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Daubechies (198&omm. Pure Appl. Mathl1, 909-996) showed that, except for
the Haar function, there exist no compactly supported orthogonal symmetric scaling
functions for the dilation; = 2. Nevertheless, such scaling functions do exist for
dilationsq > 2 (as evidenced by Chui and Lian’s construction (199pl. Comput.
Harmon. Anal.2, 68-84) forq = 3); these functions are the main object of this
paper. We construct new symmetric scaling functions and introduce the “Batman”
family of continuous symmetric scaling functions with very small supports. We
establish the exact smoothness of the “Batman” scaling functions using the joint
spectral radius technique. o 1999 Academic Press
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1. INTRODUCTION

Compactly supported wavelets are typically constructed from a compactly support
single scaling function that generates a multiresolution analysisf. It is important (and
nontrivial) to construct scaling functions (and hence wavelets) with desirable propertie
such as orthogonality, high regularity, symmetry, and small support.

Recall that amultiresolution analysigMRA) with dilation factorg, whereg € Z and
g > 1, is a sequence of nested subspacds?¢R)

--CVoocCcVaoCcVoCcViCcVocC---

such that
Vi=spar{ f(¢'x —k):k e Z}
for somef (x) € L(R), and
Jvi=r*m). (V=10
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The function f(x) is called thescaling functionof the MRA. We shall consider only
multiresolution analyses generated by a compactly supported scaling furfgigmnvith
orthogonal integer translates. Suchathogonalscaling function generates an orthogonal
MRA which leads to an orthonormal wavelet basis f£3(R) [14].

Let f(x) € L2(R) be a compactly supported orthogonal scaling function of a MRA with
dilationg. Then [, f(x)dx # 0, andf (x) satisfies alilation equation

f@=)afqx-k, Y a=q

keZ keZ

wherecy are real, and; # 0 for only finitely manyk € Z [6]. Since the setf(x — k) :k €
7} is orthogonal inL2(R), the coefficientgc; } must satisfy

Y ckckrgj=qd0j, Vi€, (1.1)
keZ

wheredo ; is the Kronecker symbol. The converse is not true, though; in order for the
integer translates of (x) to be orthogonal, certain conditions (often overlooked in the
study of wavelets) in addition td.(1) must be met10Q].

First, Daubechiesy] constructed a family of minimally supported orthogonal scaling
functions for dilationg = 2 and studied their asymptotically increasing smoothness
using Fourier analytic methods. Then, Hell@d], Steffen et al. 15], and Welland and
Lundberg [1T constructed compactly supported orthogonal scaling functions for dilations
q > 2 (we describe Heller’s construction briefly in Section 3).

In applications, such as digital imaging, it is often desirable to use scaling functions that
are symmetric. Daubechie§][showed that ify = 2, then the only symmetric orthogonal
scaling function is the Haar functiogy,1). In order to construct symmetric orthogonal
scaling functions, one has to consider dilatigns 2 (a construction foy = 3 is due
to Chui and Lian 8]). An alternative approach fog = 2 is to give up orthogonality
and considemearly orthogonalsymmetric scaling functionsl] 12]. Construction of
orthogonal symmetric scaling functions for arbitrary dilatigns- 2 is the main object
of this paper.

In Section 2 we introduce definitions and basic results on scaling functions and scaling
sequences. In Section 3 we restate Heller’s explicit general formula for orthogonal scaling
sequenceslfl]. We use this formula to construsymmetricorthogonal scaling functions
for an arbitrary dilatiory > 3 in Section 4. We establish necessary and sufficient conditions
for scaling functions to be symmetric, based on the modulus of their symbols. Finally, in
Section 5 we introduce a new family of symmetric orthogonal scaling functions with short
support (the “Batman” family) and compute their smoothness using the joint spectral radius
of matrices.

2. PRELIMINARY RESULTS

Fix an integerg > 2. Let S, (R) denote the set of all real sequenaes {c; :k € Z},
such that) ", ., ck = ¢ and¢; = 0 for all but finitely manyk € Z. It is known [7] that for
eachc € S, (R) there exists a unique compactly supporedx) (in the sense of tempered
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distribution) satisfying

Pe(x) =Y cxdelgr —k)  foralmostalxeR,  and  d(0)=1 (2.1)
keZ

We call ®¢(x) thescaling function corresponding m

DEFINITION 2.1. Thesymbolof c € S, (R) is the trigonometric polynomial/c(w) =
A/9) Y ken cre'* @, A sequence e Sy (R) is g-orthogonalif

q if j =0,
chck+qj = { L (2.2)
= 0 if j #0.

We recall some well-known properties gforthogonal sequences. A proof of (i) can be
found in Grochenig10]; Chui and Lian B] proved (ii).

PropPoOsITION 2.2. (i)ce S, (R) is ag-orthogonal sequence if and only if

q—1 2

2k
E Mc<w+i) =1, for all w € R.
k=0 q

(ii) If the sequence e S, (R) is g-orthogonal, ther) _ ; _, ciqq; =1 forall k € Z.

JEZ
We define two transformations &), (R), thetranslationt, for a givenn € Z and the
reflectiony, by

T ({ck}) == {ck—n} and  y({c)) == {cx).

The corresponding scaling functions satisfy

n
<I>V<c)(x)=(1>c(—x), q)rn(c)(x)quC(X‘i‘m), neZ.

We also define theonvolutionof b = {b;} andc = {c} in S, (R) by

1
b*CZZ{—ZbiCk_iZkEZ}.
4 i

Please note the extra factor 1/4t follows that b x ¢ € S;(R), and Mp.c(w) =
Mp(w)Mc(w).

DEFINITION 2.3. We say thalh andcin S, (R) areequivalentand denote it by ~ c,
if c=1,(b), orc= 1, o y(b), for some ne Z.

THEOREM 2.4. Letb, ¢ € S;(R). Then|My(w)|? = |Mc(w)|? if and only if there
exista, e, € € S;(R), such that

/

b=axe, c=ax¢€, and e~¢. (2.3)
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Proof. SupposeZ.3 holds. ThenMg (w) = ¢ Me(w) if € = 7,(€), and Mg (w) =
" Mo(—w) if € =1, 0 ¥(€). In either case,My(w)|? = |Ma(w)|? = |Mc(w)|?.

Conversely, suppose that/y(w)|? = |Mc(w)|?. Without loss of generality we shall
assume thakg # 0, andb; = 0 for all i < O, for otherwise we can consider an equivalent
(shifted) sequence with this property; we shall assume the saroe\iaike the substitution
z =€, let B(z) = Mp(w) and C(z) = Mc(w), and defineB(z) = z"B(1/z), where
n = deg B). Now the assumption read¥(z) B(z) = C(z)C(z). Note thatB(z) andC(z)
must have the same degree and hence the same number of zeros (counted with theil
multiplicity). Let A(z) =gcd(B(z), C(z)). ThenB(z) = A(z)E(z) andC(z) = A(z) E'(z)
for someE (z), E'(z) € R[z]. By assumptionA(z) E(z)A(z)E(z) = A(2)E'(z) A(2)E' ().
Since gcdE(z), E'(z)) = 1, we obtain thai’(z) = E(z). Now (2.3) follows immediately
by letting Ma(w) = A(e!®), Me(w) = E(e'®), Ma(w) = E'(¢'®), and observing that
E'(z) = E(z) implies€ ~e. W

Theoren?.4suggests that theg-orthogonal sequences can be classified by the square of
the modulus of their symbols.

Although Mallat [14] proved the following theorem fog = 2, the proof generalizes
easily to allg > 1.

THEOREM 2.5. Letce S, (R) be ag-orthogonal sequence. Thdr(x) € L2(R).

3. SCALING SEQUENCES OF ARBITRARILY HIGH ACCURACY

In this short section we recall Heller’s classificatidd] of all ¢-orthogonal sequences
for any given accuracy > 1 (see also15, 17]). Let ¢ be a fixed integer ang¢ > 2.
The simplestg-orthogonal sequence is thdaar sequencdr = {h;}, whereh; = 1 for
0 <k < ¢ andh; = 0 otherwise. We denote its symbol By(w) := (1/q) ZZ;& etk

A sequencee € S, (R) is r-accuratg or having accuracy:, if Mc(w) = H (0)G(w)
for some trigonometric polynomial (w). Proposition2.2 states that every-orthogonal
sequence is at least 1-accurate and that a sequésgeorthogonal and has accuracyf
and only if there exists a real trigonometric polynonigl») such that

( 27'[k> ( 27rk>
Hlow+ — Glw+ —
q q

There are infinitely many such polynomials which becomes evident from the following
lemma by Heller 11, Theorem 3.3].

LEMMA 3.1 (Heller).
2k 2k
Hlowo+ — Glo+ —
q q

G(w) = (1 — cosw)” Z c e,
n#qk

g—1

bD

k=0

2r 2

=1 (3.1)

qg—1

2

k=0

2r 2

=0

if and only if

wherec,, = 0 for all but finitely manyx.
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Because of Lemma.1, we only need a “particular solutiorG, to (3.1). Heller [11]
derived the following formula for such a solution, namely, the minimal degree solutio
to (3.2);

r—1

Gr(@) =) pa(1—cosw)", (3.2)
n=0

where the coefficientg,, are given by

2r —ki—2r
q kj+2r— 2k J
Pn= 5D Z H < o > <1 — cos . (3.3)

ki+-tkg=n j=1

forg =291+ 1, and
2r q1 —ki—2r
q ko—l—r—l) (kj—l—Zr—l) < 2k Y
Pn=—— E ( | | 1—cos
(=1 — —
2r(q oty Sty = r—1 i 2r—1 q
(3.4)

for ¢ = 2q1 + 2. The following theorem summarizes these results and characterizes
g-orthogonal sequences with given accuracy.

THEOREM 3.2 (Heller [L1]). Let P(w) be a trigonometric polynomial. TheR(w) =
| M¢(w)|? for someg-orthogonal sequenceof accuracy at least if and only if P(w) > 0
forall w e R and P(w) = |H ()% G (w) for someG (w) of the form

G(w)=Gr(w)+ (1—cosw)” Y ¢, cosnw,
n#qk
whereG, (w) is defined by3.2)—(3.4).

We shall use Theorer.2 to construct symmetric scaling functions for any given
accuracy-.

4. SYMMETRIC SCALING FUNCTIONS

A sequence € S, (R) is symmetridf ¢c= 7, o y(c) for somen € Z. A function f (x) is
symmetridf f(x) = f(a — x) for somea € R.

LEMMA 4.1. Letce S, (R). Thencis symmetric if and only i (x) is.

Proof. Suppose that is symmetric. Ther = 7, o y(c) for somen € Z. Therefore

n
De(x) = q>rnoy(c)(x) = q’c(qj_ - x),

and sod¢(x) is symmetric.

Conversely, suppose thdt:(x) is symmetric andd¢(x) = dc(a — x). Without loss
of generality, assume that= {c; : k € Z} so thatcoc, # 0 andc, = 0 for all k ¢ [0, n].
Then ®¢(x) is supported exactly ofi0,n/(qg — 1)], forcing a = n/(¢ — 1). Hence,
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Dc(x) = D0y (c)(x). We claim that = 7, o ¥ (¢). Indeed, note that

N o\ . (o A W)\ 2 w
De(w) = Mc ; dc ; ) and D0y 0)(@) = Mr,0p(c) ; Deop(0) ; .

Therefore,
w w
MC@ - Mf"w@(;)

for all w € R, which yieldsc=t, o y(c). &

THEOREM 4.2. (i) Suppose that € S, (R) is symmetric. LetMc(w)|2 = P(cosw),
whereP (1) € R[¢]. Then

P(t)=G%(t) or P@)= (%) G2(1), (4.1)

for someG (1) e R[t], G(1) = 1.

(ii) Conversely, suppose th&t(r) = G2(r), or P(t) = ((1+1)/2)G%(t), whereG (1) €
R[7] and G(1) = 1. Then there exists a unique (up to equivalence) symmetis, (R),
such that M¢(w)|? = P(cosw).

Proof. (i) If ce S;(R) is symmetric, therw = 7, o y (c) for somen € Z, andMc(w) =
e Mo(—w). Hence,

|Mce(@)]? = Mc() - Mo(—w) = e~ M2(w) = ("2 Mc(w)) .

Since|Mc(w)|? > 0 is real, the imaginary part ef /2 M¢(w) must be 0. Now, ifi = 2k,
then

e~ () = Re(e—ikch(a))) = G(cosw)
for someG (1) € RIr]. Hence | Mc(w)|? = G2(cosw). If n = 2k + 1, then

e~ MO\ (w) = Re<e‘i(2"+l)“’/2Mc (2- 8)) =G (cosg)
2 2
for someG (7) € R[z]. Hence,
2_ A2 w
[Mc(w)|“=G (cosa) (4.2)

But co$(w/2) = 3(1+ cosw), SO

~ w w

G (cos§> = G1(cosw) + cos<§> - G2(Ccosw)

for someG1(r), Ga(r) € R[7]. On the other hand, by(2), |Mc(w)|2 = G2(cosw/2)) =
P(cosw). It follows that eitherG1(r) = 0 or G2(¢) = 0. SinceG2(r) # 0, it follows that
G1(t) =0. Thus,
1
|Mc(w)|? = co& <§> - G5(cosw) = 51+ cosw) G5(cosw),

which proves (i).



ORTHOGONAL SYMMETRIC SCALING FUNCTIONS 143

(ii) First, we prove the existence. Suppose tRat) = G2(r). ThenM¢(w) = G (COSw)
defines a symmetric € S, (R), becauseM¢(—w) = Mc(w). Now suppose thaP (1) =
((1+1)/2)G?(r). Then

) iw—l—l eiw+e—iw
Me(w) = €2 cos™ . G (cosw) = < G — 4.3
clw)=e 5 ( ) NG > (4.3)

defines a symmetrice S, (R), becausé/¢(w) = €'’ Me(—w).

Next, we show by contradiction that the symmetde S;(R) is unique, up to
equivalence. Assume that there is another symmetricS, (R), such that My (w)|? =
P(cosw). By TheorenR.4 there exisg, e, € € S,(R), such that

c=asxe, d=ax€, and e~¢.
Therefore there exists somes Z, such that
Me (@) =" Ma(@)Me(w) O Mg(0) =" Ma(0) Me(—0),

depending on the type of equivalence betweaand€'. In the first case, we must have
¢ = 1(c), and soc andc’ are equivalent. In the second case, since lwoémd ¢’ are
symmetric, we have

Ma(w) Me(w) = "™ Ma(—w) Me(—w)
Ma() Me(—w) = €"2” Ma(—w) Me(w).

Hence,M2(w) = e/ "+m2)2 y2(— ). This implies thatMa(w) = +e!"® Ma(—w), where
n = (n1+ n»)/2 is clearly an integer. Sinca(0) = 1, we haveMa(w) = ¢! Ma(—w).
The equivalence af andc’ now follows from

Mg (w) = % Ma(0)Me(—w) = ¢/ C M (—w). B
Remark. It is possible for aonsymmetricc € S, (R) to satisfy @.1). For example,

let co =4q, c1 = —4q, c2 = ¢, and all otherc;, = 0. Thisc is obviously nonsymmetric;
neverthelesgMc(w)|? = (5 — 4 cosw)?.

EXAMPLE 4.1. For accuracy = 1 and arbitraryg > 3, Theorem3.2 implies that
|Mc(w)|? = |H(w)|?G (w), where

G(w) =1+ (1-cosw) Y ¢, Cosnw.
n#qk

ChoosingG (w) = 1+ (1 — cosw)(c1 COSw + c2 oS ) and applying4.1) and @.3), we
obtain two scaling sequencesandcy, given by

1 . ) )
M, (w) = EH(O)) (a +(1— )+ (1—a)e® + ae’s‘”)

1 | | |
Mey (@) = SH(@) (B + (L= P’ + (L= e + pe’™*),
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WK 1 s I‘W 7.5
-0.25F

FIG. 1. The “Batman” scaling functioc, for ¢ =3 (Example 4.1).

where

1 6 1 6
=z — 4 and ﬁ_§+7.
The scaling sequence; corresponds to the continuodBatman” scaling function
(Fig. 1), while c2 corresponds to a discontinuous scaling function (Fig. 2).der 3,
the corresponding two wavelets (symmetric and antisymmetric) are shown in Fig. 3. In

Section 5, we study the “Batman” function in more detail.

ExAMPLE 4.2. Considerg-orthogonal sequenceasfor dilation ¢ = 5 and accuracy
r = 2. Choose
G(w) =14 8(1 — cosw) + (1 — cosw)? (a1 COSw + az COS )
=1+ 8t + 1% + (a1 + a2)t? — (a1 + dao)t® + 2a11*,

wherer := 1 — cosw.

ML L

FIG. 2. The (discontinuous) scaling functiahc, in Example 4.1.
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w 0. 1 '\//’1,5

FIG. 3. Two “Batman” wavelets (long and short) for dilatign= 3.

By Theorem3.2, the symbolM(w) of ¢ satisfies| M¢(w)|? = |H (w)|*G (w). Solving
for a1, az to complete the square fof(w), we obtain two solutions:

GV(w)= (1+4 —4t2)2 and G (w)=(1+4r - %tz)z.
The two symmetric scaling sequences are:

1
C1= E{_l’ 0,0,2,3,6,5,6,3,2,0,0, -1} (4.4)

1
Co= 1—5{—2, -2,1,6,9,16,19,16,9,6,1, -2, —2}. (4.5)

Figures 4 and 5 depict the corresponding continuous scaling functions. As we shall se¢
Section 5, onlydg, (x) is differentiable.

EXAMPLE 4.3. Asr grows, it becomes increasingly harder to find symmetric scaling
sequences by hand. Fortunately, Theode®tan be aided by standard software tools, such
asMathematica. Figure 6 shows two minimal support symmetric scaling functions in
the caseg = 4 andr = 3; the polynomialP(r), defined in Theorerd.2, has the form
P(1) = 3(1+1DG%(®0).
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A YA . . . WA AW

\\/.5 VV 1 1.5 2 "v 29\\/\// 3
-0.25F

FIG. 4. Continuous scaling functio®c, , ¢ =5, r = 2 (Example 4.2).

5. THE "“BATMAN" SCALING FUNCTION

Letqg > 3. In Example 4.1 (Fig. 1) we introduced the “Batman” scaling function, which
corresponds to thg-orthogonal sequence

1 1
c=<a,=,1—¢1,....,1 o, =-,a,, wherea =
2 N—— 2

q—3

NI
I
>S5

(5.1)

The refinement equation has the form
1
fx)=af(gx)+ Ef(qx - D+A-a)flgx =2+ flgx —3) +---

1
+f(qx—q+1)+(1—a)f(qx—q)+Ef(qx—q—l)+af(qx—f1—2)-

w 1 1.5 2 w 3

FIG.5. Smooth scaling functiod®c, for ¢ =5, r = 2 (Example 4.2).
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-0.25F

FIG. 6. Two scaling functions fog = 4, r = 3 (Example 4.3).

Let ¢,(x) denote the “Batman” scaling function corresponding to the scaling sequen
given by 6.1). The support od, (x) is precisely0, (¢ + 2)/(g — 1)1, which yields[0, 2.5]
for ¢ = 3, and[0, 2] for ¢ = 4.

In what follows, we show tha,(x) is continuous for every; > 3. We use the
joint spectral radius to compute the Holder exponenpgfr). The joint spectral radius
technique is presented in more detail by Daubechies and Lag@liiBefger and Wand]],
and Lagarias and Wand §].

Consider the general two-scale dilation equation

N
fO)=) eaf(gx—n), (5.2)

n=0

wherecocy # 0 andg > 2. If f(x) is a compactly supported solution t6.2), then
suppf =1[0,N/(g — D]. Let L =[N /(g — 1)]. Define theL-dimensional vectow(x)
by

vx) =[f(x), fx+1),..., fx+L -1, O<x<1
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Denote the space of real x L matrices byM (R), and define&k matricesP, € M (R),
O<k=<g-—-1by

(P)ij = Cqli—1)—(j—1)+k- (5.3)
Now the dilation equationy.2) can be rewritten in the form

V(x) = Py V(ox), (5.4)
wherex € [0, 1] has the basg expansion
x=0didpds..., 0<dj<q-1,j=12,...,
andox is the fractional part of x,
ox =0.dodzdy. . ..

Iterating 6.4), we obtain
V(x)= Py, Py, Py, v(o"x).

By Propositior2.2, the matrices?, arecolumn stochastid.e., the entries in each column
add up to one. Hence, the vectdr, 1, ..., 1] is a common left 1-eigenvector of af.
Therefore, allP, can be simultaneously block-triangularized by a real nonsindutarL
matrix Q whose firstrow i41, 1, ..., 1]:

0

POt =
OP 0 . A

, O<k=<g-1

The following statement by Collela and He#,[Theorem 3] and Wang [16Theo-
rem 2.5] relates the Holder exponent of the scaling funcfida the spectral properties of
the matricesA;; we omit the proof.

ProOPOSITION 5.1. Denote the joint spectral radiys(Ao, A1, ..., A;,—1) by 6, and let
s =log, (1/p). Suppose that < 1. Then

(i) the scaling functiory (x) satisfying 6.2) is continuous;

(i) f(x)eC* ¢, but f(x) ¢ CF¢, foranyO < e <s;

(iii) f(x) e C*ifand only if the semigroup of matrices generated By/6: 0 <k <
g — 1} is bounded.

Now we can compute the exact smoothness of the Batman scaling function as a direct
application of Propositiob.1

THEOREM 5.2. The “Batman” scaling functiorp, (x) is continuous for eaclh > 3,
and its Holder exponent isg, (4//6).

Proof. We consider the casg> 4 first. In this casel = [(¢ + 2)/(¢ — 1)] = 2, and
theg matricesPy, ..., P,—1 are 2x 2 matrices. Let
11
o=lo 1]
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Then

1 1 0
QP:Q —L AJ,

where allA; are scalars. By the definitios @),

Pk=|: ck Ck—1 ]

Cqg+k  Cq+k—1
and a straightforward computation yields

IOA(A07 Al7 ey Aq—l) = ma-)(|A0|9 |A1|9 e |Aq—l|) = T
By Propositiorb.1, the theorem is proved far > 4.

In the casegy = 3, the support ofp3(x) is [0, 2.5], so L = 3 and the matrice®; are
3 x 3. We have

111
1 |10 :
QP Q "= , by taking o0=|0 1 1
*x A
0 0 1
Here,
1 1
Ao— o 10 ’ Ap— 5—a ’ Ap— 50 ;- ’
a ;—-a 0 o 0 0

anda = 1/2 — ¢/6/4. Note that
[All1:=max{|a11| + |az1l. la12| + |azz| }

defines a matrix norm oM (R) (actually, the operator norm induced by tHenorm
in R?). Since

V6 1 V6

Qu=" 1< _—g=2",
ol =7 —l<5-a=7

it follows that|| Ay ||l1 = 3 — o = +/6/4, fork = 0, 1, 2. As aresultp(Ao, A1, A2) < /6/4,
and the semigroup generated {dyv/6A; : k = 0, 1, 2} is bounded2, Lemma Il]. On the
other handp(Ao, A1, A2) > /6/4, because/6/4 is an eigenvalue olg. Thus,

. V6
0 =p(Aog, A1, A2) = 7

which proves the theorem fgr=3. B

Using the same technique, we can show that the “smooth hat” scaling function (Fig.
which corresponds to the 5-orthogonal scaling sequence defined jnig4d8ferentiable.

THEOREM 5.3. Letg =5, andc = 1—15{—2, -2,1,6,9,16,19,16,9,6,1, -2, —2}.
The symmetric scaling functiabc(x) is differentiable.



150 BELOGAY AND WANG

Sketch of a proof. To prove the theorem, we assemble the five matrige® < k < 4.
A straightforward computation reveals that they have a common %Ieétgenvector
[1, -2, 3], in addition to the common left 1-eigenvectdr, 1, 1]. The rest of the proof
involves simultaneously triangularizing, and applying results by Daubechies and
Lagarias 8]; we omit the details®
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