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ABSTRACT
CD134 (OX40) is expressed on activated CD4� donor T cells in allogeneic stem cell transplant recipients with
acute graft-versus-host disease. The data presented here reveal that differential expression of CD25 by CD4�

CD134� T cells allows separation of these activated cells into 2 phenotypically and functionally distinct
alloreactive T-cell subsets. These subsets exhibit distinct tissue associations, with CD4� CD134� CD25� T
cells preferentially found in lymphoid tissues and CD4� CD134� CD25� T cells located in lymphoid tissues
and inflamed extralymphoid tissues. The CD25� T-cell subset exhibited potent proliferative responses to both
concanavalin A and allogeneic host leukocytes. By contrast, the CD25� T-cell subset proliferated minimally in
response to either treatment and inhibited alloantigen-induced proliferation of the CD25� subset. Prolifera-
tive unresponsiveness associated with the CD25� T-cell subset did not extend to cytokine secretion. When
stimulated with alloantigen, both CD4� CD134� T-cell subsets responded by secreting interferon-� and
interleukin (IL)-10, and neither T-cell subset produced detectable levels of IL-2 or IL-4. Three-day treatment
of the CD25� T-cell subset with IL-2 restored the proliferative responsiveness of these cells to host alloan-
tigens, suggesting that the proliferative unresponsiveness associated with this T-cell subset reflected a
requirement for IL-2. The preferential tissue associations and distinct functional properties associated with
these separable alloreactive CD4� CD134� T-cell subsets suggest that they participate differentially in clinical
graft-versus-host disease.
© 2004 American Society for Blood and Marrow Transplantation
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NTRODUCTION

Acute graft-versus-host disease (GVHD) is a ma-
or and frequently lethal complication of allogeneic
tem cell transplantation [1-4]. The disease is charac-
erized by damage to epithelial cells and involves
ultiple organ systems, including the skin, gastro-

ntestinal tract, and liver [2,5]. The disease occurs
hen mature donor T cells respond immunologically

o host-derived major histocompatibility complex

MHC) and/or minor histocompatibility antigens pre- n

98
ented by host antigen-presenting cells [6-9], and re-
ent data indicate that disease progression can occur
n the absence of MHC class I or II molecule expres-
ion by target epithelial cells [10]. Although clearly
mplicated in disease, the physiologic contributions of
D4� T cells to disease induction and progression

emain poorly understood.
CD134 (OX40) is a member of the tumor necrosis

actor receptor superfamily and functions as a co-
timulatory receptor, providing a complementary sig-

�
al, or “second signal,” to CD4 T cells after signal-
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ng through the T-cell receptor [11]. Naive T cells do
ot express CD134; however, this molecule is rapidly
pregulated after T-cell receptor engagement [12],
nd CD134 expression is associated with activated
ntigen-specific CD4� T cells in autoimmune disease
rocesses and in GVHD [13,14]. The naturally occur-
ing ligand of CD134 (CD134L) is expressed by an-
igen-presenting cells—including dendritic cells, B
ells, and macrophages—and has been shown to de-
iver a second signal to CD4� T cells [15-20].
D134L has also been reported on endothelial and
icroglial cells [21,22]. Signaling of CD4� T cells

hrough CD134 ligation has been shown to enhance
ell accumulation, increase cell survival, increase the
xpression of antiapoptotic proteins, and promote the
eneration of T-helper type 1 and 2 cytokines [23-28].
n addition, cell signaling via CD134 has been impli-
ated in the generation of memory T cells and the
eversal of peptide-induced peripheral tolerance or
nergy [13,23,26,29-32].

CD134 is expressed on activated CD4� donor T
ells in rats, mice, and humans with GVHD [14,33-
6]. In the rat, CD134 was found to be rapidly up-
egulated on donor CD4� T cells after transplanta-
ion, and cells within this population were shown to be
lloreactive [14]. In the mouse, blocking the interac-
ion between CD134 and CD134L by administering a
onoclonal anti–CD134L-specific antibody pre-

ented GVHD, suggesting that CD134 ligation is
ritical for disease progression [33]. Blazar et al. [37]
xtended these studies by demonstrating that a
D134-specific antibody with receptor agonist activ-

ty promoted disease and that the disease was less
evere in animals deficient for CD134 or CD134L.
hus, these observations strongly implicate CD4�T

ells that coexpress CD134� in GVHD.
Activated GVHD-associated T cells can also ex-

ress CD25, the interleukin (IL)-2 receptor (IL-2R) �
hain. To evaluate the relationship between GVHD-
ssociated CD4� CD134� and CD4� CD25� T cells,
ymphocytes from rats with GVHD were assessed for
xpression of all 3 markers. In this study, we report
hat GVHD-associated CD4� CD134� T cells can be
ivided into 2 T-cell subsets distinguished by expres-
ion of CD25. Because both CD25 and CD134 are
ssociated with T-cell activation, we hypothesized that
hese phenotypically distinguishable CD4� CD134�

-cell subsets would exhibit distinct biological prop-
rties. The results of the studies described here reveal
hat the CD4� CD134� T-cell subsets exhibit distinct
issue localization patterns and distinct in vitro prolif-
rative responses, that the CD25� subset is immune
uppressive, and that both subsets are composed of
lloreactive T cells. These data suggest that the sep-
rable CD4� T-cell subsets introduced here differen-
ially contribute to the complex pathology associated

ith clinical GVHD. a

B & M T
ATERIALS AND METHODS

ats

Female or male Buffalo and (Lewis � Buffalo)F1
ats 8 to 16 weeks of age were used in this investiga-
ion. These animals were obtained from the breeding
olony at the Portland Veterans Affairs Medical Cen-
er (Portland, OR), and the breeder rats maintained in
his colony were from Harlan Sprague-Dawley, Inc.
Indianapolis, IN). All rats were housed at the Veter-
ns Affairs Medical Center veterinary medicine unit
Portland, OR) and cared for according to institu-
ional guidelines, with free access to food and water.

ithin any experiment, animals were matched for sex
nd age.

nduction of GVHD

GVHD was induced by injection of parental Buf-
alo lymphocytes into (Lewis � Buffalo)F1 recipients
s described previously [14]. Briefly, bone marrow
ells (2 � 107) and lymph node cells (5 � 107) isolated
rom Buffalo rats were injected intravenously into
ublethally irradiated (Lewis � Buffalo)F1 recipients.
nimals received 600R gamma irradiation with a
ark 168A Irradiator (J.L. Sheperd and Associates,

an Fernando, CA). For 1 week before and through-
ut the experiments, animals were given water con-
aining neomycin sulfate 1.1 mg/mL and polymyxin B
ulfate 0.167 mg/mL to limit the passage of endotoxin
cross the gut wall as a consequence of host condi-
ioning. Animals were monitored throughout the
ourse of disease and were killed when a near-mori-
und state was identified, as determined by the onset
f diarrhea or a 30% loss of body weight.

ell Preparations

Single-cell leukocyte suspensions from lymph
odes and spleen were prepared by passage of cells
hrough a 250-�m stainless-steel sieve. Liver-associ-
ted leukocytes were obtained after portal vein perfu-
ion to remove leukocytes contained with the vascu-
ature. Briefly, portal vein perfusion of the liver was
erformed serially with phosphate-buffered saline
PBS) and then with PBS containing 1% collagenase

(Roche, Indianapolis, IN) and 2% fetal bovine se-
um (FBS). Perfused livers were minced and incubated
ith PBS containing 1% collagenase D and 2% FBS

30 minutes at 37°C and 5% CO2). The liver cell
reparations were passed through a 250-�m stainless-
teel sieve to remove undigested tissue, and leukocytes
ere recovered from the cell suspension by Ficoll
radient centrifugation. Lungs were minced before
ncubation with 1% collagenase in PBS with 2% FBS

nd then processed as with the liver.
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ntibodies and Flow Cytometric Analyses

Antibodies directed against CD45.1 (RT7.1),
D4 (OX38), CD25, CD134 (OX40), CD62L,
D45RC, and MHC class II (OX6) were purchased

rom BD PharMingen (La Jolla, CA). Lewis and
Lewis � Buffalo)F1 lymphocytes express CD45.1, but
uffalo cells do not. Antibody labeling of lymphocyte

uspensions was conducted with routine methods, and
abeled cells were evaluated by using a FACSCaliber
BD Biosciences, San Jose, CA). Results were analyzed
ith CellQuest (BD Biosciences).

ell Sorting

Single-cell suspensions from lymph nodes, spleen,
iver, or lungs of transplant recipients were labeled
ith antibodies directed against CD45.1, CD4,
D134, and/or CD25 in PBS with 2% FBS and

orted with a FACSVantage cell sorter (BD Bio-
ciences). The sort gate was set on CD45.1� (donor)
ymphocytes, and CD45.1� cells were sorted into
D4� CD134�, CD4� CD134�, CD4� CD134�

D25�, or CD4� CD134� CD25� subsets. An alter-
ative method to purify these cell subsets was to select
D4� or CD134� cells by using microbead technol-
gy (Miltenyi Biotec, Auburn, CA) and to subse-
uently label and FACSVantage-sort the microbead-
elected cells. In the setting where microbead
election was used, cells were labeled with a fluoro-
hrome-conjugated antibody directed against CD134
r CD4, and the labeled cells were positively selected
y using microbeads coated with anti–mouse immu-
oglobulin G. Selected cells were then labeled with
uorochrome-conjugated antibody directed against
D4, CD134, and/or CD25 before FACSVantage

orting. Results obtained with the 2 methods were
omparable.

L-2 Rescue

Sorted T cells were cultured in RPMI medium
Invitrogen, Grand Island, NY) containing 10% FBS
Hyclone, Logan, UT), 4-(2-hydroxyethyl)-1-pipera-
ineethanesulfonic acid 10 mmol/L (Fisher Scientific,
air Lawn, NJ), l-glutamine 2 mmol/L (Invitrogen),
inimal essential medium nonessential amino acids

Sigma Chemical Co., St. Louis, MO), sodium pyru-
ate 1 mmol/L (Sigma), 2-mercaptoethanol 50
mol/L (Invitrogen), penicillin 100 U/mL, and strep-

omycin 100 �g/mL (Invitrogen; complete medium).
or IL-2 rescue, cells were cultured in complete me-
ium supplemented with human recombinant IL-2
10 U/mL; Chiron, Emeryville, CA) in 24-well plates.

-Cell Proliferation

Proliferation assays were used to examine the re-

ponses of sorted donor T-cell subsets after their iso- S

00
ation from transplant recipients. The stimulatory
gents used in these assays included irradiated (3000R)
arental syngeneic or host allogeneic splenocytes,
oncanavalin A (ConA) plus syngeneic splenocytes,
nd antibodies targeting CD3 and CD28, or CD3 and
D134. For these assays, sorted donor T cells were

ultured in complete medium at 3 to 4 � 104 cells per
ell in 96-well plates at 37°C in 5% CO2. Syngeneic

nd allogeneic stimulator cells were added at concen-
rations of 1 � 105 cells per well, and ConA was used
t a concentration of 2 �g/mL. In the setting of
ntibody-dependent T-cell stimulation, the anti-CD3
ntibody was immobilized onto plates (preincubated
or 2 hours with antibody at a concentration of 5
g/mL in PBS), and anti-CD28 and anti-CD134 an-

ibodies were added to culture medium at a concen-
ration of 5 �g/mL. For assays of immune suppres-
ion, the number of CD4� CD134� CD25� T cells
as held constant for each condition, and variable
umbers of CD4� CD134� CD25� T cells were
dded to the cultures. The cultures were incubated for
to 4 days, and 1 �Ci of 3H-thymidine was added to

ach well for the last 18 hours of incubation. The cells
ere harvested, and thymidine uptake was assessed
ith a liquid scintillation counter. The data are re-
orted as the mean counts per minute � SEM for 3 to
wells for each treatment.

ytokine Detection

Capture enzyme-linked immunosorbent assays
ELISAs) were performed to quantify cytokine secre-
ion by sorted donor T-cell subsets isolated from
ransplant recipients. Cytokine production was mon-
tored in culture supernatants from cells stimulated
ith parental syngeneic and host allogeneic spleno-

ytes. Culture conditions were the same as those de-
cribed for T-cell proliferation, except that culture
upernatants were harvested for analysis of cytokine
ontent after 72 hours of culture. OptEIA capture
LISA reagent kits (BD PharMingen) were used to
ssess supernatants for IL-2, IL-4, IL-10, and inter-
eron (IFN)-�. The reagents in each cytokine quanti-
ation kit included a capture antibody, a biotinylated
etection antibody, and an avidin/horseradish perox-
dase conjugate. The horseradish peroxidase was de-
ected by using tetramethyl benzidine as a substrate,
nd 2N H2SO4 was used as a stopping reagent.
LISAs were performed according to the manufactur-
r’s instructions, and optical density was read with a
io-Tek Instruments, Inc. (Winooski, VT) plate
eader.

tatistical Analyses

Data from these studies were analyzed with the

PSS statistical program (SPSS Inc., Chicago, IL).
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omparisons included analysis of variance or the Stu-
ent t test.

ESULTS

D25 Expression Distinguishes 2 GVHD-Associated
D4� CD134� T-Cell Subsets That Exhibit Distinct
issue Associations

Our previous work revealed that the activation
ntigen CD134 is upregulated on T cells in GVHD
nd that expression is associated with cells of the CD4
ineage [14]. Cells from lymph nodes and inflamed
iver at day 10 of disease illustrate this association
Figure 1A). Because expression of CD25 is also ob-
erved on activated T cells in GVHD, we sought to
etermine the relationship between CD4� CD134�

nd CD4� CD25� GVHD-associated T cells. Donor
CD45.1�) T cells from rats with GVHD, posttrans-
lantation day 10, were evaluated for expression of
oth CD134 and CD25. The assessment revealed that
VHD-associated CD4� CD134� T cells could be

ubdivided into CD25� and CD25� subsets (Figure
B). Further, these T-cell subsets exhibited distinct
issue associations (Figure 1B; Table 1). In organized
ymphoid tissues, such as lymph nodes and spleen, the
D25� and CD25� T-cell subsets were present at

imilar frequencies. By contrast, in extralymphoid
ites such as inflamed liver and lung, the CD25�

-cell subset predominated, and these cells repre-
ented 65% to 85% of the total CD4� CD134� T
ells. Similar results have been observed between days
and 18 of disease (data not shown). Thus, these data

eveal the existence of 2 GVHD-associated CD4�

D134� T-cell subsets that exhibit distinct tissue
ssociations.

xpression of CD134 or CD25 by
VHD-Associated CD4� T Cells Suggested That
hese Cells Had Been Recently Activated

To further define the activation state of these cells,
ymph node–derived cells were sorted into CD4�

D134� CD25� and CD4� CD134� CD25� T-cell
ractions by using a fluorescence-activated cell sorter
FACS; Figure 2A), and sorted cells were stained and
valuated for expression of CD45RC, CD62L, and
HC class II (Figure 2B). In the rat, these molecules

re differentially expressed on naive versus activated T
ells; CD62L and CD45RC were downmodulated and

HC class II was increased with activation. Lymph
ode cells in the CD25� subset were predominantly
egative for CD45RC, expressed low levels of
D62L, and expressed high levels of MHC class II, a
henotype consistent with T-cell activation. Cells
ontained within the CD25� T-cell subset were neg-

tive for CD45RC and expressed low levels of C

B & M T
D62L, as anticipated for activated T cells. However,
ost of the cells within the CD25� T-cell subset

xpressed low to intermediate levels of MHC class II.
n contrasting MHC class II expression levels on

� �

igure 1. Acute GVHD-associated CD4� CD134� CD25� and
D4� CD134� CD25� T-cell subsets are nonrandomly distributed

n lymphoid versus extralymphoid tissues. Lymphocytes were iso-
ated from the tissues of animals with GVHD on day 10 after bone

arrow transplantation. Lymph nodes and spleen were used as
epresentative lymphoid organs, and liver and lung were used as the
ource of lymphocytes from extralymphoid tissues. Isolated lym-
hocytes from lymph node and liver were labeled with antibodies to
D4 and CD134. Analysis by flow cytometry (A) revealed that the

ast majority of CD134� cells were CD4�. Isolated lymphocytes
ere also labeled with antibodies to CD45.1, CD134, and CD25

B). The plots shown are gated on donor CD45.1� cells, which
epresent 90% to 95% of total leukocytes in day 10 transplant
ecipients. The percentage of total CD4� CD134� T cells that
ere CD25� or CD25� is indicated. Similar results were observed

n 4 independent experiments, and the results shown are from a
epresentative animal.
D25 versus CD25 cells, the mean fluorescence
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ntensities were 494 and 144 units, respectively (Fig-
re 2B; Table 2). These data suggest that the 2 CD4�

D134� T-cell subsets are differentially activated.

onor CD4� CD134� T Cells, a Mixture of CD25�

nd CD25� Cells, Proliferate Minimally when
timulated with Host Alloantigen

The abundance of CD4� CD134� T cells in
VHD suggests that these cells play an active role in

isease. To assess the functional properties of these
ells, T cells from the lymph nodes of animals with
VHD were sorted into CD4� CD134� and CD4�

D134� populations. Liver-derived CD4� CD134�

cells were also sorted. These populations were then
ultured with syngeneic Buffalo stimulator cells, host
llogeneic (Lewis � Buffalo)F1 stimulator cells, or
yngeneic Buffalo stimulator cells plus ConA. 3H-
hymidine incorporation was used as a measure of

ell proliferation. In contrasting proliferation of these
ells in response to syngeneic versus allogeneic stim-
lator cells, proliferation was minimal for all cell pop-
lations (Figure 3A). The CD4� CD134� populations
ielded small but statistically significant allospecific
esponses, whereas CD4� CD134� cells did not.
hese low-level proliferative responses were unex-
ected in that our previous data had shown substantial
llospecific proliferative responses by CD4� CD134�

cells after short-term in vitro culture in medium
ontaining IL-2 [14]. ConA stimulation yielded a
ore robust response from all populations (Figure

B). However, the response of lymph node–derived
D4� CD134� T cells to ConA was notably stronger

han the responses of CD4� CD134� T-cell popula-
ions from either lymph nodes or liver. Thus, these
ata indicate that at the time of isolation, alloreactive

cells contained within the CD4� CD134� T-cell
opulation proliferate poorly in response to stimula-
ion with host alloantigen. Further, the ConA re-
ponses of the CD4� CD134� T-cell subsets were

� �

able 1. Acute GVHD-Associated CD4� CD134� CD25� and CD4�

ymphoid versus Extralymphoid Tissues*

Variable Lymph No

otal cells (�105) 434.3 � 5
D4� CD134� CD25� cells as a percentage
of total CD4� CD134� T cells 54.8 � 1
D4� CD134� CD25� cells as a percentage
of total CD4� CD134� T cells 45.2 � 1

The data shown are pooled from 10 independent experiments. On
days 10 to 18 after bone marrow transplantation. The distinct ti
CD25� and CD4� CD134� CD25� subsets were observed thr
eak relative to CD4 CD134 T cells. o

02
D4� CD134� CD25� and CD4� CD134� CD25�

Cells Exhibit Differences in Their Proliferative
esponses after Stimulation with ConA or
lloantigen

The presence of 2 CD4� CD134� T-cell subsets
ith distinct tissue associations in GVHD suggested

hat the minimal proliferative responses observed for
he mixed (CD25� and CD25�) CD4� CD134� pop-
lation might not have accurately reflected the activ-
ties of each T-cell subset. To test this concept, CD4�

D134� cells were sorted into CD4� CD134�

D25� and CD4� CD134� CD25� T-cell subsets
nd analyzed functionally in proliferation assays. Sorts
ere performed as in Figure 2, and the GVHD-asso-

iated cells used in this series of experiments were
ymph node derived. CD4� CD134� T cells, a mix-
ure of both CD25� and CD25� cells, were also
orted from these lymph node cell preparations. The
roliferative capacities of the CD4� CD134� CD25�,
he CD4� CD134� CD25�, and the total CD4�

D134� cell population (containing both the CD25�

nd the CD25� subsets) were assessed after stimula-
ion with parental syngeneic stimulator cells, host al-
ogeneic stimulator cells, or syngeneic stimulator cells
lus Con A (Figure 4). The CD25� subset exhibited a
trong proliferative response to both allogeneic stim-
lator cells and to ConA. By contrast, the CD25�

ubset failed to proliferate after stimulation with allo-
eneic stimulator cells and responded very poorly to
onA. The total CD4� CD134� fraction proliferated
oorly after stimulation with allogeneic stimulator
ells and responded modestly to ConA.

D4� CD134� CD25� T Cells Are Immune
uppressive

Because the lymph node CD4� CD134� T-cell
opulation contains roughly equal numbers of CD25�

nd CD25� cells, proliferation of this mixed popula-
ion after stimulation with allogeneic stimulator cells
ould have been predicted to be roughly 50% of that

�

4� CD25� T-Cell Subsets Are Nonrandomly Distributed in

Spleen Liver Lungs

200 � 65.9 302 � 83.1 34 � 22.4

46.3 � 4.1 70.3 � 2.5 73.3 � 4.0

53.7 � 4.1 29.7 � 2.5 26.7 � 4.0

animals were used in each experiment, and cells were obtained on
sociations (lymphoid versus extralymphoid) of the CD4� CD134�

t the course of disease; P � .05.
CD13

des

7.6

.2

.2

e to 3
ssue as
oughou
bserved for the CD25 subset. However, the ob-
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erved response was �15% of the predicted value
Figure 4), suggesting that the CD25� subset sup-
ressed proliferation of the CD25� subset.

To further assess the immune-suppressive nature
f CD4� CD134� CD25� T cells, FACS-sorted
D4� CD134� CD25� and CD4� CD134� CD25�

cells were evaluated independently or when mixed

igure 2. Phenotypic analysis of CD4� CD134� T cells suggests
ecent activation. Lymphocytes were isolated from the lymph nodes
f animals with GVHD on day 10 after bone marrow transplanta-
ion. Isolated cells were labeled with antibodies directed against
D45.1, CD134, and CD25 and FACS-sorted into donor CD4�

D134� CD25� and CD4� CD134� CD25� cell subsets. In this
epresentative cell sort (A), the section on the left illustrates the
D134 and CD25 sort gates and the presort profile of donor
D45.1� cells. The sections on the right illustrate reanalyzed

orted donor-derived CD4� CD134� CD25� and CD4� CD134�

D25� T-cell subsets. After sorting, these cells were labeled with
D45RC, CD62L, and MHC class II and analyzed by flow cytom-

try. Results are shown as histograms (B), with specific staining
hown with a bold line and isotype control staining shown with a
ne line. Values presented are the mean fluorescence intensity

MFI) of specifically stained cells. Similar results were observed in 4
ndependent cell sorts, and the results shown are from a represen-
ative animal.
or responsiveness to syngeneic versus allogeneic stim-

B & M T
lator cells. For these mixing studies, the number of
D4� CD134� CD25� T cells was held constant for

ach condition, and variable numbers of CD4�

D134� CD25� T cells were added to the cultures.
igure 5 illustrates that lymph node–derived CD4�

D134� CD25� T cells respond well to host alloan-
igen and that the CD4� CD134� CD25� T-cell
opulation was unresponsive. The results also show
hat the response of CD4� CD134� CD25� T cells
as reduced in a dose-dependent fashion by the addi-

ion of increasing numbers of CD4� CD134� CD25�

cells, confirming that cells contained in the CD25�

ubset are able to inhibit proliferation of cells in the
D25� subset.

o-Stimulation Partially Overcomes CD4�

D134� CD25� T-Cell Unresponsiveness

The lack of a proliferative response by the CD4�

D134� CD25� T-cell subset to ConA (Figure 4B)
as unique in these studies. To characterize further

he response potential of these cells, the stimulatory
ffects of antibodies targeting CD3 and CD28 (anti-
D3/CD28) or CD3 and CD134 (anti-CD3/CD134)
ere compared with the stimulatory effects of ConA.
he proliferative responses of sorted lymph node
D4� CD134� T cells were contrasted with the pro-

iferative responses of lymph node CD4� CD134�

D25� T cells. As anticipated, the CD4� CD134�

-cell subset responded well to stimulation with anti-
D3/CD28, anti-CD3/CD134, and ConA (Figure 6).
y contrast, the CD4� CD134� CD25� T cells re-

ponded poorly to ConA, but these cells did respond
o anti-CD3/CD28 and anti-CD3/CD134. The in-
reased responsiveness of the CD25� subset to stim-
lation with anti-CD3/CD28 or anti-CD3/CD134
upports the concept that proliferative unresponsive-
ess within the CD25� T-cell subset can be partially
vercome by the delivery of potent signals through
he T-cell receptor and the co-stimulatory receptors
D28 and CD134.

lloreactive Cells Are Contained within the CD4�

D134� CD25� T-Cell Subset

The unresponsive properties of the CD25� T-cell
ubset precluded effective assessment of host specific

able 2. Expression of Activation Markers by CD4� CD134�

D25� and CD4� CD134� CD25� T Cells*

Cell Subset

Marker

CD45RC CD62L MHC Class II†

D4� CD134� CD25� 16.5 � 3.7 50.5 � 12.9 121.2 � 15.2
D4� CD134� CD25� 46.0 � 13.8 82.7 � 22.6 395.4 � 42.8

The data shown are pooled from 4 independent experiments.
Significant difference between the CD4� CD134� CD25� and

� � �
CD4 CD134 CD25 T-cell subsets; P � .05.
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lloreactivity in the studies illustrated in Figures 4 and
. However, because exposure of GVHD-derived
D4� CD134� T cells to IL-2 had previously re-

ealed alloreactive cells within this mixed population
14], we hypothesized that IL-2 would reverse the
nresponsive properties associated with the CD25�

-cell subset and that subsequent allostimulation of
L-2 rescued cells would reveal host-specific alloreac-
ivity. To test this hypothesis, FACS-sorted GVHD-
ssociated CD4� CD134� CD25� T cells were cul-
ured for 3 days in medium containing IL-2, and cells
ecovered from these cultures were evaluated for re-
ctivity to parental syngeneic and host allogeneic
plenocytes. Results are shown in Figure 7 and reveal
hat when unresponsiveness in the CD25� T-cell sub-
et is overcome by exposure to IL-2, treated cells
roliferate in response to stimulation with host allo-
eneic stimulator cells. Thus, the CD25� T-cell sub-

igure 3. Proliferative responses of CD4� CD134� and CD4�

D134� T-cell subsets when stimulated with alloantigen or ConA.
ACS-sorted donor-derived lymph node and liver CD4� CD134�

ells and lymph node CD4� CD134� cells from animals with day
0 GVHD were cultured with syngeneic or allogeneic stimulator
ells or with syngeneic stimulator cells plus ConA. Proliferative
esponses to syngeneic and allogeneic stimulator cells are shown in
A), and responses of these cells to ConA are illustrated in (B). Note
he difference in scale between (A) and (B). The proliferation rate is
resented as 3H-thymidine incorporation. Similar results were ob-
erved in at least 4 independent experiments, and the results shown
re from a representative experiment. Results shown are the
ean � SEM. *Significant differences between stimulation condi-

ions; †significant differences between the CD4� CD134� and
D4� CD134� cell populations; P � .05.
et is composed of alloreactive T cells. C

04
timulation of CD4� CD134� CD25� and CD4�

D134� CD25� T Cells with Alloantigen
romotes Secretion of IFN-� and IL-10

As an alternate means of assessing T-cell function
n this system, sorted CD4� CD134� CD25� and
D4� CD134� CD25� donor T cells from animals
ith GVHD were cultured in the presence of parental

yngeneic or host allogeneic stimulator cells. After 3
ays in culture, supernatants were harvested and eval-
ated for the presence of cytokines indicative of T-
elper type 1 (IL-2 and IFN-�), T-helper type 2
IL-4), or regulatory T-cell (IL-10) responses. Super-

igure 4. CD4� CD134� CD25� cells are alloreactive, whereas the
D4� CD134� CD25� cells are anergic. Microbead/FACS-sorted
onor-derived lymph node T cells from animals with day 10
VHD were sorted into 3 subsets: CD4� CD134�, CD4�

D134� CD25�, and CD4� CD134� CD25�. The 3 subsets were
ultured with syngeneic stimulator cells, allogeneic stimulator cells,
r syngeneic stimulator cells plus ConA. Proliferative responses to
yngeneic and allogeneic stimulator cells are shown in (A), and the
esponses of these cells to ConA are illustrated in (B). Note the
ifference in scale between (A) and (B). The proliferation rate is
resented as 3H-thymidine incorporation. Similar results were ob-
erved in at least 4 independent experiments, and the results shown
re from a representative experiment. Results shown are the
ean � SEM. *Significant differences between the CD4� CD134�

r CD4� CD134� CD25� subset and the CD4� CD134� CD25�

ell subset (within a given stimulation condition); †significant dif-
erences between the CD4� CD134� CD25� cell subset and CD4�

�
D134 cells; P � .05.
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atants were screened by using capture ELISAs. The
esults of these analyses revealed that alloantigen stim-
lation promoted secretion of IFN-� (Figure 8A) and
L-10 (Figure 8B) by both CD4� CD134� T-cell
ubsets. IL-2 and IL-4 were not detected in these
ultures (data not shown). This observation indicates
hat in the system described here, proliferative unre-
ponsiveness is a poor predictor of responses associ-
ted with alternate biological activities. Finally, al-
oantigen-induced secretion of cytokines by the
D25� and CD25� T-cell subsets provides further

vidence that both CD4� CD134� T-cell subsets are
lloresponsive.

ISCUSSION

Increasing evidence indicates that cells expressing
he co-stimulatory molecule CD134 play active roles
n a variety of immunoinflammatory disease processes.
his molecule has been associated with disease-pro-
oting T cells in animals with experimental autoim-
une encephalitis [13] and in animals with GVHD

14,33-36]. Studies in rats with GVHD have con-
rmed that alloreactive CD4� CD134� T cells are

igure 5. CD4� CD134� CD25� cells inhibit alloantigen induced
roliferation of CD4� CD134� CD25� cells. FACS-sorted donor-
erived lymph node CD4� CD134� CD25� and CD4� CD134�

D25� T-cell subsets from animals with day 10 GVHD were tested
ndependently and after being mixed for proliferative responses to
llogeneic (closed bars) and syngeneic (open bars) splenic stimulator
ells. When the CD4� CD134� CD25� and CD4� CD134�

D25� T cells were mixed, the number of alloantigen-responsive
D4� CD134� CD25� T cells was held constant for each condi-

ion, and variable numbers of the candidate immune-suppressive
D4� CD134� CD25� T cells were added to the cultures. 3H-
hymidine incorporation was used to quantitate proliferation. Sim-

lar results were observed in 3 independent experiments, and the
esults shown are from a representative experiment. Results shown
re the mean � SEM. Differences in 3H-thymidine incorporation
f the CD4� CD134� CD25� T-cell subset as a consequence of
dding CD4� CD134� CD25� were significant; P 	 .012.
ontained in inflamed livers [14]. In mice, blockade of s

B & M T
he CD134/CD134L interaction by administration of
monoclonal anti–CD134L-specific antibody pre-

ented GVHD, suggesting that the biological re-
ponse associated with CD134 ligation is critical dur-
ng the induction and/or progression of GVHD [33].
urther support for a role for CD134 ligation in
VHD has been provided by Blazar et. al. [37], who

howed that mice deficient for CD134 or CD134L
eveloped less severe disease and that a CD134-spe-
ific antibody with receptor agonist activity promoted
isease.

In the study described here, we report the tissue
istribution, phenotype, and function of CD4�

D134� T cells associated with GVHD. The data
eveal that CD4� CD134� T cells can be separated
nto 2 functionally distinct alloreactive T-cell subsets
n the basis of the expression of CD25. The 2 CD4�

D134� T-cell subsets exhibited distinct tissue asso-
iations, with CD25� T cells preferentially found in
ymphoid tissues such as lymph nodes and spleen and
D25� T cells detected in both lymphoid tissues and

nflamed extralymphoid tissues. These CD4�

D134� T-cell subsets also exhibited distinct biolog-
cal activities. Lymph node–derived CD4� CD134�

D25� T cells were found to be immediately respon-
ive to alloantigen, proliferating extensively when
timulated with host allogeneic spleen cells. By con-
rast, lymph node CD4� CD134� CD25� T cells
xhibited an unresponsive profile, failing to proliferate

igure 6. Co-stimulation of CD4� CD134� CD25� cells can be
elivered through CD28 or CD134. FACS-sorted donor-derived
ymph node CD4� CD134� and CD4� CD134� CD25� T cells
rom day 10 GVHD were incubated with syngeneic stimulator cells,
nti-CD3/CD28 antibodies, anti-CD3/CD134 antibodies, or
onA. 3H-Thymidine incorporation was used to quantitate cell
roliferation. Similar results were observed in 3 independent exper-
ments, and the results shown are from a representative experiment.
esults shown are the mean � SEM. Responses of the CD4�

D134� and CD4� CD134� CD25� cell subsets to the different
reatments (anti-CD3/CD28, anti-CD3/CD134, and ConA) were

ignificantly different; P � .05.
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hen stimulated with host alloantigen and proliferat-
ng only minimally when stimulated with ConA. The
D25� T-cell subset was also found to inhibit alloan-

igen-induced proliferation of cells contained in the
D25 subset. Proliferative unresponsiveness associ-

ted with the CD25� T-cell subset was overcome by
days of in vitro culture in the presence of IL-2. The

ells recovered from these IL-2–supplemented cul-
ures maintained expression of CD25 (unpublished
ata) and were alloreactive, proliferating extensively
hen stimulated with host alloantigen. The allore-

ponsiveness of cells within the CD25� T-cell subset
as also demonstrated by using quantitative assays of

ytokine secretion, and both cell subsets were found to
roduce the immune-modulatory cytokines IFN-�
nd IL-10. The observation of cytokine secretion and
he ability to overcome proliferative unresponsiveness
ith IL-2 are consistent with the attributes of anergic
cells [38]. Thus, the CD4� CD134� T-cell subsets

escribed here exhibited distinct tissue associations
nd differential responses to alloantigen and ConA,
et both populations are composed of alloreactive
ells. These observations suggest that these separable
D4� T-cell subsets have distinct biological functions

nd that they may play fundamentally different roles
uring disease progression.

The predominance of the highly activated CD4�

D134� CD25� T cells in the extralymphoid target
issues of GVHD suggests that cells within this subset
re disease-associated effector cells. As effector cells,
hese cells may directly or indirectly augment the
mmunoinflammatory process and promote tissue
amage by a variety of mechanisms. Potential tissue-

igure 7. IL-2–treated CD4� CD134� CD25� T cells proliferate
hen stimulated with allogeneic spleen cells. Sorted donor-derived

ymph node CD4� CD134� CD25� T cells from day 10 GVHD
ere incubated in human recombinant IL-2 (10 U/mL) for 3 days.
fter IL-2 treatment, cells were harvested, washed, and cultured in
edium or medium containing irradiated syngeneic or allogeneic

timulator cells. Similar results were observed in 3 independent
xperiments, and the results shown are from a representative exper-
ment. Results shown are the mean � SEM. *Significant differences
fetween groups; P � .05.

06
amaging mechanisms include the recruitment and
ctivation of host-specific cytotoxic T lymphocytes
39,40], Fas/Fas ligand–mediated target cell killing
39-43], and production of the inflammatory cytokines
L-1 and tumor necrosis factor-� [10,44]. The obser-
ation of proliferative unresponsiveness associated
ith the CD25� T-cell subset suggested that these

ells were exhausted by chronic antigen stimulation
nd were thus unable to respond when stimulated with
lloantigen. However, the finding that these cells are
otent secretors of the immune-modulatory cytokines
FN-� and IL-10 argues against this concept.

Regulatory T cells are generally thought to play a
rotective role in immunoinflammatory processes [45-
7], including GVHD [48-50]. In GVHD, this dis-
ase-modifying activity was revealed by using 2 exper-
mental strategies: an elimination strategy, in which
epletion of naturally occurring regulatory T cells

igure 8. Allostimulation of CD4� CD134� CD25� and CD4�

D134� CD25� T cells promotes secretion of IFN-� and IL-10.
onor-derived lymph node T cells from animals with day 10
VHD were sorted into CD4� CD134� CD25� and CD4�

D134� CD25� subsets. The subsets were then cultured with
arental syngeneic or host allogeneic stimulator cells. After 72
ours, culture supernatants were harvested and evaluated for the
resence of IL-10 and IFN-�. Results shown in (A) indicate IFN-�
oncentrations; IL-10 concentrations are illustrated in (B). The
imits of sensitivity in these assays were 15.6 pg/mL for IL-10 and
1.2 pg/mL for IFN-�. Similar results were observed in at least 3
ndependent experiments, and the results shown are from a repre-
entative experiment. Results shown are the mean � SEM. *Signif-
cant differences between groups; P � .05.
rom a transplanted normal T-cell population resulted
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n more rapid disease onset and death, and a supple-
entation strategy, in which supplementation of dis-

ase-promoting T cells with regulatory T cells ob-
ained from normal donor animals resulted in
rotection from disease [48,49]. Supplementation of
isease-promoting T cells with ex vivo–generated ac-
ivation-induced regulatory T cells has also been
hown to prevent GVHD [49,50]. Although the
VHD-associated CD4� CD134� CD25� T cells

ntroduced here share phenotypic and functional
roperties with regulatory T cells, a relationship be-
ween the GVHD-associated CD4� CD134� CD25�

ells and naturally occurring or activation-induced
egulatory cells described by others has not been es-
ablished. Thus, the data presented here suggest that
he CD4� CD134� CD25� T-cell subset is composed
f both disease-promoting effector cells and regula-
ory T cells and that in this model, regulatory T-cell
ctivity is not sufficient to protect from lethal disease.

The selective association of the CD4� CD134�

D25� T-cell subset with organized lymphoid tissues
uggests that this cell subset may be central to GVHD.
his concept is supported by the potent in vitro pro-

iferative response of this cell population when stim-
lated directly with alloantigen, a response that sug-
ests the potential for rapid expansion and subsequent
igration to extralymphoid inflammatory sites. These

ymph node–derived CD4� CD134� CD25� T cells
re CD45RC� CD134� and express low levels of
D62L, indicating an activated state. However, these

ells also express low to intermediate levels of MHC
lass II and are CD25�, suggesting that they are either
ot fully differentiated/activated or that they are dif-
erentiating toward a memory phenotype. The poten-
ial of these cells to further differentiate into CD4�

D134� CD25� effector cells is supported by 2 lines
f in vitro evidence: (1) both cell subsets produce the

mmune-modulatory cytokines IFN-� and IL-10
hen stimulated with alloantigen, and (2) although

L-2 in the absence of stimulatory signals, such as
lloantigen, does not support survival of the CD4�

D134� CD25� subset (unpublished data), cells
ithin this T-cell subset are able to upregulate CD25

nd MHC class II when stimulated in vitro with al-
oantigen (unpublished data). Taken together, these
ata suggest that the 2 CD4� CD134� T-cell subsets
epresent the same T-cell population in different
hysiologic states.

CD25, the IL-2R � chain, has long been identified
s a marker of activated T cells in patients with
VHD. The binding of IL-2 to its cognate receptor

romotes T-cell proliferation, and IL-2R–specific an-
ibodies have been generated that block signaling via
his receptor [51-54]. IL-2R–specific antibodies are
herapeutic in patients with GVHD, and the results of
reatment with these IL-2R antagonists are variable

ut have shown the greatest efficacy in the setting of

B & M T
VHD involving skin [54]. The limited therapeutic
fficacy observed with these agents in other tissues is
ossibly due to the availability of alternate T-cell
rowth promoting cytokines such as IL-15, which acts
hrough a distinct cell-surface receptor [55]. An alter-
ate mechanism that may contribute to the limited
herapeutic efficacy of IL-2R antagonists could be the
resence of a reservoir of disease-producing alloreac-
ive CD25� T cells that would not be targeted by
hese antagonists. The identification of an alloreactive
D4� CD134� CD25� T-cell subset in the studies

eported here supports this concept.
In summary, the results of this study reveal a high

egree of complexity in the CD4� T-cell compart-
ent in GVHD. Two phenotypically and functionally

istinct alloreactive CD4� CD134� T-cell subsets
ere found to increase dramatically in frequency in

nimals that developed lethal GVHD. The distinct
issue associations and differential expression of acti-
ation markers on these cells suggest that cells within
he CD4� CD134� CD25� T-cell subset function as
isease-associated effector cells and that cells in the
D4� CD134� CD25� T-cell subset may comprise a

eservoir of partially activated cells with the capacity
o differentiate into effector cells. The data also sup-
ort the concept that therapeutic agents designed to
electively target CD25� T cells do not identify all
lloreactive CD4� T cells and suggest that novel ther-
peutic agents designed to selectively eliminate
D134� T cells may more effectively limit GVHD.
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