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COMMENTS ON 
“LOGIC PROGRAMMING WITH EQUATIONS” 

PIER GIORGIO BOSCO, ELI0 GIOVANNE’ITI, 
CORRADO MOISO, AND CATUSCIA PALAMIDESSI 

D This note discusses the results of the compilational approach of equational 
logic programming developed by Van Emden and Yukawa, and compares 
them with similar results obtained by Bosco et al. and by Fribourg. We 
show that Van Emden and Yukawa’s completeness result contains an 
inaccuracy, and we suggest how to correct it. Cl 

1. INTRODUCTION AND TERMINOLOGY 

The purpose of this note is to analyse the differences between some results 
contained in [ll and analogous results in [2,31. The three papers deal with the issue 
of how the basic execution mechanism of logic programming (i.e., SLD resolution) 
can be exploited to handle some kinds of equational theories: a set E of equations, 
which may be interpreted as a rewriting system (by orienting the equations), can be 
transformed into a set of Horn clauses to which ordinary SLD resolution can be 
applied to compute normal forms (instead of rewriting) and to solve equations 
(instead of narrowing [6]) w.r.t. the theory E. 

This technique, which we call Jutrening, consists in transforming functional 
nestings into atom conjunctions in the bodies of the Horn clauses that are created. 
See [2,3] for the definitions of the flattening algorithms for generic term rewriting 
systems, and see [1,5,7,8] for systems with constructors (i.e., rewriting systems 
involving the distinction between defined-function symbols and data-constructor 
symbols). The only difference between the two versions is that in the latter case 
applications of constructors are not flattened. 

Following the notation of [2,3], we will indicate by Raat the set of Horn clauses 
obtained by compiling the rewriting system R by means of the appropriate version 
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of the flattening algorithm, by flatg(t1 = t2) the analogously compiled form of the 
equational goal tl = t2 [e.g., flatg(g(X) =f(Y)) is (?-g(X) = Vl, f(Y) = V2, 
eq(V1, V2))], and by flatterm(t, 2) the flat form of the term t with 2 as “outer- 
most” new variable [e.g., flatterm(f(g(X)), Z) is (g(X) = V, f(V) = Z)]. 

The main results of [l] concern theories with constructors. Using the above 
terminology, they can be rephrased as follows: 

(i) Soundness for flattening + resolution (i.e., resolution applied to flattened 
programs and goals) w.r.t. narrowing: a resolution step on ?- flatterm(t, X) 
yields a new goal ?- flatterm(t’, X), where t’ is obtained from t through a 
narrowing step (Theorem 7.3). 

(ii) Completeness for flattening + resolution w.r.t. reduction to normal form, in 
the case of terminating rewriting systems (with some further restrictions): 
every refutation of ?- flattermtt, X) computes a substitution that binds X 
to a (strongly) canonical form of the ground term t, if any (Theorem 7.4). 

(iii) Declarative equivalence between the theory E and EBat under the standard 
equality axioms (Theorems 7.1, 7.2). 

Results (i) and (ii> seem to be more general than the analogous results in [2,3], 
since they apply to terminating, but possibly nonconfluent, systems. Moreover, (ii) 
does not require, in contrast with [2,3], the use of the reflexivity axiom, with a 
consequent gain in efficiency. 

As a matter of fact, (ii), as it is formulated in [l], does not hold unless a further 
restriction on the rewriting system is imposed, namely the condition that functions 
are everywhere defined: a defined function f is said to be everywhere defined if a 
reduction step can be applied to every term of the form f(d,, . . . , d,), where the 
di’s are ground data terms (i.e., terms without definite-function applications in 
them). This merely amounts to dropping the words “of t” in line 7 of Theorem 7.4. 

On the other hand, the generality of some results in [2,3] exceeds the domain of 
canonical rewriting systems that was used as reference framework in those papers. 
In the following section, the connections between various properties stated in [l-41 
are made clearer, despite the differences of the formulations. 

2. THE CORRESPONDENCE BEmEN RESOLUTION AND NARROWING 
OR REWRITING AND THE ROLE OF THE REPLEXM’I?’ AXIOM 

Let R be a rewriting system. The properties of flattening + resolution proved in 
[2,3] that are of interest in this discussion are roughly the following: 

(1) Soundness w.r.f. narrowing. For every refutation of flatg(t =s) w.r.t. 
Rflat u (X=X, eq(X, Xl), with answer substitution u, there is a succeeding 
narrowing sequence in R computing the same substitution for the variables 
in t = s (Property 3, Theorem 3, in [3]). 

(2) Completeness w.r.t. rewriting. If t +R* s via a basic derivation 161, then 
there exits a substitution u such that Raat U {X=X) K (+ flattermct, Z), and 
OZ = s. Therefore, u will be computed by the SLD-resolution of 
?- flattermct, Z) (Lemma in [2]). 

(3) Completeness w.r.f. narrowing. For every succeeding basic narrowing se- 
quence [6] that computes a solution u of the equation t 1 = t2 in R, there 
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exists a (SLD) refutation w.r.t. RRat U (X=X, eq(X, X)) of the goal 
flatg(t1 = t2) that computes the same solution (Theorem 2 in [3]). 

These propositions and their proofs are independent of any assumption (in 
particular canonicity) on the rewriting system: they state that flattening + resolu- 
tion, considered as an equation solving algorithm, is sound and complete w.r.t. 
basic narrowing (i.e., it finds all and only the solutions that basic narrowing does). 
They were given in [2,3] within the framework of canonical systems, for, since only 
in this case is basic narrowing complete w.r.t. ordinary first-order logic semantics, 
only for canonical systems does (3) imply the ordinary completeness of flattening 
+ resolution. 

Owing to this independence of the properties of the rewriting system, propo- 
sition Cl), if restricted to theories with coastmctors, is basically equivalent to 
result 6). 

For nonconfluent rewriting systems the very basis of narrowing as equation-solv- 
ing algorithm fails, because of the failure of the property that equality between 
terms is operationally equivalent to reduction to a common form. A completeness 
result analogous to (3) cannot therefore be obtained with the approach taken in 
111, where terminating, but possibly nonconfluent, rewriting systems are consid- 
ered. Only a much weaker property of completeness with respect to rewriting, 
similar to (2) can be established, namely (ii), which ensures that flattening + 
resolution is able to compute, for every term t, at least one of its normal forms. 

There is still one difference between (ii) and (2), (3), and more generally 
between the two approaches. Namely, in (2), (3) the flattened form of the program 
has to be supplemented with the reflexivity axiom, which is, for convenience of 
some proofs and of the definition of flattening, represented by a pair of unit 
clauses, corresponding to two different roles in the derivation: 

eq(X, X). Its application corresponds to the final syntactical unification step 
of succeeding narrowing sequences. 

X = X. Its application corresponds to the possibility of not selecting a subterm 
during the narrowing or rewriting of a term. 

In dealing with equality, the flattening compilation step replaces the use of the 
transitivity and substitutivity axioms, but does not replace reflexivity and symmetry. 
While the symmetry axiom can be eliminated owing to the confluence property, 
recourse to the reflexivity axiom (or to an equivalent rule) cannot be avoided in 
general if completeness is to be preserved, and therefore its inclusion in the set of 
Horn clauses used for resolution is mandatory. 

On the other hand, as remarked in the introduction, in 113 the use of the 
reflexivity axiom is not required, but at the same time the restriction to signatures 
with constructors, not needed in [2,3], is introduced. As a matter of fact, if we try 
to specialize the propositions (ii) or (2), (3) to the case of theories with construc- 
tors, we observe that the axiom X=X is still necessary, as can be seen from the 
following example, drawn from [4]: Given the term rewriting system R = {f(X) = 
a, g(b) = a}, where a, b are constructors, in solving (verifying) the equation 
f(g(a)) = a, valid in R, which is flattened into ?-g(a) = I’l, f(U) = V2, 
eq(V2, a), resolution with X=X is necessary to resolve (i.e., eliminate) g(a) = Vl. 



88 PIER GIORGIO BOSCO ET AL. 

This is therefore a counterexample to the present form of Theorem 7.4: R is a 
terminating system, and every equation in R is of the form f(tl, . . . , tn> = s, where 
no defined symbols occur in any of tl, . . . , tn. Consider the ground term f(g(a)) 
(f is a defined symbol), whose normal form is a, strongly canonical (i.e., a data 
term): the SLD tree for S’ u (?- G), with S’= {f’(a,X), g’(a,b)] and G = 
(g’(V, al, f’(X, Vl, is finitely failed, while according to the theorem there should 
not be failures and every refutation should bind X to a. 

From the results in [4] it follows that, in the case of theories with constructors, 
(ii) still holds even with the elimination of X=X, provided that functions are 
everywhere defined. We may conclude that Theorem 7.4 of 111 becomes 
correct-and equivalent to the result of [4]-only with the addition of the above 
restriction. In the terminology of [l] this amounts to requiring that all the 
canonical terms, and not just the canonical forms of the term to be reduced, be 
strongly canonical. 

If, on the other hand, the condition that functions are everywhere defined is not 
imposed, then the need for the explicit presence of the reflexivity axiom requires 
that every system P flattened by the transformation adopted in [ll be supple- 
mented with a clause f’<f(Xl,. . ., Xn>, Xl,. .., Xn) for each symbol f of a 
function not everywhere defined. In this case the SLD tree for P,,, U {?- G] for 
the left-to-right PROLOG strategy may present both finite failures and infinite 
computations. 

3. CONCLUSIONS 

If one does not want to impose restrictions on the theories with constructors, the 
reflexivity axiom must be kept [2,3,8]. The elimination of X=X results in a 
remarkable reduction of the search space, but modifies the semantics of the 
underlying equational theory: a strict semantics for function and constructor 
applications must be adopted. 

In K-LEAF (a logic + functional language based on nonterminating conditional 
rewriting systems with constructors) a reduction of the search space has been 
achieved, without loss of completeness, by replacing the axiom X-X with an 
outermost atom selection rule plus an elimination rule [7]. Moreover, in many useful 
cases (namely, the so-called sequential systems) this strategy avoids finite failures 
in computing normal forms. 

This work has been partially supported by EEC ESPRIT Project no. 415 (Parallel Architectures and 
Languages for Advanced Information Processing). We would like to thank Giorgio Levi for helpful 
discussions, and the referees for their useful suggestions. 
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