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Buchberger's algorithm calculates Groebner bases of polynomial ideals. Its efficiency depends 
strongly on practical criteria for detecting superfluous reductions. Buchberger recommends 
two criteria. The more important one is interpreted in this paper as a criterion for detecting 
redundant elements in a basis of a module of syzygies. We present a method for obtaining a 
reduced, nearly minimal basis of that module. The simple procedure for detecting (redundant 
syzygies and) superfluous reductions is incorporated now in our installation of Buchberger's 
algorithm in SCRATCHPAD II and REDUCE 3.3. The paper concludes with statistics 
stressing the good computational properties of these installations. 

1. Introduction 

The concept of  Groebner bases for polynomial ideals, introduced first for performing 
algorithmic computations in residue classes of  polynomial rings by Buchberger (1965), 
now permits the algorithmic solution of a series of  problems in polynomial rings and 
modules and especially the problem of finding all solutions of systems of algebraic 
equations; for a survey see Buchbcrger (1985). Buchbcrger's algorithm for computing 
Groebner bases is fitted for automatic computation and is installed in nearly all 
Computer Algebra Systems. 

This algorithm is roughly described as follows. Given a finite set F of  polynomials, 
calculate for each pair of  polynomials in F a so called S-polynomial and reduce it 
relatively to F to a polynomial. I f  this reduced polynomial is not 0, insert it into F. At 
termination of the algorithm aU S-polynomials reduce to 0 and F is a Groebner basis. 

The reduction of the S-polynomials is the most time consuming part of  the algorithm. 
Therefore Buchberger developed criteria for predicting reductions to 0, i.e. criteria for 
avoiding superfluous reductions. There are two types of criteria. The second one depends 
only on the two polynomials in question (their head terms have to be without common 
divisors). However, when we apply the first criterion, only very few instances remain, 
where the second criterion can be used successfully. The first type depends on the pairs 
considered before. This type is studied in detail by Buchberger (1979); and the most 
effective criterion of this type together with the second one (and a strategy, which cancels 
superfluous elements in F)  is presented in Buchberger (1985). 

The starting point for this paper was the observation, that Groebner bases can be 
characterized using a basis of its module of syzygies, as already remarked by some 
authors, for example Bayer (1982), and that reduction strategies to obtain reduced bases 
from a special basis, the so called Taylor basis, give simpler Groebner basis tests, as 
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already stated by M611er (1985). In this paper, we present a reduction strategy, which 
constructs a reduced basis of  the module of syzygies (Proposition 3.5). Bayer (1986) 
assumed that this reduced basis is already irreducible, but this is not true as example 3.6 
shows. However our experiences, and the discussion in 3.8, indicate that in only a few 
instances are all redundant syzygies not detected. 

Using the one-to-one correspondence of Taylor basis elements and the pairs for the 
S-polynomial  computation, redundant Taylor basis elements correspond to pairs satisfy- 
ing a criterion of  the first type. This is used to develop a variant of Buchberger's 
algorithm based on our reduction strategy. The detecting of redundant elements, i.e. the 
detecting of  superfluous reductions, requires only the comparison of exponent vectors of  
some power products and is for technical reasons splitted into three criteria. These three 
criteria are very similar to criterion 1 of Buchberger (1985). But they are, in contrast to 
Buchberger's, independent of  the succession of pairs considered before, and each pair 
detected once as superfluous or already used as a pair for the S-polynomial computation 
and reduction is no longer needed for subsequent tests of a criterion. This allows more 
flexibility and leads to a speeding up of the tests of the criteria. The flexibility is also used 
to implement Buchberger's criterion 2 in an optimal way. Also very important for a fast 
variant of  Buchberger's algorithm is to keep the set F of polynomials as small as possible. 
Therefore, as in Buchberger's algorithm (1985), whenever a new element is inserted into 
F, redundant  elements of F are cancelled. This is taken into account by a slight 
modification of the criteria. 

The resulting algorithm is already installed in the Computer Algebra Systems 
SCRATCHPAD Ii (see Gebauer & M611er, 1987), and REDUCE (release 3.3), (see 
Hearn, 1987). We illustrate it in detail by an example and compare its complexity in 14 
examples with an existing installation of Buchberger's algorithm. 

2. Groebner Bases  

2.1. Let K be a field and P = K[x~ . . . . .  x,] the ring of polynomials in x, . . . . .  x,, over K. 
T denotes the set of  terms (power products) x ] ' . . ,  x~i', i~ . . . . .  i,, nonnegative integers. 
We assume T to be totally ordered by < r, such that 

( 1 , = ) x ~  o, <r~0 for all ~0sT\{1} 

q~f <rCpj~q0(0i <rq)(pj fo ra l l  (o,(pi,~pjET. 

For f =  ~'I'= i c ( f ,  ~oi)~o i with q~l <r~O2 < r ' ' "  < r ~0,, and c(f,  q~,-) ~K\{0}, we define as in 
M61ier & Mora (1986) 

H c o e f f ( f )  ,= c ( f ,  q~m), H t e r m ( f )  ,= (P., 

MT(  f ) '= c( f ,  (om)rp,,. 

2.2. In the following, F wilt always be a finite set of polynomials, F = ( J ] , . .  �9 ,f ,},  O~F, 
and w.t.o.g.  H c o e f f ( f )  = 1, i = 1 . . . . .  r. Mainly for avoiding tedious notations, we define 

T( i ) ~= Hterm(  fi) ,  

r ( i , j )  ,= lcm { T(i), T ( j )  }, 

T( i , j ,  k ) , = l c m  { T(i) ,  T ( j ) ,  T(k)}. 
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2,3. For polynomials f ~ P \ { 0 }  being represented as in 2.1 Buchberger (1965) introduced 
the reduction 

f - - ~  g ( f  reduces to g modulo F) 

which means 

(Pk 
g = f - -  c(f, 4~ T----~f 

for appropriate f ~F  and k e ( 1 . . . . .  m }, such that T(i) divides ~px. 
f is called irreducible modulo F, if f =  0 or i f f - -~,  g holds for no g~P.  Denoting by 

"---+F + the transitive reflexive closure of--U'-, Buchberger showed, that 7 + is Noetherian, 
i.e. any reduction 

f ---p gl -T> g2--p . . . 

is finite: f~-+ g~ --p � 9  ~ g~., g.~. irreducible modulo F. 

2.4.  DEFINITION, F = {J] . . . . .  f~}  c P \ { 0 }  is called a Groebner basis of Ideal (F) ,=  
{ ~ =  ~ g i f  [gisP},  if the so called S-polynomials 

T(i,j) f~ T(i,j)  f. 
s c f , , f , ) . _  . T ( j )  " 

satisfy S ( f , f j )  " 7  + O, 1 <~ i < j  <~ r. 
(Buchberger gives in his publications a different definition for Groebner bases, but  he 

showed already in his thesis (Buchberger, 1965), that the definition given here is 
equivalent to his one.) There are many equivalent definitions for Groebner bases of ideals 
(and even for submodules). For instance eleven definitions for ideals and submodules are 
given in M611er & Mora (1986). In the following, we need only three equivalent 
characterizations: 

2.5. THEOREM. Let F = {f~, . . .  ,fr} ~ P\{0} and I = Ideal(F). Then the following condi- 
tions are equivalent. 

(C1) F is a Groebner basis of I. 
(C2) Mr(F) = {T(1) . . . . .  T(r)} generates Mr(I) ,  the least ideal containing M r ( f ) . f o r  

all 0 r f d .  
(C3) Let L be a basis of  the module of syzygies 

S~l)'={ (h' . . . . .  hr)EP~ i=l~h'T(i)=0}" 

Then for each (gl . . . . .  g~) ~L 

~ g~---p+O. 
i = l  

The proof of C1 ,~ C2 can be found in M611er & Mora (1986). C1 r C3 is shown for 
instance by M611er (1985). 

2.6. An element f of  a Groebner basis F is called redundant, if F ' ,=F \{ f -}  is also a 
Groebner basis, and if Ideal(F) = Ideal(U). If Ideal(F) = Ideal(F') and F is a Groebner 
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basis, then by C2, F '  is a Groebner  basis too, if and only if a j  r i exists, such that T(j )  
divides T(i), i.e. T ( i , j ) =  T(i). 

For  testing Ideal(F) = Ideal(U) in the case T(i,j) = T(i) for a j =# i, it is sufficient to 
test 

(S(f. , f j)  =- )f~ T(i,j) ~ "de I . . . .  T(j)  J j~I  a tl" ). 

Using the reduction procedure, this holds in the case 

s ( f , , f )  - 7  + o, 

or equivalently, since here Hterm(S(f.,~.)) < r  Hterrn(f~), 

7 +  0. 
Therefore,  if F is a Groebner basis and T(i,j) = T(i) holds for a j ~ i, then by the 
definition of  Groebner  bases F ' =  F\{f~} is a Groebner  basis of the same ideal. This 
explains why in Groebner  bases redundant elements are cancelled without additional 
modifications as for  instance in Buchberger (1985). 

3. A Reduced Basis for the Module Syzygies 

3.1. The main tools in this section are the resolution of Taylor  (1966) and methods for 
reducing the bases contained in this resolution. In M611er & Mora  (1986), the Taylor 
resolution and reduction strategies are presented. Since we are dealing here only with the 
first modules of this resolution, we will not explain the complete technical details and 
refer the interested reader to the mentioned paper. 

3.2. Given terms T(1) . . . . .  T(r), we call ( g ~ , . . . ,  gr) EPr homogeneous of  degree q~eT, if 
for every ie{1 . . . . .  r} a c i eK  exists, such that g~T(i) = ciqo. Then 

has the Taylor  basis Lo)..= {s0. I 1 ~ i < j  <~ r} with 

T(i,j) T(i,j) 
SU'= T(i) e i -  T(j-----~ ej 

homogeneous  of  degree T(i,j), where ek is the k th  canonical unit vector o f  Pr. Using this 
specific basis, C3 =*- C1 of theorem 2.5 is obvious. 

3.3. For  finding a reduced basis of  S m, we introduce the module of  syzygies for L m. We 
order  the r ( r -  1)/2 syzygies S u by < l, 

S O . <~Skt:~e~T(i,j) < r T ( k , l )  or (T( i , j )=T(k, l ) , j<-Nl ,  j = l = v i < k ) .  

Using this order, we denote the canonical kth unit vector in pr(r- ~)/2 no longer by ek but  
by Co., if &: is the k th  syzygy in this order. For instance let S12 < l S3s < ~ $23 be the three 
first of  the St:, then e,z = (1, 0 . . . .  ,0),  e35 = (0, 1, 0 . . . . .  0), e23 = (0, 0, 1, 0 , . . . ,  0). 

The module of  syzygies 

i< j  i<J 
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has the Taylor basis L c2~,= {So. k [ I <~ i < j  < k <~ r} with 

s,jk 2"(i, j, k) T(i, j, k) r(i, j, k) 
= T(i,j) eO - - - - e i k + - - e J k "  T(i, k) T(j, k) 

S,-ik is homogeneous of degree T(i,j, k) if we call now Z goelj homogeneous o f  degree ~o E T, 
if for all 1 ~< i < j  ~< r a cu~K exists, such that goT(i,j) = cuq~. 

Let us denote the maximal syzygy being involved in So. k by MS(i, j ,  k), i.e. 

MS(i, j ,  k),= max<,{Su, S,t,, Sjk}. 

If and only if MS(i , j ,k )  and Su. k are homogeneous of the same degree, i.e. 
T(i,j, k) = max{T(i,j), T(i, k), T(L k)}, then one of the three nonvanishing components 
of Suk is a constant. In that case, MS(i,j ,  k) can be expressed in terms of lesser syzygies 
w.r.t. < ~. For instance let MS(i,.L k) = S~k and T(i,L k) = T(i, k). Then using S~jksS Cz) 

(*) S~k T(i, j, k) . T(i, j, k) 
= r(i,j--~-So.-t---T(j,k). Sj,. 

This allows to remove Sik from L tl~. The set L~l)\{Sik} still generates S Cl), because in 
every basis representation of an S~ S ~1), Sik can be replaced by the lesser syzygies Su and 
Sj, using (,). 

3.4. The procedure for removing elements from L (1) can be applied iteratively. Whenever 
an Suk and its corresponding MS(i, j ,  k) have the same degree, then MS(i,j ,  k) can be 
expressed by lesser syzygies and hence it can be removed from the (eventually already 
reduced) generating set for S Co, as an elementary inductive argument shows. 

The tests for detecting reducible elements of L Cl~ can be done by inspecting the 
elements of L (2). These tests do not require the explicit representations of the elements o f  
L (2) but only divisibility tests of terms. 

We say criterion M holds for (i, k) briefly M(i, k), if a j < k exists, such that T(j ,  k) 
divides properly T(i, k). (M stands for Multiple.) 

We say criterion F holds for (i,k) briefly F(i,k), if a j < i  exists, such that  
T(j,  k) = T(i, k). (F stands for the fact that in the set {S~k [ degree Stk, 1 ~< l < k} the First 
w.r.t. <1 is different from Stk.) 

We say criterion B k holds for (i,j), briefly Bk(i,j), i f j  < k and T(k) divides T(i,j) and 
T(i, k) ~ T(i,j) ~ T(j, k). (B stands for the fact that when we are considering already 
elements of type Stk for reduction, we have to go Backwards w.r.t. < l  for reducing S,7.) 

3.5. PROPOSITION. The module of syzygies S ~) us generated by 

L*,= { S o. [ 1 <~ i < j <~ r, --7 M(i, j), -7 F(i, j), -7 Bk(i , j) for all k > j }. 

PROOF. If M(i, k) holds true, then a j < k  exists, such that T(j,  k) divides properly 
T(i, k), especially T(i, k) = T(i,j, k) a n d j  r i. This means, a syzygy Si.ik (in case i < j )  or 
Sj;, (in case j < i) exists which is homogeneous of degree T(i, k) and has Sjk for its 

maximal syzygY: 

Sjk < i Sik because T(j, k) < rT(i, k) 

So. or Sj~<jSik because j < k , i < k  and T ( i , j ) ~ r T ( i , k  ). 

If F(j,  k) holds, then T(j ,  k) = T(i, k) for a j  < i. This means that Sj~k is homogeneous o f  
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degree T( j,  i, k) = T(z', k) and by similar arguments as before MS(  j, i, k) = Si.,,. 
If  Bk(i , j)  holds, then analogously MS(i , j ,  k) = So.. 
The arguments in 3.4 give the assertion. 

3.6. The reduced basis L* is not always a completely reduced basis as the following 
example shows. 

EXAMPLE. Let r = 4 and T(1) = x2y 2, T(2) =y2z ,  T(3)=  x2z, T(4) = xyz.  Then 

T(1, 2) = T(1, 3) = T(2, 3) = r(1, 4) =x2y"z ,  

T(2, 4) = xy2z, T(3, 4) = x2yz. 

M(1, 4), F(2, 3), and B4(2, 3) hold but no other criterion of  3.5. Therefore the reduced 
basis by 3.5 is 

L *  = 

But 

This implies 

S13 ~-- SI4 -yS34 by SI34ES (2), 

Sja = $1~_ + xS24 by SI24~S (2~. 

S~3 = Sl2 + xS24 - yS34. 

Hence S~3 is redundant in L* and 

also generates S (j). 

{S12, S24, S34} 

3.7. A modification of  criterion F would have given the minimal basis in the example. 
Criterion F(2, 3) was based on the syzygy S~2~ yielding 

0 = Si2 - $13 + $2~ 

and used to  cancel $23 because S~2 and S~3 are kept in L*. But S~3 is redundant, if  L* 
contains Si2 and 5:23. Hence {$12, $23, St4, Sz4, $34} is a basis o f S  ~ too. By M(1, 4) and 
B4(2, 3) as before, $23 and S~4 may be omitted. This gives the irreducible basis 
{St2, S24, S34}. 

A consequent application of this data is, when already redundant syzygies of de- 
gree < v r and syzygies S o. of degree ~ with j < k are cancelled by the criteria, then to 
delay the decision, what element S;k of the set 

S~,k = {Sjk [ 1 <~j < k, T( j ,  k) = 'r} 

not  to cancel. We may take an arbitrary SjkeS~,k, because i ~ j ,  SjkeS~.k we have 
(w.l.o.g. i < j )  

0 = T(i, j------) SU - S,k + Sjk, 

and S o. can be expressed by lower order syzygies of the basis. 
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3.8. Condition C3 of theorem 2.5 allows an easier Groebner basis test, when the basis o f  
S o~ is a minimal basis. Since S C~) is homogeneous, it is reasonable to restrict the 
considerations to homogeneous bases, such that the notions minimality and irreducibility 
coincide. A (homogeneous) basis L of S m is irreducible if and only if no syzygy for L 
exists, which has a esK\{O}=,K x for a component (allowing the cancellation of an 
additional element of L). If  L is constructed by a successive cancellation of reducible 
elements from L o), then each syzygy for L with a component c ~K x originates f rom an 
Suk, which also has a component from K -Y, allowing the cancellation of the same element, 
cf. MSller & Mora (1986). 

The strategy for finding the reduced basis L* works in a similar way. We take each Suk, 
which has a component from K x, but we always decide to take MS(i,j, k) for redundant. 
If  S,yk has more than one component from K -~, then our choice of  the redundant element 
may cause that we cancel the "wrong" basis element as seen in 3.7. 

Only when many So. k exist, such that at least two of the three non-zero components are 
constants, and when we often select the "wrong" basis element for cancellation in such 
situation, then we have still many reducible elements in L*. Fortunately, we found only 
more or less artificial examples like 3.6, where this occurs. 

4. Buchberger's Algorithm 

4.1. Buchberger's algorithm deals with the problem of finding a Groebner basis of a 
polynomial ideal, when a finite basis of the ideal is given. This algorithm was originally 
introduced by Buchberger (1965) and refined in subsequent papers. For a survey see 
Buchberger (1985). 

4.2. We will present briefly a version of  the algorithm recommended by Buchberger 
(1985). In order to avoid the technical details for reducing Groebner bases, we concen- 
trate on the construction without reduction. 

I N P U T :  {f ,  . . . . .  = P \{o} .  

INITIALIZATION: B ,= { { i,j}/1 <<. i <j <~ r}; 
G,={f ,  . . . . .  f i};R,=r.  

ITERATION: while there exists {L J}~B repeat 
i f  "-7 criterion 1 and T(I)T(J) ~ T(I, J) then 

h ,=S(f,,fs); 
h ,= NF(h, G); 
if h r 0 then 

fR+,,=h; G,=Gw{fR+~}; 
S ,=Bw{{ i ,  R + l}/1 < i  ~<R}; 
R,=R + l; 

B'.=B\{{I, J}}. 

OUTPUT:  G, a Groebner basis of ( f i  . . . . .  fr). 

Here, NF(h, G) means a polynomial irreducible modulo G, such that h - ~  + NF(h, G). 
Criterion 1 applied to {L J} means that there is a K~{1 . . . . .  R}\{ I , J}  with 
T(L J) = T(I, J, K) and {/, K} r {J, K} (i B. The criterion T(I)T(J) = T(I, J) is criterion 
2 of Buchberger (1985). 
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4.3. The correctness of algorithm 4.2 is shown by Buchberger (1979). Let us prove it by 
means of  C3 of theorem 2.5. The syzygies S O correspond bijectively to all {i,j} which are 
assigned once in the algorithm to B and removed later from B. We order the S u by < ~, 
such that So.<sSkt, if {i,j} is removed from B earlier than {k, l}. If criterion 1 holds for 
{1, J}~B, i.e. {L K}r {J, K}r T(I, J, K), then let for simplicity of  notation 
I < J < K. The syzygy StjK shows 

7'(1, J, K) T(I, J, K) 
0 = Sh  Six + Ssx. T(I, K) T(J, K) 

By the ordering < B, Sm < n S u  and SjK < 8 Su. Hence Su is expressible in terms of 
lower order syzygies. Thus, if criterion 1 holds for {I, J}, then SIj is redundant. For the 
remaining syzygies SIj we have in case T(I)T(J) = T(I, J) 

S(fz, f j)  {y~.fA + O, i.e. S(f~,f j)  -W" + O, 

as already shown in Buchberger (1965), and otherwise 

S(f~,fs) - ~  + NF(S(fz,  fs), G) =JR +, ~ O. 

Therefore at termination B = O, we have 

T(I, J T(L d 
T(1)) ~ )  j j - ~  + 0 for all S~j, 

which are not redundant, and hence G is a Groebner basis by C3 of theorem 2.5. 

4.4. A consequent use of the reduction strategy in 3.5 gives the following modifications 
of Buchberger's algorithm. 

INPUT: { f b . - .  ,fr} = P\{0}. 

INITIALIZATION:  G ,= {fj}; D :=0; 
for  t :=2 to r 

D ,= updatePairs (D, t); 

R : = r .  

ITERATION: while there exists (I, J ) a D  repeat 
h ,=S( f , , J ) ) ;  
h ,= NF(h, G); 
i f  h r  then 

f B + l , = h ;  
D ,=updatePairs (D, R + 1); 
G : = G w { f e + ~ } ;  R , = R  + 1; 

O .'= D\{(/,  J)}. 

OUTPUT:  G, a Groebner basis of {ft . . . . .  fi}. 

Here the subalgorithm updatePairs works in the following way, when applied to a set of 
pairs D and a positive integer t. Cancel in D all pairs (i, j), which satisfy 
T(i, j)  = T(i,j ,  t), T(i, t) # T(i , j)  v~ T(j ,  t), i.e. all pairs (i,j) with Bt(i,j). Denote the set of 
remaining pairs by D'.  Let D1 := {(i, t) I 1 ~< i < t}, Cancel in D1 each (i, t) for which a 
( j ,  t )ED I exists, s.t. T(i, t) is a proper multiple of T(j ,  t), i.e. each (i, t) with M(i, t). The 
subset of  D 1 containing the remaining pairs (i, t) is denoted by D 1". In each nonvoid 
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subset { ( j , t ) [ T ( . L t ) = T }  of DI '  with v e T  fix an element (i,t) satisfying 
T(i)T(t) = T(i, t) or if no such (i, t) exists, fix an arbitrary (i, t). Cancel the other elements 
of {(j, t) IT( j ,  t) =~} in Dl ' .  Finally delete in Ol '  all (i, l) with T(i)T(t) = T(i, t) and 
denote again by D 1' this finally obtained subset of D 1'. The set D l 'w  D '  is returned by 
the subalgorithm. 

By construction of  the subalgorithm, we have after the call of  D ,= updatePairs (D, t), 
that {S,7 ] (i,j) ED} together with some S o. with 1 <~ i < j  ~ t, T( i )T( j )  = T(i,j),  constitute 
a basis of the module of syzygies 

{(gl . . . . .  gt)~P'  i=1 ~ g,T(i) =O}. 

This follows from proposition 3.5 and the modification in 3.7. 

4,5. The correctness of algorithm 4.4 is shown in analogy to 4.3. Its termination results 
from the same arguments as the termination of algorithm 4.2. By construction, each new 
fR+,  is irreducible with respect to fl  . . . .  ,fR. Therefore especially 

(T(1) . . . . .  T(R)) c (T(1) . . . . .  T ( R +  1)). 

This gives for (strictly) increasing R a strictly increasing chain of  ideals, By Noetherian- 
ity, this chain is finite. Thus the iteration is repeated only a finite number of times. 

4.6. Buchberger (1985) presented algorithm 4.2 in a version, which already cancels 
redundant basis elements in G. In a similar way, algorithm 4.4 can be modified. This 
modification for reducing redundant basis elements is already installed by the authors in 
SCRATCHPAD II and with minor changements also in REDUCE 3.3. The modification 
of algorithm 4.4 is based on the following idea. 

If the input elements f t , . - -  ,fr are ordered, such that T(1) ~> r " "  >--r T(r), then an f .  
is redundant in the final Groebner basis, if and only if for a j  > i T(i,j) = T(i) holds, see 
2.6. ( j  < i is excluded by the order of the input elements for i ~< r and for i > r it is 
impossible because thenf i  is a fR+ l and T(R + 1) has no divisor T( j ) , j  < R + 1.) Then 
T(j ,  t) divides T(i, t) for all t > j .  Hence M(i, t) holds or T(i, t) = T(j ,  t). Therefore S ,  is 
redundant or equivalent to Sj, by 3.7. 

Thus, when T(i, j)  = T(i), then f .  is removed from the actual G and in the subsequent 
calls of updatePairs (D, t), t > j ,  the pair (i, t) is ignored. 

4.7. The cancelling of redundant basis elements in the actual set G leads in both 
algorithms to space savings and to faster tests of criterion 1 in algorithm 4.2 or faster 
applications of updatePairs in algorithm 4.4 respectively. However, for several reasons it 
is to be expected that algorithm 4.4 is faster than algorithm 4.2, as the statistics in section 
5 will confirm, 

(1) B contains usually more elements than D, because pairs {I, J} are assigned to B 
before being tested by criterion 1 or criterion 2, whereas in updatePairs all possible 
tests are already done, before pairs (i,j) are assigned to D. 

(2) If in the iteration of algorithm 4.2 the pair {I, J} is in one loop {I, J~} and in a later 
loop {I, J2} with the same/ ,  then the test of criterion 1 includes in both cases the 
testing of the same {I,K} for some K. Such surplus tests do not occur in 
updatePairs. 
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(3) Following a recommendation of Buchberger, in algorithm 4.2 the pairs {L J} ~B is 
always selected, such that 

T(I, J) = min{T(K, L)/{K, L}~B}, 

but  it is left to chance, what pair {/, J } s B  with minimal T(I, J) is selected. 
updatePairs selects among all (i, t) with 1 ~ i < t and same T(i, t) one element 
which satisfies criterion 2 and omits the other (i, t). This chance of  omitting some 
pairs if one satisfies criterion 2 is sometimes lost in algorithm 4.2 as the careful 
analysis of  some involved examples showed and it causes, that in some examples 
more  reductions S( f~ , f j ) - -~+0  are detected by the criteria in algorithm 4.4 than 
in algorithm 4.2. 

5. E x a m p l e s  

5.1. In 4.6 we described how algorithm 4.4 has to be modified in order to obtain a 
Groebncr  basis without redundant elements. The following example illustrates this 
version of  algorithm 4.4. 

Let P ..= Q[x, y, z], Q the field of  rationals, and < r be the lexicographical term ordering 
with x < rY < rZ. We want to calculate a Groebner basis of ( f l , f2 , f3)  with 

1 
f~,=zyZ + 2x + ~  , 

1 
f 2 , = z x 2 - - y  2 ---~x, 

1 
f3,= --z + y2x + 4x 2 +-~ , 

see example 6.15 of  Buchberger (1985). In the iteration of the algorithm, we always select 
(L J ) E D ,  such that  

T(I, J) = min{T(K, L) I(K, L )eD} .  

fl  and j~ are redundant because of T(1, 3 ) =  T(1) and T(2, 3 ) =  7"(2). Therefore the 
initialization gives first (t = 2)G = {f,,A} and D = {( 1, 2)} and then (t = 3) 

G = {fa}, D = {(1, 3), (2, 3)}. 

Because o f  B3(I, 2) the pair (1, 2) was removed from D. 
The first pair (L J) is (2, 3). Then 

1 2 1 
f4,= NF(S(f2,f~), G) = -y2x~  + y~- - 4x 4 - ~ x + ~ x 

gives D = {(1, 3)}, because f l  and f2 are redundant and T(3)T(4)= T(3, 4), such that 
neither (1, 4) nor (2, 4) nor (3, 4) is inserted into D. f3 is not redundant. Therefore 

a = { A , A } .  
The only  choice for the next (/, J)  is ( l ,  3). Then 

l y  2 1 
A := NF(S(f l , f3) ,  G) = y4x 4- 4x2y 2 + -~ + 2x + 

gives D ----- {(4, 5)}, because again f~ and f2 are redundant and T(3)T(5) = T(3, 5), such 
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that neither (1, 5) nor (2, 5) nor (3, 5) but (4, 5) is inserted into D. We also get 
G = {J;,A,Js}. 

The only choice for the next (/, J) is (4, 5). Then 

1 , l x 2  f6 ,= NF(S(f4,fs), G) = y4 + 2 y - x  + 2x 3 + -~ 

gives D = {(5, 6)} by the same arguments as before and in addition by M(4, 6). We also 
get G{A,A, f6} because of T(5, 6) = T(5). 

The only choice for the next (/, J) is (5, 6). Then 

4 1 3 4 1 
fv := NF(S(fs,f6), G) = x2y z + ~ y2 _ 7 x4 - -  7 X "]- -~ X -~ -~ 

gives D = {(4, 7), (6, 7)} by similar arguments as before and G{f3,f6,fT} because of 
T ( 4 ,  7)  = T ( 4 ) .  

The next (L J)  is (4, 7). Then 

f .  :=NF(S(f4,fT), G) = y2x + 1@ 2 - 8x 5 - 58x 4 + 9x2 -I-" 9x 

gives D = {(6, 8), (7, 8)} because of T(3)T(8) = T(3, 8) and B8(6, 7) and G = {A,A,A} 
because of T(7, 8) = T(7). Then 

fg .=NF(S(fv , fs) ,G) y2 112 6 84 ~ 1264 , 13 3 
= +2--~4-g x -3-05 x 305 x - 5 - ~ x  

84 2 1372 2 
+ 3--0~x + ~ ' ~ x  -t--274---- ~ 

gives D = {(6, 9), (8, 9)} because of  B9(6, 8) and G = {f3,fg} because of T(6, 9) = T(6) 
and  T(8, 9) = T(8). Then 

7 29x6 17 4 11 3 1 , 15 1 
flo,= NF(S( fs,f)),  G) = x + - ~  - - - ~  x - - ~  x + - ~  x" + i-6 x +-4 

gives D={(6 ,9 )}  because of T(9)T(IO)=T(9,  10) and T( 3) T(10) = T( 3, 10) and 
G = {f3,fg,/10}. Then 

NF(S(f6,fg), G) = O. 

Now D = 0 and the algorithm terminates giving the Groebner basis 

G = 
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5.2. The following statistics compare the algorithms 4.2 and 4.4. All examples can be 
found in Gebauer (1985). 

Algorithm 4.2 Algorithm 4.4 

Example a b e d e f g h k l m h k 1 m 

Exl 7 6 1 RN 3 2 6 8/3 59 15 1.68 8/3 2 7 0,96 
Ex5 6 6 l RN 3 10 6 16/7 151 22 16.32 15/2 3 6 8.51 
Ex27 7 7 g RN 3 2 6 12/15 139 19 5.58 12/12 11 12 2.66 
Exl2 6 6 g RN 3 3 13 10/19 62 16 28-18 10/17 11 13 1t.03 
Ex2 3 3 I RN 3 7 3 7/3 38 10 0.60 7/I 2 3 0.56 
Ex8 3 3 g RN 3 4 6 3/5 12 6 0.51 3/5 5 6 0"56 
Ex3 4 4 I RN 2 7 5 13/16 66 17 6.98 13/9 6 6 3-19 
Exl0 4 4 g RN 2 4 7 6/8 31 10 5.34 6/5 5 7 2.10 
Ex4 5 5 1 RN 2 t6 5 106/126 2392 111 5749.13 106/100 29 17 542-38 
Exl 1 5 5 g RN 2 5 13 10/21 75 15 52.69 10/20 16 13 22-27 
Exl4 6 6 g RFI 3 5 13 13/12 120 19 203-13 13/9 7 13 60.04 
Ex28 6 5 g RFI 7 0 I 38/66 746 44 167.99 38/65 33 25 51.88 
Ex9 3 3 g RN 9 10 19 18121 178 21 41-11 18/21 13 19 27-73 
Ex29 6 6 g RN 2 6 22 18/53 191 24 904-41 18/50 34 22 237-21 

a Number of input polynomials. 
b Number of variables. 
c Lexieographical (t) or graduated (g) term ordering. 
d Coefficient field of rational numbers (RN) or of 

rational functions over the integers (RFI). 
e Maximal degree of input polynomials. 
f Maximal degree of output polynomials. 

g Length of Groebner basis. 
h Number of NF compulations: number of non-vanishing/ 

vanishing NF's. 
k Maximal cardinality of set B or D respectively. 
l Maximal eardiaality of G. 
m Computing time in seconds on an IBM 3090 mainframe. 
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