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1. INTRODUCTION

For any ¢ e C!(R, R) and n>2, consider the system of conservation
laws

u, + (@(lul)u) =0, (1.1)

to be solved, weakly, by vector-valued functions #: R% :=Rx [0, ) — R”
of space xeR and time ¢>0. The goal of this note is to establish the
following properties of solutions.

THEOREM 1. (a) (Existence) System (1.1) has a solution for any
initial data u’e (R, R"). (b) (Uniqueness) For any such u°, there is
precisely one solution u with the property that r = |u| satisfies the additional
conservation law r,+ (o(r)r),=0 and Kruskov’s ([8]) entropy criterion.
(¢) (Stability) The solution S(u°):=u defined by (b) depends ¥\ -con-
tinuously on the data u°. (d)(Generic regularity) For generic smooth ¢
and generic smooth bounded data u°, S(u°) is piecewise smooth,
with locally finitely many shocks that satisfy the Oleinik—Liu ([10, 14])
condition (E).

THEOREM 2. (a) (Transport of angular distribution, in general) Consider
the solution u= S(u°) corresponding to data u®e £*(R, R"). In R identify
each two points (x,, t), (x5, t) with x; < x, and ((x{, x,) x {t}) " sptu= &,
and call the resulting set X (ie., essentially, X =sptu). Then, 0 =u/|u| €
FL(Z, 85" Yand 0'=0(-, t)e L(X', S" 1), t =0, are well-defined, with Z*' =
{x|(x, t)e Z'}. There is a family of continuous transformations T*% X' — X°
such that

0'=0°T"°  forall t>0. (1.2)
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(b) (Special case: Soliton-like behavior of rotational waves) Assume
additionally that 8*(@(r)r)/or? exists and is #0 for all r > 0. Consider data
u° which are bounded and bounded away from 0 and have asymptotically
constant radial part, ie., u®=r°0° with r°—ae ' (R, [b, —a, b,—a]) for
some constants by=a>=b,>0. If now ¢'(a)#0 and r®=a on some finite
interval I, then the behavior of the solution on a corresponding “strip” is
characterized by

lim  sup |u(x, t)—u’(x+6—(@(a)+o(t~)1)|=0 (1.3)
1w x; TWOx)el
(where the phase shift & can be computed from r°). Especially if, moreover,
r° — a has compact support, then there exists a ty =0 such that

(t=tonx+6—ea)te=u(x, t)=u’(x+ 6 — p(a)?). (1.4)

Systems of the form (1.1) were first studied in [7, 12]. They arise in
various situations in continuum mechanics. Especially, setting ¢(|u|) = |u|*
makes (1.1) a model of any generically rotationally degenerate hyperbolic
system of conservation laws ([2]), vielding a qualitatively and quan-
titatively good approximation in a regime corresponding to small values of
|u|, see [1, 3]. Note that, for generic systems (1.1), the vanishing viscosity
method is not an appropriate way to establish a solution theory which
would satisfy Hadamard’s classical requirements of existence, uniqueness,
and continuous dependence (see [4]): for “appropriate” data «° upon
adding dissipative terms to (1.1), there typically are solutions which are far
from the solution S(«°) constructed here. In part (b) of Theorem 2, the
word “soliton-like” is used only to indicate that the rotational wave con-
sidered there for the purpose of illustration finally emerges as a traveling
wave of unchanged shape, no matter which other (radial) waves may have
crossed its way in between; for more realistic “Alfvén solitons” see rather
[13], which is based on a system that can be viewed as an extension of
(1.1) with @((u|)= [u|?, n=2, by dispersive terms. The intention in proving
Theorems 1 and 2 is to give and to illustrate (respectively) a mathemati-
cally satisfying self-consistent solution theory for hyperbolic systems (1.1).
Systems (1.1) are typically non-strictly hyperbolic so that also the classical
theory of Lax [9], Glimm [5], and Liu [11] does not apply immediately.
For a study of the Cauchy problem for a related but different class of
non-strictly hyperbolic systems, see [16] and [17]. The results of the very
recent paper [17] ([17] and the present paper have been written
independently) are partly similar in spirit to the results presented here; the
different methods used in either paper do not readily cover the situations
treated in the other paper.

Part (a) of Theorem ! is only slightly more general than an existence
theorem that Liu and Wang gave in [12], using Glimm’s scheme. Liu and
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Wang also employed the natural polar coordinates (r, 8) for u, and,
in particular, the extra conservation law r,+ (@(r)r),=0. This equation
clearly holds, per constructionem, for their solution, which is thus identical
with ours (in the case which they have considered). Note that it is not valid
for general weak solutions of (1.1), as, eg., certain solutions with
antiparallel Riemann data show. The key idea of the proofs below of
Theorems 1 and 2 is to treat an extended system, consisting of (1.1) plus
the extra conservation law for r, with Wagner’s transformation theory
[18]. This latter means introducing new independent (“Lagrangian”)
variables. Note that different transformations of this type are possible (cf.
[187), depending on which conserved quantity is interpreted as a “particle”
density; the crucial point in the transformation used here is that we take
the quantity  for this purpose, which is not even a conserved quantity for
arbitrary weak solutions of the original system (1.1).

Parts (a) and (b) of Theorem 1 are proved in the following Section 2,
part (c) and Theorem 2 are proved in Section 3, and part (d) of
Theorem 1-—by then an easy corollary of the work of Schaeffer [15] and
Guckenheimer [6]—is shown in the short final Section 4.

2. EXISTENCE AND UNIQUENESS
This whole paper is based on the following corollary of Wagner’s work:
LeMMA 1. For any me N, there is a one-to-one correspondence between

(equivalence classes of ) bounded Lebesgue measurable solutions (r, r@):
R?% — [0, 00) x R™ to the system

ro+(e(r)r),=0 (2.1)
(r0),+ (o(r)r9),=0 (2.2)
which satisfy
jo Fx, 1) dx=j°° r(x, 1) dx = 00 (2.3)
— o0 0

and (equivalence classes of ) weak solutions (r, 8) to the system

7, — (o(1/7)), =0, (24)

8,=0, (2.5)

in which © is a Radon measure on R® which dominates Lebesgue (outer)
measure A, (i.e., 1= kA, for some k>0), T is the density of the absolutely
continuous part of t with respect to i, (so that 1/k=1/fe ¥£*), and
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B: R2 — R™ is bounded and Lebesgue measurable. This correspondence is
established through transformations T (x, 1) (y(x, t), t) defined relative to
any bounded measurable solution of (2.1) by

4 (x, )=r(x, 1), 4 (x, )= —o(r(x, 1)) r(x, £),  »(0,0)=0, (2.6)
ox ot

namely setting
T=2,0T7}, (2.7)

6=0.T"". (2.8)

Proof of Lemma 1. Identical with Wagner’s proof of Theorems 1 and 2
in [18]! x and y play the roles of “Eulerian” and “Lagrangian” coordinates
(i.e., spatial coordinate and particle marker, respectively), r and 1 those of
mass density (referring to x) and specific volume (referring to y) of a
fictitious gas. In this analogy, ¢ o r corresponds to speed as a function of x
and ¢, and, as Wagner’s remarks after the proof of Lemma 2 in [18]
immediately imply, the corresponding Lagrangian density is given by
o(1/%)

Let now any data #°c #=(R,R") for (1.1) be given. Consider
e #*(R, [0, ©)), 8°c £ (R, S”~') with the property

u° = rg° (2.9)

Let r be the unique Kruskov ([8]) type solution of the scalar conservation
law (2.1) with data ° In case condition (2.3) should not already hold, it
is clear that for arbitrarily given compact subsets K® and K of R and R?,
respectively, one can change r° outside K° in such a way that (2.3)
becomes satisfied and at the same time r remains unaffected inside K. We
will thus without loss of generality assume from now on that (2.3) holds.
Applying now Lemma 1 with m=0, i, to (2.1), (2.4) without (2.2), (2.5),
we see that (2.7) defines a solution t of (2.1) which is a Radon measure
dominating 4,. Define 8% £(R, S*~') through

8% y(x,0))=6%x,0) forall xeR, (2.10)
fe #(R%, S"~') through

8(y,)=8%y) forall =0, yeR, (2.11)
and find 6 € #(R?% , $"~ ') such that (2.8) holds; note that (2.8) determines

@ on spt r. Since g trivially solves (2.5), Lemma 1 implies that the pair (r, §)
solves system (2.1), (2.2), with now m = n. Obviously, u=r8 solves (1.1),
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which is identical with (2.2). We have just proved assertion (a) of
Theorem 1, as well as part of assertion (b).

To complete the proof of (b), it only remains to show that the solution
u we have constructed is the only one satisfying the additional conservation
law (2.1). This, however, becomes immediately clear from reversing the
above argumentation; it is obvious that the only apparent ambiguity, i.e.,
the fact that 6° and @ are arbitrary outside spt r° and spt r, respectively,
does not affect the desired uniqueness of .

3. STABILITY AND TRANSPORT PROPERTY

Here we prove Theorem 2 and part (c) of Theorem 1. We start with
some observations on the solution we have constructed. First, note that
while a priori r, as a weak solution, has to be defined only almost
everywhere, Kruskov’s theory [8] implies that t+r‘:=r(-, t), te [0, ),
actually is an | -continuous curve in £ *(R, R). Thus, the coordinate y
that is defined through (2.6) can be represented as

y(x,;)=jx“r'(2)dx forall (x,1)eR2 (3.1)

with a curve x, € C°([0, ), R), x,(0) =0 (see [18]). For any />0, let 2"
be R modulo the identification of each two points x; < x, with the property
that r*=0 a.. in (x,, x;), and define a continuous bijection T 2 - R
unambiguously through

T'(x)= y(x, t) forall xeZ’ (3.2)

Setting
T :=(T% 1T, (3.3)

we have already proved part (a) of Theorem 2. To prove part (b) of
Theorem 2, note first that under its assumptions, r(x, ¢) — a, uniformly in
X, as t — o0, by virtue of Theorem 6.2 in [9]. Thus,

lim sup |u(x, t)—ab®(T"°(x))| = 0. (3.4)

r—+o0 xeR

By (1.2), (3.3), and since T% =gq on 1, it suffices to show that the function
z defined by

z(x, t)= y(x, t) —a(x — @(a)t) (3.5)
satisfies

lim sup |z(x,f)—c|]=0 forsome ceR. (3.6)

t— 0 X; T’vo(x)e 7
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By (2.6), z satisfies z,=r—a, z,= —@orr+ ¢(a)a, z(0,0)=0 and is thus
given by

z(x,t)=ci+J: (r(%)—a)d%  with ci=J0iw(r°(j)—a)dj. (3.7)

z is constant along curves of speed —z,/z,, which, for ¢ — o0 and uniformly
in x, approaches the value ¢(a)+ ¢'(a)a. This is different from the
asymptotic speed lim, _, .(~y,/y,.) = ¢(a) of the curves along which y and
8 are constant. Therefore, (3.6) holds with

c= lim z(x,0)=c_ [c= lim z(x,0)=c,] (3.8)
if '(a)>0 [¢'(a)<0]. If (in these respective cases) x, is the left [right]
endpoint of /, then the phase shift § is given by

5=f° (1 — (r(%)/a)) d% [a=r ((r°(%)/a) — l)di]; (3.9)
— 0 x0
this is clear from the special case x, =0, in which ¢ =ad. Note finally that
in case r°—gq is compactly supported, the sup in (3.6) will be identically
zero after a finite time ¢,, with which (1.4) will hold. The proof of
Theorem 2 is now complete.

We turn to part (c¢) of Theorem 1. Observe first that (3.1}-(3.3) imply
that, with 4, denoting one-dimensional Lebesgue (outer) measure, r°4, is
the pull-back measure of r'2, with respect to T*°, ie,

JR AT (x)) ri(x) dx=JR f(x®) r’(x®)dx®  for all test functions f. (3.10)

Let now C, T>0 and u* € R"\ {0} be arbitrary constants and denote by &
the set of bounded measurable solutions, of the above type, with the addi-
tional technical properties that |u| < C in all of R% and u(x, ) =u> for all
(x, 1)e R% with |x| > C, 0<t<T. Continue to write u=rf, and «°=r°9°
for the corresponding initial values. Part (c) will be proved once we can
show that for any elements u, (neN), u, e, convergence ud— u% in
Z'(R, R") implies convergence u,—u, in ZL'(Rx[0, T], R"). Before
showing this, we observe the following remarkable property:

LEMMA 2. For solutions with coinciding radial part, ¥ -distance is a time
invariant; ie., if u,=r,0,, u,=r,0,€ satisfy r°=r}, and thus r,=r,,
then

J.R lu,(x, 1) — uy(x, t)| dx=fm |ul(x)—ud(x)|dx  forall 1>0.
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Proof of Lemma 2. In this case, with r,=r,=:r,

[ s, 61— s, 0 = [ 10,0500 0305, 0 i 1
=IR 8,(T"(x), 1) = 6,(T"(x), )| r'(x) dx
= [ 18T, 0) = Bu(T"(x), 0) rx) i
- fR 18.(T°(x°), 0) — B,(T%(x°), 0)] r°(x°) dx°
= [ 186:0) = 0, r°(x") dx”

= j |u9(x°) — ud(x°)] dx®.

Now, in considering the above-mentioned sequence, we use Lemma 2 by
assuming without loss of generality that 62 =69 for all ne N. We have

j f R0 8) —u,(x, 1) dx dt
<f j (ra(x, 1) — r o(x, 1) dx dt

+f J o 1) 10,(x, 1) —0,(x, 1)| dx dt.

When n— oo, the first term tends to 0 according to Kruskov’s theory.
Since, by assumption, 82 =609, the second term is dominated by

c|f 10%((TS) " (3a(x, 1))
([—=C,C1x[0,T])nsptr,
—0%((T%) ™ (yalx 1))l dx d,

with y,, »,, T9, TS, defined as in (3.1), (3.2) relative to r, and r,, respec-
tively. As

(T (yalx, 1) > (T (y4(x,2))  forae. (x,f)esptr,,

the convergence of the second term follows from Lebesgue’s theorem. The
proof of part (c) of Theorem 1 is complete.



CAUCHY PROBLEM FOR HYPERBOLIC SYSTEMS 177
4. REGULARITY

The proof of part (d) of Theorem 1 is now very easy. Generically,

smooth initial data u°®=r%9° satisfy r®e C*(R, (0, «¢)). According to [6],
for generic smooth r° the (Kruskov type) solution r is piecewise smooth,
with locally finitely many shocks that satisfy condition (E). The transfor-
mation T of R% given by (2.6) is (not only Lipschitz, which it is in general,
but also) piecewise smooth in this case. Since r > 0 everywhere, the same
holds for T—'. Thus, (2.8) implies that 8 is piecewise smooth if f is.

H

owever, due to (2.5), (2.8), (2.10), (2.11), 8 is as regular as 6° is, and thus

smooth in our case.
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