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SUMMARY

The role of intracellular transcriptional/post-transla-
tional feedback loops (TTFL) within the circadian
pacemaker of the suprachiasmatic nucleus (SCN)
is well established. In contrast, contributions from
G-coupled pathways and cytosolic rhythms to
the intercellular control of SCN pacemaking are
poorly understood. We therefore combined viral
transduction of SCN slices with fluorescence/biolu-
minescence imaging to visualize GCaMP3-reported
circadian oscillations of intracellular calcium [Ca2+]i
alongside activation of Ca2+/cAMP-responsive ele-
ments. We phase-mapped them to the TTFL, in
time and SCN space, and demonstrated their depen-
dence upon G-coupled vasoactive intestinal peptide
(VIP) signaling. Pharmacogenetic manipulation re-
vealed the individual contributions of Gq, Gs, and
Gi to cytosolic and TTFL circadian rhythms. Impor-
tantly, activation of Gq-dependent (but not Gs or
Gi) pathways in a minority of neurons reprogrammed
[Ca2+]i and TTFL rhythms across the entire SCN. This
reprogramming was mediated by intrinsic VIPergic
signaling, thus revealing a Gq/[Ca2+]i-VIP leitmotif
and unanticipated plasticity within network encoding
of SCN circadian time.

INTRODUCTION

Circadian rhythms pervade behavior and physiology, adapting

organisms to the demands and opportunities of day and night,

compromise of this temporal order having a major impact on

health (Hastings et al., 2003; Takahashi et al., 2008). In mam-

mals, circadian rhythms are coordinated by the hypothalamic

suprachiasmatic nucleus (SCN), which sits atop a hierarchy of

subordinate peripheral circadian clocks distributed across brain

regions and organ systems. It is now well established that the

SCN and peripheral clocks share a common circa 24 hr molecu-

lar timing mechanism, which is pivoted around transcriptional/

posttranslational negative feedback loops (TTFL), in which the

positive factors Clock and Bmal1 activate expression of the

clock genes Period (Per) and Cryptochrome (Cry) via E box reg-

ulatory sequences. Subsequently, Per and Cry proteins sup-
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press E-box activation, which can only recommence upon

clearance of these negative regulators. Despite the success of

the TTFL model in explaining circadian pacemaking within cells,

an additional level of analysis is required to understand

pacemaking across the SCN circuit, where interneuronal syn-

chronization reinforces and augments the intracellular TTFL

(Hastings et al., 2008; Mohawk and Takahashi, 2011). This

augmentation is dependent upon intercellular neuropeptidergic

cues (Liu et al., 2007; Maywood et al., 2011; Maywood et al.,

2006), which in turn activate G protein-coupled receptors to

regulate cytosolic signals, particularly cAMP- and calcium-

dependent pathways (An et al., 2011; O’Neill et al., 2008). How

these cytosolic signals relate to the TTFL and mediate their

essential role in SCN pacemaking is poorly understood. Activa-

tion of Ca2+/cAMP-responsive elements (CREs), which is a

point of convergence from upstream cytosolic pathways, in

particular, cAMP and Ca2+, may play a role in this process

(Bito et al., 1997). In the context of the SCN neuron, activation

of CREs therefore provides a valuable report of the integrated

afferent information received from the intercellular SCN net-

work for transmission to the intracellular TTFL clockwork

(Travnickova-Bendova et al., 2002).

To address the relationship between SCN circuitry, cytosolic

signals, CREs, and the TTFL, we used viral transduction to

deliver to organotypic SCN slices bioluminescence- and fluores-

cence-based reporters of cytosolic circadian rhythms. In this

way we phase-mapped to the TTFL cytosolic rhythms of

[Ca2+]i and activation of CREs, in both circadian time and SCN

space and found that they were abolished in circuits lacking

VIP. Having characterized this program, and shown its depen-

dence upon neuropeptidergic G-coupled signaling, we then

sought to examine causal relationships within it. We took advan-

tage of recent developments in pharmacogenetics (Rogan and

Roth, 2011), by using DREADDs (designer receptor exclusively

activated by designer drug) as a means to activate specific

G-coupled pathways in subsets of SCN neurons. In contrast to

optogenetic approaches, which have been especially useful for

the control of neural activity in relatively short time-frames

(Yizhar et al., 2011), DREADDs are eminently suited to manipu-

lating neuronal function in the circadian time domain (Garner

et al., 2012). Moreover, because organotypic SCN slices are a

faithful representation in vitro of circadian time-keeping in vivo,

they constitute a powerful model to explore the interplay

between cell-intrinsic and circuit-based properties in the speci-

fication of a fundamental, adaptive behavior (Welsh et al.,

2010). SCN somatic chimeras were therefore created by
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Figure 1. Circadian Activation of Ca2+/cAMP-Responsive Elements (CRE) in the SCN

(A) Representative SCN slice transduced with LV:CRE-luciferase, showing numerous cells distributed across SCN that exhibit circadian oscillations (inset),

reflected in the aggregate bioluminescence plot before (left) and after linear detrending (right).

(B) Semiautomatic image analysis (SARFIA) reveals rhythmic CRE activation at single cell level, expressed as raster plot (left). CRE oscillations have ‘‘saw-tooth’’

waveform and slightly different phases across the slice (right).

(C) Representative traces of PMT bioluminescence recording of WT, Fbxl3Afh/Afh and CK1εTau/Tau SCN transduced with the LV:CRE-luc reporter. All data mean +

SEM, p < 0.0001, ANOVA with Bonferroni correction.

(D) Representative trace of bioluminescence recording from SCN transduced with LV:CRE-luc and treated with TTX (0.5 mM) showing decreased amplitude and

robustness (increased RAE values, right panel, mean ± SEM, p < 0.0001, n = 11, paired two-tailed t test).

(E and F) De-trended traces and Rayleigh plots of representative WT and VIP�/� SCN transduced with LV:CRE-luc, showing impaired overall rhythmicity and

disrupted internal coupling of CRE oscillators (r mean vector CRE WT = 0.78, n = 120; VIP�/� = 0.24, n = 72).

(G) Cumulative plots reveal increase in period scattering and minimal robustness of the CRE rhythm (high RAE). Scale bars: 50 mm. See also Movie S1.
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lentiviral (LV) transduction with constructs encoding DREADDs

to activate Gq-, Gs-, or Gi-dependent signaling pathways in

transduced cells (Armbruster et al., 2007; Rogan and Roth,

2011). We show that these pathways control the cytosolic and

TTFL circadian components in particular and selective ways,

affecting period, amplitude and coherence, not only at the level

of individual cells but also across the SCN circuit. Remarkably,

activating Gq-dependent pathways (but not Gs or Gi) in a minor-

ity of SCN neurons selectively reprogrammed the intracellular

calcium and the downstream TTFL components propelling the

circuit to a new defined state. Cocultures of SCN slices and an

intersectional genetics approach that targeted DREADDs to

VIP neurons demonstrated that this reorganization was medi-

ated by the intrinsic, VIP subcircuit of the SCN network. In

contrast to the existing view of the SCN as a resilient circadian

pacemaker, the current study therefore reveals an unforeseen

plasticity of its circuit-encoded properties through which it can
operate in more than a single state. Thus, the Gq-Ca2+ axis is

a key control point for network programming of SCN circadian

time.

RESULTS

Circadian Activation of Ca2+/cAMP-Responsive
Elements in Wild-Type and Mutant SCN
To monitor the activation of CREs across circadian time, SCN

slices were transduced with LVs encoding a firefly-luciferase

reporter controlled by a minimal synthetic promoter containing

two CREs (LV:CRE-luc) and deprived of any other regulatory

sequences. CCD real-time imaging identified significant

numbers of transduced cells (mean ± SEM = 128 ± 26 cells/

SCN n = 5; Figures 1A and 1B; see Movie S1 available online).

These cells were sufficiently scattered across the SCN to facili-

tate semiautomated image analysis (SARFIA), which revealed
Neuron 78, 714–728, May 22, 2013 ª2013 Elsevier Inc. 715



Neuron

Gq Pathway Specifies SCN Time-Encoding Properties
pronounced circadian rhythmicity, synchronized across the

slice. Interestingly, the activation of CRE displayed a distinctive

‘‘saw-tooth’’ asymmetric waveform (nadir-zenith = 10.25 ±

0.25 hr; zenith-nadir = 14.00 ± 0.29 hr, n = 5; Figure 1B), which

contrasts with the typically sinusoidal pattern of TTFL reporters.

The period of the CRE rhythm was significantly accelerated by

the period-shortening CK1εTau mutation, and lengthened by

the Fbxl3Afh mutation (Figure 1C), demonstrating the role of the

TTFL in setting the pace of cytosolic signaling rhythms reported

by activation of CRE.

Treatment with the sodium channel blocker tetrodotoxin (TTX)

to stop action-potential firing and thereby silence interneuronal

signaling progressively decouples and damps the circadian

TTFL rhythms in SCN cells (Yamaguchi et al., 2003; Hastings

et al., 2007). Consistent with a role for CRE elements in inte-

grating circuit-level stimuli and transducing their action onto

the TTFL, TTX treatment immediately suppressed and disorga-

nized circadian rhythms of CRE activation (Figure 1D). Such cir-

cuit-level signaling is heavily reliant upon the neuropeptide VIP,

which is essential for neuronal coupling within the SCN (Atkinson

et al., 2011; Aton et al., 2005; Harmar et al., 2002; Maywood

et al., 2011; Maywood et al., 2006). VIP acts via VPAC2 recep-

tors, which in turn regulate Gs-cAMP and Gq-Ca2+ pathways

(An et al., 2011; Dickson and Finlayson, 2009). Thus, VIP/

VPAC-mediated interneuronal signals may act via CRE activa-

tion. Consistent with this, SCN slices lacking VIP showed

dramatic impairments in CRE circadian rhythms (Figure 1E),

comparable to those seen under TTX. When compared to WT,

VIP�/� SCN exhibited fewer detectably rhythmic cells (31%

versus 83%). Moreover, rhythmic cells showed a much higher

degree of phase scattering, evidenced by Rayleigh plots (Fig-

ure 1F). In the uncoupled VIP -null circuit, the circadian period

of detectable CRE oscillators was highly dispersed and the

robustness of their oscillation dramatically impaired (Figure 1G).

Thus, the absence of circuit-level electrical activity or VIPergic

signaling impaired the circadian oscillations of CREs, consistent

with their role in conveying circuit-wide stimuli to the intracellular

TTFL, and thereby reinforcing SCN circadian rhythmicity.

Selective Roles for Gs, Gi, and Gq Signaling Pathways in
Controlling Circadian Rhythms of CRE Activation in SCN
To determine the relative contributions of different G-coupled

pathways in mediating circuit-wide signals, we used a phar-

macogenetic approach to stimulate, individually, Gq, Gs,

and Gi in SCN neurons. Three different LVs encoding a

DREADD receptor (Rogan and Roth, 2011) designed to activate

Gq, Gs, or Gi signaling (respectively LV: Syn-hM3DGq-IRE-

SmCherry, LV:Syn-rM3/b1Gs-IRESmCherry, LV:Syn-hM4DGi-

IRESmCherry) were used to transduce SCN slices. LV:CRE-luc

was cotransduced, in order to report both the acute and tonic

changes following stimulation of each pathway.

In the absence of their specific ligand, Clozapine-N-Oxide

(CNO), DREADD receptors are silent and accordingly, CRE activ-

ity exhibited unperturbed circadian cycles (Figure 2A; note com-

pressed ordinate scale) and vehicle addition had no effect on

CRE circadian activation. Stimulation of the DREADDs with

CNO, however, had marked and selective effects (Figures 2A

and 2B). Consistent with the cAMP-mediated control of CRE,
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induction of Gs (activating adenylate cyclase) and Gi (inhibiting

adenylate cyclase) significantly increased and suppressed

CRE activity, respectively. Activation of Gq-dependent path-

ways also stimulated CRE, although to a lesser degree than Gs

(Figure 2B). Sustained DREADD stimulations had further selec-

tive effects on the SCN circadian clock. Whereas both Gq and

Gi activation significantly reduced the amplitude of the CRE

oscillations, Gs activation did not (Figure 2C). Remarkably, Gq

activation specifically lengthened the period by�1.2 hr, an effect

absent in Gs or Gi activated slices (Figure 2D). These data

suggest a deeper effect on the SCN circadian clock selectively

exerted by activation of Gq signaling. Importantly, CRE induction

and period lengthening by Gq stimulation were dose dependent

(Figures S1A–S1C). Treatment with CNO (100 nM) for 1 hr was

sufficient to decrease the amplitude of the CRE rhythm and

24 hr treatment lengthened period (Figures S1E andS1F). Finally,

acute CRE-luc induction fell on washout, indicating effective

CNO removal. These results confirm the specificity of the

respective DREADDs and highlight the central position of CRE

activation as a convergence point of G-coupled cytosolic

signaling cascades in the SCN. Moreover, by revealing distinct

and separable contributions of Gs, Gi, and Gq within the circa-

dian pacemaker they also highlighted a pivotal contribution of

Gq pathways to circadian properties of CRE activation.

Gq Activation Reorganizes Circadian Per1 Expression
through CRE Recruitment within the SCN Circuit
As previously shown (Figure 1A), although LV transduced cells in

our chimeric slices are a minority (�150 cells), nevertheless, the

effects exerted by DREADD-mediated Gq stimulation consis-

tently and dramatically altered the overall CRE rhythm recorded

by PMT, suggesting that circuit-wide effects may account for

the phenotype observed. To test this, SCN transduced with

LV:CRE-luc and LV:Syn-hM3DGq-IRESmCherry were followed

on camera by multichannel real-time imaging (Figure 3A),

thereby allowing cellular CRE rhythms to be assigned to

DREADD-positive or DREADD-negative subpopulations. Before

addition of CNO, all analyzed cells exhibited clear circadian

cycles of CRE activation (Figure 3B). As anticipated, CNO

directly activated CRE across the SCN in cells expressing the

DREADD. However, it also activated CRE in cells without

detectable fluorescence, thus revealing an indirect effect.

Significantly, this occurred with slower kinetics, indicative of

a trans-neuronal delay (rates of bioluminescence increase,

A.U./hr: DREADD+ cells = 0.62 ± 0.04, DREADD� cells =

0.37 ± 0.02, p < 0.01, n R 8; Figure 3B). Thus, Gq activation in

cells expressing theDREADD receptors recruited CRE activation

in other, DREADD-negative oscillators, affecting circadian

behavior of both transduced and nontransduced cells.

Having revealed the effects of Gq stimulation on the circadian

dynamics of CRE activity, we then tested if the effects of Gq

upon SCN circadian behavior were propagated to TTFL compo-

nents. The effects of DREADD-mediated Gq activation were

therefore tested on SCN transgenic for Per1-luc. This reporter

carries several CREs and also several E-boxes (Yamaguchi

et al., 2003), and would thus report both the acute effects of

Gq activation and longer term, E-box-dependent changes within

the TTFL (Travnickova-Bendova et al., 2002).



Figure 2. Selective Roles for Gs, Gi, and Gq

Signaling Pathways in Controlling Circadian

Rhythms of CRE Activation in SCN

(A) Representative bioluminescence recordings

from SCN slices transduced with the LV:CRE-

luc reporter and LV-DREADDs: Syn-hM3DGq-

IRESmCherry, LV:Syn-rM3/b1Gs-IRESmCherry or

LV:Syn-hM4DGi-IRESmCherry, respectively. CNO

(100 nM) triggered Gq- and Gs-stimulated in-

creases or a Gi-stimulated decrease of CRE acti-

vation. Insets show detrended traces to reveal the

circadian oscillations before and in the presence of

CNO.

(B) Relative induction/suppression of CRE activa-

tion plotted by day of treatment (mean ± SEM,

n = 3–6 per group). For all CNO/DREADD treat-

ments, two-way ANOVA, p < 0.5 = *; p < 0.01 = **;

p < 0.001 = ***p < 0.001 = **** versus initial activity.

(C) Gq and Gi activation decreased the amplitude

of the CRE rhythm, whereas no significant changes

are observed following Gs stimulation (mean +

SEM, two-tailed t test).

(D) Activation of Gq pathway significantly length-

ened period of CRE-luc rhythm (p < 0.01 n = 6).

Stimulation of Gs or Gi signaling had no significant

effect on period (mean + SEM, n = 3–6 per group,

two-way ANOVA, ** = p < 0.01 versus other

measures).

See also Figure S1.
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In contrast to vehicle, CNO activation of Gq increased baseline

Per1-luc bioluminescence in the subsequent cycle, and this

elevation was sustained until washout, consistent with the

response of CRE-luc noted above (Figure 3C). Moreover, the

amplitude of the rhythmwas reduced and the period significantly

lengthened (Figures 3D and 3E). Thus, the circadian effects

of Gq activation upon CRE were extended to Per1-luc, indi-

cating that Gq-dependent signals gain access to the E-box-

dependent core transcriptional feedback loops. Surprisingly,

CNO removal did not restore the period or amplitude of the

Per1-luc rhythm: the circadian consequences of Gq activation

were not reversible.

The germ-line-encoded Per1-luc transgene is present in all

cells and we could define 480 ± 10 cells per SCN (mean ±

SEM, n = 3) actively expressing it. In the same slices 186 ± 33

cells were somatically transduced by the LV:Gq vectors with a

maximal theoretical transduction rate of 39%. This is, however,

to be considered an overestimate—first, because only a fraction

of the cells in the slice express Per1-luc (Yamaguchi et al., 2003)

and, second, the difficulty of resolving the individual biolumines-

cent signals from densely packed cells undercounts them. We

therefore anticipate a real transduction rate of <20%. Thus, the
Neuron 78, 714–
phenotype could not be ascribed to

the DREADD-transduced subpopulation

alone. Rather, Gq permanently reorgan-

ized the circadian program across the

chimeric SCN. Taken together, these

data demonstrate that interneuronal sig-

nals, activated by Gq/CRE signaling in

transduced cells, can modify the circa-
dian properties of downstream neurons, extensively changing

the behavior of the whole SCN circuit.

Phase-Mapping Intracellular Calcium to the TTFL
Unveils the SCN Circadian Program
Gq-mediated induction of CRE was significantly less than that

following Gs activation (Figure 2B), but nevertheless it respeci-

fied circadian parameters, suggesting that acute CRE induction

per se is not the mechanism behind the Gq effect. Consistent

with this, treatment with forskolin/IBMX also activated CREs

but did not affect circadian period or amplitude (Figures S2A

and S2B). The Gs/forskolin pathway is specifically linked to

cAMP, whereas Gq signaling is linked to intracellular calcium

([Ca2+]i), via phospholipase C. We therefore hypothesized that

the circadian consequences of Gq stimulation may arise from

its specific effects on upstream cytosolic signals, in particular

[Ca2+]i.

To directly identify neuronal [Ca2+]i rhythms, SCN slices were

transduced with adenoassociated vectors (AAVs) encoding the

fluorescent reporter GCaMP3 controlled by the neuronally

restricted synapsin promoter (AAV:Syn-GCaMP3) (Tian et al.,

2009). One week after transduction, strong signal was evident
728, May 22, 2013 ª2013 Elsevier Inc. 717



Figure 3. Gq Activation Reorganizes Circa-

dian CRE Activation and Per1 Expression

across the Entire SCN Circuit

(A) Representative SCN transduced with LV:CRE-

luc and Syn-hM3DGq-IRESmCherry: merge re-

veals single and double transduced cells.

(B) CNO-stimulated CRE activation was present

both in Syn-hM3DGq+-cells (red, left) and the

hM3DGq� population (gray, middle). Note signifi-

cantly slower kinetics of induction in DREADD-

negative cells (right).

(C) Representative traces from Per1-luc SCN trans-

duced with the LV:Syn-hM3DGq-IRESmCherry

and treated with either vehicle (black) or CNO (red)

(100 nM, CNO) followed by washout (wo) with fresh

medium after 5 days.

(D) Mean data (+SEM) of circadian period before,

during and after treatment with vehicle (black/gray)

or CNO (red). Note significant lengthening with CNO

(p < 0.05 n = 4, two-way ANOVA with Bonferroni

correction), but not vehicle (n = 5) that is sustained

after washout (p < 0.01).

(E) Mean data (+SEM) of relative amplitude of circa-

dianCREactivation revealedca.50%reductionboth

during CNO (left, p < 0.01 two-tailed t test) and after

CNO removal (right, p < 0.001). Scale bar = 50 mm.
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in neurons across the SCN and overall fluorescence was highly

circadian, with estimated [Ca2+]i ranging between 113 ± 7.5nM

(nadir) and 191 ± 25nM (zenith, mean ± SEM n = 3, see Experi-

mental Procedures; Figure 4A; Movie S2). The circadian oscilla-

tion of [Ca2+]i progressed with a spatiotemporal wave, initiated

dorsomedially adjacent to the third ventricle, and passing ven-

trolaterally. Its circadian waveform, however, was distinct from

that of both CRE and TTFL reporters, with a prolonged trough

and relatively brief peak (respectively 15.5 ± 0.2 hr versus 8.4 ±

0.4 hr, n = 5; Figure 4A; Movie S2). As with the saw-tooth activa-

tion of CREs, this distinctive waveform was reproduced at the

level of individual neurons analyzed by SARFIA, showing a range

of different phases accumulated around the overall average slice

peak (Figures 4B and 4D). Consistent with a potential role for

[Ca2+]i rhythms as mediators of interneuronal signals, [Ca2+]i
circadian rhythms were dramatically impaired in VIP null SCN

(Figures 4C–4E). At the slice level the pattern was extremely

damped and overall fewer rhythmic cells were detected (VIP

null 61% versus WT 89%). Moreover, the phases of the detect-

ably oscillating cells were highly dispersed, as evidenced by

Rayleigh plots (Figure 4D). The period of individual cellular

[Ca2+]i rhythms within the uncoupled slice was also highly

dispersed and the robustness of the oscillations dramatically

impaired (Figure 4E). Thus, the circadian control of [Ca2+]i
rhythms faithfully recapitulated the phenotype of the down-

stream rhythms of CRE activation (Figures 1F and 1G).

To define more clearly the temporal relationships between

circadian rhythms of [Ca2+]i and CRE, and place them in the

wider context of the TTFL, we phase-mapped these events in

SCN space and circadian time. Combined bioluminescence

and fluorescence imaging (Figures 4F–4H) was used to define

the mutual phase relationship between [Ca2+]i, CREs and a

selection of previously characterized, genetically encoded

bioluminescent TTFL reporters (Per1-luc [Yamaguchi et al.,
718 Neuron 78, 714–728, May 22, 2013 ª2013 Elsevier Inc.
2003], Per2:luc [Yoo et al., 2004], Cry1-luc [Fustin et al., 2009];

Figure 4G; Movie S3). These relationships were stable, and

cross-registration to the GCaMP3 peaks made it possible to

assemble all of the bioluminescently reported events into a

single, comprehensive phase-map of the SCN circadian pro-

gram. In addition, because Per2 expression peaks at circadian

time (CT) 12 (Field et al., 2000), we used the expression of the

Per2:luc fusion-protein reporter to assign absolute CT values

to the cytosolic and TTFL events (Figure 4H).

This phase-mapping showed that [Ca2+]i peaked around

CT07, anticipating the CRE-luc peak by 1.7 ± 0.3 hr (all reporters,

mean ± SEM, nR 3). This was followed byPer1-luc (2.6 ± 0.3 hr),

which carries highly effective CREs (Travnickova-Bendova et al.,

2002) (plus E boxes), the Per2:luc posttranslational reporter

(4.8 ± 0.6 hr), with (less effective) CREs (and E boxes), and finally

the Cry1-luc (5.5 ± 0.5 hr), which is devoid of CREs but carries E

boxes (Fustin et al., 2009; Figure 4H). Given that GCaMP3

reports [Ca2+]i instantaneously but bioluminescent reporters

incorporate a lag for transcription and translation of the enzyme

(ca. < 1 hr), the phase-map indicates that the circadian peak of

[Ca2+]i, at CT07 is followed soon afterward by CRE activation

(ca. CT08) and subsequently by the CRE-containing TTFL com-

ponents, Per1 and then Per2. Cry1-luc, lacking CREs, became

active significantly later (ca. 4 hr after CRE-luc). Thus, a precisely

timed SCN circadian program can be outlined, starting with an

abrupt arise of [Ca2+]i that precedes an acute activation of CRE

followed by more sinusoidal changes in TTFL components.

Gq Signaling Selectively Reprograms [Ca2+]i across
the SCN Circuit
Having shown that circadian oscillations of [Ca2+]i in the SCN

anticipated peak activation of CREs and so might mediate

the reprogramming effects of G-coupled signals upon CRE,

we examined the effects of the individual DREADDs upon



Figure 4. Circadian Rhythm of Intracellular Calcium in SCN, Phase-Mapped to the Circadian TTFL
(A) Serial images of SCN slice transduced by AAV-Syn-GCaMP3 showing high rates of neuronal transduction and high GCaMP3 expression levels (inset: single

cells in the slice). Below is aggregate circadian rhythm of [Ca2+]i before (left) and after (right) de-trending (period = 23.81 ± 0.12 hr, mean ± SEM, n = 14).

(B) SARFIA analysis showing rhythms in single cells plotted as raster (left) and graphical (right) plots. Note that the distinctive waveform of the GCaMP3+

aggregate trace is evident in individual neurons.

(C) Detrended traces and Rayleigh plots of representative WT and VIP�/� SCN transduced with AAV:Syn-GCaMP3, showing similar results to the CRE (r mean

vector GCaMP3: WT = 0.66 n = 191, VIP�/� = 0.18, n = 112).

(E) Cumulative plots of GCaMP3 oscillations displaying increase in period scattering and minimal robustness of the rhythm (high RAE) in VIP�/� SCN.

(F) Serial images from Per2:luc knock-in SCN transduced with AAV-Syn-GCaMP3, showing different peaking times.

(G) Circadian rhythms of bioluminescence and fluorescence from SCN transduced with AAV:Syn-GCaMP3 and expressing CRE-luc, Per1-luc, Per2:luc or

Cry1-luc reporters, respectively. Data plotted as mean ± SEM (n R 3) for each configuration. Interpeaks distance (DCT versus GCaMP3) is used to align the

various rhythms around the circadian day.

(H) Phase map of circadian cytosolic oscillations and TTFL based on normalized cycles for each component. Scale bars: 50 mm. Inset: 10 mm.

See also Movies S2 and S3.
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Figure 5. Selective Reprogramming of [Ca2+]i Circadian Rhythms by Gq Signaling across the SCN Circuit

(A, F, and K) Representative SCN slices transduced with AAV:Syn-GCaMP3 and LV:Syn-hM3DGq-IRESmCherry, LV:Syn-rM3/b1Gs-IRESmCherry or hM4DGi-

IRESmCherry, respectively. Microphotographs showed that only a subset of the GCaMP3+ neurons also expressed the DREADD receptors.

(B) Detrended trace of the SCN aggregate fluorescence signals from (A) before, during and after CNO treatment, shows irreversible reduction of amplitude of

GCaMP3 oscillations.

(C) Raster plots and representative traces of GCaMP3 from individual cells in (A) showing both loosened overall synchrony and reduced amplitude and robustness

in single cells.

(D) Rayleigh plots confirm desynchronization of SCN cells within the slice induced by Gq, an effect not reversed by CNO removal.

(E) Cumulative plots showing that Gq activation irreversibly increases period and decreases the amplitude and coherence (RAE) of individual cellular rhythms.

(legend continued on next page)
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intracellular calcium rhythms. SCN slices were transduced

with LV:Syn-hM3DGq-IRESmCherry, LV:Syn-rM3/b1Gs-IRE-

SmCherry, LV:Syn-hM4DGi-IRESmCherry and the effects of

stimulation of each G pathway on [Ca2+]i were followed with

the GCaMP3 reporter (Figure 5). Gq activation immediately

and progressively reduced the amplitude of the overall oscilla-

tion (Figures 5A and 5B). This reduction was a consequence of

dramatic desynchronization between the oscillators, as well as

decreased amplitude and robustness of the rhythm in single

cells. Period dispersal of the rhythm within the population

was increased and shifted toward longer periods. None of

these effects were reversed by washout of CNO, thus confirm-

ing the irreversible reprogramming of the SCN circuit (Figures

5C–5E; Movie S4; Table S1). In contrast, stimulation of Gs did

not alter significantly the overall GCaMP3 rhythm. At the cellular

level no significant changes of the calcium oscillations were

detectable, and no reduction in amplitude or robustness. Period

dispersal was equally unaffected, and phase scattering only

slightly increased (Figures 5F–5J; Movie S5; Table S1). Finally,

Gi activation transiently reduced the amplitude, phase syn-

chrony and robustness of the [Ca2+]i rhythm, but upon CNO

removal the cellular rhythms reverted to pre-treatment patterns

(Figures 5 K–5O; Movie S6; Table S1). Interestingly, after CNO

removal the amplitude and the robustness of GCaMP3 oscilla-

tors were increased when compared to pretreatment values,

suggesting reinforcement of the intracellular [Ca2+]i oscillations

upon drug washout (Figure 5O). Thus, although Gs can acutely

activate CRE more than Gq signaling, it does not significantly

alter intracellular calcium, whereas Gq stimulation elicited a

major reorganization of [Ca2+]i, both in cells and across the

circuit.

Gq activation Reprograms the Global Spatiotemporal
Dynamics of the SCN TTFL to a New Specific State
DREADD-mediated activation of Gq signaling elicited major

changes in the structure of [Ca2+]i, CRE and Per1 circadian

rhythms, suggesting a global reorganization of the time-encod-

ing properties of the SCN that involved both the intracellular

and intercellular specification of time. To determine how far

this reorganization extended, we focused on the downstream

events of the previously characterized circadian program. SCN

expressing Per2:luc or Cry1-luc reporters were transduced

with LV:Syn-hM3DGq-IRESmCherry (Figure 6). These geneti-

cally encoded reporters signal different components of the

TTFL: posttranslational and E-box-mediated transcription,
(G) Detrended trace of the aggregate fluorescence signals from the culture in (F) s

reported [Ca2+]i rhythms.

(H) Raster plots and representative traces of cellular GCaMP3 recordings show

(I) Rayleigh plots reveal slight reduction of the phase coupling of cellular [Ca2+]i r

(J) Cumulative plots demonstrate that stimulating Gs has little effect on cellular p

(L) Detrended trace of the aggregate fluorescence signals from the SCN in (K)

diminished the overall GCaMP3 rhythm amplitude, but CNO removal reversed th

(M) Raster plots and representative traces of rhythms show that Gi reduced [Ca2

(N) Rayleigh plots displaying transient reduction of the phase coupling of GCaM

(O) Cumulative plots showing transiently decreased amplitude and increased RA

exceeded original pretreatment levels, after drug removal. Scale bars: 50 mm.

See also Table S1, Figure S2, and Movies S4, S5, and S6.
respectively, allowing for analysis of the entire SCN circuit. As

with Per1-luc, Gq activation consistently lengthened period

and reduced the amplitude of both Per2:luc protein oscillations

and Cry1-dependent transcription (Figures 6A and 6B). More-

over, whereas Gq activation increased Per2:luc baseline levels,

consistent with activation via CREs, the Cry1-luc baseline was

reduced, likely reflecting the negative regulatory influence on

its E boxes of (unobserved) increased Per protein abundance.

Consistent with this, Gq-mediated effects upon Cry1-luc were

delayed until the second cycle after treatment, as the conse-

quences of Gq stimulation cascaded through the circadian

program.

Thus, Gq activation consistently reduced amplitude and

lengthened period to �25 hr of CRE, Per1, Per2, and Cry1

rhythms, even though the chimeric SCN had a minority of

DREADD-expressing neurons. Analysis of [Ca2+]i cellular oscil-

lations revealed, however, that the change in the aggregate

period could not be ascribed to a coherent shift of all cells to-

ward a 25 hr period, but rather to a pronounced period scatter,

trending toward longer periods and likely reflecting weakened

internal coupling (Figure 5). The consistency of the �25 hr

rhythmicity tracked by all reporters and the stability of the os-

cillations, led us to hypothesize that Gq stimulation triggers a

profound, but specific rearrangement of the spatiotemporal dy-

namics of the circadian oscillations, rather than a general loss

of coherence within the circuit. To test this, the spatiotemporal

dynamics of Per2:luc and Cry1-luc expression were analyzed.

To standardize analysis of the spatiotemporal wave of gene

expression, a cumulative geometric measure was computed:

the center of luminescence (CoL), defined as the center of

mass of the distributed bioluminescence signal emanating

from the SCN (see Experimental Procedures). The x and y co-

ordinates of the CoL were determined in each frame and their

evolution plotted before and during Gq activation. CoL posi-

tions were highly conserved and reproducible between and

within slices, defining the specific and stereotypical circuit-

level organization of the SCN. Upon Gq-pathway stimulation,

[Ca2+]i circadian rhythms were dysregulated, as noted earlier

(Figures 6C and 6E). Moreover, the spatial dynamics of the

CoL of both Per2 and Cry1 were affected in a common way:

they were compressed and displaced ventrally to a new

steady-state oscillation (Figure 6D and 6F; Movies S7 and

S8). This change was not stochastic: rather it was directed

and reflected a specific reduction of the TTFL signal within

the dorsomedial SCN.
hows that activation of Gs signaling did not alter significantly overall GCaMP3-

that Gs stimulation did not affect cellular GCaMP3 fluorescence rhythms.

hythms, elicited by Gs stimulation.

eriod, amplitude, or coherence (RAE).

in the presence of CNO and after drug removal. Stimulation of Gi transiently

e phenotype, with rhythmic amplitude exceeding the pretreatment values.
+]i amplitude in single cells, but this effect was reversed on CNO removal.

P3+ oscillators by Gi, reversed by CNO washout.

E of the [Ca2+]i cellular rhythms in the presence of CNO, returned to, or even
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Figure 6. Gq Activation Reprograms the Global Spatiotemporal Dynamics of the SCN TTFL

(A and B) Recordings of Per2:luc and Cry1-luc bioluminescence (mean ± SEM, n = 5–13) from SCN transduced with LV:Syn-hM3DGq-IRESmCherry. Addition of

Gq stimulation by CNO significantly increased period (p < 0.01, two-way ANOVA with Bonferroni correction) and decreased the rhythms’ amplitude (two-tailed

t test).

(C and E) Left: Representative Per2:luc and Cry1-luc SCN transduced with LV:Syn-hM3DGq-IRESmCherry and AAV:Syn-GCaMP3. Syn-hM3DGq-

IRESmCherry+ cells constituted only a relatively small fraction of the neurons within the cultures (Per2:luc: DREADD+ 155 ± 21 n = 3; Cry1-luc: DREADD+ 134 ±

31 n = 3), when compared to GCaMP3+, Per2+ and Cry1+. Right: Addition of CNO alters GCaMP3, Per2:luc and Cry1-luc oscillations.

(D and F) Representative serial images and Poincaré plots depict the progression of the center of luminescence (CoL, white spot) for 3 days before (gray plots, left

panels) and after CNO addition (red plots, right panels). Both reporters consistently showed a reduction in the dorsomedial dynamics of the CoL. Plots are

representative of at least 3 SCN for each reporter. Scale bars: 50 mm.

See also Movies S7 and S8.
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Reprogramming by Gq Signaling Requires Intrinsic
VIPergic Coupling within the SCN Network
The ability of a minority of neurons with activated Gq signaling to

re-program the SCN circuit presumably depends upon intercel-

lular coupling involving both [Ca2+]i and CRE activation. Having

shown the importance of VIP in sustaining the overall levels
722 Neuron 78, 714–728, May 22, 2013 ª2013 Elsevier Inc.
and network coherence of both CRE activation and intracellular

calcium (Figures 1E–1G and 4C–4E), we hypothesized that

intrinsic VIPergic signaling may be necessary to transmit the

effects of Gq activation across the network. To test this directly

we developed a protocol in which SCN from VIP�/� Per2:luc

mice were first transduced with the Gq DREADD. As anticipated,



Figure 7. Reprogramming the Pacemaker by Gq Signaling Requires the Intrinsic, VIP-Mediated Coupling of the SCN Network

(A) Group plots of bioluminescence from VIP�/�, Per2:luc SCN transduced with LV:Syn-hM3DGq-IRESmCherry. Note weak, damping oscillations (blue plots)

restored by WT SCN graft (black plots) and no effect exerted by Gq activation (red plot) before and after CNO washout (gray plot).

(B) Group data showing that activation of Gq signaling by CNO (100 nM) did not affect period, amplitude or robustness, neither in the presence of CNO (red plots),

nor after washout (gray plots).

(C and D) As for (A) and (B) but with SCN transducedwith LV:CRE-luc. Grafting caused an immediate increase in baseline and rhythm of CRE activity. Activation of

DREADD-mediated Gq by CNO (100 nM) (red), acutely induced CRE but no effects on circadian properties were observed. (All data mean + SEM, n = 5; period:

two-way ANOVA, amplitude and RAE ratios: two-tailed t test.)

See also Figure S3.
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PMT recordings revealed a rapid damping of circadian biolumi-

nescence due to VIP insufficiency (Figures 7A and 7B). Reporter-

and DREADD-free, WT SCN was then grafted onto the mutant

SCN to test its sensitivity to graft-derived VIP (and other) cues

(Maywood et al., 2011). The grafts restored robust, high ampli-

tude circadian rhythms in the VIP-deficient host. Thus, although

the VIP null network is inherently incapable of generating persis-

tent rhythms, the intracellular clock of the VIP�/� cells is still

competent to oscillate when provided with suitable exogenous

cues. This made it possible to ask whether activation of Gq

signaling in the host SCN would reprogram the host SCN circuit

and thereby interfere with the exogenously driven oscillation.

When CNO was added, circadian oscillation of Per2:luc reporter

in the VIP�/� SCN was not affected: i.e., none of the Gq-medi-

ated effects on period, coherence and amplitude noted above

were observed (Figures 7A and 7B). To confirm that DREADD/

CNO treatment was active in this configuration, VIP�/� slices ex-

pressing the LV:CRE-luc reporter instead of Per2:luc were used

(Figures 7C and 7D). Again, their damped rhythm was restored

by WT SCN grafts, revealing a direct link between transneuronal

cues and circadian control over the activation of CREs. Impor-

tantly, upon CNO addition there was a marked activation of

CRE, thereby confirming effective DREADD/CNO manipulation
in the host SCN. As with the Per2:luc report, however, Gq activa-

tion did not affect the properties of the CRE rhythms: the host

SCN continued to oscillate with no change in period, amplitude

or coherence (Figures 7C and 7D). These data demonstrate

that Gq-dependent reprogramming of circadian pacemaking

within the SCN circuit is effected via the intrinsic intercellular

coupling of the network. When the network lacks VIP-mediated

coupling and its rhythms are being driven by exogenous cues,

local cellular activation of Gq signaling cannot ramify through

the circuit and modify its function (Figure S3).

Direct Activation of Gq Signaling in VIPergic Neurons
Mirrors the Circuit Reprogramming Elicited by
Untargeted Gq Activation
Activating Gq signaling in a minority of neurons modified the

TTFL spatiotemporal dynamic to a new specific state, dependent

upon intrinsic VIPergic connectivity. To examine directly the role

of VIP neurons in reprogramming we applied an intersectional

genetic approach using knockin mice expressing a VIP:IRESCre

recombinase cassette (Taniguchi et al., 2011) to activate Gq

signaling specifically in VIP neurons within the SCN (Figure 8).

To delineate their anatomical specificity, VIP:IRESCre mice

were crossed to R26-floxed STOP-EYFP+ reporter mice and as
Neuron 78, 714–728, May 22, 2013 ª2013 Elsevier Inc. 723



Figure 8. Direct Activation of Gq Signaling in VIPergic Neurons Mirrors the Circuit Reprogramming Elicited by Untargeted Gq Activation

(A) Representative microphotographs from VIP:IRESCre+/EYFP+ SCN cultures stained with polyclonal AVP antiserum, delineating a clear core/shell anatomical

partitioning.

(B) Representative microphotographs from VIP-IRESCre+/ EYFP+ SCN slices transduced with AAV:DIO-Syn-hM3DGq:mCherry vectors. hM3DGq:mCherry

receptor fusions are localized in the plasma membrane (see insets) of VIP:Cre/EYFP+ neurons, thus confirming both effective and specific targeting of the

VIPergic SCN subpopulation.

(C) Representative trace of Per2:luc+/VIP:IRESCre+ SCN slices transduced with DIO-Syn-hM3DGq:mCherry+ and activated by 100 nM CNO. CNO addition

increased the baseline, lengthened the period (1.3 ± 0.3 hr) and reduced amplitude of the oscillations (mean ± SEM, n = 7 p < 0.01 paired two-tailed t test).

(D) Microphotographs from representative VIP:IRESCre+/EYFP+ SCN slice transducedwith DIO-Syn-hM3DGq:mCherry. Gq signaling was activated by CNO and

network effects analyzed by CoL analysis (right panels), showing dorsomedial compression of Per2:luc dynamics. Plots are representative of at least 3 SCN for

each reporter. Scale bars: 50 mm. Inset: 10 mm.

See also Movie S9.
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expected, EYFP expression in the SCN of intercrossed mice

(referred to as VIP:Cre/EYFP) was restricted to the core region

in the SCN, whereas staining against the Arginine-Vasopressin

neuropeptide (AVP) delineated the complementary shell region.

This confirmed both effective targeting to the VIP subpopulation

andwell preserved cytoarchitecture in our SCNslices (Figure 8A).

We then transduced these cultures with AAV:DIO-Syn-

hM3DGq:mCherry vectors to activate the receptor expression

specifically in VIP cells. The hM3DGq:mCherry fusion cassette

in DIO (Double-floxed Inverted Orientation) vectors is inverted

and framed between a double pair of heterotypic antiparallel

lox-P sites. Consequently, the cassette is silent, unless expres-

sion of Cre recombinase (restricted to VIP neurons in our

experiments) flips and activates it (Figure 8B; Movie S9). By

transducing Per2:luc+/ VIP:Cre/EYFP+ SCN cultures with DIO-

Syn-hM3DGq:mCherry vectors it was therefore possible to

follow the effects on the circadian clock of Gq activation directly
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targeted to VIP neurons. The effects of this selective activation

mirrored those of untargetedGq stimulation, the Per2:luc oscilla-

tions showing increased baseline, prolonged period and reduced

amplitude in the presence of CNO (Figure 8C). Moreover, CoL

analysis showed that the spatiotemporal dynamics of Per2:luc

circadian expression were compressed and displaced ventrolat-

erally (Figure 8D), a reorganization of the network comparable to

that observed following untargeted Gq stimulation. These data

demonstrate for the first time that Gq activation in VIP neurons

alone is sufficient to reprogram circuit circadian timing, thus

revealing the existence of a Gq-Ca2+-VIP loop that mediates

network control of SCN circadian time.

DISCUSSION

To interrogate the relationship between G-coupled pathways,

cytosolic signaling and the transcriptional feedback loops at
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the core of the SCN circadian pacemaker, we have developed a

combination of viral transduction and multimodal, real-time

imaging to map the circadian phase landscape of the SCN.

This revealed the orderly circadian progression of cytosolic

signaling events ([Ca2+]i and CRE activation) in relation to the

TTFL components (Per1, Per2, and Cry1) that together define

circadian time. We then tested the role of individual G-coupled

signaling pathways, upstream of [Ca2+]i and CRE activation, in

specifying this circadian program by using DREADD pharmaco-

genetic receptors to manipulate individual G-coupled cas-

cades. This revealed selective and particular roles for Gs, Gi

and Gq in circadian programming. Although Gs and Gi were

both able to temporarily modify CRE dynamics, their effects

on circadian pacemaking were reversible. In contrast, Gq acti-

vation in a minority of cells permanently reprogrammed the

spatiotemporal dynamic of intracellular calcium and TTFL com-

ponents across the SCN. Our data thus not only reveal the

complexity of the intrinsic temporal structure of the SCN pace-

maker, but also highlight a fundamental role exerted by path-

ways regulating intracellular calcium in determining the intrinsic

properties of the SCN circuit. In particular, the Gq-[Ca2+]i axis

assumes a prominent role in defining the circadian program,

as shown by the major reprogramming of the network achieved

by Gq stimulation in a minority of neurons. Importantly, this

reorganization requires the intrinsic VIPergic interneuronal

coupling in order for it to be broadcast to the rest of the

network, and its activation in VIP neurons alone is sufficient

to reprogram the circuit, thus revealing a Gq-[Ca2+]i-VIP

leitmotif that determines the intrinsic network coherence of

the SCN pacemaker.

Dependence of circadian pacemaking on intracellular calcium

has been indicated in both mammals (Lundkvist et al., 2005) and

Drosophila (Harrisingh et al., 2007), although the mechanisms

and patterns of [Ca2+]I are poorly understood. Key to our

approach, therefore, was reliable long-term real-time monitoring

of [Ca2+]i and CRE activation. The AAV:Syn-GCaMP3 reporter

(Tian et al., 2009, 2012) offered us unprecedented sensitivity,

utility and stability of [Ca2+]i recording when compared to

FRET-based reporters (Enoki et al., 2012; Hong et al., 2012;

Ikeda et al., 2003). Equally the LV:CRE-luc reporter provided

circadian recordings of comparable quality, well beyond those

previously achieved (O’Neill et al., 2008; Obrietan et al., 1999).

Interestingly, the cellular and aggregate circadian profiles of

both the cytosolic reporters were highly asymmetrical and con-

trasted markedly with the sinusoidal pattern of TTFL transcrip-

tional reporters. These profiles are consistent with a model in

which, rather than a progressive waxing and waning, SCN

neurons experience an acute burst of [Ca2+]i and CRE activation

once every cycle. Such bursts may represent a digital trigger

to more precisely time the high-amplitude ‘‘analog’’ rhythm of

their target genes in the TTFL. By combination with Per2:luc

bioluminescence, we mapped the peak of [Ca2+]i to CT07, which

is coincident with elevated cAMP levels (Doi et al., 2011; O’Neill

et al., 2008) and electrical firing rates (Atkinson et al., 2011).

Activation of CREs was maximal soon after these peaks, and

was highly dependent on electrical activity within the circuit,

damping rapidly in the presence of TTX (Figure 1D). Our

phase-map therefore reveals a sequence in which increased
electrical firing sustains increased [Ca2+]i, which in turn drives

a circadian surge in CRE activation (likely facilitated coopera-

tively by raised cAMP levels, a canonical property of CRE-

mediated gene expression (Shaywitz and Greenberg, 1999)). A

comparable relationship between enhanced electrical firing

and elevated CRE-dependent gene expression was reported in

Drosophila ‘‘clock’’ neurons (Mizrak et al., 2012), suggesting

that electrical-genetic coupling is a conserved property of

neuronal pacemakers that underlies their greater precision in

comparison to peripheral oscillators. Thus, upstream cytosolic

signaling events mediated by cAMP and [Ca2+]i can gain access

to transcriptional components of the core pacemaker through

the acute circadian surge in CRE activation. In our phase-map

Per1, which carries numerous CREs, was expressed with

an�1 hr delay relative to CREs. In contrast, circadian expression

ofCry1-luc, which lacks CREs and relies on E boxes for circadian

expression, was only initiated 3 hr after Per1. This raises the

possibility that cytosolic signals acting via CRE not only sustain

the TTFL but also confer specific phases to its component parts,

thereby determining its internal structure.

G-coupled receptor signaling is necessary to sustain both

firing rates (Aton et al., 2005; Cutler et al., 2003) and cytosolic

[Ca2+]i and CRE oscillations (Figures 1E–1G and 4C–4E) in

the SCN, making it an ideal hub to integrate network events

to the TTFL intracellular clockwork, via cytosolic rhythms. To

determine the specific contributions of different G signaling

pathways in defining SCN circuit properties, we manipulated

Gs, Gq and Gi individually, creating a functional discontinuity

within the network by using LV delivery of DREADD receptors

to a minority of SCN neurons (� 40%) (Armbruster et al.,

2007; Rogan and Roth, 2011). Importantly, this occurred in

otherwise genetically intact SCN circuits, not subject to the

developmental confounds associated with germ-line mutations

or embryonic chimerism (Ko et al., 2010; Low-Zeddies and

Takahashi, 2001). The acute effects of Gs, Gi, and Gq on CRE

activation confirmed their potential to affect the circadian pro-

gram, but Gs- and Gi-elicited effects were reversible. The

longer-term and irreversible effects of Gq activation, however,

were striking: lengthening the period of circadian CRE activa-

tion and suppressing rhythm amplitude. Moreover, single-

cell analysis showed that Gq-mediated activation of CREs

occurred sequentially in transduced and nontransduced cells,

thereby reprogramming cellular behavior across the network.

This reprogramming markedly affected the Per1, Per2 and

Cry1 rhythms: in particular Gq activation dysregulated the

spatiotemporal wave of gene activation in Per2:luc and Cry1-

luc SCN. The phase-leading activation of TTFL elements in the

dorsomedial SCN was reduced and the wave contracted to a

tighter, more ventrally located trajectory. Thus, pharmacoge-

netic activation of Gq signaling in a minority of SCN neurons

reverberated across the SCN circuit to establish a new steady-

state of ensemble activity, defined by a 25h period, reduced

amplitude and spatiotemporal reorganization. The origin of this

reprogramming likely resides in altered [Ca2+]i dynamics:

whereas Gs- or Gi-dependent signaling had no lasting effect

on [Ca2+]i rhythms, activation of Gq reprogrammed [Ca2+]i
rhythms, dispersing cell phases and suppressing rhythm ampli-

tude across the SCN.
Neuron 78, 714–728, May 22, 2013 ª2013 Elsevier Inc. 725
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We hypothesized that the intrinsic VIP signaling (An et al.,

2011; Dickson and Finlayson, 2009) may account for the Gq-

[Ca2+]i mediated reprogramming of the SCN network. Our SCN

grafting paradigm (Maywood et al., 2011) showed that activation

of Gq signaling in the VIP null host SCN could acutely induce

CRE-luc, but was unable to modify on-going circadian rhythms

of Per2:Luc expression. Thus, reprogramming by Gq requires

competent intrinsic VIPergic signaling, suggesting that pathways

addressed via Gq DREADD are responsible for maintaining

the stereotypical spatiotemporal program of the wild-type

SCN. Having demonstrated that intrinsic VIPergic signaling is

necessary to mediate the effects of Gq on the SCN circuit, we

then tested if stimulation of Gq in VIP neurons was sufficient to

reproduce the same effects. By exploiting an intersectional

genetics approach, we found that activation of Gq in VIP cells

alone was indeed sufficient for reprogramming. These results

therefore frame the observed phenotypes in a more physio-

logical context. The VIPergic subpopulation is a well defined

retinorecipient subpopulation of the SCN, and so it is tempting

to speculate that the Gq-VIP axis may mediate the fundamental

effects of the light-dark cycle on entrainment and photoperiodic

adaptation of the SCN network (Inagaki et al., 2007).

In conclusion, previous studies have emphasized the intrinsic

resistance of the SCN tissue to genetic manipulations of TTFL

components (Butler and Silver, 2009; Liu et al., 2007). In contrast,

our study has unveiled an unforeseen plasticity of the SCN as a

circuit, able quickly to modify its time-encoding properties after

intracellular manipulations of only a few cells. Importantly,

whether the viral transduction was not knowingly targeted to

particular neuronal types or specifically directed at VIP neurons,

it consistently reprogrammed the spatiotemporal dynamics of

the circuit to a specific state, and this effect was consistent

across various cytosolic and transcriptional reporters. Thus,

activation of Gq signaling within a minority of SCN neurons

was sufficient to reprogram the ensemble function, but only in

the presence of intrinsic VIPergic transmission. In contrast to

the assumed genetic robustness and resilience, therefore, the

SCN network displays sensitive and adaptable circuitry, reor-

ganizing in the light of changes in individual cellular behavior.

Our data are therefore consistent with recent theoretical consid-

erations of the SCN circuit suggesting that a source of as few as

25 cells can be sufficient to determine the temporal properties of

the entire network (Kori et al., 2012). The current findings high-

light the role of VIP neurons in defining canonical circadian

properties, such as period and amplitude. Our intersectional

and imaging approach has thus started to address unresolved

issues surrounding the relative contributions of individual neu-

rons, neuronal subpopulations and network-encoded properties

to the specification of circuit-level circadian behavior (Mohawk

and Takahashi, 2011).

EXPERIMENTAL PROCEDURES

Animals

All procedures were conducted under the UK Animals (Scientific Procedures)

Act, 1986, approved by Home Office licenses and local ethical review.

Per2:luc, Vip�/� and Fbxl3Afh/Afh mice were provided, respectively, Dr. J. Taka-

hashi (UTSW Medical Center, Dallas), Dr. C. Colwell (UCLA), and Dr. P. Nolan

(MRC, Harwell, UK).Cry1-lucmicewere generated in-house using a previously
726 Neuron 78, 714–728, May 22, 2013 ª2013 Elsevier Inc.
validated Cry1-luc plasmid (Fustin et al., 2009). VIP-IRESCre (Viptm1(cre)

Zjh/J) and R26 floxed STOP EYFP (B6.129X1-Gt(ROSA)26Sortm1(EYFP)

Cos/J) mice were obtained from the Jackson Laboratory (Bar Harbor,

Maine, USA).
Viral Transduction of SCN Slice Cultures

LVs produced as previously described (Brancaccio et al., 2010). AAV2/1:Syn-

GCaMP3-WPRE from Penn Vector Core (Loren L. Looger, Ph.D., and Janelia

Farm Research Campus, HHMI). AAV2:DIO-Syn-hM3DGq:mCherry from

UNC Vector Core. Organotypic SCN cultures from p4–p6 WT or mutant

mice prepared as described (Maywood et al., 2006). Two days after the

dissection concentrated LV particles were dropped directly onto the slice.

For GCaMP3 experiments SCN slices, previously LV-transduced were

super-transduced by dropping the AAVs onto the slice.
Pharmacogenetic Manipulations of WT and VIP–/– Grafted SCN

Slices

SCN slices transduced by LV encoded DREADDs presented with 100nM

Clozapine-N-Oxide (CNO) (in ddH2O) (Enzo Life Sciences). Vehicle treated

SCN received ddH2O as vehicle treatment. For washing out, SCN cultures

washed four times in HEPES buffered medium and transferred to fresh

medium containing 100 nM luciferin (Promega) and the recording restarted

immediately afterward. Grafting experiments as elsewhere described (May-

wood et al., 2011).
Data Analysis and Statistical Tests

PMT data analyzed in BioDare (A. Millar, T. Zielinski, University of Edinburgh)

by FFT-NLLS. Period, amplitude and relative amplitude error (RAE) calculated

on time series lasting R5 days. Periods between vehicle and CNO treated

SCN slices before/with drug were assessed by repeated-measures two-way

ANOVA, with Bonferroni correction. Amplitude ratios (with/before drug treat-

ment) calculated for each sample and statistical significance evaluated by

two-tailed t test. Different phases of the grafting experiments were compared

by repeated-measures ANOVA with Bonferroni. For single-cell analyses,

period, amplitude and RAE values for each oscillator analyzed in BioDare

and the Igor pro (WaveMetrics) routine SARFIA (Dorostkar et al., 2010). Statis-

tical significance evaluated by Kolmogorov-Smirnov test. Median and aadm

values determined as measurements of average and variance, respectively.

For synchrony analysis, data analyzed in Oriana 4 (KCS, UK). For center of

luminescence (CoL) analysis bioluminescence levels from a single SCN were

normalized and thresholded. Time series were then analyzed in Igor Pro by

an in-house designed plug-in to determine the center of mass X and Y coordi-

nates within each frame (time resolution, 30 min) and represented in Poincarè

plots 3 days before CNO addition and in the 3 days with CNO. Data analyses

and statistical tests performed in Excel:mac 2011 (Microsoft) and Prism 5

(GraphPad). Graphs prepared in Prism.

See Supplemental Experimental Procedures for more details.
SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures, one table, nine movies, and

Supplemental Experimental Procedures and can be found with this article on-
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ACKNOWLEDGMENTS

This work was supported by theMRCUK and the BBSRCUK (BB/E023223/1).

The authors thank the Biomedical Staff at the MRC Ares facility, Drs. Leon

Lagnado and Federico Esposti (MRC Laboratory of Molecular Biology) for

image analysis, and Professor Bryan L. Roth (University of North Carolina)

for DREADD plasmids.

Accepted: March 15, 2013

Published: April 25, 2013

http://dx.doi.org/10.1016/j.neuron.2013.03.011


Neuron

Gq Pathway Specifies SCN Time-Encoding Properties
REFERENCES

An, S., Irwin, R.P., Allen, C.N., Tsai, C., and Herzog, E.D. (2011). Vasoactive

intestinal polypeptide requires parallel changes in adenylate cyclase and

phospholipase C to entrain circadian rhythms to a predictable phase.

J. Neurophysiol. 105, 2289–2296.

Armbruster, B.N., Li, X., Pausch, M.H., Herlitze, S., and Roth, B.L. (2007).

Evolving the lock to fit the key to create a family of G protein-coupled receptors

potently activated by an inert ligand. Proc. Natl. Acad. Sci. USA 104, 5163–

5168.

Atkinson, S.E., Maywood, E.S., Chesham, J.E., Wozny, C., Colwell, C.S.,

Hastings, M.H., and Williams, S.R. (2011). Cyclic AMP signaling control of

action potential firing rate and molecular circadian pacemaking in the supra-

chiasmatic nucleus. J. Biol. Rhythms 26, 210–220.

Aton, S.J., Colwell, C.S., Harmar, A.J., Waschek, J., and Herzog, E.D. (2005).

Vasoactive intestinal polypeptide mediates circadian rhythmicity and syn-

chrony in mammalian clock neurons. Nat. Neurosci. 8, 476–483.

Bito, H., Deisseroth, K., and Tsien, R.W. (1997). Ca2+-dependent regulation in

neuronal gene expression. Curr. Opin. Neurobiol. 7, 419–429.

Brancaccio, M., Pivetta, C., Granzotto, M., Filippis, C., and Mallamaci, A.

(2010). Emx2 and Foxg1 inhibit gliogenesis and promote neuronogenesis.

Stem Cells 28, 1206–1218.

Butler, M.P., and Silver, R. (2009). Basis of robustness and resilience in the

suprachiasmatic nucleus: individual neurons form nodes in circuits that cycle

daily. J. Biol. Rhythms 24, 340–352.

Cutler, D.J., Haraura, M., Reed, H.E., Shen, S., Sheward, W.J., Morrison, C.F.,

Marston, H.M., Harmar, A.J., and Piggins, H.D. (2003). The mouse VPAC2

receptor confers suprachiasmatic nuclei cellular rhythmicity and responsive-

ness to vasoactive intestinal polypeptide in vitro. Eur. J. Neurosci. 17,

197–204.

Dickson, L., and Finlayson, K. (2009). VPAC and PAC receptors: From ligands

to function. Pharmacol. Ther. 121, 294–316.

Doi, M., Ishida, A., Miyake, A., Sato, M., Komatsu, R., Yamazaki, F., Kimura, I.,

Tsuchiya, S., Kori, H., Seo, K., et al. (2011). Circadian regulation of intracellular

G-protein signalling mediates intercellular synchrony and rhythmicity in the

suprachiasmatic nucleus. Nat. Comm. 2, 327.

Dorostkar, M.M., Dreosti, E., Odermatt, B., and Lagnado, L. (2010).

Computational processing of optical measurements of neuronal and synaptic

activity in networks. J. Neurosci. Methods 188, 141–150.

Enoki, R., Ono, D., Hasan, M.T., Honma, S., and Honma, K. (2012). Single-cell

resolution fluorescence imaging of circadian rhythms detected with a Nipkow

spinning disk confocal system. J. Neurosci. Methods 207, 72–79.

Field, M.D., Maywood, E.S., O’Brien, J.A., Weaver, D.R., Reppert, S.M., and

Hastings, M.H. (2000). Analysis of clock proteins in mouse SCN demonstrates

phylogenetic divergence of the circadian clockwork and resetting mecha-

nisms. Neuron 25, 437–447.

Fustin, J.M., O’Neill, J.S., Hastings, M.H., Hazlerigg, D.G., and Dardente, H.

(2009). Cry1 circadian phase in vitro: wrapped up with an E-box. J. Biol.

Rhythms 24, 16–24.

Garner, A.R., Rowland, D.C., Hwang, S.Y., Baumgaertel, K., Roth, B.L.,

Kentros, C., and Mayford, M. (2012). Generation of a synthetic memory trace.

Science 335, 1513–1516.

Harmar, A.J., Marston, H.M., Shen, S., Spratt, C., West, K.M., Sheward, W.J.,

Morrison, C.F., Dorin, J.R., Piggins, H.D., Reubi, J.C., et al. (2002). The

VPAC(2) receptor is essential for circadian function in the mouse suprachias-

matic nuclei. Cell 109, 497–508.

Harrisingh, M.C., Wu, Y., Lnenicka, G.A., and Nitabach, M.N. (2007).

Intracellular Ca2+ regulates free-running circadian clock oscillation in vivo.

J. Neurosci. 27, 12489–12499.

Hastings, M.H., Reddy, A.B., and Maywood, E.S. (2003). A clockwork web:

circadian timing in brain and periphery, in health and disease. Nat. Rev.

Neurosci. 4, 649–661.
Hastings,M.H., O’Neill, J.S., andMaywood, E.S. (2007). Circadian clocks: reg-

ulators of endocrine and metabolic rhythms. J. Endocrinol. 195, 187–198.

Hastings, M.H., Maywood, E.S., and O’Neill, J.S. (2008). Cellular circadian

pacemaking and the role of cytosolic rhythms. Curr. Biol. 18, R805–R815.

Hong, J.H., Jeong, B., Min, C.H., and Lee, K.J. (2012). Circadian waves of

cytosolic calcium concentration and long-range network connections in rat

suprachiasmatic nucleus. Eur. J. Neurosci. 35, 1417–1425.

Ikeda, M., Sugiyama, T., Wallace, C.S., Gompf, H.S., Yoshioka, T., Miyawaki,

A., and Allen, C.N. (2003). Circadian dynamics of cytosolic and nuclear Ca2+

in single suprachiasmatic nucleus neurons. Neuron 38, 253–263.

Inagaki, N., Honma, S., Ono, D., Tanahashi, Y., and Honma, K. (2007).

Separate oscillating cell groups in mouse suprachiasmatic nucleus couple

photoperiodically to the onset and end of daily activity. Proc. Natl. Acad.

Sci. USA 104, 7664–7669.

Ko, C.H., Yamada, Y.R., Welsh, D.K., Buhr, E.D., Liu, A.C., Zhang, E.E., Ralph,

M.R., Kay, S.A., Forger, D.B., and Takahashi, J.S. (2010). Emergence of noise-

induced oscillations in the central circadian pacemaker. PLoS Biol. 8,

e1000513.

Kori, H., Kawamura, Y., and Masuda, N. (2012). Structure of cell networks crit-

ically determines oscillation regularity. J. Theor. Biol. 297, 61–72.

Liu, A.C., Welsh, D.K., Ko, C.H., Tran, H.G., Zhang, E.E., Priest, A.A., Buhr,

E.D., Singer, O., Meeker, K., Verma, I.M., et al. (2007). Intercellular coupling

confers robustness against mutations in the SCN circadian clock network.

Cell 129, 605–616.

Low-Zeddies, S.S., and Takahashi, J.S. (2001). Chimera analysis of the Clock

mutation in mice shows that complex cellular integration determines circadian

behavior. Cell 105, 25–42.

Lundkvist, G.B., Kwak, Y., Davis, E.K., Tei, H., and Block, G.D. (2005). A cal-

cium flux is required for circadian rhythm generation in mammalian pacemaker

neurons. J. Neurosci. 25, 7682–7686.

Maywood, E.S., Reddy, A.B., Wong, G.K., O’Neill, J.S., O’Brien, J.A.,

McMahon, D.G., Harmar, A.J., Okamura, H., and Hastings, M.H. (2006).

Synchronization and maintenance of timekeeping in suprachiasmatic circa-

dian clock cells by neuropeptidergic signaling. Curr. Biol. 16, 599–605.

Maywood, E.S., Chesham, J.E., O’Brien, J.A., and Hastings, M.H. (2011). A

diversity of paracrine signals sustains molecular circadian cycling in suprachi-

asmatic nucleus circuits. Proc. Natl. Acad. Sci. USA 108, 14306–14311.

Mizrak, D., Ruben, M., Myers, G.N., Rhrissorrakrai, K., Gunsalus, K.C., and

Blau, J. (2012). Electrical activity can impose time of day on the circadian tran-

scriptome of pacemaker neurons. Curr. Biol. 22, 1871–1880.

Mohawk, J.A., and Takahashi, J.S. (2011). Cell autonomy and synchrony of

suprachiasmatic nucleus circadian oscillators. Trends Neurosci. 34, 349–358.

O’Neill, J.S., Maywood, E.S., Chesham, J.E., Takahashi, J.S., and Hastings,

M.H. (2008). cAMP-dependent signaling as a core component of the mamma-

lian circadian pacemaker. Science 320, 949–953.

Obrietan, K., Impey, S., Smith, D., Athos, J., and Storm, D.R. (1999). Circadian

regulation of cAMP response element-mediated gene expression in the supra-

chiasmatic nuclei. J. Biol. Chem. 274, 17748–17756.

Rogan, S.C., and Roth, B.L. (2011). Remote control of neuronal signaling.

Pharmacol. Rev. 63, 291–315.

Shaywitz, A.J., and Greenberg, M.E. (1999). CREB: a stimulus-induced tran-

scription factor activated by a diverse array of extracellular signals. Annu.

Rev. Biochem. 68, 821–861.

Takahashi, J.S., Hong, H.K., Ko, C.H., and McDearmon, E.L. (2008). The

genetics of mammalian circadian order and disorder: implications for physi-

ology and disease. Nat. Rev. Genet. 9, 764–775.

Taniguchi, H., He, M., Wu, P., Kim, S., Paik, R., Sugino, K., Kvitsiani, D., Fu, Y.,

Lu, J., Lin, Y., et al. (2011). A resource of Cre driver lines for genetic targeting of

GABAergic neurons in cerebral cortex. Neuron 71, 995–1013.

Tian, L., Hires, S.A., Mao, T., Huber, D., Chiappe, M.E., Chalasani, S.H.,

Petreanu, L., Akerboom, J., McKinney, S.A., Schreiter, E.R., et al. (2009).
Neuron 78, 714–728, May 22, 2013 ª2013 Elsevier Inc. 727



Neuron

Gq Pathway Specifies SCN Time-Encoding Properties
Imaging neural activity in worms, flies andmicewith improvedGCaMP calcium

indicators. Nat. Methods 6, 875–881.

Tian, L., Hires, S.A., and Looger, L.L. (2012). Imaging neuronal activity with

genetically encoded calcium indicators. Cold Spring Harb. Protoc. 2012,

647–656.

Travnickova-Bendova, Z., Cermakian, N., Reppert, S.M., and Sassone-Corsi,

P. (2002). Bimodal regulation of mPeriod promoters by CREB-dependent

signaling and CLOCK/BMAL1 activity. Proc. Natl. Acad. Sci. USA 99, 7728–

7733.

Welsh, D.K., Takahashi, J.S., and Kay, S.A. (2010). Suprachiasmatic nucleus:

cell autonomy and network properties. Annu. Rev. Physiol. 72, 551–577.
728 Neuron 78, 714–728, May 22, 2013 ª2013 Elsevier Inc.
Yamaguchi, S., Isejima, H., Matsuo, T., Okura, R., Yagita, K., Kobayashi, M.,

and Okamura, H. (2003). Synchronization of cellular clocks in the suprachias-

matic nucleus. Science 302, 1408–1412.

Yizhar, O., Fenno, L.E., Davidson, T.J., Mogri, M., and Deisseroth, K. (2011).

Optogenetics in neural systems. Neuron 71, 9–34.

Yoo, S.H., Yamazaki, S., Lowrey, P.L., Shimomura, K., Ko, C.H.,

Buhr, E.D., Siepka, S.M., Hong, H.K., Oh, W.J., Yoo, O.J., et al. (2004).

PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals

persistent circadian oscillations in mouse peripheral tissues. Proc. Natl.

Acad. Sci. USA 101, 5339–5346.


	A Gq-Ca2+ Axis Controls Circuit-Level Encoding of Circadian Time in the Suprachiasmatic Nucleus
	Introduction
	Results
	Circadian Activation of Ca2+/cAMP-Responsive Elements in Wild-Type and Mutant SCN
	Selective Roles for Gs, Gi, and Gq Signaling Pathways in Controlling Circadian Rhythms of CRE Activation in SCN
	Gq Activation Reorganizes Circadian Per1 Expression through CRE Recruitment within the SCN Circuit
	Phase-Mapping Intracellular Calcium to the TTFL Unveils the SCN Circadian Program
	Gq Signaling Selectively Reprograms [Ca2+]i across the SCN Circuit
	Gq activation Reprograms the Global Spatiotemporal Dynamics of the SCN TTFL to a New Specific State
	Reprogramming by Gq Signaling Requires Intrinsic VIPergic Coupling within the SCN Network
	Direct Activation of Gq Signaling in VIPergic Neurons Mirrors the Circuit Reprogramming Elicited by Untargeted Gq Activation

	Discussion
	Experimental Procedures
	Animals
	Viral Transduction of SCN Slice Cultures
	Pharmacogenetic Manipulations of WT and VIP−/− Grafted SCN Slices
	Data Analysis and Statistical Tests

	Supplemental Information
	Acknowledgments
	References


