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Algebraic inversion of cycle index sum relations is employed to derive new
algorithms for counting unlabeled 2-connected graphs, homeomorphically irreducible
2-connected graphs, and 3-connected graphs. The new algorithms are significantly
more efficient than earlier ones, both asymptotically and for modest values of the
order. Tables of computed results are included.  © 1993 Academic Press. Inc.

1. INTRODUCTION

A graph is assumed to be finite and undirected, with neither loops nor
multiple edges. A graph with at least K+ 1 nodes (k= 1) is defined to be
k-connected if it is connected and (for k >2) cannot be disconnected by
removing fewer than & nodes and their incident edges. The k-connectedness
of smaller graphs can be defined arbitrarily, and we choose to define the
smallest 1-, 2-, and 3-connected graphs to be the complete graphs on 1, 2,
and 4 nodes, respectively.

For enumeration purposes, an unlabelled graph is an isomorphism class
of (labelled) graphs. Counting graphs with prescribed properties usually
involves decomposing a graph into a core and components. For unlabelled
graphs it also involves keeping track of the number of automorphisms of
the core with a given cycle decomposition by means of a cycle index
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(2, Chap. 2.2]. In the case of counting all n-node graphs, the core is the
complete graph on # nodes, in which each edge is replaced by a component
with 2 nodes and 0 or 1 edge to obtain the graphs to be counted; in the
case of counting connected graphs, the core is a set, in which each element
is replaced by a component, which is a connected graph, to obtain an
arbitrary graph. In both cases, the cycle structures of the automorphisms
of the core are known. Thus one can compute the sum of the cycle indices
of the automorphism groups of all possible cores (cycle index sum for
cores) and then use Polya’s theorem, which relates this cycle index sum and
the counting series for components and compositions [2, Chaps. 4.1 and
4.2]. When counting graphs with up to » nodes on a computer, one stores
only counting series and sums once over a cycle index sum; thus the space-
complexity is polynomial in »n, and the time-complexity is bounded by the
number of terms in the cycle index sum (which is p'(n), the number of
partitions of all the numbers up to #) multiplied by a polynomial in » for
the computation done on the counting series for each coefficient of the
cycle index sum.

In the case of counting 2-connected graphs, the core is a set of rooted
2-connected graphs joined at the root; every other node has a rooted
connected graph attached to it, to obtain another rooted connected graph.
The unknown is now the cycle index sum for cores, from which the
counting series can be obtained. However, this cycle index sum cannot be
obtained from the counting series for components and composition; thus it
was necessary to generalize Polya’s theorem to relate not counting series
but cycle index sums for components and compositions to those for cores
[4;2, Chap. 8.6]. A straightforward solution of such a relation involves
storing and computing with the coefficients of cycle index sums. In that
fashion, the space-complexity is bounded below by p’(r) and the time-
complexity by a power of p'(n).

In the case of counting 2-connected graphs with no vertices of
degree < 2, the core is just such a graph, in which each edge is replaced by
a series-parallel network to obtain an arbitrary 2-connected graph (except
one which becomes a series-parallel network if an edge is deleted and its
ends distinguished as poles). In the case of counting 3-connected graphs,
the core is a 3-connected graph (or polygon or a set of =3 parallel edges),
in which each edge is replaced by a more general 2-pole network (a
2-connected graph with an edge removed) to obtain an arbitrary
2-connected graph. The latter decomposition is not unique, so correction
terms are required. In these cases too, the unknown is the cycle index sum
for cores. But now the cycle index sums which would have to be stored for
a straightforward solution contain not only node-cycles (necessary to
compute the cycle index sum for 2-connected graphs) but also two types of
edge-cycles: cycles which preserve the orientation of the edge and thus fix
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the poles of the network which replaces it, and cycles which reverse the
orientation and thus exchange the poles [6]. The space and time
requirements grow so explosively with » that it wasn’t feasible to go much
beyond 9 nodes with numerical computations.

An algebraic method of extracting counting series from systems of
equations involving cycle index sums was presented in [1], where it was
applied to counting 2-edge-connected graphs. The present paper presents
an application of this method to counting 2-connected graphs (developed
in 1978 by the first author of this paper but not published), 2-connected
graphs without vertices of degree <2, and 3-connected graphs. Once the
equations have been solved by hand, extracting the numbers by computer
involves storing only counting series and summing O(#z) times over the
coeflicients of a cycle index sum. The time- and space-complexity of such
a computation is essentially the same as for Polya’s theorem; so we were
able to count the above mentioned classes of graphs with up to 18 nodes
when the number of edges is included as a parameter, and up to 25 or 26
nodes otherwise. Tables of numbers of graphs by number of nodes only are
given later in this article; tables by number of nodes and edges appear
in {5].

The cycle index sums relevant to counting unlabeled 2- and 3-connected
graphs can be viewed as members of the commutative ring
Qlb,, ¢y, by, ¢y, .. 1[[a,, a5, ... 1], where Q is the rationals, «, is an indeter-
minate representing an i-cycle of nodes for i=1, 2, 3, ..., b, represents an
orientation-preserving i-cycle of edges for i=1, 2, 3, ..., and ¢, represents an
orientation-reversing i-cycle of edges for i=1, 2, 3, ... The counting series
which are the ultimate objective to compute (up to some given order) lie
in the ring Z[ y][[x]] where Z is the integers, x represents a node, and
¥ represents an edge.

If J is the cycle index sum for a class of graphs, then the counting series
for that class is obtained from J by substituting x’ for a,, y’ for &;, and )’
for ¢,, for i=1,2, 3, ... This set of substitutions defines a homomorphism
from the cycle index sum ring to the counting series ring. The image of J
under this homomorphism is denoted J[x,y, y]. More generally, the
expression J[a(x, y), B(x, ), y(x, )] denotes the result of substituting
alx’, y') for a,, B(x', y) for b,, and y(x*, y') for ¢,, for i=1,2,3, ... In this
way the triple a(x, y), B(x, y), y(x,y) of series in Q[ y][[x]] defines a
more general homomorphism from the cycle index sum ring to the
counting series ring.

The defining relations for 2- and 3-connected unlabeled graphs are
expressed in terms of cycle index sums. These relations are transformed by
an appropriate choice of ring homomorphism so that one of them involves
the desired counting series. The fundamental algebraic facts upon which
this approach depends are that homomorphisms may be composed, and
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are associative under composition. In [1] the essential principles of this
method are presented in a simpler case: only node cycles were represented
in the cycle index sums. The introductory material of [1, pp. 278-281] may
be found useful in supplementing this paper. We note here that only node
cycles are needed to count 2-connected graphs. The relevant relations are
presented and solved in greater generality here because this is needed for
the other enumerations. The reader wishing a primer may want to go
through Section 2 changing ¢; to b,, p(x, ¥) and y(x, ¥) to y, and B(x’, ")
and y(x', p') to y".

2. 2-CoNNECTED GRAPHS

Let K, G, C, and B denote the cycle index sums for the complete graphs,
all graphs, the connected graphs, and the 2-connected graphs, respectively.
The defining relations were derived in [4], and received a careful
exposition in [2, Chap. 8]. In listing these relations below, we have used ’
to denote ¢/da,. For any cycle index sum §, let §;, denote the image of S
under the homomorphism defined by substituting a; for a;, b, for b,, and
¢, for¢;, i=1,2,3, ... For this section, let [§] denote the homomorphism
obtained by substituting S, for the node-cycle variable a;, j=1,2,3, ..,
and leaving the edge-cycle variables unchanged.

The relations which define K and determine G, C, and B from K can be
expressed as

aq

— (1)

o;li

a

K=Y A(e)[]
where 6 =(0,, 0,, ...), each g,20,

A(g) = l_[ b([i,-./,)]mff, n bimlm -2+ LG 12 e, n o,
i

i<f i

[i,j] is the least common multiple of i/ and j, and (i, /) is the greatest
common divisor;

G=K[a;«ap by 1+b,c;—1+¢]); 2)
I
G =exp <Z7a,[(‘]>; (3)
I
a,C'=ayexp (T a B0 CI); @)

C=(a;+B—a,B)a (] (5)
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The desired counting series is B[x, y, y]. Equation (5) contains
B[a, '], in which each g, of B is replaced by (a, ("), instead of x’; so we
choose a ring homomorphlsm which maps a,C’ onto x. Suppose that
counting series B(x,y) and y(x, y) are given (for counting 2-connected
graphs we can assume that they are both y) and we wish to determine a
third counting series a(x, v} such that

(al C/)[a(x’ y)’ B(x’ y)’ ”,’(X, .V)] =X. (6)

To see that such a series exists, define the order of a term in a cycle index
sum to be the exponent of x resulting from the substitution a;« x’; then
a,C'=a,+aib, + (terms of higher order). Now (6) is equivalent to

alx, y)=x—(a,C" —a)[alx, y), B(x, ¥), 7(x, ¥) ],

which can be seen to define x(x, y) iteratively in powers of x. One has
«(0, v) =0 to start; having found «(x, v) through powers of x" ', substitu-
tion in the right side gives a(x, y) correctly through the coefficient of x".

The strategy now is to apply homomorphisms and simplify using
associativity and the given relations in such a way that the only cycle index
sum remaining in the system of equations is K. Since K is known explicitly,
the need for computations with the cycle index sum ring will have been
obviated.

Applying (4) over the homomorphism [o{x, y), f(x, ¥), ¥(x, y})] and
using (6), one has

1 S
alx, y)=xexp ( -2 A B'Lx', B(x', y') (X, y’)]>.

Taking the natural logarithm and applying Mdbius inversion [2, p. 183],
one has

Bl[x’ ﬁ(x’ y)’ )’(.’C, .V)] = Z—'_ ln(a(\ ¥ /xk)-

If we denote G[a(x, y), f(x, ¥), 7(x, ¥)] by f(x, y) then (3) can be solved in
the same way to obtain

Cloalx, y), B(x, y), y(x, )] = Z____l F(x, ).

One can then apply (5) over the homomorphism [x(x, »), B(x, »), 7(x, ¥)]
to find

B[x, B(x, y), y(x, »)] = —X+Zﬂ( ){mf(v L3 = x In(a(x*, y*)/x)).
(7
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Finally, operating on (3) with «¢,(d/da,) gives
aG=G-a,C.

Composed over [a(x, y), f(x, ), y(x, ¥)], expressed in terms of K using
(2), and simplified using (6), this gives

(a, K)[a(x, p), T+ Blx, p), L+ 7(x, )]
=xK[a(x, ), 1+ B(x, »), 1 +7(x, »)]. (8)

From (1) it is immediate that ¢, K' can be directly calculated (add a factor
of o, inside the sum). Thus (8) can be applied to calculate a(x, y)
iteratively to any desired order in x. Note that the right side of (8) is
xf(x, y), so that f(x, y) is determined at the same time. Then (7) completes
the determination of Bfx, S(x, y), y(x,»)] with the help of formal
logarithms.

For the sake of completeness, note that in general, if F(0, v)=0 and

TABLE 1
Number of Unlabeled 2-Connected Graphs by Nodes

12

L3

3 4

10 5

56 6

468 7
7123 8
194066 9

9743542 10

900569091 11

153620333545 12

484329391 50704 13

28361824488394169 14

30995 8908060333 80784 15

63501635429109597504951 16
2448520792920733760104 11280 17
17831605940694299259528247 34641 18

24603 88705 13509 45867 49281 66639 58981 19
644997704 30459 87615 31891 39098 9583304810 20
322067227 55156 80729 3562249305 75583 84640 14614 21
307013778 55306 30615 12145 1856080903 74738 1166709321 22

559876318 349499407647013 3168581695 89686077750491043689 23

19569 14684 19968 30182 66048 70356 59020235509071526958 8618031115 24

131326 5011146576 78098 54256 74289 8813946901 30771 0811277863 65526 57123 25
169484203847 8677808418 65224 88722 11773 81197 540526033521513418024101711909 26
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L{x, v)=1In(1 + F(x, y)) then L(0, y) =0 and differentiation with respect to
X gives

F'(x,y)=L'(x,y)+ L'(x, y) F(x, y).
For n>> 1 a comparison of coefficients of x"~ 'y* then leads to

i~ I k
Ln.kan.k_; Z Z ran.l'Fn mk i

m=1 i=0

The latter shows how to calculate the logarithms needed in (7); see
[2, p. 9] for a fuller exposition of the general method.

The counting series for unlabeled 2-connected graphs.in terms of nodes
and edges is B[x,y,y], so one can apply (7) and (8) with fB(x, y)=
y(x, ¥)=. The resulting equations were used to calculate the numbers
through 16 nodes, with all the different numbers of edges (see
[5, Table IV]). If only the total by nodes is desired, the calculation is much
faster. The equations obtained from (7) and (8) by setting f(x, y)=
7(x, y)=1 only require calculation in the single variable using Q[[x]]. In
this way the totals through 26 nodes were computed (see Table 1).

3. 2-ConNNECTED GRAPHS WITHOUT NODES OF DEGREE Two

Let B denote the cycle index sum for all 2-connected graphs (as in
Section 2), and let I denote the cycle index sum for those with no nodes
of degree two (homeomorphically irreducible) except for the single edge.
Auxiliary cycle index sums which will be needed to determine 7 from B are
as follows: R for series-parallel graphs; D* and D~ for all 2-pole series-
parallel networks; S* and S~ for series-union networks; P* and P~ for
parallel-union networks, including the single edge; and K*, K~ for all
networks with non-adjacent poles. Here the superscripts + and — represent
pole-preserving and pole-reversing automorphisms, respectively. The
following relations were derived in [6] in essentially this form, but with a
few typographical errors corrected:

I[a,,D*, D" 1=B—R; (9)
S*=a,D"PT, (10)
Si=P|§.;'(a|+azD7); (11)

1
K*=exp<ZES(I,>; (12)
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—exp(Z =S+ Y - m>; (13)

kodd K keven K

Dt=({+b)K* -1, (14)

D =(1+c)K =1; (15)
Pr=D"—S§*: (16)
P =D -5 (17)
R= —%alP+ —L—ltaf(P*)z-—Zaszz)

1 d
+§Z'¢—(d—)(—ln“_adP(tll))
+(1—a,Py) ' PY,

1 1 1
x(za,aaP +4a(P )+ aazP )>

L, 1
+§(11P +5a3P _Z(a +a,)Sm

1 |
—Z@iS DT +PT )=z ST (D +P ), (18)

where ¢(d) is the Euler totient function.

For this section and the next, [U, V, W] for cycle index sums U, V, W
denotes the ring homomorphism which maps a; to U;, b, to V,,, and ¢;
to W, for i=1,2,3, ... The notation is used in Eq. (9). When u, v, and w
are counting series the corresponding notation [u(x, y), v(x, v), w(x, v)]
denotes the ring homomorphism which maps a; to u(x', '), b; to v(x’, '),
and ¢; to w(x',y") for i=1,2,3,.. Notice the compatibility of these
notations. In particular, the “inflation” from U to U, can be delayed in
composing over power series, because

Uplalx, p), Blx, p), v(x, 3)] = ULa(x/, y7), B, v7), w(x7, y) ]

This general fact, along with the associativity of composition for
homomorphisms, is relied on frequently and without specific mention in
performing algebraic simplifications in what follows.

To extract I[x, y, y] from Eq. (9), which involves I[a,, D*, D ], let
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B(x,y) and y(x, y) denote for the remainder of this section power series
satisfying
D M [“\‘v ﬂ("‘s ,V)’ ‘}"(’r’ .V)] =}" (19)

D [x, B(x, ), y(x, )= (20)
To see that B(x, v) and y(x, 1) exist and are unique, note that
D*=b +abi+abl+ -,
D™ =c taby+abe+ -,

where the remaining terms are of higher order in the node-cycle variables.
Thus the conditions to be satisfied can be expressed in the form

Blx, y)=yp—xPplx, ) —xPlx, 3)*F -,
7, ¥) =y = xBx ¥ — xB(x3, y7) y(x, p) F e
From these we have first
Blx, »)=yF .-,
WX, p)=yF -+,
then substituting on the right side we have
Blx, Vi=y—x(2+3H)F -,
x, y)=y—x(2+y)F -

Each iteration increases by one the power of x to which the approximation
is correct. In this way one sees by induction simultaneously for f(x, y) and
+(x, y) that existence and uniqueness are guaranteed through the terms in
x", forn=0,1,2, ..

We can now proceed to determine fi(x, y), 7(x, v), and R[x, B(x, v}, 7(x, y)]
by combining Egs. (10) through (20). To shorten the notation, let R denote
R[x, B(x, ¥), 7(x,v)] and likewise for other cycle index sums. From
(10), (11), (19), and (20)

S*=xyP* and  § =(x+x%) Py,
while from (16) and (17) with (19) and (20)
y=P*+8"* and y=P +85".

Combining, we have
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and so
Pr=y(14+xy) ! and St =xy*(14xy) L
In turn,
S =(x+xY) 21+ xvY) "=x2(1 +x0) (1 +x357)
P o=y —xp(1+x)(1+x32) "= p(l —xp)(1+x3?)
Now

= Z (_l)if—lxiyl+l’

i=1

LN x * ) o
Z ZS: Z Z Vl)l ].Y'k"’lk+k
k=1 = =
ES ) (\I l+1)
=Y (—1) SAE
igl /\'gl k

Il
1 s

(Al)l '(—ln(l :|+1))

=S (— ) (- x ),
i=1
so from (12) we find
H(] "+|)l 1)’:(1_)(}'2)'l(l—.’(‘z}"‘)(l—x}}'“) Lo

(1 —x¥ Yy (=¥,

n:x \

]
Thus (14) can be solved explicitly for f(x, v);
Blx,y)=—1+(1+y) H (1—x¥ 'p¥)H1—xp¥ely L (21)
J=1

In much the same way, our explicit expressions for S* and S~ can be
combined with (13) and (15) to deduce that

1— 41 3,40 2 1 + 4i--1,.4i
X y)=~14(1+y) H ( ‘4, ,)( al 4,+,) (22)
=1 A TR iy

We are now in a position to evaluate each term on the right side of (18)
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explicitly. There is considerable cancellation, and for simplifying the sum
containing Euler’s totient function it is helpful to observe the identity

‘ k k if k£ is odd,
Z(—l)l~l¢(7>={o ifkiso

py if k 1s even.

The net result is

R= x4 xp(x+xy(1 —x))(1 —x¥H*) "

From (9), (19), and (20) we thus have
ILx, p, )= B+ x3* — xp(x + xp(1 —x))(t —xp*y L (23)

This is the counting series for unlabeled homeomorphically irreducible
2-connected graphs by number of nodes and edges. To complete the
evaluation, treat

B = B[X. B(X, ,V), V(Xs )')]

as described in the previous section. That is, with f(x, y) and y(x, y) as
given in (21) and (22), apply (8) to determine corresponding series a(x, ¥)

TABLE 11
Number of Unlabeled Homeomorphically Irreducible 2-Connecied Graphs by Nodes

4

3 3

19 6

149 7

2581 8
84151 9
5201856 10

5770 50233 1t

1133720 69299 12

3961 80153 18982 13

2491646 27610 69296 14

28563 62697 25094 56884 15

603 66734 34911 66366 60402 16

23 74069 75840 30406 88841 68139 17

175033 04418 10569 04717 6394509086 18

24333 39125 38589 57016 53122 30594 85005 19

6408 11881 79148 27335 83232 67214 86250 63612 20

3208 45422 87293 01242 86457 81926 33685 71297 47767 21

3063 38630 04297 31387 51465 51607 08039 81500 93011 38955 22

5591 67842 80410 26041 02066 84580 45805 09745 67241 41492 78270 23

19554 99033 44652 08303 19396 71318 67594 78921 92450 71563 03792 33388 24
1 31272 50853 54131 62871 47400 25724 30606 31537 31452 05460 36143 38172 68579 25

382b;57:2-10
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and f(x, y) in iterative fashion. Then (7) can be used to calculate B from
a(x, y) and f(x, y). In this way homeomorphically irreducible 2-connected
graphs were counted by nodes and edges up to 18 nodes (see [5, Table V])
and by nodes alone up to 25 nodes (see Table II).

4. 3-CoNNECTED GRAPHS

Let F denote the cycle index sum for all 3-connected graphs, and (as in
previous sections) let B denote the cycle index sum for all 2-connected
graphs. Auxilliary cycle index sums needed to determine F from B are the
following: D* and D~ for all (nonempty) 2-pole networks; K* and K~ for
2-pole networks with non-adjacent poles; P* and P~ for parallel networks
(including the single edge); S* and S~ for series networks; @ and Q ~ for
non-series networks; and H* for h-networks (non-series and non-paraliel).
As the previous section the superscripts + and — refer to pole-preserving
and pole-reversing automorphisms, respectively. The following relations
were derived in [6]:

1 1
F[a,,D*,D]=B——(§afPJr +502P>

1 + 1 +
+501Q +Z‘12Q<2)
1 d
+§Z%—)ln(l —a,,Q(f,,)
_Q(Z)(l _azQa))il
1

! 1 . .
X(E“lazQ +Za§(Q)h+Zafasz>

1 1
+Z(af+az)S;§,+—afD+(D+ +2H*)

4

1 o o 1 2

+§a2D (D~ —P )_ZaZ(S )5 (24)
1

K+=epoE(D(;)—P(J;)); (25)

1 1
K‘ =exp{ Z Z(D&)—PJ")-’- z E(D(:)_P(‘;))}a (26)

k odd k even

S*=a,D*(D* —S*); 27)
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ST =(a,+a, D" )D},— S8 (28)
Q*=D*"-8"; (29)
Q=D -S; (30)
H*=Q* —P*; (31)
DY*=(1+b)K" -1, (32)
D =(l+c¢)K —1; (33)
_2 0B,
* 34
K T a? é‘bl (34)
*=3§£. (35)
a, 0c,

In order to invert (24) we will need counting series f(x, y) and y(x, y)
satisfying

D*[x, B(x, y), y(x, )} =y, (36)
D™ [x, B(x, y), y(x, y)1=y. (37)

By (32), (33), (34), and (35), these are equivalent to

(1+B(x, })) [’f,ﬂ(’f,)) P y)]=1+p, (38)

26b

2 0B
(I +9(x, ) 57— [x B(x, y),y(x, y) ] =14y (39)

x? dc,

To rewrite these relations in terms of the connected graph cycle index sum
C (and ultimately, the complete graph cycle index sum K), we use

5 ac

G la b cl=5- (40)
6 0

feLaChbi e =5 < (41)

€y

These latter can be seen directly from the decomposition of an edge-rooted
connected graph into an edge-rooted block along with node-rooted
connected branches at the nodes of the block (a block is a 2-connected
graph). Alternatively, they can be derived from Eqs. (4) and (5) of
Section 2 by appropriate differentiation and simplification.
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In any case, a third power series a(x, y) is needed to proceed with the
inversion, such that

(a, C)x, p), flx, p), p(x, )] =x. (42)

Then (40) can be combined with (38) and (41) with (39), giving

20
(14 Bl 5 5 a0 Bl ) e 1= Ty, (43)
M |

A

2 oC
(l +A/"(xs ,1'))7 ~
x* dey

X, ] ')’ ﬂ(x, y )s }'(x, }')] =1 + . (44)

Next, Egs. (2) and (3) can be differentiated to yield

a CKla,1+b,, 1+c,]=a,K'[a;, 1 +b,,14+¢,], (45)
0 K
K[alvl+bl71+(l]_ [alvl+hl’l+(l] (46)
C K
K[a,,l+h|,1—+—(1]——[a1,1+h1,1+(,] (47)

Then (42) can be combined with (45), (43) with (46), and (44) with (47)
to deduce

xKla(x, v), U+ Blx, y) T+ y(x, v)]
=(a, K')[a(x, p), 1 + B(x, ), 1 +3(x, ¥)], (48)

X1+ y) Kla(x, y), 1+ B(x, v), 1+ p(x, »)]

(21)1 EK) Lo 1), 1+ BCx, ¥, 1+ 706, 1), (49)

XU+ y) K[a(x, ), 14 B(x, ¥), 1 +73(x, y)]

- (2c1 gf-) [ ), 14+ B, 1), 1+ 706 1)1, (50)
o

To see how (48), (49), and (50) determine the three unknown counting
series uniquely, note that
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L1 1 1 1
K=1+a,+§a;b[+§azcl+ga?b‘}+5a,azbzc,+§a3b3+

a,K'=a,+afb,+ oty

oK

b, ——
2’6/),

=afh‘+a?b‘:+ Tty

-

é
20, —=a,c,+aa,c b+ -,

Thus, to start with a(x,y)=x+---, flx,y)=1+y+ ---, and
y(x,¥)=1+4+yp+ -.-. Substitution into (48) gives the left side correctly
through terms of order x2, and likewise on the right for all terms except for
2(x, ) which comes from the @, term of ¢, K’. This allows us to solve for
the order x? terms of «(x, y). Similarly, substitution into (49) and (50) with
attention to the terms arising from «}b, and «,c, will show that the order
x terms of f(x, y) and y(x, y) are also uniquely determined. Since K and
its derivatives can be computed term-wise rather than stored, the
determination of the series 2(x, y), B(x, ), and y(x, y) can be carried out
simultaneously in an iterative fashion, with only the currently known initial
terms of the series needing to be kept in memory.

In the process of solving (48)-(50) for a(x, y) to order <n+ 1 in powers
of x, and for B(x, y) and y(x, y) to order <n, it is no extra effort to keep
track of the series

S yv)y=Kla(x, p) 1+ B(x, ¥), 1+ 3(x, )]

which is determined to order <n as part of the computation. Then Eq. (7)
of Section 2 evaluates Blx, B(x, y), v(x, »)]

For any cycle index sum U let U(x, y)= U[x, B(x, ¥), 7(x, y)]. Then
D*=D =y by (36) and (37), so applying this homomorphism to
Fla,,D*,D"] yields F[x,y, y], the counting serics for 3-connected
graphs. Thus Eq. (24) can be secen as expressing the counting series F(x, y)
for 3-connected graphs in terms of B, P*, P~,0*,Q .8*.5 ,and A*.
We have already observed that B can be calculated by Eq. (7), so the next
step is to determine the contributions of the other terms obtained from the
right side of Eq. (24).

From (32) and (25) we have

1
(1 +D+)epoE(PJ(,—D[,‘(,)=I+b1.
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Applying to this the homomorphism [x, S(x, y), y(x, y)] we obtain
1 <
(1+y)exp ). . (Ph,—»)=1+B(x, )

Since 1+ y=exp Y (I/k) =1 "y =exp Y (1/k)(y* — y*), the relation
simplifies to

eXPZ (P = ™) =14 B(x, ).
By Mobius inversion one then obtains

Pr=y +Z "()1 (14 B(x', ). (51)

i=1

Similarly, from (33) and (26) we have

L +
2 /;(P(;J D)+ Z PG D(k))}—l-i‘Cl

k odd k cven

(1+D )exp {
Applying to this the homomorphism [x, B(x, y), 7(x, y)] we obtain
| -
(1+y)exx>{ 2 i Puw—yI+ X (P(k) y")}=1+y(x,y),
k odd kcvcn
which simplifies to
1
exp{ Z k(P(;() ka)+ Z k 7( yz‘()}zl-‘}-'})(x’ }")’
k odd k even
and hence
2z (P~ 1)+ Z (B, —y*)=In(1 +7(x, y)).
k odd keven
Mobius inversion now gives
1 -
=+ ¥ iy e T A2 T 0% By
i odd iodd k even
Using the identity

Y u(j)y=

2| jlm

1 ifm=2'"¢fore=0
otherwise
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the rightmost sum simplifies to

1 -~
Z. "(yzm"'P(tn)
m=2lre

so that

~ j o 1 ~
P =y*+ Y Egln(l +(x N+ Y ;(yz'"—P(*m]). (52)

iodd nt=21+¢

From (27) it is immediate that

2
G _ XY 53
T3y (53)
This can be combined with (28) to find
2
=~ xy(l+xp)
= 54
1+ x%y? (54)
From (29) and (30) one then has
.Y
0= 1+xy’ (35
_ _yl=xy)
0= 1+ x%?° (36)
Using the identity
, 0 if miseven
d)(—1)"4= ’
}:‘n #dN-1) {—m if mis odd,
and the expression (55) for J*, we find that
1 - ¢(d) (=1/2) xy
JL g M =x0G) =TT A ©7)
Finally, from (31) and (55) we have
Ar=—2 __p+ (58)

_1+xy‘

Using D* =D~ =y and Egs. (53)-(58), the image of the right side of (24)
under the homomorphism [x, B(x, y), y(x, y)] can be expressed explicitly
in terms of B, P+, and P~. There is considerable cancellation of terms in
the process, which results in the formula

2 3,3

~ X = = : X
Flx, y)=B(x, y) =5 (1+y)P* (x, )+ P (x, y)) + x?y? —1—*—‘? (59)
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TABLE 111
Number of Unlabeled 3-Connected Graphs by Nodes

1

3

17

136

2388

80890

51 14079

5732 73505

11 30951 67034

3958 25505 75765

24 90844 57930 58442

28560 40514 34958 19079

603 64410 13017 72230 14724

2374039 33018 79995 83095 30349

175032 31373 55778 19015 80820 29500

24333 35881 36993 71350 71522 11074 64003

6408 11613 27875 27544 85012 44396 35795 01421

3208 45381 20114 53117 48970 89624 05612 26313 26131

3063 38617 85755 25506 06645 08034 87343 95486 18986 32916

5591 67836 06330 34267 94791 00260 16698 12840 46972 12961 31169
19554 99026 36834 61972 91331 49947 37561 35422 62239 03611 2921527124
131272 50839 39245 89496 33455 99582 43622 66927 (08214 15306 19381 84826 39115

o0~ N B

3!
12
13
14
15
16
17
18
19
20
21
22
23
24
25

To summarize the algorithm for calculating F(x, y), one starts with
(48)-(50) to find a(x, ), B(x, ¥), y(x, y), and f(x, y); then (7) is applied to
determine B(x, y); next P*(x, y) is found from (51); then P (x, y) can be
calculated from (52); finally, F(x, v) is given very simply in (59) in terms
of B(x, y), P*(x, y), and P~ (x, y). In this manner 3-connected graphs were
counted by nodes and edges up to 18 nodes (see [5, Table VI]) and by

nodes alone up to 25 nodes (see Table I11).

5. EXAMPLE AND COMPLEXITY ANALYSIS

To illustrate the method, we compute B[x, v, ] up to order 3. The two

sides of formula (8) are
xf(x, y)=xK[a(x, y), 1 +y, 1 + y]
=x{1+a(x, )+ 3(7(x, )1+ y) + o(x?, > )1 +y))
+ §(?(x, )1+ 3y +3y2 + %)

+ 3a(x, y) a(x%, UL+ y+ 37+ 31 + 200, )14+ + -
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and

ok [alx, p), T4y, 14+ p]=a(x, ¥) +o(x, y) (1 + )
+ 3, (1 + 3y 4+ 37+
+al(x, ) a2 )1+ r+p2+ph)) +
Equating coefficients of x° we find that «(x, y) has no term independent of
x. Equating coefficients of x' we find that «(x, y)=x+ --- and f(x, y)=
1 + ---. Equating coefficients of x* we find that a(x, y}=x +x*(—y) and
f(x,y)=14x+ -.-. Equating coefficients of x* we find that a(x, y)=

x+x3(—=y»)+x3(—y*) and f(x, y)=1+x+x?+ ---. The coefficient of x*
in xf(x, y) turns out to be 1 too; so

S, =1l+x+x>+x'+ ...

(the next term is not x*!),

1 1
1 ," M= —’2 —"3 e
nf(x, y) l’+2’€ +3\+ N

H%—lnf(r Yy = x4+ 0x2 4+ 0x% + -

) P8

k=1

Returning to a(x, y), we have

a(x, p)x=14+x{(—p)+x3(—p))+ -,

In(a(x, y)/x) =x(—y) + x* <—% »? —}'3> +

z#( )ln(a(r,» ) x¥)=x¥— y)+x3(_y3)+

Thus by (7), B[x, y, y]=x* +x**+ ..., which is correct since the two
smallest 2-connected graphs are the single edge and the triangle.

The cost of computing B[ x, y, y] up to order » is dominated by that of
computing a(x, y). For each / up to »n, one has to sum through all the
partitions of the numbers up to i and compute the coefficient of x'~* in the
corresponding monomial

[T (x(x’, ) )x ) =exp Y a;log(a(x’, y’/)/x').

isk i<k
Since the necessary terms of log(x(x, y)/x) have already been computed
and stored, and can always be “inflated” by j, the cost of this computation
is dominated by that of evaluating exp which is O(»*) multiplications. We
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do this at most # times for each partition of each number up to #; so the
total cost is O(n®p’(n)). An idea of the growth rate of p'(n) can be obtained
from the asymptotic formula for p(n), the number of partitions of x:
p(n)~cv"/4n \/5, where ¢=e™2 213001954, see [3]; so p'(n)<
np(n)=O(cv").

If we are counting by nodes only and using fixed precision, each multi-
plication is an eclementary operation and so O(n’p'(n)) is an accurate
estimate of the time-complexity. If we are counting by edges too, each
coefficient is a polynomial in y of degree O(n°). It takes O(n*) elementary
operations to multiply two such polynomials; so the complexity is
O(n'p'(n)). If we are using multiple-precision arithmetic, the numbers are
bounded by the number of labeled n-vertex graphs, 2" '72 which has
O(n®) bits. Multiplying two such numbers by brute force (in base 10000)
takes O(n*) operations, which increases the time-complexity to O(n'p’(n))
if one counts by nodes alone, and to O(n''p’(n)) if one counts by edges too
(in fact we used REAL*32 to count by edges too, which guarantees the
accuracy of the numbers up to 18 nodes).

The space complexity is the cost of storing a constant number of
counting series: O(n) if we count by nodes alone in fixed precision, Q(n°)
if we count by edges too in multiple precision, and O(n*) in the other two
cases.

The analysis of the computation of I{x, y, v) and F(x, y, ) is similar and
gives the same time- and space-complexities to within a constant factor.

The enumeration of 2-connected graphs was done on the PDP-11/45 at
the University of Newcastle; the other calculations were done on the
VAX-11/780 at the University of Western Ontario. The authors thank
Dr. Albert Nymeyer and Mr. Jorge Cuervo for their help in writing the
programs.
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