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Abstract 

We study the problem of global consistency for several classes of quantitative temporal con- 
straints which include inequalities, inequations and disjunctions of inequations. In all cases that 
we consider we identify the level of local consistency that is necessary and sufficient for achiev- 
ing global consistency and present an algorithm which achieves this level. As a byproduct of 
our analysis, we also develop an interesting minimal network algorithm. 

1. Introduction 

One of the most important notions found in the constraint satisfaction literature is 

global consistency [S]. In a globally consistent constraint set all interesting constraints 

are explicitly represented and the projection of the solution set on any subset of the 

variables can be computed by simply collecting the constraints involving these vari- 

ables. An important consequence of this property is that a solution can be found by 

backtrack-free search [6]. Enforcing global consistency can take an exponential amount 

of time in the worst case [S, 11. As a result it is very important to identify cases in 

which local consistency, which presumably can be enforced in polynomial time, implies 

global consistency [2]. 

In this paper we study the problem of enforcing global consistency for sets of quanti- 

tative temporal constraints over the rational (or real) numbers. The class of constraints 

that we consider includes: 

equalities of the form n - y = r, 

inequalities of the form x - y d r, 

inequations of the form x - y # r, and 

disjunctions of inequations of the form 
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where x, y,xi, ~1,. . ,x,,, yn are variables ranging over the rational numbers and r, 
t-1,. . . , r,, are rational constants. For the representation of equalities, inequalities and 

inequations, we utilize binary temporal constraint networks. Disjunctions of inequa- 

tions are represented separately. 

Disjunctions of inequations have been introduced in [14] following the observation 

that in the process of eliminating variables from a set of temporal constraints, an 

inequation can give rise to a disjunction of inequations. ’ In related temporal reasoning 

research, Vilain and Kautz [28], van Beek [23], Gerevini and Schubert [8] and Gerevini 

et al. [9] have considered inequations of the form ti # t2 in the context of point algebra 

(PA) networks. Also, Meiri [19] has studied inequations of the form t # r (r a real 

constant) in the context of point networks with almost-single-interval domains. In 

a more general context, researchers in constraint logic programming (originally [ 181 

and later [12, 10, 111) have studied disjunctions of arbitrary linear inequations (e.g., 

2x1 + 3x2 - 4x3 # 4 V x2 + x3 + x5 # 7). Refs. [18, 121 concentrate on deciding 

consistency and computing canonical forms while [ 10, 1 l] deal mostly with variable 

elimination. It is interesting to notice that the basic algorithm for variable elimination 

in this case has been discovered independently in [14, lo] although [14] has used the 

result only in the context of temporal constraints. 

The contributions of this paper can be summarized as follows. 

(i) We show that strong 5-consistency is necessary and sufficient for achieving global 

consistency in temporal constraint networks for inequalities and inequations (Corol- 

lary 13).2 This result (and all subsequent ones) rely heavily on an observation of 

[18, 14, lo]: (disjunctions of) inequations can be treated independently of one another 

for the purposes of deciding consistency or performing variable elimination. 
We give an algorithm which achieves global consistency in O(Hn4) where n is the 

number of nodes in the network and H is the number of inequations (Theorems 12 and 

14). The analysis of this algorithm demonstrates that there are situations where it is im- 
possible to enforce global consistency without introducing disjunctions of inequations. 

A detailed analysis of the global consistency algorithm also gives us an algorithm 

for computing the minimal temporal constraint network in this case. The complexity 

of this algorithm is O(max(Hn2,n3)) (Theorem 17). 

(ii) We also consider global consistency of point algebra networks [28]. In this case 

strong 5-consistency is also necessary and sufficient for achieving global consistency 

(Theorem 20). This result, which answers an open problem of [23], also follows from 

[14] but the bounds of the algorithms given there were not the tightest possible. 

(iii) Finally, we consider global consistency when disjunctions of inequations are 

also allowed in the given constraint set. This case is mostly of theoretical interest 

and is presented here for completeness. In this case, strong (2V + 1)-consistency is 

’ Elimination of variables is a very important operation in temporal constraint databases [15-l 71. 
* As shown in [3] if only inequalities are considered path consistency is necessary and sufficient for achieving 

global consistency. 
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necessary and su~cient for achieving global consistency (Corollary 23). The parameter 
V is the maximum number of variables in any disjunction of inequations. 

Most of the above results come from the author’s Ph.D. thesis [ 171 or are refinements 
of ideas presented there. 

The paper is organized as follows. The next section presents definitions and prelim- 
inaries. Section 3 discusses global consistency of temporal constraint networks while 
Section 4 presents an algorithm for computing the minimal network. Section 5 con- 
siders the case of point algebra networks. Section 6 considers the case of arbitrary 
temporal constraints. Finally, Section 7 summarizes our results. Appendix A contains 
two long proofs. 

2. Definitions and p~~~nari~ 

We consider time to be linear, dense and unbounded. Points will be our only time 
entities. Points are identi~ed with the rational numbers but our results still hold if 
points are identified with the reals. The set of rational numbers will be denoted by 9~ 

Definition 1. A temporal constraint is a formula t - t’ gr, t - t’ < r, t - t’ = r or 
t1 - t; # Y] v * . . v t,, - t; # r,, where t, t’, tl , . . . , t,,, t;, . . . , t; are variables and r, q,. . . , r, 

are rational constants. 

The rationale for studying disjunctions of inequations has been given in [ 141. 

Definition 2. Let C be a set of temporal constraints in variables tl, . . . , t,,. The solution 

set of C, denoted by Sol(C), is 

(CR,..-, %2): (Tlr..., r, ) f 9” and for every c E C, (~1,. . . , z,,) satisfies c]. 

Each member of So&C) is called a solution of C. A set of temporal constraints is 
called consistent if and only if its solution set is nonempty. 

If c is a disjunction of inequations then ‘I; denotes the ~o~~~erne~~ of c i.e., the con- 
junction of equations obtained by negating c. If C is a set of equalities in n variables, 
the solution set of C is an alTine subset of 9”. If C is a set of inequalities in n vari- 

ables, the solution set of C is a convex polyhedron in 9”. If C is a set of disjunctions 
of inequations, the solution set of C is 2” \ So/({? : c E C)). The interested reader 
can find background material on afline spaces and convex polyhedra in [22]. 

Let C be a set of temporal constraints in variables XI,. . . ,x, which contains only 
equations, inequalities and inequations (but not disj~ctions of inequations), The tem- 

poral constraint network (TCN) associated with C is a labeled directed graph G = 
(V,E) where V = (l,... ,n}. Node i represents variable xi and edge (i,j) represents the 
binary constraints involving xi and Xj. As usual unary constraints will be represented 
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Fig. 1. A temporal constraint network. 

as binary constraints with the introduction of a special variable x0 = 0. The set of 

constraints associated with a TCN N will be denoted by Constraints(N). 

Definition 3. Let I be a set of rational numbers. I will 

interval if it is of the form 

be called an almost convex 

where l,q,..., q-1, rk, u are rational numbers such that 1 < rl < . . . < q-1 < rk -c 2.4, 

and k 2 0. An almost convex interval is also allowed to be open from the right or left. 

The k values q,..., rk will be called the “holes” of interval I. We define a function 

holes such that, for each almost convex interval I as above, 

holes(I) = {q,...,rk} 

Let US assume that the set of constraints cij on Xj -xi is 

{xj -xi~dij, xj -xi2 -d/i, xj -xi # T,l,...,Xj -Xi # ~7) 

where -dji < 7; < . . . < 57 < dij. Then the corresponding TCN N will have an edge 

i ---f j labeled by the almost-convex interval 

Example 4. The TCN of Fig. 1 represents the constraints 

l<xa--X,64, 2Gx2 -x3 65, 1 <x4 -x1 <4, 

2Gxq -x3<5, x4 - x2 # 0. 

Given an interval I, COW(~) will denote the convex hull of I i.e., the minimal (in 

the set-theoretic sense) convex interval which includes I. Formally, 

conu([Z,r*) u (r*,Q) u . . . u (rk-l,rk) u (rk,uI) = [l,U] 
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and conu(I) = I if I is convex. If N is a TCN then conv(N) denotes the TCN which 

is obtained from N by substituting each interval N,, by conn(Nij). 

If N is a TCN then its solution set is Sol(N) = Sol(Construints(N)). A TCN is 

called consistent iff its solution set is nonempty. Two TCN are called equiuaZent iff 

their solution sets are equal [3,20]. 

For the case of TCN, the operations of composition and intersection of almost-convex 

intervals are defined as usual [20]. 

Definition 5. Let I,,12 be almost convex intervals. The composition of Ii and Z2, de- 

noted by II @ Iz, is defined as follows: 

I, @I* = {z : 3x E II, 3y E 12 and x + y = z}. 

The intersection operation @ has the usual set-theoretic semantics. 

The following proposition is straightforward. 

Proposition 6. The class of almost-convex intervals over 9 is closed under composi- 

tion and intersection. 

3. Global consistency of a TCN 

We will first consider enforcing global consistency in a TCN. 

Notation 3.1. Let C be a set of constraints in variables xi,. . . ,x,. For any i such that 

1 d i <n, C(xl, . . . ,xi) will denote the set of constraints in C involving only variables 

XI,..., Xl. 

The following definition is from [2]. 

Definition 7. Let C be a set of constraints in variables xi,. . .,x, and 1 <i <n. C is 

called i-consistent iff for every i - 1 distinct variables xi,. . ,xi-i, every valuation 

U = {Xl c Xf,...,Xi_] + Xy-1 } such that u satisfies the constraints C(xi,. . . ,xi-, ) 

and every variable x, different from x1,. . . ,xi-1, there exists a rational number x! such 

that u can be extended to a valuation U’ = u U {Xi +-- xy} which satisfies the con- 

straints C(xi , . . . ,xi_i,xi). C is called strong i-consistent if it is j-consistent for every 

j, 1 d j di. C is called globally consistent iff it is i-consistent for every i, 1 <i dn. 

Let us present some examples illustrating the above definitions. 

Example 8. The constraint set C = (x2 -x1 6 5, xl - x3 62, x5 - x4 < 1, x4 - x6 63) 

is l- and 2-consistent but not 3-consistent. For example, the valuation u = {,Q t 10, 

x3 + 2) satisfies C(x2,xs) = 0 but it cannot be extended to a valuation which 

satisfies C. 
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We can enforce 3-consistency by adding the constraints x2 - x3 < 7 and x5 - x6 64 

to C. The resulting set is 3-consistent and also globally consistent. 

Example 9. The constraint set C = {x2 -xl = 5, x1 -x4 # 1) is l- and 2-consistent 

but not 3-consistent. For example, the valuation v = {x:! + 6, x4 +- 0) satisfies 

C(x,,x,) = 0 but it cannot be extended to a valuation which satisfies C. 

We can enforce 3-consistency by adding the constraint x2 -x4 # 6 to C. The resulting 

set is 3-consistent and also globally consistent. 

Example 10. The constraint set C = (x2 -x1 ~5, x1 -x3 ~2, x2 -x3 ~7, x1 -x4 # 1) 

is strong 3-consistent but not 4-consistent. For example, the valuation v = {x2 c 

7, x3 + 0, x4 + l} satisfies C(x2,x3,x4) = (x2 -x3 <7} but it cannot be extended to 

a valuation which satisfies C. 

Enforcing 4-consistency amounts to adding the disjunction 

~2 -x4 #6~~3 -x4 # -1. 

The resulting set is 4-consistent and also globally consistent. 

Example 11. The constraint set C = {x2 - xl 65, x1 - x3 62, x2 - x3 67, xg - 

x4 6 1, x4 -x6 <3, x5 --x6 <4, x1 -x4 # 1) is strong 3-consistent but not 4-consistent. 

Adding the constraint x2 - x4 # 6 V x3 - x4 # -1 (as in the previous example) is 

not enough. For example, the valuation v = (x5 c 2, x6 c -2, x1 c 2) satisfies 

C(x5,x6,xl) = (x5 - x6 64) but it cannot be extended to a valuation which satisfies 

C(xS,x6,xl,x4). 

We can enforce 4-consistency by also adding the constraint xg - x1 # 0 V x6 -XI # 

-4 to C. Let the resulting set be C’. C’ is strong 4-consistent but not 5-consistent. 

For example, the valuation v = (x2 +- 7, x3 t- 0, xg c 2, x6 +- -2) satisfies 

C(x2,x3,x5,x6) = (x2 -x3 < 7, x5 - x6 <4} but it cannot be extended to a valuation 

which SatiSfieS c(x2,x3,x5,x6,xl) (Or c(x2,x3,x5,xf,,x4)). 

We can enforce 5-consistency by adding the constraint 

X2 - x3 # 7 v x5 - x6 # 4 v x2 - x5 # 5 

to C’. The resulting constraint set is strong 5-consistent and also globally consistent. 

Fig. 2 presents algorithm TCN-GCONSISTENCY which enforces global consistency on 

its input TCN. TCN-GCONSISTENCY takes as input a TCN and returns an equivalent set 

of temporal constraints which is globally consistent. TCN-GCONSISTENCY’S output is not 

a TCN because, as the above examples indicate, enforcing global consistency might 

result in the introduction of disjunctions of inequations which cannot be represented by 

a TCN. TCN-GCONSISTENCY takes advantage of an observation of [14, IO]: inequations 

can be treated independently of one another for performing variable elimination. 



M. Koubarakis I Theoretical Computer Science I73 (1997) 89-l 12 95 

Algorithm TCN-GCONSISTENCY 
Input: A consistent TCN N. 
Output: A globally consistent set of constraints equivalent to N 

Method: 

1. Step 1: Enforce path consistency on corm(N) 
2.bk,i,j=l&n& 
3. Nzj := Nz, 8 (c~nt~(N,k) @ cORu(Nbj)) 
4. EndFor 

5. Step 2: Enforce global consistency. 
6. C := 0 

9. step 2.1 

10. ~m,l=l&n& 
11. Ir N,,, Ni; are closed from the right then 
12. C:=CU{z,- lk # dim $ +k V II - Zk # -dli $ T$} 

IX Mf 
14. EndFor 

15. 
16. 
17. 

18. 

step 2.2 
For m, I, s, t = 1 m 11 &J 

If N,,, NIP, NkS, Ntk are closed from the right then 
C := c u {z, - 21 # dim t dl, V 2, - it # dkl + dtk V 

%--+,#P:ktd,m-dks} 
19. Endif 
20. _EndFor 

21. EndFor 
22. EndFor 

23. Return Constraints(N) u C 

Fig. 2. Enforcing global consistency. 

The algorithm TCN-GCONSISTENCY essentially enforces strong Sconsistency on its 

input network N. As we will show shortly, this level of local consistency is enough 

for achieving global consistency. In step 1, TCN-GCONSISTENCY enforces strong 

3-consistency on conu(N). This is achieved by running the modified Floyd-Warshall al- 

gorithm of [3] on conv(N). Let N’ denote the resulting TCN and A’ = Construints(N’). 

Then conv(N’) is minimal and globally consistent [3]. 

In step 2, TCN-GCONSISTENCY completes its job. For each ri E hoEes(Nki) or equiv- 

alently for each inequation xi - xk # rz of A = Constraints(N), TCN-GCONSISTENCY 

explores the inequalities of A involving Xi and xk in the following systematic way. 

Fig. 3 illustrates the structure of the subnetworks of N explored in this step. Edges 

labeled with # denote non-convex intervals. 

(i) If there are inequalities x, - xi <dim and xi - xl <d/i then step 2.1 ensures that 

any valuation u = {XI t x:,x, +- xi,xk t x,“}, which satisfies A(xl,x,,xk), can be 

extended to a valuation v’ = v U {Xi +- xy} which satisfies A(X/,X,,Xk,Xi). This is 
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I I 

Xk 
It - xk-1, 

Step 2.1 step 2.1 

x~-xi~Gn 
I 
# 

xt- ;,,- xa 

Step 2.2 

Fig. 3. The subnetworks examined by step 2 of TCN-WONSISTENCY. 

achieved with the introduction of the inequation constraint 

Xl?3 - xk # dim $ ri V XI - xk # -d/i + i-i. 

If there are inequalities x, - Xk d dh and Xk - xt <dtk then step 2.1 also ensures 

that any valuation v = {x, + x:,x, +- xI),xi c xp}, which satisfies A(x,,x~,x~), can 

be extended to a valuation v’ = v U {xk t x,“} which satisfies A(Xs,Xt,Xi,Xk). This is 

achieved with the introduction of the inequation constraint 

Xs-Xi#dh-r:VXt-Xi#-dtk-ri. 

(ii) If there are inequalities x, - xi <d,,,, Xi -X/<dli, X, -Xk<dh and Xk -Xl<dtk 

then step 2.2 ensures that any valuation v = {xl + x:,x,,, t x:,x$ + xf,xI c xp}, 

which satisfies A(x[,xm,xs,xt), can be extended to a valuation v’ = v U {Xi + Xf,Xk +- 

X,“} which satisfies A(X~,X,,X,,X1,Xi,Xk). This is achieved with the introduction of the 

inequation constraint 

& - XI # dim + d/i V X, - Xt # dh + dtk V X, - Xs # ri + di::, - dh. 

Discussion. It is possible that step 2 of algorithm TCN-GCONSISTENCY introduces con- 

straints that are not strictly necessary for enforcing global consistency. This happens 

when a generated constraint is equivalent to true or when it is implied by another 

constraint. TCN-GCONSISTENCY can also introduce disjunctions of inequations that are 

equivalent to inequations (e.g., x1 - xg # 2 v x1 -x5 # 2). We tolerate this inefficiency 

because it allow us to present our ideas clearly and minimizes the case analysis in 

the forthcoming proofs. The reader can consult [ 171 for an improved but complicated 

version of TCN-GCONSISTENCY. 

The following theorem demonstrates the correctness of algorithm TCN-GCONSISTENCY. 

Its proof, presented in Appendix A, is rather long but easy to follow. 

Theorem 12. The algorithm TCN-GCONSISTENCY is correct i.e., it returns a globally 
consistent set of constraints equivalent to the input network. 
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Corollary 13. Strong 5-consistency is necessary and suj’icient .for achieving global 

consistency of a TCN. 

Proof. Example 11 shows the necessity of achieving strong Sconsistency. The suffi- 
ciency follows from the previous theorem; the algorithm TCN-GCONSISTENCY essentially 
achieves strong Sconsistency. Cl 

The following theorem gives the complexity of TCN-GCONS~S~NCY. 

Theorem 14. The running time o~TCN-GCONSISTENCY is 0(Hn4) where H is the num- 

ber (f inequations and n is the number of variables in the input TCN. 

Proof. Step 1 takes 0(n3) time, step 2.1 takes 0(Hn2) time and step 2.2 takes 0(~n4) 

time. Cl 

4. Computing minimal TCN 

In this section we present an algorithm for computing the minimal network equivalent 
to a given TCN. Minimal networks are important representations because they make 
explicit all binary constraints implied by a given network. In the words of Montanari, 
a minimal network M “. . . is perfectly explicit: as far as the pair of variables xi 
and Xj is concerned, the rest of the network does not add any further constraint to 
the direct constraint Mij” [Zl]. Minimal networks have been studied extensively in 
temporal reasoning as important tools for answering queries concerning given temporal 
information (see [24,26,3], and especially [25] for examples). For example, let C be 
a set of temporal constraints of the form xi - xi <r where xi,xi are variables ranging 
over the rational (or real) numbers and r is a rational (or real) constant. The minimal 
network corresponding to C can be computed in 0(n3) time and 0(n2) space [3]. Then 
the minimal network can be used to answer in constant time all “interesting” queries 
of the form “Does xi -xj w r follow from the constraints in C?” (where r is a rational 
constant and - is < or =). 

We will also consider a network to be minimal if it makes explicit all “interesting” 
binary constraints. In our case “interesting” binary constraints are all constraints of the 
form xi - Xj - r where xi,xj are variables ranging over the rational numbers, r is a 
rational constant, and N is d, = or #. The following definition will suffice for our 
purpose [3,20]. 

De~nition 15. A TCN 1M is tighter than a TCN N if for every r’, j, iMij C Nij. A TCN 
N is called minimal if there is no tighter network equivalent to it, 

For our class of constraints the above definition of minimality slightly deviates from 
the standard intuitions behind minimal networks (as stated by Montanari [21]). To see 
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this consider the constraint set 

c = (x1 <x2, x2 <5, x2 # x3). 

If we adopt our definition, the minimal TCN N for C has Nt3 = (-CO, 3-00). But C 
also implies the disjunctive binary constraint x3 # xi V x3 # 5 which cannot be repre- 
sented by N. Thus if one is interested in answering queries involving disjunctive binary 
constraints then one has to discard the above definition and adopt the one in 123. In 
this case a set of constraints will be called minimal if and only if any ins~ntiation of 
two variables which satisfies the constraints involving these variables, can be extended 
to a solution of the full network [2]. 

The minimal network algorithm TCN-MINIMAL, shown in Fig. 4, is essentially a by- 
product of the algorithm TCN-G~ONSISTENCY. As we discussed above, the constraints in 
the minimal TCN will be only inequalities and inequations. Therefore an algo~thm for 
computing the minimal TCN can be constructed if we start with TCN-GCONSISTENCY 
and omit any part that generates a disjunction of inequations. This can be achieved by 
a detailed analysis of step 2 of TCN-GCONSISTENCY. If we want to adopt the second 
definition of the minimal network and take into account disjunctive binary constraints 
then we have to modify TCN-M~IMAL accordingly. 

TCN-MINIMAL computes the minimal TCN in four steps. In the first step, we enforce 
path-consistency on the convex part COW(N) of the input network N. Steps 2-4 are 
illustrated in Fig. 5. In step 2, TCN-MINIMAL performs constraint propagation involving 
equalities from conv(N) and inequations from L. More precisely, for every inequation 
xi - Xj # Y f L and every equality Xk - .~i = dki E c~~v(N) step 2.1 adds inequation 
Xk - Xj # r + de to N. Similarly, for every inequation Xi - Xj # Y EL and every equality 
Xj - Xk = djk E conv(N) step 2.2 adds iWpatiOn xi - xk # r + djk to N. 

In step 3, TCN-MINIMAL considers subnetworks of N like the ones considered by 
step 2.2 of TCN-GCONSISTENCY (see Fig. 3) when 1 = t and m = s. 3 In this case the 
constraint generated by TCN-GCONSISTENCY is equivalent to a binary inequation thus it 
should be reflected in the minimal TCN. This can be shown as follows. If 1 = t and 
m = s then step 2.2 of TCN-GCONSISTENCY examines the constraint set 

{X, - Xi <dim, Xi - XI <dli, X, -Xk<&,,, xk -xr<dik, Xi -xk fr} 

and generates the constraint 

Xm - XI # & + dli ‘J Xm -x~#d~+d~~VO#Y+di~-d~, 

If r + dim - dh = 0 and dim + d/i = db + dlk then the above constraint becomes 

Xm - X! # di, + dli otherwise it evaluates to true. 
Finally, in step 4 TCN-MINIMAL considers subnetworks of N like the ones considered 

by step 2.2 of TIN-GCONSISTENCY when I = 112 and t = s. In this case the constraint 
generated by TCN-GCONSISTENCY is also equivalent to a binary inequation. This can be 

3 The case where 1 =s and m = t does not need to be considered because it leads to disjunctions of inequations 

that are equivalent to true. 
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Algorithm TCN-MINIMAL 
Input: A consistent TCN N. 

Output: A minimal TCN equivalent to N. 

Method: 

Step 1: Enforce path consistency on conv(N) (as in Step 1 of 

TCN-GCONSISTENCY). 

Step 2: 

Let f, be the list of inequations in N. 

For every (i, j, T) in L & 

Step 2.1: 

~k=lton& 

g -& = d& then 

Nkj := Nkj $ ((--Cop T + dki) U (r $ dki, W)) 

Mf 

EndFor 

Step 2.2: 

bk=lton& 

if -dkj = djk then 

Nik := Ntk $ ((-ANT + djk) U (7’ + djr~, 03)) 
Endlf 

EndFor 

EndFor 

Step 3: 

& every (it k, T) in L & 
Form,I=I&n& 

If Ni,, N/i, Nkm, Nlk are closed from the right and m # 6 and 

r + 4, - dkm = 0 and dl; + d;, = dik t dkm then 

N~rn := Nlm @ ((-00, dii + dim) u (4; t dim, ~6)) 

Endlf 

EndFor 

EndFor 

Step 4: 

For every (i, k,~) in 15 & 

&rm,t=l&n& 

Ir -&i = dim and -dk, = dtk then 

Ntm := Nt, @ ((e-00, dim t dtk t r) U (cl;, + dtk + T, CQ)) 
Endlf 

EndFor 

EndFor 

Return N 

Fig. 4. A minimal TCN algorithm. 



100 M. Koubarakis I Theoretical Computer Science I73 (1997) 89-112 

step 2.1 step 2.2 

Step 3 step 4 

Fig. 5. The networks examined by algorithm TCN-MINIMAL. 

shown as follows. If 1 = m and t = s then step 2.2 of TCN-GCONSISTENCY considers 

the constraint set 

{xm -xi<dirn, Xi -xm<dmi, Xt --Q<dkt, xk -xtd&, Xi -xk # r} 
and generates the constraint 

-dim # & V -& # & V X, - Xt # 4, + dlk + r. 

If -dim = dmi and -dkt = dtk then this constraint becomes x, -xt # dim +dtk +r other- 

wise it evaluates to true. 

The following lemma summarizes the above discussion. 

Lemma 16. Zf TCN-GCONSISTENCY computes a binary inequation c and N is the output 
of TCN-MINIMAL then c E Constraints(N). 

The following theorem shows that the algorithm TCN-MINIMAL is correct and gives 

its complexity. 

Theorem 17. The algorithm TCN-MINIMAL computes the minimal TCN equivalent to 

its input in O(max(Hn2,n3)) time where H is the number of inequations and n is the 
number of variables. 

Proof. The correctness part follows from the previous lemma. The complexity bound 

is achieved by either maintaining L explicitly or by having an adjacency list recording 

the inequations for every node of N. 0 

An algorithm with the same complexity has also been discovered independently by 

Gerevini and Cristani without prior analysis of the global consistency problem [7]. 
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A careful comparison of the two algorithms shows that step 2 of TCN-MINIMAL com- 

putes 3-path implicit inequations, step 3 deals with forbidden subgraphs and step 4 

deals with 4-path implicit inequations (this new terminology comes from [7] and the 

reader is referred there for more details). 

Independently, Isli has studied a subclass of the class of temporal constraints that we 

consider in this section [ 131. Isli does not consider inequations of the form x - y # r 
where Y # 0, and achieves the same complexity bound for computing the minimal 

network. 

5. Global consistency of point algebra networks 

We will now turn our attention to an important subset of TCN: the point algebra 

networks introduced in [29]. A point algebra network (PAN) is a labeled directed 

graph where nodes represent variables and edges represent PA constraints. The labels 

of the edges are chosen from the set of relations { <, d, >, 3, =, #, ?}. The symbol 

? is used to label an edge i + j whenever there is no constraint between variables xi 

and xi. 

Van Beek and Cohen have studied PAN in detail [27,26]. Theorem 17 and the 

following results of [26] show that the complexity of computing the minimal network 

does not change when we go from PAN to TCN. 

Theorem 18. The minimal network equivalent to a PAN can be computed in 
0(max(Hn2,n3)) time where H is the number qf edges labeled with # and n is 

the number of nodes. 

In [27] the minimal network is computed by algorithm AAC. However, in the proof 

of correctness of AAC [27, Theorem 41, Van Beek and Cohen suggest that the al- 

gorithm for computing the minimal network of a given PAN also achieves global 

consistency. This is not true and has been corrected in [23]. As the following example 

demonstrates, the introduction of disjunctions of inequations is necessary for achieving 

global consistency in this case. But algorithm AAC of [27] does not introduce such 

disjunctions so it cannot achieve global consistency. 

Example 19. For the PAN with constraints 

XI <x2, x2 <XX, x4 <xs, x5 6x6, x2 # x5. 

AAC will also introduce constraints xi <x3, x4 <x6. The resulting PAN is strong 

3-consistent but not globally consistent. This can be demonstrated via an argument 

similar to the one for Example 11. If we enforce strong 5-consistency with the addition 

of constraints XI # x5 Vxs # x5, x4 # x2 V%j # x2 and XI # x3 Vxl # x4 Vxi # X6, then 

the resulting set is globally consistent. 
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Global consistency of PAN can be enforced by TCN-GCONSISTENCY if PAN are 
represented by their equivalent TCN. The following theorem summarizes the result of 
Section 3 as it applies to PAN. 

Theorem 20. Strong 5-consistency is necessary and sufjTcient for achieving global 

consistency in PAN. Strong 5consistency can be enforced in O(Hn4) time where H 
is the number of edges labeled with # and n is the number of nodes. 

Global consistency of PAN has also been discussed (under the name decomposabil- 
ity) in Section 5 of [14] and algorithm DECOMPOSE has been proposed for achieving this 
task. The algorithm is correct but it adopts a representation which is rather inappro- 
priate for the task at hand and leads to a complexity bound which is not the tightest. 
The results of this section subsume the results of Section 5 (only!) of [14]. 

Let us now comment on some observations of Dechter [2] on the problem of en- 
forcing global consistency in PAN. Dechter [2] discusses global consistency in general 
constraint networks with finite variable domains. The most important result of [2] is 
the following. If N is a constraint network with constraints of arity r or less and do- 
mains of size k or less which is strongly (k(r - 1) + 1)-consistent, then N is globally 
consistent. 

The above result can be applied to PAN if PAN are redefined as “traditional” con- 
straint networks where variables represent relations between two points and constraints 
are defined by the transitivity table of [29]. This representation yields a constraint net- 
work with k = 3 and r = 3. Dechter’s result now gives us the following. If strong 
7-consistency in PAN can be enforced with ternary constraints then strong 7-consistency 
implies global consistency. Dechter uses the aforementioned incorrect assertion of [27] 

to conclude that strong 7-consistency in the traditional formulation of PAN can be 
enforced with ternary constraints. Thus she also concludes that in the traditional for- 
mulation strong 7-consistency implies global consistency [2, p. 1001. In the light of 
Theorem 20, Dechter’s conclusion remains unjustified. 

6. The general case 

Let us now consider enforcing global consistency when disjunctions of inequations 
are allowed in the given constraint set. 

Example 21. The constraint set 

c = {x5 <xl, xl <x6, x5 <x6, XlGX3, x3 dxs, x7<xg, x9Gx2, 

x2<xlO, x9-10, xl fyVx2 fzVx3 #w} 

is strong 7-consistent but not g-consistent. For example, the valuation 

’ = {v + O, z +- 0, w +- 0, x2 +- 0, x3 +- 0, x5 ‘-- 0, x6 C 0) 
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satisfies C(~,Z,W,X~,X~,X~,X~) = (x5 <x6} but it cannot be extended to a VdUatiOn 

which satisfies C(~,Z,W,X~,X~,X~,X~,X~). We can enforce 8-consistency by adding the 

constraints 

x1 # y V X9 # z v x10 # z v x3 # w 

X1 # y v X2 # z v x7 # w v x8 # w. 

The resulting set is strong g-consistent but not 9-consistent. We can enforce !XCOnSiS- 

tency by adding the constraints 

The resulting set is strong 9-consistent but not lo-consistent. We can enforce lo- 

consistency by adding the constraint 

x5 # y v x6 # y v x9 # z v xl0 # z v xl # w v x8 # w. 

The resulting set is strong lo-consistent and also globally consistent. 

Fig. 6 presents algorithm GCONSISTENCY which enforces global consistency on its 

input constraint set. The reader should have no problem understanding the details of 

GCONSISTENCY since it is a straightforward generalization of algorithm TCN-GCONSIS- 

TENCY. 

The following theorem demonstrates the correctness of GCONSISTENCY. The proof is 

given in Appendix A. 

Theorem 22. The algorithm GCONSISTENCY is correct i.e., it returns a globally con- 
sistent set of constraints equivalent to the input one. 

In essence, algorithm GCONSISTENCY achieves strong 2 V + l-consistency where V is 

the maximum number of variables in any disjunction of inequations. Thus we have the 

following corollary. 

Corollary 23. Let C be a set of temporal constraints. If C is 2V + l-consistent, 
where V is the maximum number of variables in any disjunction of inequations, 
then C is globally consistent. 

The time complexity of GCONSISTENCY is exponential in V. However, if V is jixed 
then the time complexity of GCONSISTENCY is polynomial in the number of variables 

and the number of constraints in C. This has an interesting consequence for variable 

elimination due to its relation to global consistency. 
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Algorithm GCONSISTENCY 
Input: A set of temporal constraints C = CiUcd where Ci is a set of inequalities 
and Cd is a set of disjunctions of inequations. 
Output: A globally consistent set of constraints equivalent to C. 

Method: 

Step 1: Enforce strong 3-consistency on Ci. 
Let N be the TCN corresponding to Ci. 
Fork,i,j=l&n& 

Nij I= Nij $ (Nik @ Nkj) 
EndFor 

Step 2: Enforce global consistency 
CA:=0 
For each c E Cd & 

For all subsets {ICI,. . . , ki} of the set of variables of c & 

brnr )..., mi,zr )...) Ei=l&n& 

IfNklm,,...,Nk,mi,N~lkl,..., Nliki are closed from the right then 
Eliminate variables XkI,. . . , xki from 

z, X,, -xkl =dklml, xk, -21~ =dllkl ,..., hi---k; =d;,,, 
Xk, - Xii = dlik, 

to obtain c’ 
CL := CA u (7) 

Endif 
EndFor 

End For 

For End 

Return Co&raints( N) U Cd U CA 

Fig. 6. Enforcing global consistency. 

Corollary 24. Let C be a set of temporal constraints such that the number of vari- 
ables in every disjunction of inequations is$xed. Eliminating any number of variables 

from C can be done in time polynomial in the number of variables and the number of 
constraints. In addition, the resulting constraint set has size polynomial in the same 
parameters. 

Proof. Let xi,. . . , x,, be all the variables of C. When V is fixed, the size of the con- 

straint set generated by algorithm GCONSISTENCY is polynomial in the number of vari- 

ables and the number of constraints. If C is globally consistent then for any i such 

that l<i<n, C(xi,..., xi) is the projection of ,SoZ(C) on {XI,. ..,xi}. Thus we can 

eliminate variables xi,. . . ,xi from C by running GCONSISTENCY on C and returning 
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q&+1,..., x,). This algorithm takes time polynomial in the number of variables and 

the number of constraints. 

The above corollary complements Theorem 4.4 of [14] which states that variable elim- 

ination can result in constraint sets with an exponential number of disjunctions of 

inequations. 

7. Conclusions 

We discussed the problem of enforcing global consistency in sets of quantitative 

temporal constraints which include inequalities, inequations and disjunctions of inequa- 

tions. In future research it would be interesting to consider directional consistency 

algorithms for this class of temporal constraints [4]. It would also be interesting to 

combine our results with the results of [20] in order to identify classes of qualitative 

and quantitative point/interval constraints where global consistency is tractable. 
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Appendix A. Proofs 

Proof of Theorem 12. Let C’ denote Constraints(N) U C. The set C’ is consistent, 

therefore l-consistency holds trivially. We will show that C’ is v-consistent for every v, 

2<\,6n. 

Let us take an arbitrary valuation o = {XI t xy,. . .,x,,_l t xt_,} such that 

C’(x:,.Yx;_, ) is satisfiable. We will show that for every variable xy, v can be ex- 

tended to a valuation v’ = v U {x,, + xf} such that C’(x7,. . ,xv) is satisfiable. 

If all constraints involving x, and any of xi,. . . ,xv_l are inequalities, our result 

is immediate since Constraints(N) is globally consistent. Let us then assume that 

C'(xi , . . . ,xy ) contains inequations, and consider C’(xy, . . . ,xf_, , x,). 

Let Dj, denote the number of inequation constraints involving xj - xi in Cf. Let Z, 

be the set of natural numbers j such that Xj - xi # r V 4 or Xi - Xj # r V c$ is an 

inequation constraint in C’. Then C’(x’ 0 ,,..., xy_,,xV) can be written as 

{xf, - 4,, -XI xv, x,, 42 xi + dam} U IJ {x, # x! + r$, . . ,xv # xe + r,:‘} (A.l) 
iE1, 

where ~,i~,[ E {l,...,v - l} and -XI,+ E { <, <}. Since the rational numbers are 

dense, there is only one case which would not allow us to find a value xi such that 
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xx- 2” -xc 

# 

XP 

Case 1 

x(-x, - X”--la 

I I # 
XP XX 

Case 2(a) 

xx- 2, -xc- “c 

I I # 
Xlr XP 

Case 2(b) 

xc -2, - XP 

# 

xx - 2” - $11 

Case 2(c) 

xp -x, -2, - xfi xa-x, -xp 
I k I /xa 
I # \ I # / 
I ‘IA I J 

x,- xc -xp xg -xc -2, -xp 

Case 3(a) Case 3(b) 

Fig. 7. The cases examined in Theorem 12. 

C’(x0 * I,. . . ,xy_,,x~> is satisfiable. This is the case when +i is <, -G is G and there 

exists p~1, and g~{l,...,D,,} such that 

xi - dvll = XI: f dA,, = x$ + r$. 64.2) 

We will show that this case ~~~~ot arise. 
Depending on the form of the inequation constraint c from which inequation x, # 

xi + r$, was generated, the following cases must be considered. Fig. 7 illustrates the 
analysis by depicting the subnetworks involved in each case. 

(i) c is x, - xP # rV:, E Constraints(N) or equivalently r$ E hoZes(N,,). In this 
case, the constraint xP - x, # dvg + r$ V XL - xp # r$, - dn,, is added to C in step 2.1 
of algorithm TCN-CONSISTENCY with g = q, m = p, I = A and k = p. Then 

thus we have a contradiction. 
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(ii) c is added to C in step 2.1 of TCN-GCONSISTENCY. Depending on the values of 

g, 1, i, m and k we can consider the following subcases. 

(a) c is added to C in step 2.1 of TCN-GCONSISTENCY with g = v, I = 4, i = 1, 

m = v and k = p. Thus c is xv - xP # r$ + d,, V xb - xp # -dt, + rl”p. The constraints 

(A.l), (A.2) and c imply 

x& - xi = -dt, + rI”,, xh - xp = d,, + r$ = d,, + ryp + d,,. 

Now we have the following subcases: 

d,, = d,, + d,,. Then (A.3) contradicts the constraint 

(A.3) 

XP - ~~#d,~~+~~V~~-x~#-d;;,$r~~ 

of C’(x, , . . . ,x+-l ) which is introduced in step 2.1 of TCN-GCONSISTENCY with g = q, 

1 = t, i = z, m = p and k = p. 

d,, < d,, + dvp. Then x; - xj<dt,<dg, + d,, < dc, + d,, + d,.p. This contradicts 

xi - x: = dtI + d,, + d,, which is implied by (A.3). 

(b) c is added to C in step 2.1 of TCN-GCONSISTENCY with g = q, I = v, i = 1, 

m = 5 and k = p. Thus c is x5 - xP # r/p + d[t V xv - x,, # -d,, + r$. This case is 

symmetric to 2(a). 

(c) c is added to C in step 2.1 TCN-GCONSISTENCY with g = ‘I, 1 = 5, i = I, m = p 

and k = v. Thus c is xP - xv # r,? + d,p V xg - x, # -ds, + r,‘l or equivalently x, # 

xp - rA< - d,p V x, # xt + dc, - r:,. The constraints (A. 1) and c imply xi - rz, - d,, = 

xi + dc, - r: = xi + r$. These equalities together with (A.2) imply 

0 

xP - ~i=dy,+d,~, 
0 0 

xy-x~=dvp+d;.,,, xp-r~,-ddlp=x~-dvp. 

But for g = 11, 1 = 5, m = p, i = I, k = v, t = A and s = p the constraint 

XP - q # 4, +ds, vx, - xi # d,,, + dj,, V xp - xp # rJ, + d,, - dyp 

is added to C in step 2.2 of TCN-GCONSISTENCY. This constraint also belongs to 

C’(xl, . ,xv_l) thus we have a contradiction. 

(iii) c is added to C in step 2.2 of TCN-GCONSISTENCY. Depending on the values of 

g, 1, i, m, t, k and s we can consider the following subcases. 

(a) c is added to C in step 2.2 of TCN-GCONSISTENCY with g = 9, 1 = p, i = t, 

m = v, t = CI, k = ( and s = j?. Thus c is 

x, - xp # d,, + dPl V xb - xx # dg + d,s V x, - xp # r,! - dt,y + d,,. 

The constraints (A.l) and c imply 

xi + d,,, + dpI = xi + r,: - dtg + d,, = xi + ry”, x;-~;=d~~+d,~. 

These equations together with (A.2) imply 

0 
xP - x; = d,, + d,, + dvp, x; - x: = dt8 + da6, 

0 

XP - x~=dvp+r~~-d,y+d,, (A.4) 
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Now we have to consider the following subcases: 
d,, = d,, + d,,. Then (A-4) contradicts the constraint 

x,, - xp # d,, + d/x v xp - x, # dt8 + da{ v xp - xp # r,; + d,, - d:p 

of C’(x, , . . . ,x”_I > which is added to C in step 2.2 of TCN-GCONSISTENCY with g = q, 
I = p, i = t, m = cl, t = a, k = 5 and s = p. 

d,, < d,, + d,,p. Then 

This contradicts the first equation of (A.4). 
(b) c is introduced in step 2.2 of TCN-GCONSISTENCY with g = Q, 1 = IX, i = I, 

~lt = p, t = p, k = 5 and s = V. Thus c is 

X/I - xx # d,p + 4, V xv - xp # dsv + d,,s v xp - xy # r,; + dip - dEv. 

This case is symmetric to case 3(a). 
(c) c is introduced in step 2.2 of TCN-GCONSISTENCY with g = q, I = v, i = 1, 

m = p, t = cx, k = { and s = p. Thus c is 

xp - X, # d,, + d,, v xp - x, # dtg + d,e V xp - q f ri: + d,, - dsp 

or X, - xp # -dsp - d,, vxp -x2 # dtdgp -i-d,: V xp - x~ # ri; + dip - dep. The constraints 

(A.1) and c imply 

The above equations together with (A.2) imply 

~~-x,o=d~~+d,~, x0-x”=rTfd P B gg ‘P - drst 

x; - x; = d),, + d,, + d,, (A.51 

Now we have to consider the following cases: 
dLE = d;,, t- d,,. Then (AS) contradicts the constraint 

xp - ~1, # 4, + 4, v xp - x, # dg -t dxt v xp - X/I # r,; + dzp - dg 

of C’(xr , . . . ,xtF_l ) which is introduced in step 2.2 of TCN-GCOMSTENCY with g = q, 
I = ,I, i = 1, m = p, t = cc, k = 5 and s = fi. 

d;_, < djL, + ds,. Then 

which contradicts the last equation of (A.5). 
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(d) c is introduced in step 2.2 of TCN-GCONSISTENCY with g = q, 1 = ~1, i = z, 
m = ji_ t = v, k = i” and s = p. Thus c is 

x/r - x, # d,,- + A, V xp - x,, # dsp + dv: V x,q - xp # r,‘! + d,/j - drp 

This case is symmetric to case 3(c). Cl 

Proof of Theorem 22. The proof will have the same structure as the proof of 
Theorem 12. Let C’ be the set returned by GCONSISTENCY. Let us take an arbitrary 
valuation z’ = {x1 c xy, . . .,x,-, t ,I(‘_)_,} such that C’(xy,. . . ,xf_‘-,) is satisfiable. We 
will show that for every variable xv, u can be extended to a valuation u’ = uU{x, +- xz} 

such that C’($, . . . ,xf ) is satisfiable. 
If all constraints involving x,, and any of x1 :. . . ,xv_i are inequalities, our result 

is immediate since Co~~~~~~~~~(~) is globally consistent. Let us then assume that 

C/(x, 0 , . . ,x,) contains inequations, and consider C/(x:, . . . , .x,_, , x,,). 
Let D/i denote the number of inequation constraints involving Xj - xi in C’. Let Zi 

be the set of natural numbers j such that Xj - Xi # Y V Q, or x, - Xj # r V cft is an 
inequation constraint in C’. Then C’(_$, . . . , .xt_ I f x, ) can be written as 

(x~-d~~~~x,~,~y~~x~+d;,,,}u U {xv#x;+rv’i ,..., x,#x;+rvy} (A.6) 
iGJ, 

where p,&{ E {l,..., v - 1 } and + I) +2 E { <, d }. Since the rational numbers are 
dense, there is only one case which would not allow us to find a value x3 such that 
C’(x0 * 1,. . . ,x,_,,x~) is satisfiable. This is the case when -XI is 6, <2 is < and there 
exists p E Z, and q E { 1,. . . , Z?&} such that 

x,9 - d,, = xf + dib, = xi + r$. (A.7) 

We will show that this case cannot arise. 
Depending on the form of the inequation constraint et from which inequation xy # 

xi + Y$ was generated, the following cases must be considered. 
(i) ct E Cd. Then cl can be written as 

where 4 does not contain x,,. When the set {v} is considered by step 2 of GCONSISTENCY 
and ml = p, 1, = 2, the variable x,, is eliminated from 

5, xl1 - x,x = dvfl, xv - xi = d)., 

to obtain the following constraint ~2: 

$ V xlr - xp # dvp + r$ V xp - x;. # day - ri,,. 

We have arrived at a contradiction since c2 E C/(x:, . . .,x:_, ) and the equalities (A.7) 
hold. 
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(ii) CI is added to C’ in step 2 of GCONSISTENCY. Depending on the values of 

C,l,ml,..., mi,l, ,..., Ii we consider the following subcases. 

(a) C = C3, i = 1, ml = /31,. . .,“Ij = V,. . .,m, = p,, 11 = al,. . . , lj = p,. . . ,l, = a,. 
Thus cl is obtained after variables xk, , . . . ,Xk, are eliminated from 

C3, X/J, -xk, =dk,b,, xk, -&, =da,k,, . . . . x, -xk, =dk,v, 

xk, - Xp = dpk, 3 . . . ,Q - xk, = dkLp,, xk4 - Xa(, = da,kL. 

Therefore cl is 

C3bk,/%, +d,,k,,...,Xk,/Xp+dpk,,...,.xk,/X,, +da,k,] 

vq, -hi, # dqk, + dk,D, v . ” v xv - xp # dpk, + dk,v v ’ *. 

“q, - Xu, # da,k, + dk,p,. 

Let us recall that x, # xi + r$ has been generated by cl. This implies that x; + I-,?~ = 

xi + dPk, + dk,“. We can now conclude, using (A.7), that 

x; - x; = d,, + r$ = dPk, + dk,v + dv,. (A.8) 

NOW we have to consider the following cases: 

dk,P = dk,y + &. If 

c = c3, i = 1, ml = Bl, . . . . TTlj=/.i, . . . . m, = b, 

11 = al, . . ., lj = p, . . . , I, = a, 

then step 2 of GCONSISTENCY adds the following constraint cd to Cd: 

c3bk,/%, +dcz,k,~~.~,Xk,/~p +‘&k,,...Pk,/% +da,k,l 

v xp, - xol, # dcqk, + dk,fi, v * . . ‘J X/I - xp # &k, + dk,p 

v . . v X/J - &, # da,k, + dk,fi,. 

The equalities (AS) and the form of cl and cd imply that we have arrived at 

a contradiction. 

dk,P < dk,y + dyP. In this case 

Thus we have a contradiction with (A.8). 

The symmetric cases where v is one of ml,. . . ,rnj-~,rnj,~, . . . ,m, can be treated 

similarly. 

(b) i=~, ml =@I ,..., mj=p ,..., m,=@,, II =a, ,..., Zj=v ,..,, /,=a,. 
This case and the symmetric ones where v is one of II,. . . , lj_1,lj+l,. . . ,I, are 

analogous to (a). 0 



M. Koubarakisl Theoretical Computer Science 173 (1997) 89-112 111 

References 

[l] M.C. Cooper, An optimal k-consistency algorithm, Arrif: Intell. 41 (1990) 89-95. 

[2] R. Dechter, From local to global consistency, Artif: Infell. 55 (1992) 87-107. 

[3] R. Dechter, I. Meiri and J. Pearl, Temporal constraint networks, Artif Zntell. 49 (1991) 61-95. (special 

volume on Knowledge Representation). 
[4] R. Dechter and J. Pearl, Network-based heuristics for constraint satisfaction problems, Artif: Intell. 34 

(1988) l-38. 

[5] E. Freuder, Synthesizing constraint expressions, Comm. ACM 21 (1978) 958-966. 

[6] E. Freuder, A sufficient condition for backtrack-free search, J. ACM 29 (1982) 24-32. 

[7] A. Gerevini and M. Cristani, Reasoning with inequations in temporal constraint networks, Tech. report, 

IRST - Instituto per la Ricerca Scientifica e Tecnologica, Povo TN, Italy, 1995; a shorter version 

appears in the Proc. Workshop on Spatial and Temporal Reasoning, IJCAI-95. 

[8] A. Gerevini and L. Schubert, Efficient temporal reasoning through timegraphs, in: Proc. IJCAI-93 
( 1993) 648-654. 

[9] A. Gerevini, L. Schubert and S. Schaeffer, Temporal reasoning in timegraph I-II, SIGART Bull. 4 
(1993) 21-25. 

[IO] J.-L. Imbert, Variable elimination for generalized linear constraints, in: Proc. 10th Internat. Conf: on 
Logic Programming (1993). 

[l I] J.-L. Imbert, Redundancy, variable elimination and linear disequations, in: Proc. Znternat. Symp. on 
Logic Programming ( 1994) 139-l 53, 

[12] J.-L. Imbert and P. van Hentenryck, On the handling of disequations in CLP over linear rational 

arithmetic, in: F. Benhamou and A. Colmerauer, eds., Constraint Logic Programming: Selected 
Research, Logic Programming Series (MIT Press, Cambridge, MA, 1993) 49-71. 

[ 131 A. Isli, Constraint-based temporal reasoning: a tractable point algebra combining qualitative, metric and 

holed constraints, Tech. Report 94-06, LIPN-CNRS URA 1507, Inst. Galilee, Universite Paris-Nord, 

1994. 

[14] M. Koubarakis, Dense time and temporal constraints with f, in: Principles of Knowledge 
Representation and Reasoning: Proc. Third Internat. Conf (KR’92) (Morgan Kaufmann, San Mateo, 

CA, 1992) 24-35. 

[15] M. Koubarakis, Complexity results for first-order theories of temporal constraints, in: Principles of 
Knowledge Representation and Reasoning: Proc. 4th Internat. Conf (KR’94) (Morgan Kaufmann, 

San Francisco, CA, May 1994) 379-390. 

[16] M. Koubarakis, Foundations of indefinite constraint databases, in: A. Boming, ed., Proc. 2nd Internal. 
Workshop on the Principles and Practice of Constraint Programming (PPCP’94), Lecture Notes in 

Computer Science, Vol. 874 (Springer, Berlin, 1994) 266280. 

[17] M. Koubarakis, Foundations of temporal constraint databases, Ph.D. thesis, Computer Science Division, 

Dept. Electrical and Computer Engineering, National Technical University of Athens, 1994; Available 

electronic-mail from http:l/www.co.umist.ac.uI&iranolislMWM-Koubarakis.html. 

[ 181 J.-L. Lassez and K. McAloon, A canonical form for generalized linear constraints. Tech. report RCl5004 

(#67009), IBM Research Division, T.J. Watson Research Center, 1989. 

[19] 1. Meiri, Combining qualitative and quantitative constraints in temporal reasoning, Tech. Report R-160, 

Cognitive Systems Laboratory, University of California, Los Angeles, 1991. 

[20] 1. Meiri, Combining qualitative and quantitative constraints in temporal reasoning, in: Proc. AAAI-91 
(1991) 260-267. 

[21] U. Montanari, Networks of constraints: fundamental properties and applications to picture processing, 

Inform. Sci. 7 (1974) 95-132. 

[22] A. Schrijver, ed., Theory of Integer and Linear Programming (Wiley, New York, 1986). 

[23] P. van Beek, Exact and approximate reasoning about qualitative temporal relations, Tech. Report TR 

90-29, Department of Computing Science, University of Alberta, 1990. 

[24] P. van Beek, Reasoning about qualitative temporal information, in: Proc. AAAI-90 (1990) 728-734. 
[25] P. van Beek, Temporal query processing with indefinite information, Artif: Zntell. Med. 3 (1991) 

325-339. 
[26] P. van Beek, Reasoning about qualitative temporal information, ArtiJ Intell. 58 (1992) 297-326. 
[27] P. van Beek and R. Cohen, Exact and approximate reasoning about temporal relations, Comput. Intell. 

6 (1990) 132-144. 



112 M. Koubarakis I Theoretical Computer Science I73 (1997) 89-112 

[28] M. Vilain and H. Kautz, Constraint propagation algorithms for temporal reasoning, in: Proc. AAAZ-86 
(1986) 377-382. 

[29] M. Vilain, H. Kautz and P. van Beek, Constraint propagation algorithms for temporal reasoning: a 

revised Report, in: D.S. Weld and J. de Kleer, eds., Readings in Qualitative Reasoning about Physical 
Systems (Morgan Kaufmann, Los Altos, CA, 1989) 373-381. 


