From local to global consistency in temporal constraint networks

Manolis Koubarakis*
Dept. of Computation, UMIST. P.O. Box 88, Manchester M60 1QD, UK

Abstract

We study the problem of global consistency for several classes of quantitative temporal constraints which include inequalities, inequations and disjunctions of inequations. In all cases that we consider we identify the level of local consistency that is necessary and sufficient for achieving global consistency and present an algorithm which achieves this level. As a byproduct of our analysis, we also develop an interesting minimal network algorithm.

1. Introduction

One of the most important notions found in the constraint satisfaction literature is global consistency [5]. In a globally consistent constraint set all interesting constraints are explicitly represented and the projection of the solution set on any subset of the variables can be computed by simply collecting the constraints involving these variables. An important consequence of this property is that a solution cun be found by backtrack-free search [6]. Enforcing global consistency can take an exponential amount of time in the worst case [5,1]. As a result it is very important to identify cases in which local consistency, which presumably can be enforced in polynomial time, implies global consistency [2].

In this paper we study the problem of enforcing global consistency for scts of quantitative temporal constraints over the rational (or real) numbers. The class of constraints that we consider includes:

- equalities of the form $x-y=r$,
- inequalities of the form $x-y \leqslant r$,
inequations of the form $x-y \neq r$, and
- disjunctions of inequations of the form

$$
x_{1}-y_{1} \neq r_{1} \vee \cdots \vee x_{n}-y_{n} \neq r_{n}
$$

[^0]where $x, y, x_{1}, y_{1}, \ldots, x_{n}, y_{n}$ are variables ranging over the rational numbers and r, r_{1}, \ldots, r_{n} are rational constants. For the representation of equalitics, incqualitics and inequations, we utilize binary temporal constraint networks. Disjunctions of inequations are represented separately.

Disjunctions of inequations have been introduced in [14] following the observation that in the process of eliminating variables from a set of temporal constraints, an inequation can give rise to a disjunction of inequations. ${ }^{1}$ In related temporal reasoning research, Vilain and Kautz [28], van Beek [23], Gerevini and Schubert [8] and Gerevini et al. [9] have considered inequations of the form $t_{1} \neq t_{2}$ in the context of point algebra (PA) networks. Also, Meiri [19] has studied inequations of the form $t \neq r$ (r a real constant) in the context of point networks with almost-single-interval domains. In a more general context, researchers in constraint logic programming (originally [18] and later $[12,10,11]$) have studied disjunctions of arbitrary linear inequations (e.g., $2 x_{1}+3 x_{2}-4 x_{3} \neq 4 \vee x_{2}+x_{3}+x_{5} \neq 7$). Refs. [18,12] concentrate on deciding consistency and computing canonical forms while $[10,11]$ deal mostly with variable elimination. It is interesting to notice that the basic algorithm for variable elimination in this case has been discovered independently in [14, 10] although [14] has used the result only in the context of temporal constraints.

The contributions of this paper can be summarized as follows.
(i) We show that strong 5-consistency is necessary and sufficient for achieving global consistency in temporal constraint networks for inequalities and inequations (Corollary 13). ${ }^{2}$ This result (and all subsequent ones) rely heavily on an observation of $[18,14,10]$: (disjunctions of) inequations can be treated independently of one another for the purposes of deciding consistency or performing variable elimination.

We give an algorithm which achieves global consistency in $\mathrm{O}\left(H n^{4}\right)$ where n is the number of nodes in the network and H is the number of inequations (Theorems 12 and 14). The analysis of this algorithm demonstrates that there are situations where it is impossible to enforce global consistency without introducing disjunctions of inequations.

A detailed analysis of the global consistency algorithm also gives us an algorithm for computing the minimal temporal constraint network in this case. The complexity of this algorithm is $\mathrm{O}\left(\max \left(H n^{2}, n^{3}\right)\right)$ (Theorcm 17).
(ii) We also consider global consistency of point algebra networks [28]. In this case strong 5-consistency is also necessary and sufficient for achieving global consistency (Theorem 20). This result, which answers an open problem of [23], also follows from [14] but the bounds of the algorithms given there were not the tightest possible.
(iii) Finally, we consider global consistency when disjunctions of inequations are also allowed in the given constraint set. This case is mostly of theoretical interest and is presented here for completeness. In this case, strong $(2 V+1)$-consistency is

[^1]necessary and sufficient for achieving global consistency (Corollary 23). The parameter V is the maximum number of variables in any disjunction of inequations.

Most of the above results come from the author's Ph.D. thesis [17] or are refinements of ideas presented there.

The paper is organized as follows. The next section presents definitions and preliminaries. Section 3 discusses global consistency of temporal constraint networks while Section 4 presents an algorithm for computing the minimal network. Section 5 considers the case of point algebra networks. Section 6 considers the case of arbitrary temporal constraints. Finally, Section 7 summarizes our results. Appendix A contains two long proofs.

2. Definitions and preliminaries

We consider time to be linear, dense and unbounded. Points will be our only time entities. Points are identified with the rational numbers but our results still hold if points are identified with the reals. The set of rational numbers will be denoted by 2.

Definition 1. A temporal constraint is a formula $t-t^{\prime} \leqslant r, t-t^{\prime}<r, t-t^{\prime}=r$ or $t_{1}-t_{1}^{\prime} \neq r_{1} \vee \cdots \vee t_{n}-t_{n}^{\prime} \neq r_{n}$ where $t, t^{\prime}, t_{1}, \ldots, t_{n}, t_{1}^{\prime}, \ldots, t_{n}^{\prime}$ are variables and r, r_{1}, \ldots, r_{n} are rational constants.

The rationale for studying disjunctions of inequations has been given in [14].
Definition 2. Let C be a set of temporal constraints in variables t_{1}, \ldots, t_{n}. The solution set of C, denoted by $\operatorname{Sol}(C)$, is

$$
\left\{\left(\tau_{1}, \ldots, \tau_{n}\right):\left(\tau_{1}, \ldots, \tau_{n}\right) \in \mathscr{2}^{n} \text { and for every } c \in C,\left(\tau_{1}, \ldots, \tau_{n}\right) \text { satisfies } c\right\}
$$

Each member of $S o l(C)$ is called a solution of C. A set of temporal constraints is called consistent if and only if its solution set is nonempty.

If c is a disjunction of inequations then \bar{c} denotes the complement of c i.e, the conjunction of equations obtained by negating c. If C is a set of equalities in n variables, the solution set of C is an affine subset of $\mathscr{2}^{n}$. If C is a set of inequalities in n variables, the solution set of C is a convex polyhedron in 2^{n}. If C is a set of disjunctions of inequations, the solution set of C is $\mathscr{2}^{n} \backslash \operatorname{Sol}(\{\bar{c}: c \in C\})$. The interested reader can find background material on affine spaces and convex polyhedra in [22].

Let C be a set of temporal constraints in variables x_{1}, \ldots, x_{n} which contains only equations, inequalities and inequations (but not disjunctions of inequations). The temporal constraint network (TCN) associated with C is a labeled directed graph $G=$ (V, E) where $V=\{1, \ldots, n\}$. Node i represents variable x_{i} and edge (i, j) represents the binary constraints involving x_{i} and x_{j}. As usual unary constraints will be represented

Fig. 1. A temporal constraint network.
as binary constraints with the introduction of a special variable $x_{0}=0$. The set of constraints associated with a TCN N will be denoted by Constraints(N).

Definition 3. Let I be a set of rational numbers. I will be called an almost convex interval if it is of the form

$$
\left[l, r_{1}\right) \cup\left(r_{1}, r_{2}\right) \cup \cdots \cup\left(r_{k-1}, r_{k}\right) \cup\left(r_{k}, u\right]
$$

where $l, r_{1}, \ldots, r_{k-1}, r_{k}, u$ are rational numbers such that $l<r_{1}<\cdots<r_{k-1}<r_{k}<u$, and $k \geqslant 0$. An almost convex interval is also allowed to be open from the right or left.

The k values r_{1}, \ldots, r_{k} will be called the "holes" of interval I. We define a function holes such that, for each almost convex interval I as above,

$$
\operatorname{holes}(I)=\left\{r_{1}, \ldots, r_{k}\right\} .
$$

Let us assume that the set of constraints $c_{i j}$ on $x_{j}-x_{i}$ is

$$
\left\{x_{j}-x_{i} \leqslant d_{i j}, x_{j}-x_{i} \geqslant-d_{j i}, x_{j}-x_{i} \neq y_{j i}^{1}, \ldots, x_{j}-x_{i} \neq \eta_{i j}^{h_{j i}}\right\}
$$

where $-d_{j i}<r_{j i}^{1}<\cdots<r_{j i}^{h_{j i}}<d_{i j}$. Then the corresponding TCN N will have an edge $i \rightarrow j$ labeled by the almost-convex interval

$$
N_{i j}=\left[-d_{j i}, r_{j i}^{1}\right) \cup\left(r_{j i}^{1}, r_{j i}^{2}\right) \cup \cdots \cup\left(r_{j i}^{h_{j i}-1}, r_{j i}^{h_{j i}}\right) \cup\left(r_{j i}^{h_{i j}}, d_{i j}\right]
$$

Example 4. The TCN of Fig. 1 represents the constraints

$$
\begin{array}{lll}
1 \leqslant x_{2}-x_{1} \leqslant 4, & 2 \leqslant x_{2}-x_{3} \leqslant 5, \quad 1 \leqslant x_{4}-x_{1} \leqslant 4, \\
2 \leqslant x_{4}-x_{3} \leqslant 5, & x_{4}-x_{2} \neq 0 . &
\end{array}
$$

Given an interval I, conv(I) will denote the convex hull of I i.e., the minimal (in the set-theoretic sense) convex interval which includes I. Formally,

$$
\operatorname{conv}\left(\left[l, r_{1}\right) \cup\left(r_{1}, r_{2}\right) \cup \cdots \cup\left(r_{k-1}, r_{k}\right) \cup\left(r_{k}, u\right]\right)=[l, u]
$$

and $\operatorname{conv}(I)=I$ if I is convex. If N is a TCN then $\operatorname{conv}(N)$ denotes the TCN which is obtained from N by substituting each interval $N_{i j}$ by $\operatorname{conv}\left(N_{i j}\right)$.

If N is a TCN then its solution set is $\operatorname{Sol}(N)=\operatorname{Sol}(\operatorname{Constraints}(N))$. A TCN is called consistent iff its solution set is nonempty. Two TCN are called equivalent iff their solution sets are equal $[3,20]$.

For the case of TCN, the operations of composition and intersection of almost-convex intervals are defined as usual [20].

Definition 5. Let I_{1}, I_{2} be almost convex intervals. The composition of I_{1} and I_{2}, denoted by $I_{1} \otimes I_{2}$, is defined as follows:

$$
I_{1} \otimes I_{2}=\left\{z: \exists x \in I_{1}, \exists y \in I_{2} \text { and } x+y=z\right\}
$$

The intersection operation \oplus has the usual set-theoretic semantics.
The following proposition is straightforward.
Proposition 6. The class of almost-convex intervals over 2 is closed under composition and intersection.

3. Global consistency of a TCN

We will first consider enforcing global consistency in a TCN.
Notation 3.1. Let C be a set of constraints in variables x_{1}, \ldots, x_{n}. For any i such that $1 \leqslant i \leqslant n, C\left(x_{1}, \ldots, x_{i}\right)$ will denote the set of constraints in C involving only variables x_{1}, \ldots, x_{i}.

The following definition is from [2].
Definition 7. Let C be a set of constraints in variables x_{1}, \ldots, x_{n} and $1 \leqslant i \leqslant n . C$ is called i-consistent iff for every $i-1$ distinct variables x_{1}, \ldots, x_{i-1}, every valuation $u=\left\{x_{1} \leftarrow x_{1}^{0}, \ldots, x_{i-1} \leftarrow x_{i-1}^{0}\right\}$ such that u satisfies the constraints $C\left(x_{1}, \ldots, x_{i-1}\right)$ and every variable x_{i} different from x_{1}, \ldots, x_{i-1}, there exists a rational number x_{i}^{0} such that u can be extended to a valuation $u^{\prime}=u \cup\left\{x_{i} \leftarrow x_{i}^{0}\right\}$ which satisfies the constraints $C\left(x_{1}, \ldots, x_{i-1}, x_{i}\right) . C$ is called strong i-consistent if it is j-consistent for every $j, 1 \leqslant j \leqslant i$. C is called globally consistent iff it is i-consistent for every $i, 1 \leqslant i \leqslant n$.

Let us present some examples illustrating the above definitions.
Example 8. The constraint set $C=\left\{x_{2}-x_{1} \leqslant 5, x_{1}-x_{3} \leqslant 2, x_{5}-x_{4} \leqslant 1, x_{4}-x_{6} \leqslant 3\right\}$ is 1 - and 2 -consistent but not 3 -consistent. For example, the valuation $v=\left\{x_{2} \leftarrow 10\right.$, $\left.x_{3} \leftarrow 2\right\}$ satisfies $C\left(x_{2}, x_{3}\right)=\emptyset$ but it cannot be extended to a valuation which satisfies C.

We can enforce 3 -consistency by adding the constraints $x_{2}-x_{3} \leqslant 7$ and $x_{5}-x_{6} \leqslant 4$ to C. The resulting set is 3 -consistent and also globally consistent.

Example 9. The constraint set $C=\left\{x_{2}-x_{1}=5, x_{1}-x_{4} \neq 1\right\}$ is 1 - and 2-consistent but not 3 -consistent. For example, the valuation $v=\left\{x_{2} \leftarrow 6, x_{4} \leftarrow 0\right\}$ satisfies $C\left(x_{2}, x_{4}\right)=\emptyset$ but it cannot be extended to a valuation which satisfies C.

We can enforce 3 -consistency by adding the constraint $x_{2}-x_{4} \neq 6$ to C. The resulting set is 3 -consistent and also globally consistent.

Example 10. The constraint set $C=\left\{x_{2}-x_{1} \leqslant 5, x_{1}-x_{3} \leqslant 2, x_{2}-x_{3} \leqslant 7, x_{1}-x_{4} \neq 1\right\}$ is strong 3 -consistent but not 4 -consistent. For example, the valuation $v=\left\{x_{2} \leftarrow\right.$ $\left.7, x_{3} \leftarrow 0, x_{4} \leftarrow 1\right\}$ satisfies $C\left(x_{2}, x_{3}, x_{4}\right)=\left\{x_{2}-x_{3} \leqslant 7\right\}$ but it cannot be extended to a valuation which satisfies C.

Enforcing 4-consistency amounts to adding the disjunction

$$
x_{2}-x_{4} \neq 6 \vee x_{3}-x_{4} \neq-1
$$

The resulting set is 4-consistent and also globally consistent.
Example 11. The constraint set $C=\left\{x_{2}-x_{1} \leqslant 5, x_{1}-x_{3} \leqslant 2, x_{2}-x_{3} \leqslant 7, x_{5}-\right.$ $\left.x_{4} \leqslant 1, x_{4}-x_{6} \leqslant 3, x_{5}-x_{6} \leqslant 4, x_{1}-x_{4} \neq 1\right\}$ is strong 3-consistent but not 4-consistent. Adding the constraint $x_{2}-x_{4} \neq 6 \vee x_{3}-x_{4} \neq-1$ (as in the previous example) is not enough. For example, the valuation $v-\left\{x_{5} \leftarrow 2, x_{6} \leftarrow-2, x_{1} \leftarrow 2\right\}$ satisfies $C\left(x_{5}, x_{6}, x_{1}\right)=\left\{x_{5}-x_{6} \leqslant 4\right\}$ but it cannot be extended to a valuation which satisfies $C\left(x_{5}, x_{6}, x_{1}, x_{4}\right)$.

We can enforce 4-consistency by also adding the constraint $x_{5}-x_{1} \neq 0 \vee x_{6}-x_{1} \neq$ -4 to C. Let the resulting set be $C^{\prime} . C^{\prime}$ is strong 4 -consistent but not 5 -consistent. For example, the valuation $v=\left\{x_{2} \leftarrow 7, x_{3} \leftarrow 0, x_{5} \leftarrow 2, x_{6} \leftarrow-2\right\}$ satisfies $C\left(x_{2}, x_{3}, x_{5}, x_{6}\right)=\left\{x_{2}-x_{3} \leqslant 7, x_{5}-x_{6} \leqslant 4\right\}$ but it cannot be extended to a valuation which satisfies $C\left(x_{2}, x_{3}, x_{5}, x_{6}, x_{1}\right)$ (or $C\left(x_{2}, x_{3}, x_{5}, x_{6}, x_{4}\right)$).

We can enforce 5 -consistency by adding the constraint

$$
x_{2}-x_{3} \neq 7 \vee x_{5}-x_{6} \neq 4 \vee x_{2}-x_{5} \neq 5
$$

to C^{\prime}. The resulting constraint set is strong 5 -consistent and also globally consistent.
Fig. 2 presents algorithm TCN-GConsistency which enforces global consistency on its input TCN. TCN-GConsistency takes as input a TCN and returns an equivalent set of temporal constraints which is globally consistent. TCN-GConsistency's output is not a TCN because, as the above examples indicate, enforcing global consistency might result in the introduction of disjunctions of inequations which cannot be represented by a TCN. TCN-GConsistency takes advantage of an observation of [14, 10]: inequations can be treated independently of one another for performing variable elimination.

```
Algorithm TCN-GConsistency
Input: A consistent TCN \(N\).
Output: A globally consistent set of constraints equivalent to \(N\).
Method:
1. Step 1: Enforce path consistency on conv(N).
2. For \(k, i, j=1\) to \(n\) do
3. \(\quad N_{i j}:=N_{i j} \oplus\left(\operatorname{conv}\left(N_{i k}\right) \otimes \operatorname{conv}\left(N_{k j}\right)\right)\)
4. EndFor
5. Step 2: Enforce global consistency.
6. \(C:=0\)
7. For \(i, k=1\) to \(n\) do
8. For \(g=1\) to \(h_{i k}\) do
    Step 2.1
                For \(m, l=1\) to \(n\) do
                                If \(N_{i m}, N_{l i}\) are closed from the right then
                        \(C:=C \cup\left\{x_{m}-x_{k} \neq d_{i m}+r_{i k}^{g} \vee x_{l}-x_{k} \neq-d_{l i}+r_{i k}^{g}\right\}\)
                Endlf
            EndFor
            Step 2.2
            For \(m, l, s, t=1\) to \(n\) do
                If \(N_{i m}, N_{l i}, N_{k s}, N_{t k}\) are closed from the right then
                    \(C:=C \cup\left\{x_{m}-x_{i} \neq d_{i m}+d_{l i} \vee x_{s}-x_{t} \neq d_{k s}+d_{t k} \vee\right.\)
                                    \(\left.x_{m}-x_{s} \neq r_{i k}^{3}+d_{i m}-d_{k s}\right\}\)
            Endif
                EndFor
            EndFor
22. EndFor
23. Return Constraints \((N) \cup C\)
```

Fig. 2. Enforcing global consistency.

The algorithm TCN-GConsistency essentially enforces strong 5 -consistency on its input network N. As we will show shortly, this level of local consistency is enough for achieving global consistency. In step 1, TCN-GConsistency enforces strong 3 -consistency on $\operatorname{conv}(N)$. This is achieved by running the modified Floyd-Warshall algorithm of [3] on $\operatorname{conv}(N)$. Let N^{\prime} denote the resulting TCN and $A^{\prime}=\operatorname{Constraints}\left(N^{\prime}\right)$. Then $\operatorname{conv(~} N^{\prime}$) is minimal and globally consistent [3].

In step 2 , TCN-GConsistency completes its job. For each $r_{i k}^{g} \in$ holes $\left(N_{k i}\right)$ or equivalently for each inequation $x_{i}-x_{k} \neq r_{i k}^{g}$ of $A=\operatorname{Constraints}(N)$, TCN-GConsistency explores the inequalities of A involving x_{i} and x_{k} in the following systematic way. Fig. 3 illustrates the structure of the subnetworks of N explored in this step. Edges labeled with \neq denote non-convex intervals.
(i) If there are inequalities $x_{m}-x_{i} \leqslant d_{i m}$ and $x_{i}-x_{i} \leqslant d_{l i}$ then step 2.1 ensures that any valuation $v=\left\{x_{l} \leftarrow x_{l}^{0}, x_{m} \leftarrow x_{m}^{0}, x_{k} \leftarrow x_{k}^{0}\right\}$, which satisfies $A\left(x_{l}, x_{m}, x_{k}\right)$, can be extended to a valuation $v^{\prime}=v \cup\left\{x_{i} \leftarrow x_{i}^{0}\right\}$ which satisfies $A\left(x_{l}, x_{m}, x_{k}, x_{i}\right)$. This is

Fig. 3. The subnetworks examined by step 2 of TCN-GConsistency.
achieved with the introduction of the inequation constraint

$$
x_{m}-x_{k} \neq d_{i m}+r_{i k}^{g} \vee x_{l}-x_{k} \neq-d_{l i}+r_{i k}^{g} .
$$

If there are inequalities $x_{s}-x_{k} \leqslant d_{k s}$ and $x_{k}-x_{t} \leqslant d_{t k}$ then step 2.1 also ensures that any valuation $v=\left\{x_{s} \leftarrow x_{s}^{0}, x_{t} \leftarrow x_{t}^{0}, x_{i} \leftarrow x_{i}^{0}\right\}$, which satisfies $A\left(x_{s}, x_{t}, x_{i}\right)$, can be extended to a valuation $v^{\prime}=v \cup\left\{x_{k} \leftarrow x_{k}^{0}\right\}$ which satisfies $A\left(x_{s}, x_{t}, x_{i}, x_{k}\right)$. This is achieved with the introduction of the inequation constraint

$$
x_{s}-x_{i} \neq d_{k s}-r_{i k}^{g} \vee x_{t}-x_{i} \neq-d_{t k}-r_{i k}^{g}
$$

(ii) If there are inequalities $x_{m}-x_{i} \leqslant d_{i m}, x_{i}-x_{l} \leqslant d_{l i}, x_{s}-x_{k} \leqslant d_{k s}$ and $x_{k}-x_{t} \leqslant d_{t k}$ then step 2.2 ensures that any valuation $v=\left\{x_{l} \leftarrow x_{l}^{0}, x_{m} \leftarrow x_{m}^{0}, x_{s} \leftarrow x_{s}^{0}, x_{t} \leftarrow x_{t}^{0}\right\}$, which satisfies $A\left(x_{i}, x_{m}, x_{s}, x_{t}\right)$, can be extended to a valuation $v^{\prime}=v \cup\left\{x_{i} \leftarrow x_{i}^{0}, x_{k} \leftarrow\right.$ $\left.x_{k}^{0}\right\}$ which satisfies $A\left(x_{l}, x_{m}, x_{s}, x_{i}, x_{i}, x_{k}\right)$. This is achieved with the introduction of the inequation constraint

$$
x_{m}-x_{l} \neq d_{i m}+d_{l i} \vee x_{s}-x_{t} \neq d_{k s}+d_{l k} \vee x_{m}-x_{s} \neq r_{i k}^{g}+d_{i m}-d_{k s} .
$$

Discussion. It is possible that step 2 of algorithm TCN-GConsistency introduces constraints that are not strictly necessary for enforcing global consistency. This happens when a generated constraint is equivalent to true or when it is implied by another constraint. TCN-GConsistency can also introduce disjunctions of inequations that are equivalent to inequations (e.g., $x_{1}-x_{5} \neq 2 \vee x_{1}-x_{5} \neq 2$). We tolerate this inefficiency because it allow us to present our ideas clearly and minimizes the case analysis in the forthcoming proofs. The reader can consult [17] for an improved but complicated version of TCN-GConsistency.

The following theorem demonstrates the correctness of algorithm TCN-GConsistency. Its proof, presented in Appendix A, is rather long but easy to follow.

Theorem 12. The algorithm TCN-GConsistency is correct i.e., it returns a globally consistent set of constraints equivalent to the input network.

Corollary 13. Strong 5-consistency is necessary and sufficient for achieving global consistency of a TCN.

Proof. Example 11 shows the necessity of achieving strong 5 -consistency. The sufficiency follows from the previous theorem; the algorithm TCN-GConsistency essentially achieves strong 5 -consistency.

The following theorem gives the complexity of TCN-GConsistency.
Theorem 14. The running time of TCN-GConsistency is $\mathrm{O}\left(\mathrm{Hn}^{4}\right)$ where H is the number of inequations and n is the number of variables in the input TCN.

Proof. Step 1 takes $\mathrm{O}\left(n^{3}\right)$ time, step 2.1 takes $\mathrm{O}\left(H n^{2}\right)$ time and step 2.2 takes $\mathrm{O}\left(H n^{4}\right)$ time.

4. Computing minimal TCN

In this section we present an algorithm for computing the minimal network equivalent to a given TCN. Minimal networks are important representations because they make explicit all binary constraints implied by a given network. In the words of Montanari, a minimal network M " \ldots is perfectly explicit: as far as the pair of variables x_{i} and x_{j} is concerned, the rest of the network does not add any further constraint to the direct constraint $M_{i j}$ " [21]. Minimal networks have been studied extensively in temporal reasoning as important tools for answering queries concerning given temporal information (see [24, 26, 3], and especially [25] for examples). For example, let C be a set of temporal constraints of the form $x_{i}-x_{j} \leqslant r$ where x_{i}, x_{j} are variables ranging over the rational (or real) numbers and r is a rational (or real) constant. The minimal network corresponding to C can be computed in $\mathrm{O}\left(n^{3}\right)$ time and $\mathrm{O}\left(n^{2}\right)$ space [3]. Then the minimal network can be used to answer in constant time all "interesting" queries of the form "Does $x_{i}-x_{j} \sim r$ follow from the constraints in C?" (where r is a rational constant and \sim is \leqslant or $=$).

We will also consider a network to be minimal if it makes explicit all "interesting" binary constraints. In our case "interesting" binary constraints are all constraints of the form $x_{i}-x_{j} \sim r$ where x_{i}, x_{j} are variables ranging over the rational numbers, r is a rational constant, and \sim is $\leqslant,=$ or \neq. The following definition will suffice for our purpose [3, 20].

Definition 15. A TCN M is tighter than a TCN N if for every $i, j, M_{i j} \subseteq N_{i j}$. A TCN N is called minimal if there is no tighter network equivalent to it.

For our class of constraints the above definition of minimality slightly deviates from the standard intuitions behind minimal networks (as stated by Montanari [21]). To see
this consider the constraint set

$$
C=\left\{x_{1} \leqslant x_{2}, x_{2} \leqslant 5, x_{2} \neq x_{3}\right\}
$$

If we adopt our definition, the minimal TCN N for C has $N_{13}=(-\infty,+\infty)$. But C also implies the disjunctive binary constraint $x_{3} \neq x_{1} \vee x_{3} \neq 5$ which cannot be represented by N. Thus if one is interested in answering queries involving disjunctive binary constraints then one has to discard the above definition and adopt the one in [2]. In this case a set of constraints will be called minimal if and only if any instantiation of two variables which satisfies the constraints involving these variables, can be extended to a solution of the full network [2].

The minimal network algorithm TCN-Minimal, shown in Fig. 4, is essentially a byproduct of the algorithm TCN-GConsistency. As we discussed above, the constraints in the minimal TCN will be only inequalities and inequations. Therefore an algorithm for computing the minimal TCN can be constructed if we start with TCN-GConsistency and omit any part that generates a disjunction of inequations. This can be achieved by a detailed analysis of step 2 of TCN-GConsistency. If we want to adopt the second definition of the minimal network and take into account disjunctive binary constraints then we have to modify TCN-Minimal accordingly.

TCN-Minimal computes the minimal TCN in four steps. In the first step, we enforce path-consistency on the convex part $\operatorname{conv}(N)$ of the input network N. Steps 2-4 are illustrated in Fig. 5. In step 2, TCN-Minimal performs constraint propagation involving equalities from $\operatorname{conv}(N)$ and inequations from L. More precisely, for every inequation $x_{i}-x_{j} \neq r \in L$ and every equality $x_{k}-x_{i}=d_{k i} \in \operatorname{conv}(N)$ step 2.1 adds inequation $x_{k}-x_{j} \neq r+d_{k i}$ to N. Similarly, for every inequation $x_{i}-x_{j} \neq r \in L$ and every equality $x_{j}-x_{k}=d_{j k} \in \operatorname{conv}(N)$ step 2.2 adds inequation $x_{i}-x_{k} \neq r+d_{j k}$ to N.

In step 3, TCN-Minimal considers subnetworks of N like the ones considered by step 2.2 of TCN-GConsistency (see Fig. 3) when $l=t$ and $m=s .^{3}$ In this case the constraint generated by TCN-GConsistency is equivalent to a binary inequation thus it should be reflected in the minimal TCN. This can be shown as follows. If $l=t$ and $m=s$ then step 2.2 of TCN-GConsistency examines the constraint set

$$
\left\{x_{m}-x_{i} \leqslant d_{i m}, x_{i}-x_{l} \leqslant d_{l i}, x_{m}-x_{k} \leqslant d_{k m}, x_{k}-x_{l} \leqslant d_{l k}, x_{i}-x_{k} \neq r\right\}
$$

and generates the constraint

$$
x_{m}-x_{l} \neq d_{i m}+d_{l i} \vee x_{m}-x_{l} \neq d_{k m}+d_{l k} \vee 0 \neq r+d_{i m}-d_{k m} .
$$

If $r+d_{i m}-d_{k m}=0$ and $d_{i m}+d_{l i}=d_{k m}+d_{l k}$ then the above constraint becomes $x_{m}-x_{l} \neq d_{i m}+d_{l i}$ otherwise it evaluates to true.

Finally, in step 4 TCN-Minmal considers subnetworks of N like the ones considered by step 2.2 of TCN-GConsistency when $l-m$ and $t-s$. In this case the constraint generated by TCN-GConsistency is also equivalent to a binary inequation. This can be

[^2]
Algorithm TCN-Minimal
 Input: A consistent TCN N.

Output: A minimal TCN equivalent to N.
Method:
Step 1: Enforce path consistency on $\operatorname{conv}(N)$ (as in Step 1 of TCN-GConsistency).

Step 2:
Let L be the list of inequations in N.
For cvery (i, j, r) in L do
Step 2.1:
For $k=1$ to n do
If $-d_{i k}=d_{k i}$ then
$N_{k j}:=N_{k j} \oplus\left(\left(-\infty, r+d_{k i}\right) \cup\left(r+d_{k i}, \infty\right)\right)$
Endlf

EndFor

Step 2.2:
For $k=1$ to n do
If $-d_{k j}=d_{j k}$ then $N_{i k}:=N_{i k} \oplus\left(\left(-\infty, r+d_{j k}\right) \cup\left(r+d_{j k}, \infty\right)\right)$
Endlf
EndFor

EndFor

Step 3:

For every (i, k, r) in L do
For $m, l=1$ to n do
If $N_{i m}, N_{l i}, N_{k m}, N_{l k}$ are closed from the right and $m \neq l$ and $r+d_{i m}-d_{k m}=0$ and $d_{l i}+d_{i m}=d_{l k}+d_{k m}$ then $N_{l m}:=N_{l m} \oplus\left(\left(-\infty, d_{l i}+d_{i m}\right) \cup\left(d_{l i}+d_{i m}, \infty\right)\right)$
Endlf

EndFor

EndFor
Step 4:
For every (i, k, r) in L do
For $m, t=1$ to n do
If $-d_{m i}=d_{i m}$ and $-d_{k t}=d_{t k}$ then
$N_{t m}:=N_{t m} \oplus\left(\left(-\infty, d_{i m}+d_{t k}+r\right) \cup\left(d_{i m}+d_{t k}+r, \infty\right)\right)$

Endlf

EndFor

EndFor
Return N
Fig. 4. A minimal TCN algorithm.

Step 2.1

Step 3

Step 2.2

Step 4

Fig. 5. The networks examined by algorithm TCN-MINIMAL.
shown as follows. If $l=m$ and $t=s$ then step 2.2 of TCN-GConsistency considers the constraint set

$$
\left\{x_{m}-x_{i} \leqslant d_{i m}, x_{i}-x_{m} \leqslant d_{m i}, x_{t}-x_{k} \leqslant d_{k t}, x_{k}-x_{t} \leqslant d_{k t}, x_{i}-x_{k} \neq r\right\}
$$

and generates the constraint

$$
-d_{i m} \neq d_{m i} \vee-d_{k t} \neq d_{t k} \vee x_{m}-x_{t} \neq d_{i m}+d_{t k}+r
$$

If $-d_{i m}=d_{m i}$ and $-d_{k t}=d_{t k}$ then this constraint becomes $x_{m}-x_{t} \neq d_{i m}+d_{t k}+r$ otherwise it evaluates to true.

The following lemma summarizes the above discussion.
Lemma 16. If TCN-GConsistency computes a binary inequation c and N is the output of TCN-Minimal then $c \in$ Constraints(N).

The following theorem shows that the algorithm TCN-Minimal is correct and gives its complexity.

Theorem 17. The algorithm TCN-Mnimal computes the minimal TCN equivalent to its input in $\mathrm{O}\left(\max \left(H n^{2}, n^{3}\right)\right)$ time where H is the number of inequations and n is the number of variables.

Proof. The correctness part follows from the previous lemma. The complexity bound is achieved by either maintaining L explicitly or by having an adjacency list recording the inequations for every node of $N . \square$

An algorithm with the same complexity has also been discovered independently by Gerevini and Cristani without prior analysis of the global consistency problem [7].

A careful comparison of the two algorithms shows that step 2 of TCN-Minimal computes 3-path implicit inequations, step 3 dcals with forbidden subgraphs and step 4 deals with 4-path implicit inequations (this new terminology comes from [7] and the reader is referred there for more details).

Independently, Isli has studied a subclass of the class of temporal constraints that we consider in this section [13]. Isli does not consider inequations of the form $x-y \neq r$ where $r \neq 0$, and achieves the same complexity bound for computing the minimal network.

5. Global consistency of point algebra networks

We will now turn our attention to an important subset of TCN : the point algebra networks introduced in [29]. A point algebra network (PAN) is a labeled directed graph where nodes represent variables and edges represent PA constraints. The labels of the edges are chosen from the set of relations $\{<, \leqslant,>, \geqslant,=, \neq, ?\}$. The symbol ? is used to label an edge $i \rightarrow j$ whenever there is no constraint between variables x_{i} and x_{j}.

Van Beek and Cohen have studied PAN in detail $[27,26]$. Theorem 17 and the following results of [26] show that the complexity of computing the minimal network does not change when we go from PAN to TCN.

Theorem 18. The minimal network equivalent to a PAN can be computed in $\mathrm{O}\left(\max \left(H n^{2}, n^{3}\right)\right)$ time where H is the number of edges labeled with \neq and n is the number of nodes.

In [27] the minimal network is computed by algorithm AAC. However, in the proof of correctness of AAC [27, Theorem 4], Van Beek and Cohen suggest that the algorithm for computing the minimal network of a given PAN also achieves global consistency. This is not true and has been corrected in [23]. As the following example demonstrates, the introduction of disjunctions of inequations is necessary for achieving global consistency in this case. But algorithm AAC of [27] does not introduce such disjunctions so it cannot achieve global consistency.

Example 19. For the PAN with constraints

$$
x_{1} \leqslant x_{2}, \quad x_{2} \leqslant x_{3}, \quad x_{4} \leqslant x_{5}, \quad x_{5} \leqslant x_{6}, \quad x_{2} \neq x_{5}
$$

AAC will also introduce constraints $x_{1} \leqslant x_{3}, x_{4} \leqslant x_{6}$. The resulting PAN is strong 3 -consistent but not globally consistent. This can be demonstrated via an argument similar to the one for Example 11. If we enforce strong 5 -consistency with the addition of constraints $x_{1} \neq x_{5} \vee x_{3} \neq x_{5}, x_{4} \neq x_{2} \vee x_{6} \neq x_{2}$ and $x_{1} \neq x_{3} \vee x_{1} \neq x_{4} \vee x_{1} \neq x_{6}$, then the resulting set is globally consistent.

Global consistency of PAN can be enforced by TCN-GConsistency if PAN are represented by their equivalent TCN. The following theorem summarizes the result of Section 3 as it applies to PAN.

Theorem 20. Strong 5 -consistency is necessary and sufficient for achieving global consistency in PAN. Strong 5-consistency can be enforced in $\mathrm{O}\left(\mathrm{Hn}^{4}\right)$ time where H is the number of edges labeled with \neq and n is the number of nodes.

Global consistency of PAN has also been discussed (under the name decomposability) in Section 5 of [14] and algorithm Decompose has been proposed for achieving this task. The algorithm is correct but it adopts a representation which is rather inappropriate for the task at hand and leads to a complexity bound which is not the tightest. The results of this section subsume the results of Section 5 (only!) of [14].

Let us now comment on some observations of Dechter [2] on the problem of enforcing global consistency in PAN. Dechter [2] discusses global consistency in general constraint networks with finite variable domains. The most important result of [2] is the following. If N is a constraint network with constraints of arity r or less and domains of size k or less which is strongly $(k(r-1)+1)$-consistent, then N is globally consistent.

The above result can be applied to PAN if PAN are redefined as "traditional" constraint networks where variables represent relations between two points and constraints are defined by the transitivity table of [29]. This representation yields a constraint network with $k=3$ and $r=3$. Dechter's result now gives us the following. If strong 7-consistency in PAN can be enforced with ternary constraints then strong 7-consistency implies global consistency. Dechter uses the aforementioned incorrect assertion of [27] to conclude that strong 7 -consistency in the traditional formulation of PAN can be enforced with ternary constraints. Thus she also concludes that in the traditional formulation strong 7 -consistency implies global consistency [2, p. 100]. In the light of Theorem 20, Dechter's conclusion remains unjustified.

6. The general case

Let us now consider enforcing global consistency when disjunctions of inequations are allowed in the given constraint set.

Example 21. The constraint set

$$
\begin{aligned}
C=\{ & x_{5} \leqslant x_{1}, x_{1} \leqslant x_{6}, x_{5} \leqslant x_{6}, x_{7} \leqslant x_{3}, x_{3} \leqslant x_{8}, x_{7} \leqslant x_{8}, x_{9} \leqslant x_{2}, \\
& \left.x_{2} \leqslant x_{10}, x_{9} \leqslant x_{10}, x_{1} \neq y \vee x_{2} \neq z \vee x_{3} \neq w\right\}
\end{aligned}
$$

is strong 7 -consistent but not 8 -consistent. For example, the valuation

$$
v=\left\{y \leftarrow 0, z \leftarrow 0, w \leftarrow 0, x_{2} \leftarrow 0, x_{3} \leftarrow 0, x_{5} \leftarrow 0, x_{6} \leftarrow 0\right\}
$$

satisfies $C\left(y, z, w, x_{2}, x_{3}, x_{5}, x_{6}\right)=\left\{x_{5} \leqslant x_{6}\right\}$ but it cannot be extended to a valuation which satisfies $C\left(y, z, w, x_{2}, x_{3}, x_{5}, x_{6}, x_{1}\right)$. We can enforce 8 -consistency by adding the constraints

$$
\begin{aligned}
& x_{5} \neq y \vee x_{6} \neq y \vee x_{2} \neq z \vee x_{3} \neq w \\
& x_{1} \neq y \vee x_{9} \neq z \vee x_{10} \neq z \vee x_{3} \neq w \\
& x_{1} \neq y \vee x_{2} \neq z \vee x_{7} \neq w \vee x_{8} \neq w .
\end{aligned}
$$

The resulting set is strong 8 -consistent but not 9 -consistent. We can enforce 9 -consistency by adding the constraints

$$
\begin{aligned}
& x_{5} \neq y \vee x_{6} \neq y \vee x_{9} \neq z \vee x_{10} \neq z \vee x_{3} \neq w \\
& x_{1} \neq y \vee x_{9} \neq z \vee x_{10} \neq z \vee x_{7} \neq w \vee x_{8} \neq w \\
& x_{5} \neq y \vee x_{6} \neq y \vee x_{2} \neq z \vee x_{7} \neq w \vee x_{8} \neq w .
\end{aligned}
$$

The resulting set is strong 9 -consistent but not 10 -consistent. We can enforce 10 consistency by adding the constraint

$$
x_{5} \neq y \vee x_{6} \neq y \vee x_{9} \neq z \vee x_{10} \neq z \vee x_{7} \neq w \vee x_{8} \neq w
$$

The resulting set is strong 10 -consistent and also globally consistent.
Fig. 6 presents algorithm GConsistency which enforces global consistency on its input constraint set. The reader should have no problem understanding the details of GConsistency since it is a straightforward generalization of algorithm TCN-GConsistency.

The following theorem demonstrates the correctness of GConsistency. The proof is given in Appendix A.

Theorem 22. The algorithm GConsistency is correct i.e., it returns a globally consistent set of constraints equivalent to the input one.

In essence, algorithm GConsistency achieves strong $2 V+1$-consistency where V is the maximum number of variables in any disjunction of inequations. Thus we have the following corollary.

Corollary 23. Let C be a set of temporal constraints. If C is $2 V+1$-consistent, where V is the maximum number of variables in any disjunction of inequations, then C is globally consistent.

The time complexity of GConsistency is exponential in V. However, if V is fixed then the time complexity of GConsistency is polynomial in the number of variables and the number of constraints in C. This has an interesting consequence for variable elimination due to its relation to global consistency.

Algorithm GConsistency

Input: A set of temporal constraints $C=C_{i} \cup C_{d}$ where C_{i} is a sct of inequalities and C_{d} is a set of disjunctions of inequations.
Output: A globally consistent set of constraints equivalent to C.

Method:

Step 1: Enforce strong 3 -consistency on C_{i}.
Let N be the TCN corresponding to C_{i}.
For $k, i, j=1$ to n do

$$
N_{i j}:=N_{i j} \oplus\left(\overline{N_{i k}} \otimes N_{k j}\right)
$$

EndFor
Step 2: Enforce global consistency
$C_{d}^{\prime}:=\emptyset$
For each $c \in C_{d}$ do
For all subsets $\left\{k_{1}, \ldots, k_{i}\right\}$ of the set of variables of c do
For $m_{1}, \ldots, m_{i}, l_{1}, \ldots, l_{i}=1$ to n do
If $N_{k_{1} m_{1}}, \ldots, N_{k_{i} m_{i}}, N_{l_{1} k_{1}}, \ldots, N_{l_{i} k_{i}}$ are closed from the right then
Eliminate variables $x_{k_{1}}, \ldots, x_{k_{i}}$ from $\bar{c}, x_{m_{1}}-x_{k_{1}}=d_{k_{1} m_{1}}, x_{k_{1}}-x_{l_{1}}=d_{l_{1} k_{1}}, \ldots, x_{m_{i}}-x_{k_{i}}=d_{i m_{i}}$, $x_{k_{i}}-x_{l_{i}}=d_{l_{i} k_{i}}$ to obtain c^{\prime} $C_{d}^{\prime}:=C_{d}^{\prime} \cup\left\{\overline{c^{\prime}}\right\}$

Endif

EndFor
EndFor
EndFor
Return Constraints $(N) \cup C_{d} \cup C_{d}^{\prime}$
Fig. 6. Enforcing global consistency.

Corollary 24. Let C be a set of temporal constraints such that the number of variables in every disjunction of inequations is fixed. Eliminating any number of variables from C can be done in time polynomial in the number of variables and the number of constraints. In addition, the resulting constraint set has size polynomial in the same parameters.

Proof. Let x_{1}, \ldots, x_{n} be all the variables of C. When V is fixed, the size of the constraint set generated by algorithm GConsistency is polynomial in the number of variables and the number of constraints. If C is globally consistent then for any i such that $1 \leqslant i \leqslant n, C\left(x_{1}, \ldots, x_{i}\right)$ is the projection of $\operatorname{Sol}(C)$ on $\left\{x_{1}, \ldots, x_{i}\right\}$. Thus we can eliminate variables x_{1}, \ldots, x_{i} from C by running GConsistency on C and returning
$C\left(x_{i+1}, \ldots, x_{n}\right)$. This algorithm takes time polynomial in the number of variables and the number of constraints.

The above corollary complements Theorem 4.4 of [14] which states that variable elimination can result in constraint sets with an exponential number of disjunctions of inequations.

7. Conclusions

We discussed the problem of enforcing global consistency in sets of quantitative temporal constraints which include inequalities, inequations and disjunctions of inequations. In future research it would be interesting to consider directional consistency algorithms for this class of temporal constraints [4]. It would also be interesting to combine our results with the results of [20] in order to identify classes of qualitative and quantitative point/interval constraints where global consistency is tractable.

Acknowledgements

I would like to thank Peter van Beek, Rina Dechter, Amar Isli, the reviewers of CP95 and the reviewers of this paper for interesting comments. I would also like to thank Alfonso Gerevini for pointing out to me that an earlier version of Lemma 16 had been stated inaccurately.

Appendix A. Proofs

Proof of Theorem 12. Let C^{\prime} denote Constraints $(N) \cup C$. The set C^{\prime} is consistent, therefore 1 -consistency holds trivially. We will show that C^{\prime} is v-consistent for every v, $2 \leqslant \nu \leqslant n$.

Let us take an arbitrary valuation $v=\left\{x_{1} \leftarrow x_{1}^{0}, \ldots, x_{v-1} \leftarrow x_{v-1}^{0}\right\}$ such that $C^{\prime}\left(x_{1}^{0}, \ldots, x_{v-1}^{0}\right)$ is satisfiable. We will show that for every variable x_{v}, v can be extended to a valuation $v^{\prime}=v \cup\left\{x_{v} \leftarrow x_{v}^{0}\right\}$ such that $C^{\prime}\left(x_{1}^{0}, \ldots, x_{v}^{0}\right)$ is satisfiable.

If all constraints involving x_{v} and any of x_{1}, \ldots, x_{v-1} are inequalities, our result is immediate since Constraints (N) is globally consistent. Let us then assume that $C^{\prime}\left(x_{1}, \ldots, x_{v}\right)$ contains inequations, and consider $C^{\prime}\left(x_{1}^{0}, \ldots, x_{v-1}^{0}, x_{v}\right)$.

Let $D_{j i}$ denote the number of inequation constraints involving $x_{j}-x_{i}$ in C^{\prime}. Let I_{i} be the set of natural numbers j such that $x_{j}-x_{i} \neq r \vee \phi$ or $x_{i}-x_{j} \neq r \vee \phi$ is an inequation constraint in C^{\prime}. Then $C^{\prime}\left(x_{1}^{0}, \ldots, x_{v-1}^{0}, x_{v}\right)$ can be written as

$$
\begin{equation*}
\left\{x_{\mu}^{0}-d_{v \mu} \prec_{1} x_{v}, x_{v} \prec_{2} x_{\lambda}^{0}+d_{\lambda v}\right\} \cup \bigcup_{\zeta \in l_{v}}\left\{x_{v} \neq x_{\zeta}^{0}+r_{v \zeta}^{1}, \ldots, x_{v} \neq x_{\zeta}^{0}+r_{v \zeta}^{D_{v}}\right\} \tag{A.1}
\end{equation*}
$$

where $\mu, \lambda, \zeta \in\{1, \ldots, v-1\}$ and $\prec_{1}, \prec_{2} \in\{<, \leqslant\}$. Since the rational numbers are dense, there is only one case which would not allow us to find a value x_{v}^{0} such that

Fig. 7. The cases examined in Theorem 12.
$C^{\prime}\left(x_{1}^{0}, \ldots, x_{v-1}^{0}, x_{v}^{0}\right)$ is satisfiable. This is the case when \prec_{1} is \leqslant, \prec_{2} is \leqslant and there exists $\rho \in I_{v}$ and $\eta \in\left\{1, \ldots, D_{v \rho}\right\}$ such that

$$
\begin{equation*}
x_{\mu}^{0}-d_{v \mu}=x_{\lambda}^{0}+d_{\lambda v}=x_{\rho}^{0}+r_{v \rho}^{\eta} . \tag{A.2}
\end{equation*}
$$

We will show that this case cannot arise.
Depending on the form of the inequation constraint c from which inequation $x_{v} \neq$ $x_{\rho}^{0}+r_{\nu \rho}^{\eta}$ was generated, the following cases must be considered. Fig. 7 illustrates the analysis by depicting the subnetworks involved in each case.
(i) c is $x_{\mathrm{y}}-x_{\rho} \neq r_{v \rho}^{\eta} \in$ Constraints (N) or equivalently $r_{v \rho}^{\eta} \in \operatorname{holes}\left(N_{\rho v}\right)$. In this case, the constraint $x_{j}-x_{\rho} \neq d_{v / \mu}+r_{v \rho}^{\eta} \vee x_{\lambda}-x_{\rho} \neq r_{v \rho}^{\eta}-d_{\lambda v}$ is added to C in step 2.1 of algorithm TCN-GCONSIITENCY with $g=\eta, m=\mu, l=\lambda$ and $k=\rho$. Then

$$
x_{\mu}^{0}-x_{\rho}^{0} \neq d_{v \mu}+r_{v \rho}^{\eta} \vee x_{\lambda}^{0}-x_{\rho}^{0} \neq r_{v \rho}^{\eta}-d_{\lambda v} \in C^{\prime}\left(x_{1}^{0}, \ldots, x_{v-1}^{0}\right)
$$

thus we have a contradiction.
(ii) c is added to C in step 2.1 of TCN-GConsistency. Depending on the values of g, l, i, m and k we can consider the following subcases.
(a) c is added to C in step 2.1 of TCN-GConsistency with $g=\eta, l=\xi, i=t$, $m=v$ and $k=\rho$. Thus c is $x_{v}-x_{\rho} \neq r_{t \rho}^{\eta}+d_{1 v} \vee x_{\xi}-x_{\rho} \neq-d_{\xi}+r_{t}^{\eta}$. The constraints (A.1), (A.2) and c imply

$$
\begin{equation*}
x_{\dot{\zeta}}^{0}-x_{\rho}^{0}=-d_{\underline{\varepsilon} 1}+r_{t \rho}^{\eta}, \quad x_{\mu}-x_{\rho}=d_{v \mu}+r_{v \rho}^{\eta}=d_{v \mu}+r_{1 \rho}^{\eta}+d_{1 v} . \tag{A.3}
\end{equation*}
$$

Now we have the following subcases:
$d_{i \mu}=d_{i v}+d_{v \mu}$. Then (A.3) contradicts the constraint

$$
x_{\mu}-x_{\rho} \neq d_{l \mu}+r_{t \rho}^{\eta} \vee x_{\xi}-x_{\rho} \neq-d_{\xi_{1}}+r_{1 \rho}^{\eta}
$$

of $C^{\prime}\left(x_{1}, \ldots, x_{v-1}\right)$ which is introduced in step 2.1 of TCN-GConsistency with $g=\eta$, $l=\xi, i=l, m=\mu$ and $k=\rho$.
$d_{i \mu}<d_{t v}+d_{v \mu}$. Then $x_{\mu}^{0}-x_{\xi}^{0} \leqslant d_{\xi \mu} \leqslant d_{\xi \iota}+d_{1 \mu}<d_{\xi \iota}+d_{i v}+d_{v \mu}$. This contradicts $x_{\mu}^{0}-x_{\xi}^{0}=d_{\xi_{1}}+d_{1 v}+d_{v \mu}$ which is implied by (A.3).
(b) c is added to C in step 2.1 of TCN-GConsistency with $g=\eta, l=v, i=l$, $m=\xi$ and $k=\rho$. Thus c is $x_{\xi}-x_{\rho} \neq r_{1 \rho}^{\eta}+d_{i \xi} \vee x_{v}-x_{\rho} \neq-d_{v l}+r_{1 \rho}^{\eta}$. This case is symmetric to 2(a).
(c) c is added to C in step 2.1 TCN -GConsistency with $g=\eta, l=\xi, i-i, m=\rho$ and $k=v$. Thus c is $x_{\rho}-x_{v} \neq r_{i v}^{\eta}+d_{i} \rho x_{\xi}-x_{v} \neq-d_{\xi_{1}}+r_{i v}^{\eta}$ or equivalently $x_{v} \neq$ $x_{\rho}-r_{i v}^{\eta}-d_{l \rho} \vee x_{v} \neq x_{\xi}+d_{\xi \iota}-r_{i v}^{\eta}$. The constraints (A.1) and c imply $x_{\rho}^{0}-r_{i v}^{\eta}-d_{i \rho}=$ $x_{\xi}^{0}+d_{\check{c}}-r_{t v}^{\eta}=x_{\rho}^{0}+r_{v \rho}^{\eta}$. These equalities together with (A.2) imply

$$
x_{\mu}^{0}-x_{\xi}^{0}=d_{\xi,}+d_{\imath \rho}, \quad x_{\mu}^{0}-x_{\lambda}^{0}=d_{v \mu}+d_{\lambda v,} \quad x_{\rho}^{0}-r_{t v}^{\eta}-d_{\iota \rho}=x_{\mu}^{0}-d_{v \mu}
$$

But for $g=\eta, l=\xi, m=\rho, i=l, k=v, t=\lambda$ and $s=\mu$ the constraint

$$
x_{\rho}-x_{\xi} \neq d_{t \rho}+d_{\xi \iota} \vee x_{\mu}-x_{\grave{\imath}} \neq d_{v \mu}+d_{\lambda v} \vee x_{\rho}-x_{\mu} \neq r_{t v}^{\eta}+d_{1 \rho}-d_{v \mu}
$$

is added to C in step 2.2 of TCN-GConsistency. This constraint also belongs to $C^{\prime}\left(x_{1}, \ldots, x_{v-1}\right)$ thus we have a contradiction.
(iii) c is added to C in step 2.2 of TCN-GConsistency. Depending on the values of y, l, i, m, t, k and s we can consider the following subcases.
(a) c is added to C in step 2.2 of TCN-GConsistency with $g=\eta, l=\rho, i=l$, $m=v, t=\alpha, k=\xi$ and $s=\beta$. Thus c is

$$
x_{v}-x_{\rho} \neq d_{i v}+d_{\rho ı} \vee x_{\beta}-x_{x} \neq d_{\xi \beta}+d_{x \xi} \vee x_{v}-x_{\beta} \neq r_{1 \xi}^{\eta}-d_{\xi \beta}+d_{i v} .
$$

The constraints (A.1) and c imply

$$
x_{\rho}^{0}+d_{t v}+d_{\rho ı}=x_{\beta}^{0}+r_{t \xi}^{\eta}-d_{\zeta \beta}+d_{t v}=x_{\rho}^{0}+r_{v \rho}^{\eta}, \quad x_{\beta}^{0}-x_{\alpha}^{0}=d_{\xi \beta}+d_{\alpha \check{\zeta}} .
$$

These equations together with (A.2) imply

$$
\begin{align*}
& x_{\mu}^{0}-x_{\rho}^{0}=d_{t v}+d_{\rho t}+d_{v \mu}, \quad x_{\beta}^{0}-x_{\alpha}^{0}=d_{\xi \beta}+d_{\alpha \xi}, \\
& x_{\mu}^{0}-x_{\beta}^{0}=d_{v \mu}+r_{t \xi}^{\eta}-d_{\xi \beta}+d_{t v} \tag{A.4}
\end{align*}
$$

Now we have to consider the following subcases:
$d_{t \mu}=d_{1 p}+d_{v \mu}$. Then (A.4) contradicts the constraint

$$
x_{\mu}-x_{\rho} \neq d_{i \mu}+d_{\rho t} \vee x_{\beta}-x_{\alpha} \neq d_{\xi \beta}+d_{\alpha \xi} \vee x_{\mu}-x_{\beta} \neq r_{i \xi}^{\eta}+d_{3 \mu}-d_{\xi \beta}
$$

of $C^{\prime}\left(x_{1}, \ldots, x_{v-1}\right)$ which is added to C in step 2.2 of TCN-GCONSISTENCY with $g=\eta$, $l=\rho, i=i, m=\mu, t=\alpha, k=\xi$ and $s=\beta$.
$d_{1 \mu}<d_{i v}+d_{\nu \mu}$. Then

$$
x_{\mu}^{0}-x_{\rho}^{0} \leqslant d_{\rho \mu} \leqslant d_{\rho 1}+d_{1 \mu}<d_{\rho 1}+d_{i v}+d_{v \mu} .
$$

This contradicts the first equation of (A.4).
(b) c is introduced in step 2.2 of TCN-GCONSISTENCY with $g=\eta, l=\alpha, i=l$, $m=\beta, t=\rho, k=\xi$ and $s=v$. Thus c is

$$
x_{\beta}-x_{x} \neq d_{1 \beta}+d_{\alpha l} \vee x_{v}-x_{\rho} \neq d_{\xi v}+d_{\rho \xi} \vee x_{\beta}-x_{v} \neq r_{\imath \xi}^{\eta}+d_{l \beta}-d_{\xi v}
$$

This case is symmetric to case 3 (a).
(c) c is introduced in step 2.2 of TCN-GConsistency with $g=\eta, l=v, i=l$, $m=\rho, t=\alpha, k=\xi$ and $s=\beta$. Thus c is

$$
x_{\rho}-x_{v} \neq d_{1 \rho}+d_{v 1} \vee x_{\beta}-x_{\alpha} \neq d_{\xi \beta}+d_{\alpha \xi} \vee x_{\rho}-x_{\beta} \neq r_{\iota \xi}^{\eta}+d_{\iota \rho}-d_{\xi \beta \beta}
$$

or $x_{v}-x_{\rho} \neq-d_{i \rho}-d_{v 1} \vee x_{\beta}-x_{\alpha} \neq d_{\xi \beta}+d_{\alpha \xi} \vee x_{\rho}-x_{\beta} \neq r_{\imath \xi}^{\eta}+d_{\imath \rho}-d_{\xi \beta}$. The constraints (A.1) and c imply

$$
x_{\beta}^{0}-x_{x}^{0}=d_{\xi \beta}+d_{x \xi}, \quad x_{\rho}^{0}-x_{\beta}^{0}=r_{t \xi}^{\eta}+d_{t \rho}-d_{\xi \beta}, \quad r_{v \rho}^{\eta}=-d_{\imath \rho}-d_{v 1}
$$

The above equations together with (A.2) imply

$$
\begin{align*}
& x_{\beta}^{0}-x_{z}^{0}=d_{\xi \beta}+d_{\alpha \xi}, \quad x_{\beta}^{0}-x_{\beta}^{0}=r_{\imath \xi}^{\eta}+d_{\imath \rho}-d_{\xi \beta}, \\
& x_{\rho}^{0}-x_{\lambda}^{0}=d_{\lambda v}+d_{\imath \rho}+d_{v 1} \tag{A.5}
\end{align*}
$$

Now we have to consider the following cases: $d_{\lambda l}=d_{\lambda v}+d_{v 1}$. Then (A.5) contradicts the constraint

$$
x_{\rho}-x_{\lambda} \neq d_{1 \rho}+d_{\lambda t} \vee x_{\beta}-x_{\alpha} \neq d_{\xi \beta}+d_{x_{\xi}} \vee x_{\rho}-x_{\beta} \neq r_{t \xi}^{\eta}+d_{t \rho}-d_{\xi \beta}
$$

of $C^{\prime}\left(x_{1}, \ldots, x_{v-1}\right)$ which is introduced in step 2.2 of TCN-GConsistency with $g=\eta$, $l=\lambda, i=\imath, m=\rho, t=\alpha, k=\xi$ and $s=\beta$.
$d_{\lambda t}<d_{\lambda v}+d_{v 1}$. Then

$$
x_{\rho}^{0}-x_{\lambda \lambda}^{0} \leqslant d_{\lambda \rho} \leqslant d_{\lambda 1}+d_{\imath \rho}<d_{\lambda v}+d_{v 1}+d_{1 \rho}
$$

which contradicts the last equation of (A.5).
(d) c is introduced in step 2.2 of TCN-GConsistency with $g=\eta, l=\alpha, i=l$, $m=\beta, t=v, k=\xi$ and $s=\rho$. Thus c is

$$
x_{\beta}-x_{\alpha} \neq d_{t \xi}+d_{\alpha I} \vee x_{\rho}-x_{v} \neq d_{\zeta \rho}+d_{v \xi} \vee x_{\beta}-x_{\rho} \neq r_{l \zeta}^{\eta}+d_{1 \beta}-d_{\zeta \rho} .
$$

This case is symmetric to case $3(\mathrm{c})$.

Proof of Theorem 22. The proof will have the same structure as the proof of Theorem 12. Let C^{\prime} be the set returned by GConsistency. Let us take an arbitrary valuation $v=\left\{x_{1} \leftarrow x_{1}^{0}, \ldots, x_{v-1} \leftarrow x_{v-1}^{0}\right\}$ such that $C^{\prime}\left(x_{1}^{0}, \ldots, x_{v-1}^{0}\right)$ is satisfiable. We will show that for every variable x_{v}, v can be extended to a valuation $v^{\prime}=v \cup\left\{x_{v} \leftarrow x_{v}^{0}\right\}$ such that $C^{\prime}\left(x_{1}^{0}, \ldots, x_{v}^{0}\right)$ is satisfiable.

If all constraints involving x_{v} and any of x_{1}, \ldots, x_{v-1} are inequalities, our result is immediate since Constraints (N) is globally consistent. Let us then assume that $C^{\prime}\left(x_{1}, \ldots, x_{v}\right)$ contains inequations, and consider $C^{\prime}\left(x_{1}^{0}, \ldots, x_{v-1}^{0}, x_{v}\right)$.

Let $D_{j i}$ denote the number of inequation constraints involving $x_{j}-x_{i}$ in C^{\prime}. Let I_{i} be the set of natural numbers j such that $x_{j}-x_{i} \neq r \vee \phi$ or $x_{i}-x_{j} \neq r \vee \phi$ is an inequation constraint in C^{\prime}. Then $C^{\prime}\left(x_{1}^{0}, \ldots, x_{y-1}^{0}, x_{v}\right)$ can be written as

$$
\begin{equation*}
\left\{x_{\mu}^{0}-d_{v \mu} \prec_{1} x_{v}, x_{v} \prec_{2} x_{\lambda}^{0}+d_{i, v}\right\} \cup \bigcup_{\zeta \in I_{v}}\left\{x_{v} \neq x_{\zeta}^{0}+r_{v \zeta}^{1}, \ldots, x_{v} \neq x_{\zeta}^{0}+r_{v \zeta}^{D_{v}}\right\} \tag{A.6}
\end{equation*}
$$

where $\mu, \lambda, \zeta \in\{1, \ldots, v-1\}$ and $\prec_{1}, \prec_{2} \in\{<, \leqslant\}$. Since the rational numbers are dense, there is only one case which would not allow us to find a value x_{v}^{0} such that $C^{\prime}\left(x_{1}^{0}, \ldots, x_{v-1}^{0}, x_{v}^{0}\right)$ is satisfiable. This is the case when \prec_{1} is \leqslant, \prec_{2} is \leqslant and there exists $\rho \in I_{v}$ and $\eta \in\left\{1, \ldots, D_{v \rho}\right\}$ such that

$$
\begin{equation*}
x_{\mu}^{0}-d_{v \mu}=x_{\lambda .}^{0}+d_{\lambda v}=x_{\rho}^{0}+r_{v \rho}^{\eta} . \tag{A.7}
\end{equation*}
$$

We will show that this case cannot arise.
Depending on the form of the inequation constraint c_{1} from which inequation $x_{v} \neq$ $x_{\rho}^{0}+r_{v}^{\eta}$ was generated, the following cases must be considered.
(i) $c_{1} \in C_{d}$. Then c_{1} can be written as

$$
x_{v}-x_{\rho} \neq r_{v \rho}^{\eta} \vee \bar{\phi}
$$

where ϕ does not contain x_{y}. When the set $\{v\}$ is considered by step 2 of GConsistency and $m_{1}=\mu, l_{1}=\lambda$, the variable x_{v} is eliminated from

$$
\overline{c_{1}}, \quad x_{\mu}-x_{v}=d_{v \mu}, \quad x_{v}-x_{\hat{\lambda}}=d_{\lambda v}
$$

to obtain the following constraint c_{2} :

$$
\bar{\phi} \vee x_{\mu}-x_{\rho} \neq d_{v \mu}+r_{v \rho}^{\eta} \vee x_{\rho}-x_{i} \neq d_{\lambda v}-r_{\rho v}^{\eta}
$$

We have arrived at a contradiction since $c_{2} \in C^{\prime}\left(x_{1}^{0}, \ldots, x_{v-1}^{0}\right)$ and the equalities (A.7) hold.
(ii) c_{1} is added to C^{\prime} in step 2 of GConsistency. Depending on the values of $c, i, m_{1}, \ldots, m_{i}, l_{1}, \ldots, l_{i}$ we consider the following subcases.
(a) $c=c_{3}, i=\imath, m_{1}=\beta_{1}, \ldots, m_{j}=v, \ldots, m_{l}=\beta_{1}, l_{1}=\alpha_{1}, \ldots, l_{j}=\rho, \ldots, l_{1}=\alpha_{l}$.

Thus c_{1} is obtained after variables $x_{k_{1}}, \ldots, x_{k_{t}}$ are eliminated from

$$
\begin{aligned}
& \overline{c_{3}}, \quad x_{\beta_{1}}-x_{k_{1}}=d_{k_{1} \beta_{1}}, x_{k_{1}}-x_{\alpha_{1}}=d_{\alpha_{1} k_{1}}, \ldots, x_{v}-x_{k_{j}}=d_{k_{j} v} \\
& x_{k_{j}}-x_{\rho}=d_{\rho k_{j}}, \ldots, x_{\beta_{1}}-x_{k_{1}}=d_{k_{k} \beta_{1}}, \quad x_{k_{1}}-x_{\alpha_{i}}=d_{\alpha_{i} k_{1}} .
\end{aligned}
$$

Therefore c_{1} is

$$
\begin{aligned}
& \overline{c_{3}\left[x_{k_{1}} / x_{\alpha_{1}}+d_{\alpha_{1} k_{1}}, \ldots, x_{k_{j}} / x_{\rho}+d_{\rho k_{j}}, \ldots, x_{k_{1}} / x_{x_{1}}+d_{\alpha_{1} k_{2}}\right]} \\
& \quad \vee x_{\beta_{1}}-x_{\alpha_{1}} \neq d_{\alpha_{1} k_{1}}+d_{k_{1} \beta_{1}} \vee \ldots \vee x_{v}-x_{\rho} \neq d_{\rho k_{j}}+d_{k_{j} v} \vee \ldots \\
& \quad \vee x_{\beta_{1}}-x_{\alpha_{i}} \neq d_{\alpha_{1} k_{i}}+d_{k_{1} \beta_{1}} .
\end{aligned}
$$

Let us recall that $x_{v} \neq x_{\rho}^{0}+r_{v \rho}^{\eta}$ has been generated by c_{1}. This implies that $x_{\rho}^{0}+r_{v \rho}^{\eta}=$ $x_{\rho}^{0}+d_{\rho k_{f}}+d_{k_{f} v}$. We can now conclude, using (A.7), that

$$
\begin{equation*}
x_{\mu}^{0}-x_{\rho}^{0}=d_{v \mu}+r_{v \rho}^{\eta}=d_{\rho k_{j}}+d_{k_{j} v}+d_{v \mu} . \tag{A.8}
\end{equation*}
$$

Now we have to consider the following cases:

$$
\begin{aligned}
& d_{k, \mu}=d_{k, v}+d_{v \mu} . \text { If } \\
& \quad c=c_{3}, \quad i=l, \quad m_{1}=\beta_{1}, \quad \ldots, \quad m_{j}=\mu, \quad \ldots, \quad m_{i}=\beta_{t}, \\
& \quad l_{1}=\alpha_{1}, \quad \ldots, \quad l_{j}=\rho, \quad \ldots, \quad l_{t}=\alpha_{1}
\end{aligned}
$$

then step 2 of GConsistency adds the following constraint c_{4} to C_{d} :

$$
\begin{aligned}
& \overline{c_{3}\left[x_{k_{1}} / x_{x_{1}}+d_{x_{1} k_{1}}, \ldots, x_{k_{j}} / x_{\rho}+d_{\rho k_{j}}, \ldots, x_{k_{i}} / x_{x_{1}}+d_{\left.x_{1} k_{1}\right]}\right.} \\
& \quad \vee x_{\beta_{1}}-x_{\alpha_{1}} \neq d_{x_{1} k_{1}}+d_{k_{1} \beta_{1}} \vee \cdots \vee x_{\mu}-x_{\rho} \neq d_{\rho k_{j}}+d_{k_{j} \mu} \\
& \vee \cdots \vee x_{\beta_{1}}-x_{\alpha_{1}} \neq d_{x_{1} k_{i}}+d_{k_{2} \beta_{i}} .
\end{aligned}
$$

The equalities (A.8) and the form of c_{1} and c_{4} imply that we have arrived at a contradiction.
$d_{k_{j} \mu}<d_{k j v}+d_{\nu \mu}$. In this case

$$
x_{\mu}^{0}-x_{\rho}^{0} \leqslant d_{\rho \mu} \leqslant d_{\rho k_{j}}+d_{k_{j} \mu}<d_{\rho k_{j}}+d_{k_{j} v}+d_{v \mu} .
$$

Thus we have a contradiction with (A.8).
The symmetric cases where v is one of $m_{1}, \ldots, m_{j-1}, m_{j+1}, \ldots, m_{l}$ can be treated similarly.
(b) $i=t, m_{1}=\beta_{1}, \ldots, m_{j}=\rho, \ldots, m_{1}=\beta_{1}, l_{1}=\alpha_{1}, \ldots, l_{j}=v, \ldots, l_{1}=\alpha_{1}$.

This case and the symmetric ones where v is one of $l_{1}, \ldots, l_{j-1}, l_{j+1}, \ldots, l_{1}$ are analogous to (a).

References

[1] M.C. Cooper, An optimal k-consistency algorithm, Artif. Intell. 41 (1990) 89-95.
[2] R. Dechter, From local to global consistency, Artif. Intell. 55 (1992) 87-107.
[3] R. Dechter, I. Meiri and J. Pearl, Temporal constraint networks, Artif. Intell. 49 (1991) 61-95. (special volume on Knowledge Representation).
[4] R. Dechter and J. Pearl, Network-based heuristics for constraint satisfaction problems, Artif. Intell. 34 (1988) 1-38.
[5] E. Freuder, Synthesizing constraint expressions, Comm. ACM 21 (1978) 958-966.
[6] E. Freuder, A sufficient condition for backtrack-free search, J. ACM 29 (1982) 24-32.
[7] A. Gerevini and M. Cristani, Reasoning with inequations in temporal constraint networks, Tech. report, IRST - Instituto per la Ricerca Scientifica e Tecnologica, Povo TN, Italy, 1995; a shorter version appears in the Proc. Workshop on Spatial and Temporal Reasoning, IJCAI-95.
[8] A. Gerevini and L. Schubert, Efficient temporal reasoning through timegraphs, in: Proc. IJCAI-93 (1993) 648-654.
[9] A. Gerevini, L. Schubert and S. Schaeffer, Temporal reasoning in timegraph I-II, SIGART Bull. 4 (1993) 21-25.
[10] J. L. Imbert, Variable elimination for generalized linear constraints, in: Proc. 10th Internat. Conf. on Logic Programming (1993).
[11] J.-L. Imbert, Redundancy, variable elimination and linear disequations, in: Proc. Internat. Symp. on Logic Programming (1994) 139-153.
[12] J.-L. Imbert and P. van Hentenryck, On the handling of disequations in CLP over linear rational arithmetic, in: F. Benhamou and A. Colmerauer, eds., Constraint Logic Programming: Selected Research, Logic Programming Series (MIT Press, Cambridge, MA, 1993) 49-71.
[13] A. Isli, Constraint-based temporal reasoning: a tractable point algebra combining qualitative, metric and holed constraints, Tech. Report 94-06, LIPN-CNRS URA 1507, Inst. Galilée, Université Paris-Nord, 1994.
[14] M. Koubarakis, Dense time and temporal constraints with \neq, in: Principles of Knowledge Representation and Reasoning: Proc. Third Internat. Conf. (KR'92) (Morgan Kaufmann, San Mateo, CA, 1992) 24-35.
[15] M. Koubarakis, Complexity results for first-order theories of temporal constraints, in: Principles of Knowledge Representation and Reasoning: Proc. 4th Internat. Conf. (KR'94) (Morgan Kaufmann, San Francisco, CA, May 1994) 379-390.
[16] M. Koubarakis, Foundations of indefinite constraint databases, in: A. Borning, ed., Proc. 2nd Internat. Workshop on the Principles and Practice of Constraint Programming (PPCP'94), Lecture Notes in Computer Science, Vol. 874 (Springer, Berlin, 1994) 266-280.
[17] M. Koubarakis, Foundations of temporal constraint databases, Ph.D. thesis, Computer Science Division, Dept. Electrical and Computer Engineering, National Technical University of Athens, 1994; Available electronic-mail from http://www.co.umist.ac.uk/manolis/MK/M-Koubarakis.html.
[18] J.-L. Lassez and K. McAloon, A canonical form for generalized linear constraints. Tech. report RC15004 (\#67009), IBM Research Division, T.J. Watson Research Center, 1989.
[19] I. Meiri, Combining qualitative and quantitative constraints in temporal reasoning, Tech. Report R-160, Cognitive Systems Laboratory, University of California, Los Angeles, 1991.
[20] I. Meiri, Combining qualitative and quantitative constraints in temporal reasoning, in: Proc. AAAI-9I (1991) 260-267.
[21] U. Montanari, Networks of constraints: fundamental properties and applications to picture processing, Inform. Sci. 7 (1974) 95-132.
[22] A. Schrijver, ed., Theory of Integer and Linear Programming (Wiley, New York, 1986).
[23] P. van Beek, Exact and approximate reasoning about qualitative temporal relations, Tech. Report TR 90-29, Department of Computing Science, Iniversity of Alherta, 1990
[24] P. van Beek, Reasoning about qualitative temporal information, in: Proc. AAAI-90 (1990) 728-734.
[25] P. van Beek, Temporal query processing with indefinite information, Artif. Intell. Med. 3 (1991) 325-339.
[26] P. van Beek, Reasoning about qualitative temporal information, Artif. Intell. 58 (1992) 297-326.
[27] P. van Beek and R. Cohen, Exact and approximate reasoning about temporal relations, Comput. Intell. 6 (1990) 132-144.
[28] M. Vilain and H. Kautz, Constraint propagation algorithms for temporal reasoning, in: Proc. AAAI-86 (1986) 377-382.
[29] M. Vilain, H. Kautz and P. van Beek, Constraint propagation algorithms for temporal reasoning: a revised Report, in: D.S. Weld and J. de Kleer, eds., Readings in Qualitative Reasoning about Physical Systems (Morgan Kaufmann, Los Altos, CA, 1989) 373-381.

[^0]: * E-mail: manolis@sna.co.umist.ac.uk.

[^1]: ${ }^{1}$ Elimination of variables is a very important operation in temporal constraint databases [15-17].
 ${ }^{2}$ As shown in [3] if only inequalities are considered path consistency is necessary and sufficient for achieving global consistency.

[^2]: ${ }^{3}$ The case where $l=s$ and $m=t$ does not need to be considered because it leads to disjunctions of inequations that are equivalent to true.

