�10-3a 313,249 310,200 �0.97

ppw-100�10-3b 266,383 261,796 �1.72

ppw-200�10-1a 554,598 549,718 �0.88

ppw-200�10-1b 452,286 445,802 �1.43

ppw-200�10-2a 502,173 498,199 �0.79

ppw-200�10-2b 425,311 423,031 �0.54

ppw-200�10-3a 533,732 531,548 �0.41

ppw-200�10-3b 418,800 402,130 �3.98

Average �0.77

Table 5
Best known results for the set Nguyen.

Instance zn znBKS Gap

25-5N 80,370 80,370 0.00

25-5Nb 64,562 64,562 0.00

25-5MN 78,947 78,947 0.00

25-5MNb 64,438 64,438 0.00

50-5N 138,126 137,815 �0.23

50-5Nb 111,062 110,094 �0.87

50-5MN 123,484 123,484 0.00

50-5MNb 105,401 105,401 0.00

50-10N 116,132 115,725 �0.35
7. Conclusions

We presented new algorithms to efficiently reach good-
quality lower and upper bounds for the 2E-CLRP. We introduced
a compact two-index vehicle-flow formulation, proposed several
families of valid inequalities and embedded them into a branch-
and-cut solver. To the best of our knowledge, this is the first time
an exact method has been proposed for this problem class. The
method is able to solve to optimality small- and medium-size
instances containing up to 50 customers, and provides tight
lower bounds for the instances that cannot be solved. We also
introduced an adaptive large neighbourhood search meta-heur-
istic capable of providing good upper bounds in short computing
times. The proposed ALNS outperforms previous heuristics for
the 2E-CVRP with single-sourcing constraints in terms of upper
bound quality and also provides good quality upper bounds for
the instances of 2E-CLRP. Moreover, our ALNS was able to find
the value of the best known solutions on 133 instances out of
147. When comparing our methods, we observe that the lower
bounds obtained by the branch-and-cut method lie no further
than 3.06% on average below the average solution values found
by the ALNS, which validates the robustness and quality of both
approaches.

As an avenue of future research, we believe that exploring
other meta-heuristic approaches combining integer-program-
ming methods and meta-heuristics could lead to better upper
bounds. On the other hand, we believe that embedding the
inequalities used in this paper into a branch-and-cut-and-price
solver could result in a more robust exact method being able to
scale better on large instances. Also, the methodologies used in
this paper can be used to solve some related problems combining
location with routing decisions.
50-10Nb 87,315 87,315 0.00

50-10MN 135,748 135,519 �0.17

50-10MNb 110,613 110,613 0.00

100-5N 196,910 193,228 �1.87

100-5Nb 159,086 158,927 �0.10

100-5MN 207,119 204,682 �1.18

100-5MNb 166,115 165,744 �0.22

100-10N 215,792 210,449 �2.48

100-10Nb 156,401 155,489 �0.58

100-10MN 205,964 201,275 �2.28

100-10MNb 170,706 170,625 �0.05

200-10N 353,685 347,395 �1.78
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200-10Nb 262,072 256,171 �2.25

200-10MN 332,345 324,006 �2.51

200-10MNb 292,523 287,076 �1.86

Average �0.78

Appendix A

In this Appendix, we provide detailed results for both algo-
rithms introduced in this paper and provide a brief discussion on
our results.

Tables 4–6 report the values of the best solutions found by the
proposed ALNS during the parameter calibration phase. Although
some of these results might not be reproducible by our calibrated
algorithm, we believe that they are useful as a benchmark for
future methods. In these tables, headers labelled zn stand for the
best known solutions reported by Nguyen et al. [12,11], headers
znBKS stand for the best solutions found by our ALNS, and gap

stands for the gap between the two solutions, computed as
ðznALNS�znNPPÞ=znNPP � 100.

Tables 7–11 report detailed results obtained by our ALNS. In
these tables, header znBKS stands for the best known solution as
reported in Tables 4–6. Header znavg stands for the average solution



Table 6
Best known results for the sets I1 ,I2 and I3.

Instance I1 I2 I3

zn znBKS zn znBKS zn znBKS

8�3�2 575.70 575.70 578.33
8�4�2 549.34 604.13 450.71
9�3�2 878.69 386.15 454.63
10�4�2 806.72 629.38 540.61
10�5�3 696.94 551.45 745.48
10�8�3 596.56 504.20 412.91
15�10�2 732.48 709.10 605.11
15�10�3 686.71 777.49 546.61
15�4�2 1064.52 827.81 688.87
15�5�3 933.75 1075.22 1001.28
15�8�3 730.36 652.58 578.23
20�10�2 937.40 766.24 744.82
20�10�3 761.28 744.26 728.17
20�10�4 1149.72 793.00 1190.95
20�8�2 1029.59 772.29 846.07
20�8�3 848.31 758.06 643.89
25�10�2 1030.40 961.59 834.23
25�10�3 1062.30 987.57 820.12
25�10�4 1607.94 1125.56 1057.63
25�8�2 950.87 912.02 951.56
25�8�3 870.69 979.62 774.36
50�10�5 1207.31 1132.63 1265.73 1256.44 1208.43 1207.31
50�8�5 1171.69 1162.44 1123.42 1121.13 1171.35 1162.44
75�10�5 1561.5 1540.23 1718.25 1691.15 1732.33 1721.47
75�15�5 1700.32 1686.21 1751.14 1742.25 1491.31 1483.14
100�10�5 2192.14 2124.9 2290.64 2231.21 2238.7 2178.35
100�20�5 1989.48 1973.08 2039.25 1996.34 2053.12 2035.37
150�10�5 1953.55 1883.44 1768.79 1728.05 1307.19 1274.44
150�20�5 1905.81 1869.53 1664.2 1630.29 1266.83 1235.86
200�10�5 2601.33 2443.80 2292.47 2147.51 1822.5 1766.46
200�20�5 2307.53 2219.54 2097.74 2049 2604.56 2531.21

Table 7
Results of the ALNS on the instances of set Prodhon.

Instance znBKS znavg Gapavg znmin Gapmin tavg tmin

ppw-20�5-1a 89,075 89,075.0 0.00 89,075 0.00 26.3 2.8

ppw-20�5-1b 61,863 61,863.0 0.00 61,863 0.00 26.1 0.2

ppw-20�5-2a 84,478 84,478.0 0.00 84,478 0.00 28.9 2.8

ppw-20�5-2b 60,838 60,838.0 0.00 60,838 0.00 29.1 0

ppw-50�5-1a 130,843 131,036.6 0.15 130,843 0.00 96.9 8.2

ppw-50�5-1b 101,530 101,530.0 0.00 101,530 0.00 94.2 8.7

ppw-50�5-2a 131,825 131,878.3 0.04 131,825 0.00 130.6 37.2

ppw-50�5-2b 110,332 110,332.0 0.00 110,332 0.00 160.7 21.1

ppw-50�5-2BIS 122,599 122,626.5 0.02 122,599 0.00 121.2 43.2

ppw-50�5-2bBIS 105,696 105,719.9 0.02 105,696 0.00 131.6 57.4

ppw-50�5-3a 128,379 128,379.0 0.00 128,379 0.00 88.4 17.8

ppw-50�5-3b 104,006 104,006.0 0.00 104,006 0.00 114.9 14.2

ppw-100�5-1a 318,761 320,511.2 0.55 319,137 0.12 646.9 445

ppw-100�5-1b 256,878 258,540.8 0.65 257,349 0.18 1179.9 607.9

ppw-100�5-2a 231,305 231,305.0 0.00 231,305 0.00 316 43.7

ppw-100�5-2b 194,729 194,771.0 0.02 194,729 0.00 1641 602.4

ppw-100�5-3a 244,194 244,418.0 0.09 244,194 0.00 375.5 167.9

ppw-100�5-3b 194,110 194,239.4 0.07 194,110 0.00 377 210.9

ppw-100�10-1a 353,133 365,036.1 3.37 358,068 1.40 158.9 65.6

ppw-100�10-1b 297,167 303,089.8 1.99 297,167 0.00 155.2 118.7

ppw-100�10-2a 305,154 307,762.9 0.85 305,402 0.08 270 163

ppw-100�10-2b 263,876 266,642.1 1.05 265,138 0.48 348.2 225.9

ppw-100�10-3a 310,200 318,499.8 2.68 313,517 1.07 215.7 106

ppw-100�10-3b 261,796 270,326.5 3.26 264,096 0.88 256.9 181.6

ppw-200�10-1a 549,718 559,774.8 1.83 552,816 0.56 1039.2 648.7

ppw-200�10-1b 445,802 459,033.1 2.97 448,236 0.55 1811.9 927.6

ppw-200�10-2a 498,199 498,659.4 0.09 498,199 0.00 576.4 339.3

ppw-200�10-2b 423,031 423,517.6 0.12 423,048 0.00 1723.8 1161.5

ppw-200�10-3a 531,548 535,823.8 0.80 534,569 0.57 741.3 285.2

ppw-200�10-3b 402,130 407,070.2 1.23 404,284 0.54 1091.9 439.1

Average 0.73 0.21 465.82 231.79
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Table 8
Results of the ALNS on the instances of set Nguyen.

Instance znBKS znavg Gapavg znmin Gapmin tavg tmin

25-5N 80,370 80,370 0.00 80,370 0.00 38 0.1

25-5Nb 64,562 64,562 0.00 64,562 0.00 36.4 0

25-5MN 78,947 78,947 0.00 78,947 0.00 50.6 0.5

25-5MNb 64,438 64,438 0.00 64,438 0.00 30.6 0

50-5N 137,815 138,093.2 0.20 137,815 0.00 74.2 33.9

50-5Nb 110,094 110,094 0.00 110,094 0.00 113.8 32.3

50-5MN 123,484 123,484 0.00 123,484 0.00 105.2 13.1

50-5MNb 105,401 105,401 0.00 105,401 0.00 77.5 23.1

50-10N 115,725 115,843 0.10 115,725 0.00 90.3 21.3

50-10Nb 87,315 87,315 0.00 87,315 0.00 102 20.7

50-10MN 135,519 135,556.6 0.03 135,519 0.00 76.3 39

50-10MNb 110,613 110,636.1 0.02 110,613 0.00 49.2 19.1

100-5N 193,228 19,4012.3 0.41 193,228 0.00 224.5 154.3

100-5Nb 158,927 159,029.9 0.06 158,927 0.00 234.9 133

100-5MN 204,682 204,819.6 0.07 204,682 0.00 271.2 135.7

100-5MNb 165,744 165,863.1 0.07 165,744 0.00 220.9 112.9

100-10N 210,449 216,285.5 2.77 212,847 1.14 150.8 70.8

100-10Nb 155,489 156,261.6 0.50 155,489 0.00 177.2 70.3

100-10MN 201,275 202,491.9 0.60 201,275 0.00 155.4 104.7

100-10MNb 170,625 170,985.4 0.21 170,625 0.00 178.7 114.2

200-10N 347,395 351,770 1.26 347,395 0.00 420.5 237.2

200-10Nb 256,171 258,397 0.87 256,171 0.00 492.4 340.8

200-10MN 324,006 329,913.7 1.82 326,454 0.76 547.3 354.7

200-10MNb 287,076 292,357.6 1.84 289,742 0.93 689.5 481.7

Average 0.45 0.12 191.97 104.72

Table 9
Results of the ALNS on the instances of set I1.

Instance znBKS znavg Gapavg znmin Gapmin tavg tmin

I1-8�3�2 575.701 575.70 0.00 575.70 0.00 15.3 0.2

I1-8�4�2 549.338 549.34 0.00 549.34 0.00 18.0 0.2

I1-9�3�2 878.69 878.69 0.00 878.69 0.00 36.4 0.0

I1-10�4�2 806.719 806.72 0.00 806.72 0.00 30.1 0.0

I1-10�5�3 696.938 696.94 0.00 696.94 0.00 22.8 0.0

I1-10�8�3 596.563 596.56 0.00 596.56 0.00 40.4 4.2

I1-15�10�2 732.483 732.48 0.00 732.48 0.00 48.6 2.4

I1-15�10�3 686.714 686.71 0.00 686.71 0.00 49.0 1.7

I1-15�4�2 1064.52 1064.52 0.00 1064.52 0.00 47.5 0.3

I1-15�5�3 933.747 933.75 0.00 933.75 0.00 49.1 0.2

I1-15�8�3 730.362 730.36 0.00 730.36 0.00 55.7 0.9

I1-20�10�2 937.401 937.40 0.00 937.40 0.00 62.1 10.3

I1-20�10�3 761.285 761.29 0.00 761.29 0.00 65.5 0.9

I1-20�10�4 1149.72 1149.72 0.00 1149.72 0.00 66.6 5.9

I1-20�8�2 1029.59 1029.59 0.00 1029.59 0.00 67.0 6.3

I1-20�8�3 848.31 848.31 0.00 848.31 0.00 64.8 1.7

I1-25�10�2 1030.4 1030.40 0.00 1030.40 0.00 74.9 6.7

I1-25�10�3 1062.3 1062.30 0.00 1062.30 0.00 75.1 2.8

I1-25�10�4 1607.94 1607.94 0.00 1607.94 0.00 76.3 12.3

I1-25�8�2 950.866 950.87 0.00 950.87 0.00 71.8 2.7

I1-25�8�3 870.692 870.69 0.00 870.69 0.00 76.4 0.1

I1-50�10�5 1132.63 1133.74 0.10 1132.63 0.00 341.8 178.8

I1-50�8�5 1162.44 1163.45 0.09 1162.44 0.00 321.5 119.6

I1-75�10�5 1540.23 1540.91 0.04 1540.23 0.00 507.2 219.9

I1-75�15�5 1686.21 1700.38 0.84 1686.21 0.00 527.3 247.6

I1-100�10�5 2124.9 2136.82 0.56 2124.90 0.00 659.9 499.5

I1-100�20�5 1973.08 1983.05 0.51 1973.08 0.00 705.2 605.2

I1-150�10�5 1883.44 1893.92 0.56 1883.44 0.00 1187.8 718.9

I1-150�20�5 1869.53 1889.07 1.05 1869.53 0.00 1203.1 901.5

I1-200�10�5 2443.8 2461.77 0.74 2443.80 0.00 1431.0 1135.6

I1-200�20�5 2219.54 2238.06 0.83 2219.54 0.00 1511.5 1073.8

Restricted averagea 0.53 0.00 839.60 570.00

Total average 0.17 0.00 307.76 185.81

a Restricted to instances containing 50 or more customers.
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value found by our method. Header gapavg stands for the gap
between our average values and the best known solutions. It is
computed as ðznavg�znBKSÞ=znBKS � 100. Header znmin stands for the
best solution found in the 10 runs. Header gapmin stands for the
gap between the best known solution and our best solution,
which is computed as ðznmin�znBKSÞ=znBKS � 100. Finally, tavg and tmin



Table 10
Results of the ALNS on the instances of set I2.

Instance znBKS znavg Gapavg znmin Gapmin tavg tmin

I2-8�3�2 575.701 575.7 0.00 575.7 0.00 15.9 0.0

I2-8�4�2 604.127 604.13 0.00 604.13 0.00 24.5 0.0

I2-9�3�2 386.152 386.15 0.00 386.15 0.00 17.5 0.0

I2-10�4�2 629.381 629.38 0.00 629.38 0.00 18.4 0.0

I2-10�5�3 551.452 551.45 0.00 551.45 0.00 27.3 0.0

I2-10�8�3 504.203 504.2 0.00 504.2 0.00 39.6 0.0

I2-15�10�2 709.103 709.1 0.00 709.1 0.00 53.7 1.0

I2-15�10�3 777.488 777.49 0.00 777.49 0.00 56.5 0.5

I2-15�4�2 827.81 827.81 0.00 827.81 0.00 45.3 0.4

I2-15�5�3 1075.22 1075.22 0.00 1075.22 0.00 56.1 0.0

I2-15�8�3 652.575 652.58 0.00 652.58 0.00 49.5 1.9

I2-20�10�2 766.238 766.24 0.00 766.24 0.00 62.3 2.3

I2-20�10�3 744.265 744.27 0.00 744.27 0.00 62.0 3.0

I2-20�10�4 792.996 793 0.00 793 0.00 68.5 0.6

I2-20�8�2 772.29 772.29 0.00 772.29 0.00 65.5 14.2

I2-20�8�3 758.059 758.06 0.00 758.06 0.00 65.6 1.4

I2-25�10�2 961.59 961.59 0.00 961.59 0.00 81.5 3.7

I2-25�10�3 987.57 987.57 0.00 987.57 0.00 79.6 0.8

I2-25�10�4 1125.56 1125.56 0.00 1125.56 0.00 79.0 4.0

I2-25�8�2 912.017 912.02 0.00 912.02 0.00 77.9 9.3

I2-25�8�3 979.615 979.62 0.00 979.62 0.00 77.9 0.0

I2-50�10�5 1256.44 1256.44 0.00 1256.44 0.00 410.8 96.5

I2-50�8�5 1121.13 1121.13 0.00 1121.13 0.00 386.6 51.5

I2-75�10�5 1691.15 1691.15 0.00 1691.15 0.00 638.7 208.6

I2-75�15�5 1742.25 1748.62 0.37 1742.25 0.00 670.1 446.6

I2-100�10�5 2231.21 2242.28 0.50 2231.21 0.00 870.9 535.5

I2-100�20�5 1996.34 2018.74 1.12 1996.34 0.00 872.0 592.8

I2-150�10�5 1728.05 1734.64 0.38 1728.05 0.00 1004.6 683.8

I2-150�20�5 1630.29 1654.83 1.51 1630.29 0.00 1070.3 832.3

I2-200�10�5 2147.51 2158.24 0.50 2147.51 0.00 1477.2 1002.8

I2-200�20�5 2049.01 2081.58 1.59 2049.01 0.00 1736.0 1369.6

Restricted averagea 0.60 0.00 913.7 582.0

Total average 0.19 0.00 331.01 189.13

a Restricted to instances containing 50 or more customers.

Table 11
Results of the ALNS on the instances of set I3.

Instance znBKS znavg Gapavg znmin Gapmin tavg tmin

I3-8�3�2 578.325 578.33 0.00 578.33 0.00 15.3 0.1

I3-8�4�2 450.713 450.71 0.00 450.71 0.00 17.2 0.0

I3-9�3�2 454.627 454.63 0.00 454.63 0.00 15.6 0.0

I3-10�4�2 540.605 540.61 0.00 540.61 0.00 20.3 0.0

I3-10�5�3 745.484 745.48 0.00 745.48 0.00 30.5 0.1

I3-10�8�3 412.906 412.91 0.00 412.91 0.00 20.4 0.0

I3-15�10�2 605.108 605.11 0.00 605.11 0.00 48.6 0.0

I3-15�10�3 546.612 546.61 0.00 546.61 0.00 53.0 2.8

I3-15�4�2 688.869 688.87 0.00 688.87 0.00 45.1 0.3

I3-15�5�3 1001.28 1005.02 0.37 1001.28 0.00 50.5 2.7

I3-15�8�3 578.225 578.23 0.00 578.23 0.00 50.8 2.3

I3-20�10�2 744.815 744.82 0.00 744.82 0.00 62.7 2.8

I3-20�10�3 728.169 728.17 0.00 728.17 0.00 65.0 8.2

I3-20�10�4 1190.95 1190.95 0.00 1190.95 0.00 63.1 5.6

I3-20�8�2 846.066 846.07 0.00 846.07 0.00 68.0 7.0

I3-20�8�3 643.892 643.89 0.00 643.89 0.00 63.9 6.5

I3-25�10�2 834.226 834.34 0.01 834.23 0.00 75.0 24.3

I3-25�10�3 820.123 820.12 0.00 820.12 0.00 75.3 2.9

I3-25�10�4 1057.63 1057.63 0.00 1057.63 0.00 74.3 7.9

I3-25�8�2 951.56 951.59 0.00 951.56 0.00 74.0 40.1

I3-25�8�3 774.356 774.36 0.00 774.36 0.00 73.7 5.4

I3-50�10�5 1207.31 1207.31 0.00 1207.31 0.00 341.2 36.9

I3-50�8�5 1162.44 1164.64 0.19 1162.44 0.00 353.2 107.6

I3-75�10�5 1721.47 1723.41 0.11 1721.47 0.00 691.0 406.3

I3-75�15�5 1483.14 1483.42 0.02 1483.14 0.00 634.7 392.6

I3-100�10�5 2178.35 2183.31 0.23 2178.35 0.00 922.4 584.5

I3-100�20�5 2035.37 2048.35 0.64 2035.37 0.00 755.1 585.1

I3-150�10�5 1274.44 1282.13 0.60 1274.44 0.00 1040.0 710.1

I3-150�20�5 1235.86 1254.38 1.50 1235.86 0.00 1062.9 829.4

I3-200�10�5 1766.46 1776.47 0.57 1766.46 0.00 1690.0 1079.6

I3-200�20�5 2531.21 2557.05 1.02 2531.21 0.00 1608.0 1157.7

Restricted averagea 0.49 0.00 909.85 588.98

Total average 0.17 0.00 327.77 193.83

a Restricted to instances containing 50 or more customers.
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stand for the average times spent by the whole algorithm and
until finding the best solution at each run, respectively.

Tables 12–16 report detailed results of our branch-and-cut
method. In these tables, columns labelled zUB stand for the upper
bound value, as reported in Tables 4–6. Columns labelled zlr stand
for the lower bound at the linear relaxation. Columns labelled
gaplr stand for the gap at the linear relaxation, computed as
Table 12
Results of the B&C algorithm on the set Prodhon.

Instance zUB zlr Gaplr tlr

ppw-20�5-1a 89,075 82,642.7 7.22 0.24

ppw-20�5-1b 61,863 61,793.2 0.11 0.17

ppw-20�5-2a 84,478 79,253.1 6.18 0.23

ppw-20�5-2b 60,838 59,044.2 2.95 0.23

ppw-50�5-1a 130,843 116,292 11.12 18.44

ppw-50�5-1b 101,530 94,577 6.85 2.28

ppw-50�5-2a 131,825 123,481 6.33 5.31

ppw-50�5-2b 110,332 104,488 5.30 1.98

ppw-50�5-2Bis 122,599 117,815 3.90 22.64

ppw-50�5-2bBis 105,696 88,717.5 16.06 3.20

ppw-50�5-3a 128,379 119,734 6.73 7.74

ppw-50�5-3b 104,006 101,702 2.22 2.16

ppw-100�5-1a 318,761 301,246 5.49 694.48

ppw-100�5-1b 256,878 241,312 6.06 252.07

ppw-100�5-2a 231,305 221,840 4.09 178.18

ppw-100�5-2b 194,729 189,324 2.78 33.83

ppw-100�5-3a 244,194 220,717 9.61 55.71

ppw-100�5-3b 194,110 183,744 5.34 27.01

ppw-100�10-1a 353,133 306,764 13.13 280.34

ppw-100�10-1b 297,167 261,305 12.07 81.83

ppw-100�10-2a 305,154 272,802 10.60 330.54

ppw-100�10-2b 263,876 239,525 9.23 38.08

ppw-100�10-3a 310,200 270,124 12.92 335.92

ppw-100�10-3b 261,796 235,561 10.02 44.22

ppw-200�10-1a 549,718 484,092 11.94 4623.58

ppw-200�10-1b 445,802 402,796 9.65 1681.13

ppw-200�10-2a 498,199 479,141 3.83 7215.22

ppw-200�10-2b 423,031 409,470 3.21 1487.28

ppw-200�10-3a 531,548 487,224 8.34 7201.81

ppw-200�10-3b 402,130 389,005 3.26 4272.17

Average 7.22 963.27

Table 13
Results of the B&C algorithm on the set Nguyen.

Instance zUB zlr Gaplr tlr

25-5N 80,370 76,143.7 5.26 0.37

25-5Nb 64,562 63,587.4 1.51 0.17

25-5MN 78,947 72,436.5 8.25 0.31

25-5MNb 64,438 63,820.3 0.96 0.36

50-5N 137,815 132,439.0 3.90 2.55

50-5Nb 110,094 98,710.5 10.34 1.53

50-5MN 123,484 110,486.0 10.53 4.93

50-5MNb 105,401 101,104.0 4.08 3.14

50-10N 115,725 101,887.0 11.96 3.40

50-10Nb 87,315 81,114.5 7.10 2.93

50-10MN 135,519 122,272.0 9.78 3.79

50-10MNb 110,613 102,301.0 7.51 2.76

100-5N 193,228 174,725.0 9.58 158.82

100-5Nb 158,927 145,960.0 8.16 20.89

100-5MN 204,682 176,807.0 13.62 69.39

100-5MNb 165,744 153,433.0 7.43 18.38

100-10N 210,449 178,544.0 15.16 134.87

100-10Nb 155,489 143,997.0 7.39 46.54

100-10MN 201,275 174,704.0 13.20 52.20

100-10MNb 170,625 151,322.0 11.31 32.12

200-10N 347,395 303,357.0 12.68 6452.22

200-10Nb 256,171 231,195.0 9.75 1314.04

200-10MN 324,006 290,392.0 10.37 2485.98

200-10MNb 287,076 249,836.0 12.97 1385.72

Average 8.87 508.23
ðzUB�zlrÞ=zUB � 100. Columns labelled tlr represent the CPU time
(in seconds) spent for solving the linear relaxation. Analogously,
columns labelled z, gap and t represent the final lower bound, the
final gap and the total CPU time (in seconds) after a maximum
time of two hours. Note that our branch-and-cut method did not
improve any of the upper bounds found by the proposed ALNS,
which corroborates the fact that the ALNS produces very tight
z Gap t #N Gapn

89,075 0.00 2.77 203 0.00

61,863 0.00 0.22 4 0.00

84,478 0.00 4.98 380 0.00

60,838 0.00 0.29 1 0.00

128,870 1.51 7326.08 5354 1.65

101,530 0.00 5688.08 10,952 0.00

131,825 0.00 1670.06 5352 0.04

110,332 0.00 75.27 833 0.00

122,023 0.47 7283.15 7900 0.49

90,196.6 14.66 7410.63 6249 14.68

127,291 0.85 7289.17 5134 0.85

104,006 0.00 41.33 499 0.00

311,192 2.37 7353.31 579 2.91

251,596 2.06 7423.35 140 2.69

228,186 1.35 7396.83 769 1.35

193,425 0.67 7440.09 994 0.69

240,856 1.37 7336.53 1145 1.46

192,564 0.80 7355.21 405 0.86

325,164 7.92 7468.46 99 10.92

275,997 7.12 7407.30 361 8.94

283,090 7.23 7437.82 411 8.02

247,263 6.30 7327.44 2913 7.27

286,718 7.57 7422.85 101 9.98

247,049 5.63 7556.61 215 8.61

484,115 11.93 7266.78 2 13.52

407,921 8.50 7351.46 3 11.13

479,141 3.83 7215.22 1 3.91

411,382 2.75 7361.75 2 2.87

487,224 8.34 7201.81 1 9.07

389,005 3.26 7229.17 1 4.44

3.55 5644.80 4.21

z Gap t #N Gapn

80,370 0.00 0.77 5 0.00

64,562 0.00 0.26 1 0.00

78,947 0.00 0.93 13 0.00

64,438 0.00 0.68 2 0.00

137,815 0.00 1450.09 6849 0.20

110,094 0.00 1195.50 3876 0.00

123,484 0.00 46.47 164 0.00

105,401 0.00 47.16 278 0.00

115,311 0.36 7318.03 13,902 0.46

87,315 0.00 1378.04 11,481 0.00

135,519 0.00 79.13 452 0.028

110,613 0.00 23.61 111 0.02

183,570 5.00 7380.52 885 5.38

154,145 3.01 7436.82 2594 3.07

194,968 4.75 7466.65 707 4.81

160,221 3.33 7402.31 1272 3.40

194,187 7.73 7478.19 301 10.22

151,477 2.58 7461.93 1125 3.06

192,108 4.55 7467.13 1362 5.13

166,010 2.70 7413.37 1144 2.91

303,357 12.68 7232.67 1 13.76

235,288 8.15 7452.34 12 8.94

294,931 8.97 7356.73 7 10.60

259,079 9.75 7471.75 8 11.38

3.07 4190.05 3.47



Table 14
Results of the B&C algorithm on the set I1.

Instance zUB zlr Gaplr tlr z Gap t #N Gapn

I1-8�3�2 575.70 575.70 0.00 0.00 575.70 0.00 0.01 1 0.00

I1-8�4�2 549.34 534.37 2.72 0.02 549.34 0.00 0.04 2 0.00

I1-9�3�2 878.69 874.49 0.48 0.03 878.69 0.00 0.05 1 0.00

I1-10�4�2 806.72 752.79 6.69 0.03 806.72 0.00 0.06 1 0.00

I1-10�5�3 696.94 660.28 5.26 0.07 696.94 0.00 0.11 3 0.00

I1-10�8�3 596.56 538.76 9.69 0.18 596.56 0.00 0.37 26 0.00

I1-15�10�2 732.48 672.82 8.14 0.51 732.48 0.00 1.37 32 0.00

I1-15�10�3 686.71 601.28 12.44 0.31 686.71 0.00 1.01 46 0.00

I1-15�4�2 1064.52 928.81 12.75 0.22 1064.52 0.00 0.56 44 0.00

I1-15�5�3 933.75 829.52 11.16 0.14 933.75 0.00 0.39 22 0.00

I1-15�8�3 730.36 667.28 8.64 0.21 730.36 0.00 0.67 33 0.00

I1-20�10�2 937.40 817.88 12.75 0.52 937.40 0.00 390.76 14,546 0.00

I1-20�10�3 761.29 690.44 9.31 0.88 761.29 0.00 2.26 18 0.00

I1-20�10�4 1149.72 967.72 15.83 0.49 1149.72 0.00 68.05 4377 0.00

I1-20�8�2 1029.59 874.66 15.05 1.45 1012.89 1.62 7292.83 34,556 1.62

I1-20�8�3 848.31 787.66 7.15 0.32 848.31 0.00 1412.31 31,055 0.00

I1-25�10�2 1030.40 855.45 16.98 1.99 1028.69 0.17 7260.62 53,013 0.17

I1-25�10�3 1062.30 931.55 12.31 1.39 1049.68 1.19 7277.37 31,511 1.19

I1-25�10�4 1607.94 1347.55 16.19 1.67 1535.00 4.54 7303.17 19,872 4.54

I1-25�8�2 950.87 871.44 8.35 0.69 950.87 0.00 204.41 7542 0.00

I1-25�8�3 870.69 775.31 10.96 1.18 870.69 0.00 251.24 6319 0.00

I1-50�10�5 1132.63 935.55 17.40 52.19 1104.98 2.44 7411.64 4373 2.54

I1-50�8�5 1162.44 991.17 14.73 29.03 1148.23 1.22 7410.61 5162 1.31

I1-75�10�5 1540.23 1340.40 12.97 130.08 1433.29 6.94 7469.92 1479 6.98

I1-75�15�5 1686.21 1427.27 15.36 128.32 1578.61 6.38 7502.19 532 7.16

I1-100�10�5 2124.90 1854.75 12.71 788.34 1958.10 7.85 7480.91 53 8.36

I1-100�20�5 1973.08 1690.46 14.32 561.42 1818.41 7.84 7442.96 153 8.30

I1-150�10�5 1883.44 1594.73 15.33 2013.00 1711.06 9.15 7425.67 16 9.66

I1-150�20�5 1869.53 1523.65 18.50 1872.83 1578.38 15.57 7360.21 11 16.45

I1-200�10�5 2443.80 2188.39 10.45 5017.94 2190.89 10.35 7245.36 3 11.00

I1-200�20�5 2219.54 1854.16 16.46 7208.84 1854.16 16.46 7208.84 1 17.15

Average 11.33 574.65 2.96 3400.84 3.11

Table 15
Results of the B&C algorithm on the set I2.

Instance zUB zlr Gaplr tlr z Gap t #N Gapn

I2-8�3�2 575.70 575.70 0.00 0.01 575.70 0.00 0.03 1 0.00

I2-8�4�2 604.13 596.68 1.23 0.01 604.13 0.00 0.03 4 0.00

I2-9�3�2 386.15 386.15 0.00 0.00 386.15 0.00 0.01 1 0.00

I2-10�4�2 629.38 602.86 4.21 0.06 629.38 0.00 0.10 2 0.00

I2-10�5�3 551.45 551.45 0.00 0.01 551.45 0.00 0.02 1 0.00

I2-10�8�3 504.20 503.16 0.21 0.10 504.20 0.00 0.11 1 0.00

I2-15�10�2 709.10 651.21 8.16 0.28 709.10 0.00 1.27 122 0.00

I2-15�10�3 777.49 702.21 9.68 0.29 777.49 0.00 1.62 97 0.00

I2-15�4�2 827.81 799.99 3.36 0.13 827.81 0.00 0.25 4 0.00

I2-15�5�3 1075.22 1048.49 2.49 0.18 1075.22 0.00 0.36 8 0.00

I2-15�8�3 652.58 591.31 9.39 0.28 652.58 0.00 1.52 216 0.00

I2-20�10�2 766.24 684.32 10.69 0.51 766.24 0.00 4.71 300 0.00

I2-20�10�3 744.27 688.77 7.46 0.42 744.27 0.00 1.74 56 0.00

I2-20�10�4 793.00 735.41 7.26 0.40 793.00 0.00 1.04 22 0.00

I2-20�8�2 772.29 698.42 9.57 0.37 772.29 0.00 5.93 584 0.00

I2-20�8�3 758.06 679.76 10.33 0.30 758.06 0.00 6.05 682 0.00

I2-25�10�2 961.59 857.44 10.83 1.72 954.19 0.77 7303.45 23,742 0.77

I2-25�10�3 987.57 846.89 14.25 1.29 927.53 6.08 7266.33 26,128 6.08

I2-25�10�4 1125.56 948.87 15.70 1.13 1125.56 0.00 2871.52 38,299 0.00

I2-25�8�2 912.02 838.39 8.07 0.85 912.02 0.00 1267.23 36,505 0.00

I2-25�8�3 979.62 908.59 7.25 0.59 979.62 0.00 8.18 739 0.00

I2-50�10�5 1256.44 1117.28 11.08 9.31 1222.10 2.73 7420.76 4165 2.73

I2-50�8�5 1121.13 990.19 11.68 7.15 1098.20 2.05 7389.18 7401 2.05

I2-75�10�5 1691.15 1520.07 10.12 61.75 1601.08 5.33 7414.64 2874 5.33

I2-75�15�5 1742.25 1477.08 15.22 91.61 1663.78 4.50 7531.82 488 4.85

I2-100�10�5 2231.21 2020.73 9.43 776.75 2072.44 7.12 7413.89 192 7.57

I2-100�20�5 1996.34 1778.54 10.91 219.90 1850.29 7.32 7563.92 252 8.34

I2-150�10�5 1728.05 1463.78 15.29 464.69 1553.03 10.13 7575.30 52 10.47

I2-150�20�5 1630.29 1423.48 12.69 597.70 1489.57 8.63 7460.51 76 9.99

I2-200�10�5 2147.51 1912.36 10.95 2098.34 1930.59 10.10 7303.56 12 10.55

I2-200�20�5 2049.01 1780.07 13.13 1459.93 1804.10 11.95 7418.46 17 13.33

Average 8.41 186.97 2.47 3007.53 2.65
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Table 16
Results of the B&C algorithm on the set I3.

Instance zUB zlr Gaplr tlr z Gap t #N Gapn

I3-8�3�2 578.33 539.21 6.76 0.03 578.33 0.00 0.04 2 0.00

I3-8�4�2 450.71 422.33 6.30 0.04 450.71 0.00 0.05 1 0.00

I3-9�3�2 454.63 454.63 0.00 0.01 454.63 0.00 0.01 1 0.00

I3-10�4�2 540.61 525.79 2.74 0.04 540.61 0.00 0.08 6 0.00

I3-10�5�3 745.48 681.98 8.52 0.05 745.48 0.00 0.13 16 0.00

I3-10�8�3 412.91 412.91 0.00 0.02 412.91 0.00 0.03 1 0.00

I3-15�10�2 605.11 539.46 10.85 0.40 605.11 0.00 1.26 71 0.00

I3-15�10�3 546.61 495.00 9.44 0.46 546.61 0.00 1.63 160 0.00

I3-15�4�2 688.87 636.67 7.58 0.04 688.87 0.00 0.27 59 0.00

I3-15�5�3 1001.28 897.85 10.33 0.31 1001.28 0.00 1.06 88 0.37

I3-15�8�3 578.23 520.55 9.97 0.33 578.23 0.00 0.86 36 0.00

I3-20�10�2 744.82 692.91 6.97 0.52 744.82 0.00 5.25 414 0.00

I3-20�10�3 728.17 648.27 10.97 0.40 728.17 0.00 4.17 230 0.00

I3-20�10�4 1190.95 997.77 16.22 0.53 1190.95 0.00 273.39 8855 0.00

I3-20�8�2 846.07 776.12 8.27 0.68 846.07 0.00 42.26 2518 0.00

I3-20�8�3 643.89 593.92 7.76 0.45 643.89 0.00 1.67 67 0.00

I3-25�10�2 834.23 768.98 7.82 1.24 834.23 0.00 73.44 4509 0.01

I3-25�10�3 820.12 760.13 7.32 1.22 820.12 0.00 2.64 37 0.00

I3-25�10�4 1057.63 873.48 17.41 0.45 1057.63 0.00 12.52 326 0.00

I3-25�8�2 951.56 799.63 15.97 2.19 910.07 4.36 7304.93 22,689 4.36

I3-25�8�3 774.36 711.48 8.12 1.01 774.36 0.00 144.79 6122 0.00

I3-50�10�5 1207.31 1062.72 11.98 15.61 1179.15 2.33 7469.87 3565 2.33

I3-50�8�5 1162.44 991.17 14.73 28.98 1148.23 1.22 7398.12 5151 1.41

I3-75�10�5 1721.47 1528.74 11.20 48.96 1637.59 4.87 7394.83 3048 4.98

I3-75�15�5 1483.14 1310.82 11.62 49.65 1411.30 4.84 7637.12 540 4.86

I3-100�10�5 2178.35 1984.71 8.89 287.95 2057.15 5.56 7518.35 225 5.78

I3-100�20�5 2035.37 1827.62 10.21 187.86 1889.23 7.18 7578.47 330 7.77

I3-150�10�5 1274.44 1149.44 9.81 148.58 1198.77 5.94 7474.79 152 6.50

I3-150�20�5 1235.86 1102.34 10.80 303.63 1162.72 5.92 7512.05 105 7.31

I3-200�10�5 1766.46 1593.40 9.80 498.75 1658.02 6.14 7449.47 54 6.67

I3-200�20�5 2531.21 2273.53 10.18 904.33 2304.52 8.96 7430.33 70 9.88

Average 9.31 80.15 1.85 2668.83 2.01
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upper bounds which are difficult to improve. Columns labelled #N

stand for the number of nodes inspected by the branch-and-cut
algorithm. Finally, column labelled gapn corresponds to the gap
between the final lower bound obtained by the branch-and-cut
method with respect to the average solution value of the ALNS.
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