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Daubechies (1988,Comm. Pure Appl. Math.41, 909–996) showed that, except for
the Haar function, there exist no compactly supported orthogonal symmetric scaling
functions for the dilationq = 2. Nevertheless, such scaling functions do exist for
dilationsq > 2 (as evidenced by Chui and Lian’s construction (1995,Appl. Comput.
Harmon. Anal.2, 68–84) forq = 3); these functions are the main object of this
paper. We construct new symmetric scaling functions and introduce the “Batman”
family of continuous symmetric scaling functions with very small supports. We
establish the exact smoothness of the “Batman” scaling functions using the joint
spectral radius technique.  1999 Academic Press
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1. INTRODUCTION

Compactly supported wavelets are typically constructed from a compactly supported
single scaling function that generates a multiresolution analysis [5, 14]. It is important (and
nontrivial) to construct scaling functions (and hence wavelets) with desirable properties,
such as orthogonality, high regularity, symmetry, and small support.

Recall that amultiresolution analysis(MRA) with dilation factorq , whereq ∈ Z and
q > 1, is a sequence of nested subspaces ofL2(R)

· · · ⊂ V−2⊂ V−1⊂ V0⊂ V1⊂ V2⊂ · · ·

such that

Vj = span
{
f (qjx − k) : k ∈ Z}

for somef (x) ∈L2(R), and

⋃
j∈Z

Vj = L2(R),
⋂
j∈Z

Vj = {0}.
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The functionf (x) is called thescaling functionof the MRA. We shall consider only
multiresolution analyses generated by a compactly supported scaling functionf (x) with
orthogonal integer translates. Such anorthogonalscaling function generates an orthogonal
MRA which leads to an orthonormal wavelet basis forL2(R) [14].

Let f (x) ∈L2(R) be a compactly supported orthogonal scaling function of a MRA with
dilationq . Then

∫
R f (x) dx 6= 0, andf (x) satisfies adilation equation

f (x)=
∑
k∈Z

ckf (qx − k),
∑
k∈Z

ck = q,

whereck are real, andck 6= 0 for only finitely manyk ∈ Z [6]. Since the set{f (x − k) : k ∈
Z} is orthogonal inL2(R), the coefficients{ck} must satisfy∑

k∈Z
ckck+qj = qδ0,j , ∀j ∈ Z, (1.1)

whereδ0,j is the Kronecker symbol. The converse is not true, though; in order for the
integer translates off (x) to be orthogonal, certain conditions (often overlooked in the
study of wavelets) in addition to (1.1) must be met [10].

First, Daubechies [5] constructed a family of minimally supported orthogonal scaling
functions for dilationq = 2 and studied their asymptotically increasing smoothness
using Fourier analytic methods. Then, Heller [11], Steffen et al. [15], and Welland and
Lundberg [17] constructed compactly supported orthogonal scaling functions for dilations
q > 2 (we describe Heller’s construction briefly in Section 3).

In applications, such as digital imaging, it is often desirable to use scaling functions that
are symmetric. Daubechies [5] showed that ifq = 2, then the only symmetric orthogonal
scaling function is the Haar functionχ[0,1). In order to construct symmetric orthogonal
scaling functions, one has to consider dilationsq > 2 (a construction forq = 3 is due
to Chui and Lian [3]). An alternative approach forq = 2 is to give up orthogonality
and considernearly orthogonalsymmetric scaling functions [1, 12]. Construction of
orthogonal symmetric scaling functions for arbitrary dilationsq > 2 is the main object
of this paper.

In Section 2 we introduce definitions and basic results on scaling functions and scaling
sequences. In Section 3 we restate Heller’s explicit general formula for orthogonal scaling
sequences [11]. We use this formula to constructsymmetricorthogonal scaling functions
for an arbitrary dilationq ≥ 3 in Section 4. We establish necessary and sufficient conditions
for scaling functions to be symmetric, based on the modulus of their symbols. Finally, in
Section 5 we introduce a new family of symmetric orthogonal scaling functions with short
support (the “Batman” family) and compute their smoothness using the joint spectral radius
of matrices.

2. PRELIMINARY RESULTS

Fix an integerq ≥ 2. Let Sq (R) denote the set of all real sequencesc= {ck : k ∈ Z},
such that

∑
k∈Z ck = q andck = 0 for all but finitely manyk ∈ Z. It is known [7] that for

eachc∈ Sq(R) there exists a unique compactly supported8c(x) (in the sense of tempered
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distribution) satisfying

8c(x)=
∑
k∈Z

ck8c(qx − k) for almost allx ∈R, and 8̂c(0)= 1. (2.1)

We call8c(x) thescaling function corresponding toc.

DEFINITION 2.1. Thesymbolof c∈ Sq (R) is the trigonometric polynomialMc(ω) =
(1/q)

∑
k∈Z ckeikω. A sequencec∈ Sq(R) is q-orthogonalif

∑
k∈Z

ckck+qj =
{
q if j = 0,
0 if j 6= 0.

(2.2)

We recall some well-known properties ofq-orthogonal sequences. A proof of (i) can be
found in Gröchenig [10]; Chui and Lian [3] proved (ii).

PROPOSITION 2.2. (i) c∈ Sq (R) is aq-orthogonal sequence if and only if

q−1∑
k=0

∣∣∣∣Mc

(
ω+ 2πk

q

)∣∣∣∣2= 1, for all ω ∈R.

(ii) If the sequencec∈ Sq (R) is q-orthogonal, then
∑
j∈Z ck+qj = 1 for all k ∈ Z.

We define two transformations onSq(R), the translationτn for a givenn ∈ Z and the
reflectionγ , by

τn({ck}) := {ck−n} and γ ({ck}) := {c−k}.

The corresponding scaling functions satisfy

8γ(c)(x)=8c(−x), 8τn(c)(x)=8c

(
x + n

q − 1

)
, n ∈ Z.

We also define theconvolutionof b= {bk} andc= {ck} in Sq(R) by

b ∗ c :=
{

1

q

∑
i

bi ck−i : k ∈ Z
}
.

Please note the extra factor 1/q. It follows that b ∗ c ∈ Sq(R), and Mb∗c(ω) =
Mb(ω)Mc(ω).

DEFINITION 2.3. We say thatb andc in Sq(R) areequivalentand denote it byb∼ c,
if c= τn(b), or c= τn ◦ γ (b), for some n∈ Z.

THEOREM 2.4. Let b, c ∈ Sq(R). Then |Mb(ω)|2 = |Mc(ω)|2 if and only if there
exista, e, e′ ∈ Sq (R), such that

b= a∗ e, c= a∗ e′, and e∼ e′. (2.3)
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Proof. Suppose (2.3) holds. ThenMe′(ω) = einωMe(ω) if e′ = τn(e), andMe′(ω) =
einωMe(−ω) if e′ = τn ◦ γ (e). In either case,|Mb(ω)|2= |Ma(ω)|2= |Mc(ω)|2.

Conversely, suppose that|Mb(ω)|2 = |Mc(ω)|2. Without loss of generality we shall
assume thatb0 6= 0, andbi = 0 for all i < 0, for otherwise we can consider an equivalent
(shifted) sequence with this property; we shall assume the same forc. Make the substitution
z = eiω, let B(z) = Mb(ω) and C(z) = Mc(ω), and defineB̃(z) = znB(1/z), where
n = deg(B). Now the assumption readsB(z)B̃(z) = C(z)C̃(z). Note thatB(z) andC(z)
must have the same degree and hence the same number of zeros (counted with their
multiplicity). Let A(z)= gcd(B(z),C(z)). ThenB(z)= A(z)E(z) andC(z)= A(z)E′(z)
for someE(z),E′(z) ∈R[z]. By assumption,A(z)E(z)Ã(z)Ẽ(z)=A(z)E′(z)Ã(z)Ẽ′(z).
Since gcd(E(z),E′(z))= 1, we obtain thatE′(z)= Ẽ(z). Now (2.3) follows immediately
by letting Ma(ω) = A(eiω), Me(ω) = E(eiω), Me′(ω) = E′(eiω), and observing that
E′(z)= Ẽ(z) impliese′ ∼ e.

Theorem2.4suggests that theq-orthogonal sequences can be classified by the square of
the modulus of their symbols.

Although Mallat [14] proved the following theorem forq = 2, the proof generalizes
easily to allq > 1.

THEOREM 2.5. Let c∈ Sq(R) be aq-orthogonal sequence. Then8c(x) ∈L2(R).

3. SCALING SEQUENCES OF ARBITRARILY HIGH ACCURACY

In this short section we recall Heller’s classification [11] of all q-orthogonal sequences
for any given accuracyr ≥ 1 (see also [15, 17]). Let q be a fixed integer andq ≥ 2.
The simplestq-orthogonal sequence is theHaar sequenceh = {hk}, wherehk = 1 for
0≤ k < q andhk = 0 otherwise. We denote its symbol byH(ω) := (1/q)∑q−1

k=0 e
ikω.

A sequencec ∈ Sq(R) is r-accurate, or having accuracyr, if Mc(ω) = Hr(ω)G(ω)

for some trigonometric polynomialG(ω). Proposition2.2 states that everyq-orthogonal
sequence is at least 1-accurate and that a sequencec is q-orthogonal and has accuracyr if
and only if there exists a real trigonometric polynomialG(ω) such that

q−1∑
k=0

∣∣∣∣H(ω+ 2πk

q

)∣∣∣∣2r ∣∣∣∣G(ω+ 2πk

q

)∣∣∣∣2= 1. (3.1)

There are infinitely many such polynomialsG, which becomes evident from the following
lemma by Heller [11, Theorem 3.3].

LEMMA 3.1 (Heller).

q−1∑
k=0

∣∣∣∣H(ω+ 2πk

q

)∣∣∣∣2r ∣∣∣∣G(ω+ 2πk

q

)∣∣∣∣2= 0

if and only if

G(ω)= (1− cosω)r
∑
n6=qk

cne
inω,

wherecn = 0 for all but finitely manyn.
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Because of Lemma3.1, we only need a “particular solution”Gr to (3.1). Heller [11]
derived the following formula for such a solution, namely, the minimal degree solution
to (3.1);

Gr(ω) :=
r−1∑
n=0

pn(1− cosω)n, (3.2)

where the coefficientspn are given by

pn = q2r

2r(q−1)

∑
k1+···+kq1=n

q1∏
j=1

(
kj + 2r − 1

2r − 1

)(
1− cos

2πkj
q

)−kj−2r

(3.3)

for q = 2q1+ 1, and

pn = q2r

2r(q−1)

∑
k0+k1+···+kq1=n

(
k0+ r − 1

r − 1

) q1∏
j=1

(
kj + 2r − 1

2r − 1

)(
1− cos

2πkj
q

)−kj−2r

(3.4)
for q = 2q1 + 2. The following theorem summarizes these results and characterizes all
q-orthogonal sequences with given accuracy.

THEOREM 3.2 (Heller [11]). LetP(ω) be a trigonometric polynomial. ThenP(ω) =
|Mc(ω)|2 for someq-orthogonal sequencec of accuracy at leastr if and only ifP(ω)≥ 0
for all ω ∈R andP(ω)= |H(ω)|2rG(ω) for someG(ω) of the form

G(ω)=Gr(ω)+ (1− cosω)r
∑
n6=qk

cn cosnω,

whereGr(ω) is defined by(3.2)–(3.4).

We shall use Theorem3.2 to construct symmetric scaling functions for any given
accuracyr.

4. SYMMETRIC SCALING FUNCTIONS

A sequencec∈ Sq(R) is symmetricif c= τn ◦ γ (c) for somen ∈ Z. A functionf (x) is
symmetricif f (x)= f (a − x) for somea ∈R.

LEMMA 4.1. Let c∈ Sq(R). Thenc is symmetric if and only if8c(x) is.

Proof. Suppose thatc is symmetric. Thenc= τn ◦ γ (c) for somen ∈ Z. Therefore

8c(x)=8τn◦γ (c)(x)=8c

(
n

q − 1
− x
)
,

and so8c(x) is symmetric.
Conversely, suppose that8c(x) is symmetric and8c(x) = 8c(a − x). Without loss

of generality, assume thatc= {ck : k ∈ Z} so thatc0cn 6= 0 andck = 0 for all k /∈ [0, n].
Then 8c(x) is supported exactly on[0, n/(q − 1)], forcing a = n/(q − 1). Hence,
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8c(x)=8τn◦γ (c)(x). We claim thatc= τn ◦ γ (c). Indeed, note that

8̂c(ω)=Mc

(
ω

q

)
8̂c

(
ω

q

)
, and 8̂τn◦γ (c)(ω)=Mτn◦γ (c)

(
ω

q

)
8̂τn◦γ (c)

(
ω

q

)
.

Therefore,

Mc

(
ω

q

)
=Mτn◦γ (c)

(
ω

q

)
for all ω ∈R, which yieldsc= τn ◦ γ (c).

THEOREM 4.2. (i) Suppose thatc ∈ Sq (R) is symmetric. Let|Mc(ω)|2 = P(cosω),
whereP(t) ∈R[t]. Then

P(t)=G2(t) or P(t)=
(

1+ t
2

)
G2(t), (4.1)

for someG(t) ∈R[t],G(1)= 1.
(ii) Conversely, suppose thatP(t) =G2(t), or P(t) = ((1+ t)/2)G2(t), whereG(t) ∈

R[t] andG(1)= 1. Then there exists a unique (up to equivalence) symmetricc∈ Sq (R),
such that|Mc(ω)|2= P(cosω).

Proof. (i) If c∈ Sq(R) is symmetric, thenc= τn ◦ γ (c) for somen ∈ Z, andMc(ω)=
einωMc(−ω). Hence,

|Mc(ω)|2=Mc(ω) ·Mc(−ω)= e−imωM2
c (ω)=

(
e−inω/2Mc(ω)

)2
.

Since|Mc(ω)|2≥ 0 is real, the imaginary part ofe−inω/2Mc(ω)must be 0. Now, ifn= 2k,
then

e−inω/2Mc(ω)=Re
(
e−ikωMc(ω)

)=G(cosω)

for someG(t) ∈R[t]. Hence,|Mc(ω)|2=G2(cosω). If n= 2k+ 1, then

e−inω/2Mc(ω)=Re

(
e−i(2k+1)ω/2Mc

(
2 · ω

2

))
= G̃

(
cos

ω

2

)
for someG̃(t) ∈R[t]. Hence,

|Mc(ω)|2= G̃2
(

cos
ω

2

)
. (4.2)

But cos2(ω/2)= 1
2(1+ cosω), so

G̃

(
cos

ω

2

)
=G1(cosω)+ cos

(
ω

2

)
·G2(cosω)

for someG1(t), G2(t) ∈ R[t]. On the other hand, by (4.2), |Mc(ω)|2 = G̃2(cos(ω/2))=
P(cosω). It follows that eitherG1(t) = 0 orG2(t) = 0. SinceG2(t) 6= 0, it follows that
G1(t)= 0. Thus,

|Mc(ω)|2= cos2
(
ω

2

)
·G2

2(cosω)= 1

2
(1+ cosω) ·G2

2(cosω),

which proves (i).
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(ii) First, we prove the existence. Suppose thatP(t) =G2(t). ThenMc(ω)=G(cosω)
defines a symmetricc ∈ Sq(R), becauseMc(−ω) = Mc(ω). Now suppose thatP(t) =
((1+ t)/2)G2(t). Then

Mc(ω)= eiω/2 cos
ω

2
·G(cosω)= e

iω + 1

2
√

2
·G
(
eiω + e−iω

2

)
(4.3)

defines a symmetricc∈ Sq (R), becauseMc(ω)= eiωMc(−ω).
Next, we show by contradiction that the symmetricc ∈ Sq(R) is unique, up to

equivalence. Assume that there is another symmetricc′ ∈ Sq(R), such that|Mc′(ω)|2 =
P(cosω). By Theorem2.4, there exista, e, e′ ∈ Sq(R), such that

c= a∗ e, c′ = a∗ e′, and e∼ e′.

Therefore there exists somek ∈ Z, such that

Mc′(ω)= eikωMa(ω)Me(ω) or Mc′(ω)= eikωMa(ω)Me(−ω),

depending on the type of equivalence betweene ande′. In the first case, we must have
c′ = τk(c), and soc and c′ are equivalent. In the second case, since bothc and c′ are
symmetric, we have

Ma(ω)Me(ω)= ein1ωMa(−ω)Me(−ω)
Ma(ω)Me(−ω)= ein2ωMa(−ω)Me(ω).

Hence,M2
a(ω) = ei(n1+n2)ωM2

a(−ω). This implies thatMa(ω) = ±einωMa(−ω), where
n = (n1+ n2)/2 is clearly an integer. SinceMa(0)= 1, we haveMa(ω) = einωMa(−ω).
The equivalence ofc andc′ now follows from

Mc′(ω)= eikωMa(ω)Me(−ω)= ei(k+n)ωMc(−ω).

Remark. It is possible for anonsymmetricc ∈ Sq (R) to satisfy (4.1). For example,
let c0 = 4q , c1 = −4q , c2 = q , and all otherck = 0. This c is obviously nonsymmetric;
nevertheless,|Mc(ω)|2= (5− 4 cosω)2.

EXAMPLE 4.1. For accuracyr = 1 and arbitraryq > 3, Theorem3.2 implies that
|Mc(ω)|2= |H(ω)|2G(ω), where

G(ω)= 1+ (1− cosω)
∑
n6=qk

cn cosnω.

ChoosingG(ω)= 1+ (1− cosω)(c1 cosω + c2 cos2ω) and applying (4.1) and (4.3), we
obtain two scaling sequencesc1 andc2, given by

Mc1(ω)=
1

2
H(ω)

(
α+ (1− α)eiω + (1− α)ei2ω + αei3ω)

Mc2(ω)=
1

2
H(ω)

(
β + (1− β)eiω + (1− β)ei2ω + βei3ω),
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FIG. 1. The “Batman” scaling function8c1 for q = 3 (Example 4.1).

where

α = 1

2
−
√

6

4
and β = 1

2
+
√

6

4
.

The scaling sequencec1 corresponds to the continuous“Batman” scaling function
(Fig. 1), while c2 corresponds to a discontinuous scaling function (Fig. 2). Forq = 3,
the corresponding two wavelets (symmetric and antisymmetric) are shown in Fig. 3. In
Section 5, we study the “Batman” function in more detail.

EXAMPLE 4.2. Considerq-orthogonal sequencesc for dilation q = 5 and accuracy
r = 2. Choose

G(ω)= 1+ 8(1− cosω)+ (1− cosω)2
(
a1 cosω+ a2 cos2ω

)
= 1+ 8t + t2+ (a1+ a2)t

2− (a1+ 4a2)t
3+ 2a1t

4,

wheret := 1− cosω.

FIG. 2. The (discontinuous) scaling function8c2 in Example 4.1.
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FIG. 3. Two “Batman” wavelets (long and short) for dilationq = 3.

By Theorem3.2, the symbolMc(ω) of c satisfies|Mc(ω)|2 = |H(ω)|4G(ω). Solving
for a1, a2 to complete the square forG(ω), we obtain two solutions:

G(1)(ω)= (1+ 4t − 4t2
)2 and G(2)(ω)= (1+ 4t − 8

3t
2)2.

The two symmetric scaling sequences are:

c1= 1

5
{−1,0,0,2,3,6,5,6,3,2,0,0,−1} (4.4)

c2= 1

15
{−2,−2,1,6,9,16,19,16,9,6,1,−2,−2}. (4.5)

Figures 4 and 5 depict the corresponding continuous scaling functions. As we shall see in
Section 5, only8c2(x) is differentiable.

EXAMPLE 4.3. Asr grows, it becomes increasingly harder to find symmetric scaling
sequences by hand. Fortunately, Theorem4.2can be aided by standard software tools, such
asMathematica. Figure 6 shows two minimal support symmetric scaling functions in
the caseq = 4 andr = 3; the polynomialP(t), defined in Theorem4.2, has the form
P(t)= 1

2(1+ t)G2(t).
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FIG. 4. Continuous scaling function8c1, q = 5, r = 2 (Example 4.2).

5. THE “BATMAN” SCALING FUNCTION

Let q ≥ 3. In Example 4.1 (Fig. 1) we introduced the “Batman” scaling function, which
corresponds to theq-orthogonal sequence

c=
{
α,

1

2
,1− α,1, . . . ,1︸ ︷︷ ︸

q−3

,1− α, 1

2
, α

}
, whereα = 1

2
−
√

6

4
. (5.1)

The refinement equation has the form

f (x)= αf (qx)+ 1

2
f (qx − 1)+ (1− α)f (qx − 2)+ f (qx − 3)+ · · ·

+ f (qx − q + 1)+ (1− α)f (qx − q)+ 1

2
f (qx − q − 1)+ αf (qx − q − 2).

FIG. 5. Smooth scaling function8c2 for q = 5, r = 2 (Example 4.2).
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FIG. 6. Two scaling functions forq = 4, r = 3 (Example 4.3).

Let φq(x) denote the “Batman” scaling function corresponding to the scaling sequence
given by (5.1). The support ofφq(x) is precisely[0, (q+2)/(q−1)], which yields[0,2.5]
for q = 3, and[0,2] for q = 4.

In what follows, we show thatφq(x) is continuous for everyq ≥ 3. We use the
joint spectral radius to compute the Hölder exponent ofφq(x). The joint spectral radius
technique is presented in more detail by Daubechies and Lagarias [9], Berger and Wang [2],
and Lagarias and Wang [13].

Consider the general two-scale dilation equation

f (x)=
N∑
n=0

cnf (qx − n), (5.2)

where c0cN 6= 0 and q ≥ 2. If f (x) is a compactly supported solution to (5.2), then
suppf = [0,N/(q − 1)]. Let L = [N/(q − 1)]. Define theL-dimensional vectorv(x)
by

v(x)= [f (x), f (x + 1), . . . , f (x +L− 1)]T , 0≤ x ≤ 1.
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Denote the space of realL×L matrices byML(R), and definek matricesPk ∈ML(R),
0≤ k ≤ q − 1, by

(Pk)ij = cq(i−1)−(j−1)+k. (5.3)

Now the dilation equation (5.2) can be rewritten in the form

v(x)= Pd1v(σx), (5.4)

wherex ∈ [0,1] has the baseq expansion

x = 0.d1d2d3 . . . , 0≤ dj ≤ q − 1, j = 1,2, . . . ,

andσx is the fractional part ofqx,

σx = 0.d2d3d4 . . . .

Iterating (5.4), we obtain

v(x)= Pd1Pd2 · · ·Pdnv(σnx).
By Proposition2.2, the matricesPk arecolumn stochastic; i.e., the entries in each column
add up to one. Hence, the vector[1,1, . . . ,1] is a common left 1-eigenvector of allPk .
Therefore, allPk can be simultaneously block-triangularized by a real nonsingularL×L
matrixQ whose first row is[1,1, . . . ,1]:

QPkQ
−1=

[
1 0

∗ Ak

]
, 0≤ k ≤ q − 1.

The following statement by Collela and Heil [4, Theorem 3] and Wang [16, Theo-
rem 2.5] relates the Hölder exponent of the scaling functionf to the spectral properties of
the matricesAk ; we omit the proof.

PROPOSITION 5.1. Denote the joint spectral radiuŝρ(A0,A1, . . . ,Aq−1) by ρ̂, and let
s = logq(1/ρ̂). Suppose that̂ρ < 1. Then

(i) the scaling functionf (x) satisfying (5.2) is continuous;
(ii) f (x) ∈ Cs−ε , butf (x) /∈Cs+ε , for any0< ε < s;
(iii) f (x) ∈ Cs if and only if the semigroup of matrices generated by{Ak/ρ̂ : 0≤ k ≤

q − 1} is bounded.

Now we can compute the exact smoothness of the Batman scaling function as a direct
application of Proposition5.1.

THEOREM 5.2. The “Batman” scaling functionφq(x) is continuous for eachq ≥ 3,
and its Hölder exponent islogq(4/

√
6).

Proof. We consider the caseq ≥ 4 first. In this case,L = [(q + 2)/(q − 1)] = 2, and
theq matricesP0, . . . ,Pq−1 are 2× 2 matrices. Let

Q=
[

1 1
0 1

]
.
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Then

QPkQ
−1=

[
1 0
∗ Ak

]
,

where allAk are scalars. By the definition (5.3),

Pk =
[
ck ck−1

cq+k cq+k−1

]
,

and a straightforward computation yields

ρ̂(A0,A1, . . . ,Aq−1)=max(|A0|, |A1|, . . . , |Aq−1|)=
√

6

4
.

By Proposition5.1, the theorem is proved forq ≥ 4.
In the caseq = 3, the support ofφ3(x) is [0,2.5], soL = 3 and the matricesPk are

3× 3. We have

QPkQ
−1=

[
1 0

∗ Ak

]
, by taking Q=

 1 1 1

0 1 1

0 0 1

 .
Here,

A0=
[
α 0

α 1
2 − α

]
, A1=

[
1
2 − α α

0 α

]
, A2=

[
1
2 − α 1

2 − α
0 0

]
,

andα = 1/2− c√6/4. Note that

‖A‖1 :=max
{|a11| + |a21|, |a12| + |a22|

}
defines a matrix norm onM2(R) (actually, the operator norm induced by thel1-norm
in R2). Since

2|α| =
√

6

2
− 1<

1

2
− α =

√
6

4
,

it follows that‖Ak‖1= 1
2−α =

√
6/4, fork = 0,1,2. As a result,̂ρ(A0,A1,A2)≤

√
6/4,

and the semigroup generated by{4/√6Ak : k = 0,1,2} is bounded [2, Lemma II]. On the
other hand,̂ρ(A0,A1,A2)≥

√
6/4, because

√
6/4 is an eigenvalue ofA0. Thus,

ρ̂ = ρ̂(A0,A1,A2)=
√

6

4
,

which proves the theorem forq = 3.

Using the same technique, we can show that the “smooth hat” scaling function (Fig. 5),
which corresponds to the 5-orthogonal scaling sequence defined in (4.5), is differentiable.

THEOREM 5.3. Let q = 5, and c = 1
15{−2,−2,1,6,9,16,19,16,9,6,1,−2,−2}.

The symmetric scaling function8c(x) is differentiable.
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Sketch of a proof. To prove the theorem, we assemble the five matricesPk , 0≤ k ≤ 4.
A straightforward computation reveals that they have a common left1

5-eigenvector
[1,−2,3], in addition to the common left 1-eigenvector[1,1,1]. The rest of the proof
involves simultaneously triangularizingPk and applying results by Daubechies and
Lagarias [8]; we omit the details.
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